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Summary. — The introduction of the three interpretational paradigms for
Gamma-Ray Bursts (GRBs) and recent progress in understanding the X- and γ-
ray luminosity in the afterglow allow us to make assessments about the astrophys-
ical settings of GRBs. In particular, we evidence the distinct possibility that some
GRBs occur in a binary system. This subclass of GRBs manifests itself in a “tryp-
tich”: one component formed by the collapse of a massive star to a black hole,
which originates the GRB; a second component by a supernova and a third one by
a young neutron star born in the supernova event. Similarly, the understanding of
the physics of quantum relativistic processes during the gravitational collapse makes
possible precise predictions about the structure of short GRBs.

PACS 04.70.-s – Physics of black holes.
PACS 98.70.Rz – γ-ray sources; γ-ray bursts.
PACS 97.60.Jd – Neutron stars.
PACS 97.60.Bw – Supernovae.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

The basic new approach in our model of GRBs has been summarized in three letters [1-
3] and in a variety of articles, including two extensive review papers [4,5]. The difference
between our model and all other approaches in the literature consists in:

a) the spacetime parameterization of the GRB structure [1],
b) the identification of two different components in the GRB phenomenon.
The first one is the proper-GRB (P-GRB) which is emitted as the optically thick

accelerated phase of GRB reaches transparency. The crucial identification of this phe-
nomenon has usually been neglected in the current literature. The second one is the

(∗) Paper presented at the “4th Workshop on Gamma-Ray Burst in the Afterglow Era”, Rome,
October 18-22, 2004.
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afterglow, originating from the interaction of the baryonic matter, accelerated in the op-
tically thick phase, with the interstellar medium. At variance with the current literature,
the commonly called “prompt radiation” of the long GRBs is considered a part of the
afterglow, being an extended afterglow peak emission (E-APE) [2]. The short GRBs are
again explained within this unitary model: they correspond to the absence of significant
amount of baryonic matter in the optically thick accelerating phase. They coincide with
the P-GRBs which in this case are much more prominent, being the afterglow component
negligible. See left panel of fig. 1.

c) although the above considerations “a” and “b” applies to all GRBs, there are some
GRBs which appear to be associated to supernovae. Our model sharply differentiates
between the GRB phenomenon and the supernova process [3]. It evidences the binary
nature of the GRB progenitor and opens the problematic of an induced collapse either by
the GRB on the supernova progenitor star or by the supernova on the GRB progenitor
star.

In addition to these three paradigms, our model advances a specific emission process
for the gamma-ray and X-ray afterglows, while optical and radio afterglows (usually
observed in the latest phases) are assumed to originate from another emission process
[6, 7].

On the basis of our GRB model (see [4, 5] and references therein), we have recently
fitted GRB 991216, GRB 980425, GRB 030329 and GRB 031203. In all four cases
the luminosity and the spectral informations are consistent with isotropic emission and
no beaming. Some preliminary results on this last source are presented here. In total
analogy with the tryptichs GRB 980425 – SN1998bw – URCA-1 and GRB 030329 –
SN2003dh – URCA-2, we are in the presence of a triptych which we call GRB 031203 –
SN2003lw – URCA-3. We can clearly see from our theoretical prediction on the X- and
γ-ray luminosities (see fig. 2) that there is a late component in the 0.2–10 keV band not
connected to the afterglow. This is the emission from URCA-3

2. – On the GRB-supernova connection

We first stress some general considerations originating from comparing and contrast-
ing the considered GRB sources:

1. The value of the B parameter for all sources occurs, as theoretically expected, in
the range [4, 5] 10−5 ≤ B ≤ 10−2. We have in fact:

GRB B
Edya

(erg)
ESN

(erg)
LURCA

(erg/s/str)

991216 3.0 × 10−3 4.8 × 1053 — —
980425 7.0 × 10−3 1.1 × 1048 ∼ 1049 5.2 × 1039

030329 4.8 × 10−3 2.1 × 1052 ∼ 1049 1.9 × 1041

031203 7.4 × 10−3 1.8 × 1050 ∼ 1050 1.0 × 1042

2. The large difference in the GRB energy of the sources simply relates to the electro-
magnetic energy of the black hole which turns out to be smaller than the critical
value. The fact that the theory is valid over 5 orders of magnitude is indeed very
satisfactory.
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Fig. 1. – Left: Our theory applied to GRB 991216 (main panel). It is represented the P-GRB (at
arrival time between 0.01 s and 0.1 s) and the afterglow starting at 0.1 seconds. Also represented
is the BATSE noise threshold. In the upper right panel is represented the corresponding light
curve observed by BATSE. The observed precursor (see the enlargement on the left side) pre-
cisely coincides in amplitude and arrival time with the theoretically predicted P-GRB. The main
part of the “prompt radiation” coincides, both in arrival time and intensity, with the extended
emission at the peak of the afterglow (see text). Details in [2, 4, 5]. Right: Predicted observed
luminosity and observed spectral hardness of the electromagnetic signal from the gravitational
collapse of a collapsing core with M = 10M�, Q = 0.1

√
GM at z = 1 as functions of the arrival

time td
a at the detector. Details in [8].

3. In both sources GRB 980425 and GRB 030329 the associated supernova energies
are similar (details in [9, 10]). The further comparison between the SN luminosity
and the GRB intensity is crucial. In the case of GRB 980425 the GRB and the
SN energies are comparable, and no dominance of one source over the other can be
ascertained. In the case of GRB 030329 the energy of the GRB source is 103 larger
than the SN: it is unlikely that the GRB can originate from the SN event.

The above stringent energetic considerations and the fact that GRBs occur also without
an observed supernova give further evidence against GRBs originating from supernovae.

3. – URCA-1, URCA-2 and URCA-3

We show in fig. 2 the X- and γ-ray luminosities of GRB 031203. We turn then to the
exciting search for the nature of URCA-1, URCA-2 and URCA-3. The first possibility is
that the URCA sources are related to the black hole originating the GRB phenomenon.
In order to probe such an hypothesis, it is enough to find even a single case in which
an URCA source occurs in association with a GRB and in the absence of an associated
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Fig. 2. – Theoretical light curve of GRB 031203 predicted by our model in γ-rays (20–200 keV,
solid line) and X-rays (0.2–10 keV, dashed line), together with the observed values (the horizontal
bar corresponds to the mean peak flux from INTEGRAL [11]). The dotted lines correspond to
the source URCA-3 compared with the experimental data obtained by XMM [12] and Chandra
[13].

supernova. Such a result, theoretically unexpected, would open an entire new problematic
in relativistic astrophysics and in the physics of black holes.

On the other hand, if indeed, as we expect, the clear association between URCA
sources and the supernovae occurring together with the GRBs will be confirmed, then
two other possibilities will be favored. First, an emission from processes occurring into
the early phases of the supernova remnant expansion or the very exciting possibility that
we are observing a newly born neutron star out of the supernova phenomenon. We shall
focus in the following only on this last topic.

The need for a rapid cooling process due to neutrino and anti-neutrino emission in the
process of gravitational collapse leading to the formation of a neutron star was considered
for the first time by George Gamow and Mario Schoenberg in 1941 [14]. It was Gamow
who gave to this process the name “Urca process”. Since then, a systematic analysis of
the theory of neutron star cooling was advanced by Tsuruta and collaborators [15-18]
and by Canuto [19]. X-ray observatories such as Einstein (1978-1981), EXOSAT (1983-
1986), ROSAT (1990-1998), and the contemporary missions Chandra and XMM-Newton
since 1999 had set very embarrassing and stringent upper limits on the neutron star
surface temperature in well known historical supernova remnants (see, e.g., [20]). As
an example, the neutron star upper limits on the surface temperature in the case of SN
1006 and the Tycho supernova were significantly lower than the temperatures given by
standard cooling times (see, e.g., [20]). Much of the theoretical work has been mainly
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directed, therefore, to find theoretical arguments in order to explain such low surface
temperature (Ts ∼ 0.5–1.0× 106 K) —embarrassingly low, when compared to the initial
hot (∼ 1011 K) birth of a neutron star in a supernova explosion (see, e.g., [20]). Some
relevant steps in this direction have been presented in [21-25]. The youngest neutron star
to be searched for using its thermal emission in this context has been the pulsar PSR
J0205+6449 in 3C 58 (see, e.g., [25]), which is 820 years old! Recently, evidence for the
detection of thermal emission from the crab nebula pulsar was reported in [26] which is,
again, 951 years old.

In the case of URCA-1, URCA-2 and URCA-3, we may be exploring a totally different
regime: the X-ray emission arising from the first months of existence of a neutron star.
The reason of approaching first the issue of the thermal emission from the neutron star
surface is important, since in principle it may give information on the equations of state
in the core at supranuclear densities, on the detailed mechanism of the formation of the
neutron star itself and the related neutrino emission. It is of course possible that the
neutron star is initially fast rotating and its early emission is dominated by the magne-
tospheric emission or by accretion processes from the remnant which would overshadow
the thermal emission. In this case a periodic signal related to the neutron star rotational
period should in principle be observable if the GRB source is close enough.

Quoting [24]: “The time for a neutron star’s center to cool by the direct URCA
process to a temperature T has been estimated to be t = 20

[
T/

(
109K

)]−4 s. The direct
URCA process and all the exotic cooling mechanisms only occur at supranuclear densities.
Matter at subnuclear densities in neutron star crust cools primarily by diffusion of heat
to the interior. Thus the surface temperature remains high, in the vicinity of 106 K or
more, until the crust’s heat reservoir is consumed. After this diffusion time, which is
on the order of 1–100 years, the surface temperature abruptly plunges to values below
5× 105 K”. This result has been confirmed in [27].

The considerations we have quoted above are developed in the case of spherical sym-
metry and should keep the minds open to additional factors to be taken into account:
1) the presence of rotation and magnetic field which may affect the thermal conductivity
and the structure of the surface, as well as the above-mentioned magnetospheric emis-
sion; 2) there could be accretion of matter from the expanding nebula; 3) some exciting
theoretical possibilities advanced by Dyson on volcanoes on neutron stars [28] and iron
helide on neutron star [29]; 4) the possibility of piconuclear reactions on neutron star
surface discussed in [30].

All the above are just scientific arguments to attract attention on the abrupt fall in
luminosity observed in URCA-1, URCA-2 and URCA-3 which is of the greatest scientific
interest and further analysis should be followed to check if a similar behavior will be
found in future XMM and Chandra observations.

4. – Astrophysical implications

In addition to these very rich problematics in the field of theoretical physics and
theoretical astrophysics, there are also more classical astronomical and astrophysical
issues, which will need to be answered if indeed the observations of a young neutron star
will be confirmed. An important issue to be addressed will be how the young neutron star
can be observed, escaping from being buried under the expelled matter of the collapsing
star. A possible explanation can originate from the binary nature of the newly born
neutron star: the binary system being formed by the newly formed black hole and the
triggered gravitational collapse of a companion evolved star leading, possibly, to a “kick”
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on and ejection of the newly born neutron star. Another possibility, also related to the
binary nature of the system, is that the supernova progenitor star has been depleted of
its outer layer by dynamic tidal effects.

In addition, there are other topics in which our scenario can open new research direc-
tions in fundamental physics and astrophysics:

1) The problem of the instability leading to the complete gravitational collapse of a
∼ 10M� star needs the introduction of a new critical mass for gravitational collapse,
which is quite different from the one for white dwarfs and neutron stars which has been
widely discussed in the current literature (see, e.g., [31]).

2) The issue of the trigger of the instability of gravitational collapse induced by
the GRB on the progenitor star of the supernova or, vice versa, by the supernova on
the progenitor star of the GRB needs accurate timing and the considerations of new
relativistic phenomena.

3) The general relativistic instability induced on a nearby star by the formation of a
black hole needs some very basic new developments in the field of general relativity.

Only a preliminary work exist on this subject (see, e.g., [32]) due to the complexity of
the problem: unlike the majority of theoretical work on black holes (which deals mainly
with one-body solutions), we have to address here a many-body problem in general
relativity. We are starting in these days to reconsider, in this framework, some classic
work by Fermi [33], Hanni and Ruffini [34], Majumdar [35], Papapetrou [36], Parker et
al. [37], Bini et al. [38] which may lead to a new understanding of general relativistic
effects relevant to these astrophysical “triptychs”.

5. – The short GRBs as cosmological candles

After concluding the problematic of the long GRBs and their vast astrophysical im-
plications, we briefly turn to the physics of short GRBs [4, 5]. We first recall some
progress in understanding the dynamical phase of collapse, the mass-energy formula and
the extraction of blackholic energy which have been motivated by the analysis of the
short GRBs [8]. In this context progress has also been accomplished on establishing an
absolute lower limit to the irreducible mass of the black hole as well as on some critical
considerations about the relations of general relativity and the second law of thermo-
dynamics [39]. This last issue has been one of the most debated in theoretical physics
in the past thirty years [40-44]. Following these conceptual progresses we analyzed the
vacuum polarization process around an overcritical collapsing shell [45,46]. We evidenced
the existence of a separatrix and a dyadosphere trapping surface in the dynamics of the
electron-positron plasma generated during the process of gravitational collapse [47]. We
then analyzed, using recent progress in the solution of the Vlasov-Boltzmann-Maxwell
system, the oscillation regime in the created electron-positron plasma and their rapid
convergence to a thermalized spectrum [48]. We concluded by making precise predic-
tions for the spectra, the energy fluxes and characteristic time-scales of the radiation for
short-bursts [8] (see right panel in fig. 1).

Ghirlanda et al. [49] have found evidence for an exponential cut-off at high energy
in the short burst spectra. From the existence of the separatrix introduced in [48], we
may expect such a cut off (see fig. 1), and are currently comparing and contrasting the
observations with our model. If they are in good agreement, this would lead for the first
time to the identification of a process of gravitational collapse and its general relativistic
self-closure as seen from an asymptotic observer.
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If our theoretical predictions will be confirmed, we will have a powerful tool for cos-
mological observations: the independent information about luminosity, time-scale and
spectrum can uniquely determine the mass, the electromagnetic structure and the dis-
tance from the observer of the collapsing core, see [8]. The short-bursts, in addition to
give a detailed information on all general relativistic and relativistic field theory phe-
nomena occurring in the approach to the horizon, may also become the best example of
standard candles in cosmology [50].

6. – On the dyadosphere of Kerr-Newman black holes

An interesting proposal was advanced in 2002 [51] that the e+e− plasma may have a
fundamental role as well in the physical process generating jets in the extragalactic radio
sources. The concept of dyadosphere originally introduced in Reissner-Nordström black
hole in order to create the e+e− plasma relevant for GRBs can also be generalized to the
process of vacuum polarization originating in a Kerr-Newman black hole due to magneto-
hydrodynamical process of energy extraction (see, e.g., [52] and references therein). The
concept therefore introduced here becomes relevant for both the extraction of rotational
and electromagnetic energy from the most general black hole [53].
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