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Summary. — Oceanic circulation on the beta-plane demands the presence of (at
least) two scales of the motion to describe completely the flow structure and evo-
lution both in the central-eastern area of the basin and in the western boundary
layer. In each of the two regions of the basin, well-established quasi-geostrophic
vorticity equations govern the flow. However, since these two regions are physically
connected, a single and general vorticity equation is requested to hold in the whole
basin. In the present investigation, the inference of this last equation is analysed by
comparing some methods found in the literature with another which is put forward
by the authors.

PACS 92.10.Fj – Dynamics of the upper ocean.

1. – Introduction

The present investigation aims to explore the fundation of two kinds of equations
governing the quasi-geostrophic dynamics of the ocean, for a conserved fluid density
and a constant density, respectively. Therefore, the subject does not concern models
or solutions of these equations (even if we will consider special solutions on illustrative
purposes) but mainly the method of their inference.

In the framework of the quasi-geostrophic approximation, the oceanic circulation on
the beta-plane demands the consideration of (at least) two scales of the motion, one
being referred schematically to the central and eastern areas of the basin and the other
to the western boundary layer, in the westernmost side of the basin. By convention, we
call basin scale dynamics that concerning the flow in the central and eastern areas and
mesoscale dynamics that related to the flow evolution in the western side and to the
eddies, although the eddy field lies outside our goal. Well-established quasi-geostrophic
vorticity equations (depending on the considered density structure of the fluid) govern
the flow in each of the two regions but the incessant transition of the fluid elements from
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one region to the other makes it unavoidable the resort to a single general equation,
valid in the whole basin. This happens, for instance, in modelling Rossby wave packets
or subtropical gyres if the effects produced by the western boundary layer are taken
into account as well. Here, we will focus the attention to the construction of the quasi-
geostrophic vorticity equation in its general form whose deduction, in our opinion, is not
made always clear, as the following remarks show.

At times, for a flow with conserved fluid density, the mesoscale vorticity equation
is assumed to be valid in the whole basin. This, since it can be formally transformed
into the vorticity equation of the basin scale simply by a rescaling of its nondimensional
parameters, is in contradiction however with the hypotheses on which the mesoscale
equation is based. On the other hand, in the homogeneous model (constant fluid density),
one should clearly distinguish the advective time of the mesoscale from the so-called
Rossby wave period which yields the typical time at the basin scale. Only with this
distinction in mind, not always recognized in the literature, a consistent general vorticity
equation can be inferred for the homogeneous ocean.

Our point of view is that, irrespectively of the features of the density field, the vor-
ticity equation referable to the complete fluid domain comes from suitable nonsingular
transformations applied to all the variables, fields, operators and parameters of the start-
ing mesoscale equation thus leading to a general vorticity equation, in a composite form,
such that:

– All the transformed variables, fields, operators and parameters appearing in the
general equation are expressed only through basin scale quantities and no term
vanishes after the transformations.

– In the general equation the O(1) terms are only those giving the Rossby waves
equation, the Sverdrup balance and a combination of them while the remaining
terms are much smaller than unity. We stress that an equation with terms of
different orders of magnitude cannot be obtained by means of the perturbative
method used, separately, to constitute the mesoscale and the basin scale quasi-
geostrophic equations from the primitive equations.

– In the western boundary layer, relative vorticity and/or dissipation grow well be-
yond unity and thus further terms O(1) are restored in the general equation.

2. – Summary of the nondimensional starting equations

We preliminarily summarize the nondimensional equations, with the perturbation
pressure geostrophically scaled, from which the quasi-geostrophic equations are inferred.
The horizontal mean current ū = (u, v) referred to a certain beta-plane is governed by
the equations

εT
∂u

∂t
+ εū · ∇̄u− (1 + βεy)v = −∂p

∂x
+
Eh

2
∇2

hu+
Ev

2
∂2

∂z2
u,(1)

εT
∂v

∂t
+ εū · ∇̄v + (1 + βεy)u = −∂p

∂y
+
Eh

2
∇2

hv +
Ev

2
∂2

∂z2
v.(2)

In (1) and (2), εT ≡ 1/f0T is the temporal Rossby number, ε ≡ U/f0L is the advective
Rossby number, β ≡ β0L

2/U is the nondimensional planetary vorticity gradient, Eh ≡
2Ah/f0L

2 is the horizontal Ekman number and Ev ≡ 2Av/f0H
2 is the vertical Ekman
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number. Each scale of the motion is fixed once the values of L, U and T are given, while
the Coriolis parameter f0 = O(10−4) and the dimensional planetary vorticity gradient
β0 = O(10−11) are constant. The Ekman numbers suffer the strong indeterminateness
of the coefficients Ah and Av which come from the parametrization of turbulence and
therefore they cannot be singled out only by the values of L, U and T . The relations
between these numbers and εT , ε, β will be specified in the following. The perturbation
pressure and the perturbation density are related by the equation

(3)
∂p

∂z
+ ρ(x̄, t) = 0.

The hypothesis of an isentropic and nondiffusive ocean, in which total density is conserved
following the motion, yields the thermodynamic equation

(4) w =
ε

Bu

1
N2

(
∂ρ

∂t
+ ū · ∇̄ρ

)
,

where w is the vertical velocity and Bu ≡ (HN0/f0L)2 is the Burger number. In turn,
N ≡ Ns/N0 is the nondimensional buoyancy frequency, Ns is its dimensional counterpart
and N0 = O(5 · 10−3) is the typical value of Ns. Note also that, if the local and the
advective terms are expected to give comparable contributions to the conservation of total
density, the advective time scale, i.e. T = L/U , holds. In the absence of a conservation
principle this is not necessarily true. For instance, in the homogeneous ocean where
the density conservation is substituted by the hypothesis of a constant density and the
thermodynamics is not necessary to complete the equations of motion, the typical time
interval of the basin scale dynamics is T = (β0L)−1.

3. – The quasi-geostrophic equation at the basin scale

At the basin scale the observed values of L, U and T lead to the relation

(5) εT = ε � βε < 1

together with

(6) βBu = O(1).

It is also assumed

(7) Eh � βε and Ev � βε

in order that the geostrophic equilibrium be dominant in the leading dynamic balance.
Because of (5) and (7), the ordering parameter is βε and the vorticity equation takes the
form

(8) v0 =
∂w1

∂z
,

where v0 is the zeroth-order term in the expansion of the meridional velocity in powers
of βε while w1 is the first-order term in the expansion of the vertical velocity in powers
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of βε. According to the same expansion we obtain from this last equation the leading
term of the thermodinamic equation which is

(9) w1 =
1

βBuN2

(
∂ρ0

∂t
+ ū0 · ∇̄ρ0

)
.

At this point, w1 can be eliminated from (8) and (9) to yield an equation involving only
the geostrophic current ū0 and the perturbation density ρ0. In terms of the perturbation
pressure at the zeroth order in βε, which is conventionally denoted by ψ (instead of p0),
we have ū0 = k̂ × ∇̄ψ and, using (3), ρ0 = −∂ψ/∂z. Hence the equation takes the form

(10)
∂

∂t

∂

∂z

(
1

BuN2

∂ψ

∂z

)
+ J

(
ψ,

∂

∂z

(
1

BuN2

∂ψ

∂z

))
+ β

∂ψ

∂x
= 0,

where ū0 · ∇̄ = J(ψ, ·) is the advection operator expressed as a function of the Jacobian
determinant. Equation (10) is the quasi-geostrophic equation at the basin scale for a
stratified and isentropic fluid on the beta-plane.

We report two examples of unforced and forced solutions of (10) that point out their
inadequacy to describe exhaustively the flow behaviour in a real ocean.

– In the simplified case N = 1 we set in accordance with (6) βBu = 1, to find the
wavelike solution of (10) inside the layer −1 ≤ z ≤ 0 given by

(11) ψ = cos(kπz) exp
[
in

(
x+

t

k2π2

)
+ imy

]

(integer k). Solution (11) represents a westward translating Rossby wave with the same
phase (cx) and group (cgx) velocity in the zonal direction, i.e. cx = cgx = −(kπ)−2.
As every ocean basin is bounded by a couple of meridional coasts, the unidirectional
propagation of the wave packet in the zonal direction would imply an eastern source and
a western sink of energy at the basin walls. Actually, such unphysical situation is avoided
by smaller scale wavelike components not satisfying (10) and travelling eastward.

– The vertical integration of each term of the steady solution of (10) with the use of
the vertical boundary conditions

w1(z = −1) = 0 and w1(z = 0) = k̂ · ∇̄ × τ̄

yields

(12)
∫ 0

−1

J

(
ψ,

∂

∂z

(
1
N2

∂ψ

∂z

))
dz = −k̂ · ∇̄ × τ̄ and

∫ 0

−1

∂ψ

∂x
dz =

∂Φ
∂x

,

where the transport streamfunction

Φ =
∫ 0

−1

ψ dz
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has been introduced. From (10) and (12) the well-known Sverdrup balance

(13)
∂Φ
∂x

= k̂ · ∇̄ × τ̄

follows. We stress that the typical length of the basin scale is the same as that of τ̄ and
therefore k̂ · ∇̄ × τ̄ = O(1). If we consider, for instance, the subtropical region where
k̂ · ∇̄× τ̄ ≤ 0, we conclude that the meridional transport ∂Φ/∂x is southward everywhere
in the underlying basin, thus preventing the closure of the wind-driven circulation inside
the basin itself by means of a suitable northward return flow (the Gulf Stream, say).
Again, the basin scale dynamics governed by (13) must be supplemented by a smaller
scale contribution in order to reproduce also the northward return flow.

4. – The quasi-geostrophic equation at the mesoscale

At the mesoscale the observed values of L, U and T imply the relations

(14) εT = ε � 1, β = O(1)

together with

(15) Bu = O(1).

It is also assumed

(16) Eh = O(ε) and Ev = O(ε)

in order to have the possibility of including dissipation into the vorticity equation. Be-
cause of (14) and (16), the ordering parameter is ε and the vorticity equation, written
by resorting to the previously introduced streamfunction and Jacobian, takes the form

(17)
∂

∂t
∇2ψ + J

(
ψ,∇2ψ

)
+ β

∂ψ

∂x
=
∂w1

∂z
+
Eh

2ε
∇4ψ.

From (4) the thermodynamic equation

(18) w1 = − 1
BuN2

(
∂

∂t

∂ψ

∂z
+ J

(
ψ,

∂ψ

∂z

))

follows. By eliminating the vertical velocity w1 from (17) and (18) we eventually obtain
the quasi-geostrophic equation at the mesoscale on the beta-plane in the form

(19)
∂

∂t

(
∇2ψ+

∂

∂z

(
1

BuN2

∂ψ

∂z

))
+J

(
ψ,∇2ψ+

∂

∂z

(
1

BuN2

∂ψ

∂z

))
+β

∂ψ

∂x
=
Eh

2ε
∇4ψ.

It is worthwhile reconsidering the examples of the previous section to see how and
why the above limitations in the flow propagation at the basin scale are overcome at the
mesoscale.
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– If N = 1, Eh = 0 and, in accordance with (14) and (15), we set β = Bu = 1, the
wavelike solution of (19) inside the layer −1 ≤ z ≤ 0 is found to be

(20) ψ = cos(kπz) exp
[
i

(
nx+my +

n

n2 +m2 + k2π2
t

)]

(integer k). Solution (20) represents a Rossby wave with westward phase velocity cx =
−1/(n2 +m2 + k2π2) and zonal group velocity

(21) cgx =
n2 − (

m2 + k2π2
)

(
n2 +m2 + k2π2

)2 .

Unlike (11), (20) admits both westward (n2 < m2+k2π2) and eastward (n2 > m2+k2π2)
propagation of wave packets. The presence of relative vorticity in (19) produces in (21)
the square wave numbers n2 and m2 which allow such bidirectional propagation.

– The vertical integration of each term of the steady solution of (19), in which we
disregard relative vorticity in favour of that thermal on simplicity grounds (we have no
formal arguments to justify otherwise this step) and set w1(z = −1) = 0, yields

(22)
∂Φ
∂x

=
LaUSv

LU
k̂ · ∇̄ × τ̄ +

Eh

2εβ
∇4Φ.

In (22) we do not take into account bottom friction arising from the bentic Ekman layer
(we will consider this kind of dissipation in sects. 8 and 9). In the same equation La is the
“atmospheric” length scale which is the same as that of the basin scale, while USv is the
typical velocity of the basin scale which can be identified with that given by the Sverdrup
balance (13). It is reasonable to assume LaUSv/LU = O(1) but, since the typical length
of the mesoscale is smaller than that characteristic of τ̄ , we have O(k̂·∇̄×τ̄) < 1. Both the
meridional transport and the dissipative term of (22) are O(1). In other words, the slowly
varying wind field is weakly detected by the gradient operator of the mesoscale and the
related Ekman pumping velocity is depressed. Therefore the mesoscale dynamics on the
beta plane is a priori consistent with a northward transport which is mainly controlled
by dissipation, as (22) shows.

5. – Comments on the quasi-geostrophic equations

Comparison of (11) with (20) and (13) with (22) makes evident the opportuneness of
handling with a unique quasi-geostrophic equation in dealing with models that involve
the effect of lateral boundaries such as solid coastlines and/or latitude circles along which
the wind-stress curl vanishes. This kind of equation should be able to take into account,
at the same time, both the basin scale and the mesoscale quasi-geostrophic dynamics
depending on the local growth or reduction of relative vorticity and/or dissipation. The
need of a unique equation is as important as obvious in numerical modelling. Indeed,
due to the resemblance between (10) and (19), this problem seems to be solvable simply
by a rescaling of the parameters of (19) itself, as follows.

Equation (10) is equivalent to

(23)
∂

∂t

∂

∂z

(
1

βBuN2

∂ψ

∂z

)
+ J

(
ψ,

∂

∂z

(
1

βBuN2

∂ψ

∂z

))
+
∂ψ

∂x
= 0,
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while (19) can be written as

∂

∂t

(
1
β
∇2ψ +

∂

∂z

(
1

βBuN2

∂ψ

∂z

))
+(24′)

+ J

(
ψ,

1
β
∇2ψ +

∂

∂z

(
1

βBuN2

∂ψ

∂z

))
+
∂ψ

∂x
=

Eh

2εβ
∇4ψ.

Now, if

a′) we take in (24′) the limit for β → ∞

b) while keeping O(1) the product βBu,

then eq. (24′) can be formally transformed into (23). This approach is shortly quoted in
Pedlosky [1], Section 6.19. The point is that (19), and hence (24′), has been inferred for
β = O(1). Thus, in our opinion, limit a′) is problematic. Moreover, even if hypothetically
it were applied, point b) would not be consistent with (15).

Alternatively, we can write (19) as

∂

∂t

(
Bu∇2ψ+

∂

∂z

(
1
N2

∂ψ

∂z

))
+(24′′)

+ J

(
ψ,Bu∇2ψ+

∂

∂z

(
1
N2

∂ψ

∂z

))
+ βBu

∂ψ

∂x
=
Eh

2ε
∇4ψ ,

whence, if

a′′) we take in (24′′) the limit for Bu → 0

b) while keeping O(1) the product βBu,

then also eq. (24′′) can be formally transformed into (23). This approach is shortly
quoted in Gill [2], Section 12.8. Here, the point is that (24′′) has been inferred for
Bu = O(1). Thus, limit a′′) seems to be problematic. Moreover, even if hypothetically
it were applied, point b) would not be consistent with (14).

Since eq. (19) with suitable values of β, Bu and Eh/2ε is currently used in ocean
modelling, the speculative problem arises about its inference in the framework of the
basin scale. We stress that it cannot be obtained through scaling arguments (which, on
the contrary, lead to (10)) nor, in our opinion, by using the above procedure based on
points a′), a′′) and b).

To overcome this conceptual impasse, we put forward the method described in next
section.

6. – Inference of the composite quasi-geostrophic equation

First of all, in order to distinguish the quantities referred to the basin scale from
those of the mesoscale, hereafter we will mark these last with the subscript “µ”, while
no subscript will be applied to the basin scale quantities. For instance, (19) is rewritten
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as

∂

∂tµ

(
∇2

µψµ +
∂

∂zµ

(
1

BuµN2
µ

∂ψµ

∂zµ

))
+(25)

+Jµ

(
ψµ,∇2

µψµ +
∂

∂zµ

(
1

BuµN2
µ

∂ψµ

∂zµ

))
+ βµ

∂ψµ

∂xµ
=
Ehµ

2εµ
∇4

µψµ.

We start from (25) since it brings more information than (10) about relative vorticity
and friction. To see how ∇2

µψµ and (Ehµ/2εµ)∇4
µψµ become vanishingly small in the

transition to the basin scale, we investigate how (25) is looked at this last scale. To the
purpose we state the transformation equations of all the quantities involved into (25).
Once starred quantities are understood to be dimensional, given Lµ, Uµ and L, U we
can write

(26) (x∗, y∗) = Lµ

(
xµ, yµ

)
= L(x, y)

and

(27) ψ∗ = UµLµψµ = ULψ.

Setting in short

(28)
Lµ

L
= a and

Uµ

U
= b,

we obtain from (26) and (28)

(29)
∂

∂xµ
= a

∂

∂x
, ∇̄µ = a∇̄, Jµ = a2J, ∇2

µ = a2∇2, ∇4
µ = a4∇4.

Because of the advective time scales, (28) yield

(30)
∂

∂tµ
=
a

b

∂

∂t
.

From (27) and (28) it follows that

(31) ψµ =
1
ab
ψ.

Moreover, one easily finds that

(32) βµ =
a2

b
β and

Ehµ

2εµ
=

1
ab

Eh

2ε
.

About the vertical coordinate, we put a priori z∗ = Hµzµ = Hz and therefore

(33)
∂

∂zµ
=
Hµ

H

∂

∂z
.
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Note that the nondimensional buoyancy frequency is scale independent. In fact

(34) N
(
zµ

)
=
Ns

(
Hµzµ

)
N0

=
Ns(Hz)
N0

= N(z).

We find also the following transformation law of the Burger number:

(35) Buµ =
(
Hµ

aH

)2

Bu,

so, from (26), (28), (34) and (35) we obtain the transformation law

(36)
∂

∂zµ

(
1

BuµN2
µ

∂ψµ

∂zµ

)
=
a

b

∂

∂z

(
1

BuN2

∂ψ

∂z

)

whatever the ratio Hµ/H may be. Indeed, observational evidence of basin scale gyres
suggests that Hµ = H. This assumption will be used in next sections.

Once transformations (26)-(36) are substituted into (25), this last becomes

(37)
∂

∂t

(
∇2ψ+

∂

∂z

(
1

BuN2

∂ψ

∂z

))
+J

(
ψ,∇2ψ+

∂

∂z

(
1

BuN2

∂ψ

∂z

))
+β

∂ψ

∂x
=
Eh

2ε
∇4ψ.

We wish to underline the following:

– The coincidence of (37) with (19) is only formal since (37) holds at the basin scale
while (19) refers to the mesoscale.

– Unlike (19) which is inferred by scaling (1)-(4) under conditions (14)-(16), eq. (37)
relies on transformations (26)-(36) applied to (19).

– Because of (32) and (35), the parameters Bu, β and Eh/2ε have different orders of
magnitude in (19) and in (37).

With the aid of the notation 1/β = (δI/L)2(� 1) and Eh/2βε = (δM/L)3(� 1) we
write the “composite” quasi-geostrophic equation (37) in the final form

∂

∂t

((
δI

L

)2

∇2ψ +
∂

∂z

(
1
N2

∂ψ

∂z

))
+(38)

+J

(
ψ,

(
δI

L

)2

∇2ψ +
∂

∂z

(
1
N2

∂ψ

∂z

))
+
∂ψ

∂x
=

(
δM

L

)3

∇4ψ.

The length δI is the inertial boundary layer width, while δM is the dissipative width in
the presence of lateral dissipation of relative vorticity. In the framework of the boundary
layer theory it would be easy to check that Lµ = max{δI , δM}.

In the ocean interior (δI/L)2 and (δM/L)3 are much smaller than unity, so the O(1)
balance in (38) gives, recalling also (6), eq. (10). In the ocean regions where ∇2ψ and/or
∇4ψ grow well beyond unity (for instance in the western boundary layer), Lµ = L and
therefore the terms (δI/L)2∇2ψ and/or (δM/L)3∇4ψ become O(1). In these regions
eq. (38), because of (14) and (15), reduces to (19).
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7. – Applications of the composite quasi-geostrophic equation

In the present section, we reconsider the previous examples from the point of view
of (38).

– In the first case, under the hypotheses (δM/L)3 = 0, (δI/L)2 > 0 and the usual
assumption N = 1, the wavelike solution into the layer 0 ≤ z ≤ −1 has the form

ψ = cos(kπz) exp

[
i

(
nx+my + nt

((
δI

L

)2(
n2 +m2

)
+ k2π2

)−1)]

(integer k). It represents a Rossby wave with westward phase velocity

cx = −
[(

δI

L

)2(
n2 +m2

)
+ k2π2

]−1

and zonal group velocity

(39) cgx =
(δI/L)2n2 − [

(δI/L)2m2 + k2π2
]

[
(δI/L)2

(
n2 +m2

)
+ k2π2

]2 .

We see that a positive, although small, value of (δI/L)2 allows the eastward propagation
of the wave packets, as (20) does but with zonal wave numbers high enough, i.e. such
that

n >

[
m2 +

(
L

δI

)2

k2π2

]1/2

;

however, in the limit of a vanishingly small value of (δI/L)2, the group velocity (39)
coincides with that of (11).

– In the second example, we consider the so-called Munk’s model of the integrated
transport, that is the steady version of (38) with friction retained ((δM/L)3 > 0) and
wind-stress (τ̄) forcing but with (δI/L)2 = 0. The governing equation is therefore

(40) J

(
ψ,

∂

∂z

(
1
N2

∂ψ

∂z

))
+
∂ψ

∂x
=

(
δM

L

)3

∇4ψ

with the vertical boundary conditions

(41) w1(z = −1) = 0 and w1(z = 0) = k̂ · ∇̄ × τ̄ .

The governing equation of the transport streamfunction is obtained by vertically inte-
grating (40) on the fluid thickness and using boundary conditions (41). Because of (12)
and the trivial equation

∫ 0

−1
∇4ψ dz = ∇4Φ we have

(42)
∂Φ
∂x

= k̂ · ∇̄ × τ̄ +
(
δM

L

)3

∇4Φ.
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Once all the horizontal boundary conditions (no mass flux and dynamic) are imposed,
eq. (42) can be solved by standard methods thus yielding the transport field. Due to
the smallness of (δM/L)3, in the interior (42) is nothing but the Sverdrup balance (13).
Equation (42) referred to the mesoscale with the use of (29), (31) and (32) becomes

(43)
∂Φµ

∂xµ
=

1
ab
k̂ · ∇̄µ × τ̄ +

Ehµ

2βµεµ

and we can easily verify, resorting to (28), that (43) coincides with (22). Note that
k̂ · ∇̄µ × τ̄ = O(Lµ/L) < 1, so the dominant balance of (43) is

(44)
∂Φµ

∂xµ
≈ Ehµ

2βµεµ
.

Unlike (42), (44) shows that at the mesoscale the northward transport is admissible and
it is controlled by dissipation rather than the wind forcing as in (42).

8. – The quasi-geostrophic equations for the homogeneous ocean

The homogeneous ocean is characterized by a constant (rather than conserved) fluid
density which, in turn, implies a depth-independent perturbation pressure and hence
a depth-independent geostrophic current. This hypothesis yields a decoupling of the
dynamics from the thermodynamics whence relevant consequences follow. As before, our
aim is the inference of the “composite” quasi-geostrophic equation and, to this purpose,
we begin by considering first the basin scale dynamics.

Without the constraint of density conservation, and with reference to (1) and (2), the
time scale comes from the request that the Eulerian derivative of the horizontal current
enters into the vorticity equation at the first order in βε, that is to say for εT = βε.
Therefore the relation

(45) ε � εT = βε < 1

holds instead of (5), while (7) is still retained. Relation (45) implies the time scale

(46) T = (β0L)−1

in accordance with the anticipation done at the end of sect. 2. Note that time interval (46)
is much shorter than advective, by a factor 10−3–10−4 in the scale under investigation.
By using (46), the vorticity equation takes the form

(47)
∂

∂t
∇2ψ +

∂ψ

∂x
=
∂w1

∂z
.

Comparison of (47) with (8), which can be written also as ∂ψ/∂x = ∂w1/∂z, shows that
the time rate of change of relative vorticity becomes explicit in (47) because of (46) while,
in the case of a stratified ocean, the time evolution is governed by the thermodynamics
according to (9) and not by the vorticity balance (8) which is implicitly time dependent.
Since the streamfunction of (47) is depth independent, the vertical integration of (47)
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itself on the geostrophic layer (of unitary thickness) is mathematically trivial but it
depends on the physical system taken into account.

For a steady circulating wind-driven ocean we have w1(z = −1) = 0 and w1(z =
0) = k̂ · ∇̄ × τ̄ and the vertical integration of (47) gives the Sverdrup balance for the
homogenous ocean in the form

(48)
∂ψ

∂x
= k̂ · ∇̄ × τ̄ .

One should compare (48) with (13) recalling that, in the homogenous ocean,
∫ 0

−1
ψ dz =

ψ.
Wavelike solutions can be obtained from (47) once w1(z = 0) has been specified at

the free surface of the fluid. We know that

(49) w1(z = 0) = F
∂ψ

∂t
,

with the Froude number F = f2
0L

2/gH. Vertical integration of (47) with (49) yields the
equation

(50)
∂

∂t

(∇2ψ − Fψ
)

+
∂ψ

∂x
= 0

whose solutions are extensively investigated in the literature. Here we stress only that,
due to the relative vorticity appearing in (50), the Rossby waves satisfying this equation
admit wave packets propagating both westward and eastward, depending on the zonal
wave number.

We wish to point out the following remark. We have seen that the presence of relative
vorticity is a consequence of scaling (46) which, in general, is not consistent with a
hypothetical conservation principle coupled to the vorticity equation of the homogeneous
ocean. Strictly speaking, in the homogeneous ocean where the (dimensional) geostrophic
layer extends from z0∗ up to z0∗ +H, the conservation principle

(51)
D

Dt∗
z∗ − z0∗

H
= 0

holds, whence the vertical velocity at the top of the layer turns out to be

(52) w∗(z∗ = z0∗ +H) =
(

∂

∂t∗
+ ū∗ · ∇̄∗

)
H.

If the Eulerian derivative and the advection on the r.h.s. of (52) were comparable, the
advective time scale would be established in contradiction with (46). This contradiction,
however, is only apparent. In fact, the nondimensional version of (52) relies on the



QUASI-GEOSTROPHIC EQUATIONS REVISITED: THE CASE OF THE OCEAN 449

positions

w∗(z∗ = z0∗ +H) =
UH

L

β0L

f0
w1(z = 0),(53)

∂

∂t∗
+ ū∗ · ∇̄∗ = β0L

∂

∂t
+
U

L
ū0 · ∇̄,

H = H0 +
f0UL

g
ψ,

where β0L/f0 = βε, H = H0 + η∗ with the free-surface elevation η∗ in geostrophic
equilibrium with ū0 so that η∗ = (f0UL/g)ψ. Using (53) into (52), we obtain the
nondimensional vertical velocity of the free surface in the form

(54) w1(z = 0) =
f2
0L

2

gH

∂ψ

∂t
+

f2
0U

gHβ0
ū0 · ∇̄ψ,

but the very definition of ψ implies that the dot product ū0 · ∇̄ψ is identically vanish-
ing. Hence (54) is nothing but (50). To summarize, the conservation principle (51) is
consistent with the time scale (46) since at the geostrophic level of approximation its ma-
terial derivative is simply an Eulerian derivative thus yielding the kinematic boundary
condition (50).

Second, we consider the mesoscale. At the mesoscale, relations (14) and (16) are left
unchanged and the vertical integration of the vorticity equation (17) on the geostrophic
layer of unitary thickness immediately gives

(55)
∂

∂tµ
∇2

µψµ + Jµ

(
ψµ,∇2

µψµ

)
+ βµ

∂ψµ

∂xµ
= w1µ(z = 0) −

√
Ev

2εµ
∇2

µψµ +
Ehµ

2εµ
∇4

µψµ,

where the vertical velocity above the bentic Ekman layer w1µ(z = −1)=(
√
Ev/2εµ)∇2

µψµ

has been introduced into (55). All the terms appearing into (55) are O(1).
For a wind-driven ocean, the vertical velocity at the top of the geostrophic layer can

be written as

(56) w1µ(z = 0) =
UL

UµLµ
βµk̂ · ∇̄µ × τ̄ ,

while free, undamped solutions are obtained if

(57) w1µ(z = 0) = Fµ
∂ψµ

∂tµ

with Ev = Ehµ = 0. In (57), Fµ is the Froude number evaluated at the mesoscale.

9. – The composite quasi-geostrophic equation for the homogeneous ocean

To establish the “composite” quasi-geostrophic equation of the homogeneous ocean
starting from (55) and including (48), (50), we adopt the same method as that de-
scribed in sect. 6 and preliminarily find the transformation rules of ∂/∂tµ, w1µ and
(
√
Ev/2εµ)∇2

µψµ.
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Because of the equality t∗=(Lµ/Uµ)tµ = t/β0L, we obtain ∂/∂tµ =(β0LµL/Uµ)(∂/∂t),
that is to say the transformation rule

(58)
∂

∂tµ
= β

a

b

∂

∂t
.

Moreover, by equating the leading terms of the dimensional vertical velocity w∗ looked
at the considered scales, we obtain w∗ = (UH/L)βεw1 = (UµH/Lµ)εµw1µ whence the
transformation rule

(59) w1µ = Uβ0

(
Lµ

Uµ

)2

, w1 =
(
a

b

)2

βw1.

Finally, it is trivial to check that

(60)
√
Ev

2εµ
∇2

µψµ =
(
a

b

)2√
Ev

2ε
∇2ψ.

At this point we have all the ingredients to establish the desired equation by apply-
ing (29), (31), (32), (58), (59) and (60) to (55). The result is

(61) β
∂

∂t
∇2ψ + J

(
ψ,∇2ψ

)
+ β

∂ψ

∂x
= βw1(z = 0) −

√
Ev

2ε
∇2ψ +

Eh

2ε
∇4ψ.

After the division of each term of (61) by β and the introduction of the frictional boundary
layer width δS by means of the position

√
Ev/2βε = δS/L, we obtain the final form

(62)
∂

∂t
∇2ψ +

(
δI

L

)2

J
(
ψ,∇2ψ

)
+
∂ψ

∂x
= w1(z = 0) − δS

L
∇2ψ +

(
δM

L

)3

∇4ψ

in which w1(z = 0) depends on the considered dynamics: in the wind-driven circulation
it is given by (41) while in the inertial circulation it is given by (49). In the first case
and under the assumption of a steady circulation, the smallness of all the ratios δ/L
at the basin scale implies that (62) reduces to (48). In the second case and under the
assumption of an undamped circulation, (62) reduces to (50) in the limit of vanishingly
small (δI/L)2. On the contrary, if the Jacobian is retained into (62), we obtain the
nonlinear equations of the interacting Rossby waves

(63)
∂

∂t

(∇2ψ − Fψ
)

+
(
δI

L

)2

J
(
ψ,∇2ψ

)
+
∂ψ

∂x
= 0.

Equation (62) is so widely used in marine dynamics that, in our opinion, every further
comment about it would be certainly non-essential, but a final remark is in order.

Sometimes, in the literature the basic role played by (58) in the inference of (62) is
not fully acknowledged. For instance, relation (58) is actually used both in Pedlosky [1],
Section (3.26) to obtain an equation equivalent to (63) and in Pedlosky [3], Section 2.3.
On the contrary, in Pedlosky [1], Section 5.2 the author resorts unexpectedly to the
advective time scale in the formulation of the homogeneous model. In this case eq. (30)
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holds instead of (58) and, if one applies (30) into (55), say in the case of the wind-driven
circulation, then the equation

(64)
(
δI

L

)2(
∂

∂t
∇2ψ + J

(
ψ,∇2ψ

))
+
∂ψ

∂x
= k̂ · ∇̄ × τ̄ − δS

L
∇2ψ +

(
δM

L

)3

∇4ψ

follows. Also Hendershott [4] introduces the advective time scale in the homogeneous
model (eq. (1.4.10) of his paper) and, consequently, he finds an equation of the kind (64),
that is eq. (2.1.1) of his paper. However, investigating the behaviour of an impulsively
started midlatitude flow, this author resorts to the linear and time-dependent equa-
tion (3.2.1) of his paper that, according to our view point, cannot be inferred from an
equation like (64). Indeed, eq. (3.2.1) of Hendershott [4] is nothing but the dimensional
version of (50).

∗ ∗ ∗
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