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Summary. — Detailed observations in different chromospheric lines of a solar di-
ameter in polar and equatorial directions showed that the polar chromosphere at the
minimum phase of solar cycle looks more extended than the low-latitude chromo-
sphere. We propose a simple geometric model to explain the effect of the prolateness
of the solar chromosphere. A specific dynamical part of the solar atmosphere above
the 2 Mm level is assumed to be a mixture of moving up and down jets of chromo-
spheric matter with the coronal plasma between them. Due to the dynamic nature
of this layer, the magnetic field is considered to play a very important role in the
density distribution with the height, guiding the mass flows along the field lines.
The difference of the magnetic-field topology in the polar and the equatorial regions
leads to different heights of the chromospheric limb.

PACS 95.30.Qd – Magnetohydrodynamics and plasmas.
PACS 96.60.-j – Solar physics.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

In contrast to the solar white-light limb looking like a perfect circle, polar chromo-
sphere at the minimum of activity looks more extended than the low-latitude chromo-
sphere [1-4]. The prolateness is up to 1.5 Mm being different in the different chromo-
spheric spectral lines (table I). This fact was in particular found in ground-based ob-
servations at Arcetri Observatory in the ’40s and was confirmed recently in space-based
observations with SOHO EIT.

The upper part of the chromosphere is far from the static state. It consists of numerous
thin jet-like structures filling magnetic flux tubes. High-resolution images of the solar
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Table I. – Heights of the average limb positions taken above the level hτ5=1 +2 Mm as observed
using different chromospheric spectral lines.

Element Line Height of the Height of the Prolateness Model estimation
dynamical dynamical over a solar of the height
chromosphere chromosphere radius of dynamical
at poles at equator (Mm) chromosphere;
(Mm) (Mm) at equator (Mm)

H Hα 3.3 ± 0.35 2.2 ± 0.35 1.1 ± 0.35 2.8
Ca II K2 0.85 ± 0.1 0.65 ± 0.1 0.2 ± 0.1 0.81
Ca II K3 1.8 ± 0.15 1.35 ± 0.15 0.45 ± 0.15 1.65
He II 30.4 nm 4.5 ± 0.5 3.0 ± 0.5 1.5 ± 0.5 3.68
He I 1083 nm 0 ± 0.3 0 ± 0.3 0 ± 0.3 0

D3 0 ± 0.3 0 ± 0.3 0 ± 0.3 0

limb in Hα shows a “forest” of spike-like features. The highest of them are more straight
and tilted to the vertical within the angle of 20–30◦. In the lower part one can see a
number of arches. We assume that the dynamical part of the solar atmosphere, being
a mixture of moving up and down jets of chromospheric matter and coronal plasma
between them, is responsible for the solar prolateness. Due to the dynamic nature of
this layer, the magnetic field plays a very important role in the density distribution with
respect to the height, guiding the mass flows along the field lines. In this paper we
attempt to calculate the magnetic field on the base of direct measurements of the field in
the photosphere and find out the difference in the magnetic field scales in the equtorial
and polar regions.

2. – Description of the model

We assume that network magnetic elements in polar regions are predominantly of the
same polarity. In the quiet solar equatorial regions, they are of mixed polarity (fig. 1).
For ballistic jet motion (which is not exact for a large part of spicules but can be assumed
as a first approximation), the maximum height of a spicule would be the same for all
trajectories along the curved field lines if a line reaches this height. In the polar region
all jets are able to ascend up to a gravitationally limited height. The mean density
distribution in the upper polar chromosphere is determined by i) the scale height in an
individual spicule and ii) the distribution of the number of spicules vs. the height. In the
equatorial region some jets will be forced to come down after they reach the apex of a
relatively low arch. When considering the average over time heights reached by spicules,

Fig. 1. – Schematic representation of the magnetic-field lines and plasma jets at the pole (left)
and at the equator (right).
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this factor will reduce the mean chromosphere density at a given height proportionally
to the fall of the magnetic flux of one polarity:

ρ(z) = ρ0

(
Φ(z)
Φ0

)
e−z/h ,(1)

where h is the effective scale height which is considerably larger than the 0.2 Mm hy-
drostatic scale height. In the previous paper [5] we modelled the network magnetic-field
concentrations as “magnetic charges” which arranged in the equatorial region with alter-
nating signs. If we choose the mean separation between opposite polarity concentrations
to be about 9 Mm, we obtain the prolateness which is within the uncertainties of the
measurements in all spectral lines. The distance 9 Mm seems to be reasonable because
it is independently revealed by other processes in the chromosphere and it may even be
found directly in the magnetic-field pattern coming from the most typical magnetograms
of the quiet Sun.

Contrary to the schematic model outlined in [5], magnetic-field calculations show that
the magnetic flux decreases with height both in the equatorial region and in the polar
region. In fact, the situation is intermediate between the cases shown in the left-hand
and right-hand parts of fig. 1. The net magnetic flux through a given region of the
photosphere is both non-zero and not of one polarity. Although we may expect the fall
of the flux in the polar region to be slower.

We can introduce the scale height b for the magnetic flux

(
Φ(z)
Φ0

)
= e−z/b ,(2)

that can be found from the magnetic-field calculations

b = − Φ
∂Φ/∂z

.(3)

If we assume that the density at the top of the chromosphere is a factor ek less than the
density at the base, then we obtain

e−k = e−z/b e−z/h ,(4)

or

k = z

(
1
b

+
1
h

)
.(5)

Applying this relationship to the polar and equatorial regions we can exclude the un-
known effective scale height h and express the height of the dynamical equatorial chro-
mosphere ze in terms of the scale height bp for the magnetic flux in the polar region, be

in the equatorial region, and the height of the dynamical polar chromosphere zp

ze =
kbpbezp

kbpbe + zp(bp − be)
.(6)
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3. – Magnetic-field calculations

The coronal magnetic field is usually calculated by extrapolating the field from the
photospheric level. The potential magnetic field in the corona can be found by solving
the Neumann external boundary-value problem. There are a number of methods to solve
this problem numerically [6-8]. The first code was developed and successfully used by
Schmidt [9]. Since we are concerned with the magnetic field in the chromosphere and
low corona, at a height which is small compared with the solar radius, we may neglect
sphericity and use the well-known solution for half-space with a plane boundary (see,
e.g., [10]).

B =
1

2π

∫ ∫
S

Bn(x′, y′, 0) r
r3

dx′dy′,(7)

where Bn(x′, y′, 0) is the normal magnetic-field component in the plane S and r is the
radius vector from a point in the surface to a given point in the corona. The integration
can be performed analytically within a small rectangular area with the constant value of
Bn(x′, y′, 0) [11]. This area represents a unit of the spatial resolution of a magnetograph.

The above algorithm can be easily used in the equatorial region for an area located
not far from the central meridian. The measured line-of-sight field component represents
here the normal component with sufficient accuracy. In the polar region, the normal
direction differs significantly from the line of sight. So we were forced to use a specific
method to calculate the field at the base of the boundary condition with the “tilted”
component Bl. One method was proposed by Semel [12]. It is based on the solution of
Dirichlet problem for Bl component. A different method described first in [11] uses the
solution of an integral equation.

We define Cartesian coordinates with the z-axis normal to the boundary plane z = 0
(i.e. the photosphere). The magnetic-field component along the direction l is

Bl = Bxcosα + Bycosβ + Bzcosγ,(8)

where α, β, γ are the angles between the l direction and the coordinate axes x, y, z. The
normal component Bn = Bz in the boundary plane is expressed as

Bn(x, y, 0) = Bl(x, y, 0)
1

cosγ
− Bx(x, y0)

cosα
cosγ

− By(x, y, 0)
cosβ
cosγ

,(9)

where Bx(x, y, 0) and By(x, y, 0) are the field components defined by (7). These ex-
pressions have singularities in the boundary plane which are eliminated after analytical
integration within small rectangular areas with the constant value of Bn(x, y, 0) [11]. Let
for simplicity the y-axis be perpendicular to the direction l. Then cosβ = 0 and cosα =
sinγ. Substituting the expression for Bx from eq. (7) into (9), we find

Bn(x, y, 0) = Bl(x, y, 0)
1

cosγ
− tanγ

1
2π

∫ ∫
S

Bn(x′, y′, 0) (x − x′)
r3

dx′dy′ .(10)

Equation (10) is an integral equation with respect to Bn. We can solve it by itera-
tions consequently substituting the right-hand part of eq. (10) into the integral. Let us
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Fig. 2. – The dependence of the southern polarity magnetic flux Φ (left) and the scale height
b for the magnetic flux (right) on the height h above the photosphere at the pole and at the
equator.

introduce the following designation:

[x|ϕ|x′] =
1

2π

∫ ∫
S

ϕ(x′, y′, 0) (x − x′)
r3

dx′dy′ .(11)

According to this notation eq. (10) can be rewritten as

Bn(x, y, 0) cosγ = Bl(x, y, 0) − tanγ [x|Bl|x′] + tan2γ[x[x′|Bl|x′′]x′]−
−tan3γ [x[x′[x′′|Bl|x′′′]x′′]x′] + ...
+(−1)ntannγ [x[x′...[x(n−1)|Bl|x(n)]...x′′]x′]+
+(−1)n+1tannγ sinγ [x[x′...[x(n)|Bn|x(n+1)]...x′′]x′],

where x′, x′′, ..., x(n) are the variables of the integration.
Thus, the normal component is expressed as an infinite series with the terms of

different signs. Parameter tanγ provides the convergence of the series, so tanγ < 1 or
γ < 45◦. This factor defines the number of the series terms needed to obtain the necessary
precision. When the angle between l and n is greater than 45◦ another modification of
the method is used. The role of the small factor is played here by sinγ [13].

4. – Results and discussion

We used magnetograms obtained with Michelson Doppler Imager (MDI) onboard
SOHO, which are accessible at http://sohodb.nascom.nasa.gov/summary/. The mea-
surements within areas close to the limb have rather low precision and a noise level is
several times greater than a noise level near the center of the disk. For these reasons the
calculated magnetic field above a domain at the disk center differs significantly from the
field calculated above the same area near the east or west limb. Since the polar region
can be observed only near the limb, we compare the polar magnetic field with the field
above a domain in the equatorial region near the limb too in order to have more uniform
boundary data. Figure 2 shows the dependence of the negative magnetic flux through
the area of a domain on the height for two domains centered about 65◦ from the center of
the solar disk in the South polar and West limb equatorial regions on October 24, 1998.
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Table II. – The scale height b for the magnetic flux in the polar and the equatorial regions.

Data 23.08.1996 02.11.1996 22.04.1997 23.06.1998 24.10.1998

bp (Mm) 6.24 6.89 10.5 6.31 11.2
be (Mm) 7.00 5.63 7.32 6.24 7.24

The right-hand part of fig. 2 shows the dependence of the magnetic flux scale height
in the two regions. We chose the dominant southern polarity because it is the dominant
polarity in the domain that guides the most of mass flows in the region. Substituting
bp = 11.2 Mm and be = 7.24 Mm into formula (6) we find the height of the equatorial
chromosphere. Calculated values are presented in the last column of table I. They seem
to be rather close to the observed heights although they are not exactly within error bars
of the observations. However, the coincidence is worse for other four days we analyzed.
The scale heights are presented in table II. It is seen that the difference in the polar and
equatorial scale heights is less than on October, 24, 1998. Moreover, the relationship
between them is opposite on August 23, 1996. Unfortunately, magnetic data during the
period of prolateness measurements on August 1998 are not available because at this
time SOHO was out of control. Since the effect of prolateness is statistical and table I
presents the average values, we could assume that more statistics is needed to check the
model. However, we feel that the MDI magnetic-field data in the regions so close to the
limb are too inaccurate and noisy for our purpose. We think that more accurate polar
magnetic-field measurements could shed light on this problem.
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