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Summary. — We have compared the lateral analytical structure functions coming
from cascade theory to the numerical distributions generated by EAS Monte Carlo
simulations and to the empirical functions used in giant air showers experiments.
Introducing the Gaussian hypergeometric formalism, we have improved the analyt-
ical description in the most common topological situations and we propose a new
function characterized by both terms fitted separately to the electron-positron and
the muon components. Important effects in the accuracy of the core position de-
termination are underlined and consequences for the primary energy estimation are
discussed. The consecutive treatment and interpretation of the data contained in the
catalogues of Volcano Ranch and Yakutsk, completed by the most energetic event
of AGASA, are presented. Results might have important implications for detector
configuration of the future giant air shower arrays.

PACS 96.40.Pq – Extensive air showers.
PACS 96.40.De – Composition, energy spectra, and interactions.
PACS 13.85.Tp – Cosmic-ray interactions.

1. – Introduction

Four decades ago, in Volcano Ranch array [1] the first extensive air shower recorded
above 1010 GeV was inaugurating the collection of ultrahigh energy events containing
the earliest Giant Air Shower (GAS) with energy estimated around 1.4 · 1011 GeV. The
appearance of an ankle in the primary spectrum at the highest energies was the occasion
to appreciate the validity of the question arising from the experimental data: were the
particles of extragalactic origin taking over from those of galactic origin? The famous
answer [2, 3] came soon, formulated in the so-called Greisen-Zatsepin-Kuzmin (GZK)
cutoff, indicating that particles with energy around 1011 GeV may interact with photons
of the microwave background radiation and could not propagate on very large distances.
The evidence of the violation of this cutoff was rising with the number of events detected
in the UHE region and the confirmation has become one of the most important challenges
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of the new millennium, concerning both astrophysics and high-energy physics, underlined
by the emergence of new large instruments, like the Pierre Auger Observatory (PAO)
recording EAS on 3000 km2 [4].

Near vertical showers, detected at such energies, are close to their maximum of de-
velopment at moderate altitudes (around 1 to 1.5 km) and the conversions from size to
primary energy are not too much depending on nuclear interaction models. However, the
estimation of the size or any other estimator related to the primary energy E0, such as
densities around 600 to 1000 m from the shower axis, remains a difficult task for arrays
where detectors are separated by 1 km or more; a small number of detectors are hit (for
statistical reasons, far from axis, with small densities) and the interpolation of densities
at significant distances, or the integration performed on axis distance to obtain the total
size, depends on the axis determination. About 50% of the particles are contained inside
one Molière radius rM (which is about 90–100 m at those altitudes) and 95% remains
inside 3.5 rM; it is usually admitted in cascade theory that beyond such distance the
scaling with rM fails [5].

The goal of this paper is to weave the role of the topological treatments between theory
and experiment, on the one hand, theoretical descriptions coming from the lateral spread
theory of electromagnetic cascades, as well as muon lateral-distribution functions and on
the other hand, the empirical structure functions for very large distances derived from
the compilation of giant EAS measurements. Our approach is organized in sections, as
follows: radial distributions of charged particles (sect. 2); primary energy estimation,
consequences of axis position determination (sect. 3); treatment of UHE existing data
(Volcano Ranch, Yakutsk, AGASA) (sect. 4).

This elementary step concerns only the experiments dealing with scintillators, reg-
istering charged particles in the most simple conditions, as a preliminary work before
entering upon different situations of water Cherenkov detectors, like in Haverah Park
array [6] or in PAO, as well as the detection of the fluorescent component [7].

2. – The lateral distribution of charged particles

2.1. Radial electron distribution from cascade theory . – The structure functions f(x)
in 3-dimensional cascade theory (where x = r/rM, r being the distance to the core in
meters), generally normalized so that

∫ ∞
0

2πxf(x)dx = 1, are related to the electron
density ∆e(r) by ∆e(r) = Nef(x)/r2M. The analytical parameterizations of numerical
results from the solutions of diffusion equations or from Monte Carlo calculations are
commonly classified following the earliest proposed forms:

f(x) = 0.45(1/x + 4) exp[−4x2/3],(1)
= c(s)xs−2(x + 1)s−4.5,(2)
= g(s)xs−a(x + 1)s−b(1 + d · x)−c.(3)

The former approximation (eq. (1)), as quoted by Williams [8], was derived by Bethe
from Molière’s theory for small values of the argument x and for s = 1; this form was
generalized by Nishimura and Kamata following the numerical values of their solutions
of transport equations via Mellin’s and Hankel’s transformations in the complex plane
and saddle point approximation to get the final real solutions [9]. The synthesis, the
so-called NKG formula [10], contained in eq. (2) under a pair of power laws representing
respectively the asymptotic tendencies (near and far from the shower core), with a simple
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Fig. 1. – Dependence of pt vs.
√

(s). The collider data (◦) is plotted together with CORSIKA
options, original HDPM (solid line), Venus model (dashed line), HDPM modified following
UA1-MIMI 96 data (dotted line).

normalization in terms of the Euler beta-function,

c(s) =
Γ(4.5 − s)

2πΓ(s)Γ(4.5 − 2s)
,(4)

became one of the most widely used radial distributions. The comparison to experimental
results suggested however a more complex situation and some corrections such as the
introduction of a new argument x = r/krM, k being a factor reducing Molière radius, or
a local age parameter s(r), troublesome for the normalization of the structure function
[11, 12]. In order to provide a better skewness than the transition between two power
laws, we proposed later [13] the more complex relation of eq. (3); such structure function,
which is also a general form containing eq. (2) for a particular set of parameters, has the
advantage (for values of parameters respecting the conditions of convergence s−a+2 > 0
and c−2s+ b−2 > 0) to be exactly normalized in terms of the Gaussian hypergeometric
function FHG = F (c, s− a + 2, c + b− s; 1 − d) by

g(s) =
Γ(c + b− s)

2πΓ(s− a + 2)Γ(c− 2s + b + a− 2)FHG
.(5)

At large distances from the axis, as emphasized by the Particle Data Group [5], the
description of the 3D-cascade transport by diffusion equations fails (small-angle approxi-
mation in multiple Coulomb scattering, effect of single scattering, Landau approximation
is no more valid) and the analytical descriptions can be derived only from Monte Carlo
or semi Monte Carlo calculations [14] in order to restore some useful scaling properties.
For instance, the condition | ln(Eγ/ε)| � | ln(r/rM)|, where Eγ is the primary photon
energy and ε the energy threshold for electrons, is no more fulfilled for a large number
of subcascades in giant EAS at very large distance from the shower axis, a circumstance
where both Approximation B and Landau’s Approximation [15] are no more valid.

2.2. Characteristics of lateral spread in GAS . – In pure e.m. cascade, even at the
highest energies, we can describe the radial distributions as consequences of multiple-
and single-electron scattering; the 3-dimensional development of the e.m. component in



396 J. N. CAPDEVIELLE ETC.

Fig. 2. – Lateral density distribution for several components of EAS for proton and iron primary
particles with energy 1011 GeV and zenith angle 10◦ and 40◦, as indicated.
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GAS reflects in addition the effects of other agents, such as the transverse-momentum
distribution and the geomagnetic field. Some models suggest that the average trans-
verse momentum pt in the earliest interactions can be close to 1 GeV/c, and even larger
in individual collisions of large multiplicity, because of the correlation betwen 〈pt〉 and
the central rapidity density dn/dy [16, 17]. The consequences of the energy rise of 〈pt〉
(fig. 1) on the lateral muon and hadron distributions cannot be disregarded. The muons
generated at high altitude are submitted to the geomagnetic field during a long trajec-
tory, and for inclined showers the muon development suffers some distortion from the
traditional cylindrical symmetry, as shown by simulations with CORSIKA [18, 19] after
separation of positive and negative muons [20]. Just to illustrate the complexity of the
lateral distributions very far from the axis, we have plotted in fig. 2 the lateral distribu-
tions obtained for photons, electrons and muons at distances from 10 m up to 10 km,
averaged for 10 initiated showers (E0 = 1011 GeV, CORSIKA with thinning factor 10−6)
for zenith angles θ = 10◦ and 40◦. All those showers have been simulated with the Quark
Gluon String Model [21]; the respective energy thresholds are here 3 MeV for electrons
and photons and 300 MeV for muons.

2.3. Empirical distributions for giant EAS . – The empirical structure functions were
inspired by the theoretical functions quoted in sect. 2; as fitted to scintillator experiments,
they deal generally with densities of charged particles �(r) (and not with pure electrons).
We will refer to the following functions used for GAS: AGASA #1, AGASA #2, Akeno,
Linsley’s function and Yakutsk function for electrons. They are described in details in
appendix A. The muon component contribution to the total charged-particle density
is significant at large distances from the core. It is interesting to observe that beyond
1.5 km the lateral distribution profile for charged particles turns to be dominated by
muons. However, if conditions put an energy limit for electromagnetic components, then
muons can dominate much nearer to the core (e.g., near 200 m for electromagnetic energy
threshold 100 MeV, as presented in fig. 2). Details of some muon lateral-distribution
functions can be found in appendix B.

3. – The inverse problem

3.1. The conversion to primary energy near maximum. – At altitudes around 1000 m
above sea level, near vertical showers of energy 1010–11 GeV are close to the maximum of
their longitudinal development; this favourable circumstance reduces the model depen-
dence, and as far as the cascade curve is more flat around the maximum, the fluctuations
are reduced as well as the discrepancies between primary protons and heavy nuclei. This
advantage disappears for inclined showers where the dependence on nuclear interaction
models and on fluctuations can no more be neglected. The distortion of γ-induced show-
ers by the LPM effect, quite more important than for primary protons in this energy
range raises also problems in the primary energy evaluation. The rule of thumb from
cascade theory that there is a simple proportionality between primary energy and total
size near the maximum can be used here as a first approximation in the approach of the
total primary energy estimation. For instance, in Volcano Ranch [1], the primary particle
energy ECR is determined in the following way: ECR = 109 ·NV · (20−3.3u+0.15u2) eV,
where u = log(NV), NV = Ne · exp

[
x−x0

λ

]
and (for Volcano Ranch) x0 = 834 g/ cm2,

x = x0 · sec θ, λ = 300 g/cm2. In AGASA [22], as well as in Yakutsk [23], the re-
spective densities at 600 m are directly converted to primary energy (in eV), also by a
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quasi-proportionality:

E0 = (2.03 ± 0.1) · 1017S0(600)1.02±0.02,(6)
= (4.6 ± 1.2) · 1017�0(600)0.96±0.03;(7)

S(600) is here the total density recorded by plastic scintillators in AGASA. The conver-
sion to primary energy for inclined showers is still dominated by the absorption resulting
from simulations involving interaction models being in fashion during the construction
of the different arrays.

Similarly to Volcano Ranch for total size, the absorption is parameterized for the
densities at 600 m, for AGASA and Yakutsk, respectively,

S0(600) = Sθ(600) · exp
[
X0

500
· (sec θ − 1) +

X0

594
· (sec θ − 1)2

]
,

�0(600) = �θ(600) exp
[
X0

500
· (sec θ − 1)

]
.(8)

The vertical depth X0 is taken as 920 g/cm2 for AGASA and 1020 g/cm2 for Yakutsk
(where θ ≤ 60◦). After integration of eq. (B.5), the total number of muons in Yakutsk
can be used for the conversion to primary energy, according to

Nµ = 2π ·K(θ) · r20 ·
(

E0

1018 eV

)0.87

· Γ(1.25) · Γ(bµ − 2)
Γ(bµ − 0.75)

,

where r0 = 280 m, K(θ) = 13.3·exp
[(

1
cos θ − 1

) · 1020440

]
, bµ = b0+b1 cos θ+b2(logE0−18),

b0 = 0.98 ± 0.03, b1 = 2.28 ± 0.3, b2 = 0.09 ± 0.01. In 1991, after the evaluation of
the total primary energy through the energy carried by secondary particles and from the
Cherenkov component, the conversion relation (7) in Yakutsk was slightly changed as

E0 = (4.8 ± 1.0) · 1017�0 (600)1.0±0.02(9)

for a temperature of −40◦C [24].
In the special situation of SUGAR array [25], based on the detection of the penetrating

component, one function similar to eq. (B.2) is used for muon densities, including zenith
angle dependence, r0 = 320 m, α1 = 0.75 and β1 = 1.50 + 1.86 cos θ. The normalization
is obtained through

Cµ = K(θ) =
Γ(β1)

2πΓ(2 − α1)Γ(α1 + β1 − 2)
.

The total muon size Nµ(θ) is then converted to the vertical muon size Nµv and the
primary energy is derived (in eV) as

E0 = 1.64 · 1018
(
Nµv

107

)1.075

.(10)
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Fig. 3. – Fits to all charged particles lateral distribution from simulations (average from 10
EAS). Primary particle energy 1011 GeV. Lines are normalized to �(600 m). See table I for
comparison of Ne and other parameters of different functions. For solid line (this work) see
formula (11) and parameters from table II.
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Table I. – Ne and some parameters for fits presented in fig. 3. In the top row the primary
particle and the zenith angle are indicated. Columns a present total number of charged particles
Ne in 1010, columns b the ratios E0/Ne in GeV (E0 = 1011) GeV and columns c the ratios
�(600)/Ne in 10−8 particles/m2. Ne for “this work” correspond to average sizes of 10 simulated

EAS. m(600) = d(log �)
d(log r)

at 600 m. Owing to more precise adjustment at short distances (< 200 m

in fig. 3), where the majority of particles are contained, only the function JNC can restore the
size.

proton 10◦ proton 20◦ iron 10◦ iron 20◦

�(600) 290 m−2 318 m−2 369 m−2 356 m−2

E0/�(600)
(GeV m2) 3.4 · 108 3.1 · 108 2.7 · 108 2.8 · 108

m(600) –3.9 –3.6 –3.6 –4.0

fit 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c

Yakutsk 1.8 5.6 1.6 1.7 5.9 1.9 2.3 4.3 1.6 1.9 5.3 1.8
Linsley’s 8.2 1.2 0.3 8.0 1.3 0.3 10.5 0.9 0.3 8.9 1.1 0.4
AGASA #1 2.4 4.2 1.2 2.6 3.8 1.2 3.1 3.2 1.1 2.9 3.4 1.2
AGASA #2 3.3 3.0 0.8 3.6 2.8 0.8 4.2 2.4 0.8 4.0 2.5 0.8
this work 5.6 1.8 0.5 5.6 1.9 0.6 5.1 2.0 0.7 4.5 2.2 0.7

3.2. The approach of �600 and other estimators . – As far as one density at a particular
distance is considered as a good estimator of primary energy, the determination (here
at 600 m) of the densities in the neighbourhood becomes crucial to perform an accurate
interpolation at 600 m (in the best circumstance, where this distance is “contained” be-
tween measured densities). In the case of detectors separated by large distances, 1.5 km
or more, there can be situations where the density can be only extrapolated to lower
distances from groups of densities measured only above 800 m. The interpolation of
the density (and the extrapolation if necessary) can be more safe, when the analytic
properties of cascade theory can be restored from the total sample of measured density;

Table II. – Best parameters to simulated e+e−+ muons (all charged) lateral-distribution fit
using JNC01 formula (11). Labels p10, p20, Fe10 and Fe20 in the first row refer to primary
particle (proton or iron) and to the zenith angle (10◦ or 20◦).

p10 p20 Fe10 Fe20

logNe 10.75 10.72 10.70 10.65
rM 21.26 21.26 19.18 19.18
r0 8785. 8785. 9536. 9536.
a 1.91 1.91 1.82 1.82
s 1.03 1.04 1.03 1.04
b 3.32 3.32 3.31 3.31
β 10.0 10.0 10.0 10.0



LATERAL-DISTRIBUTION FUNCTIONS FOR GIANT AIR SHOWERS 401

this coherence can help when using the Akeno function (eq. (A.5)) containing the age
parameter for large air showers up to 3–4 Molière radii by distinguishing the “old” or
“young” aspect of each shower. In the case of GAS, we notice in fig. 2 that in all cases
the lateral muon densities become dominant for r ≥ 1.5 km (r ≥ 200 m for electrons
with E > 100 MeV) in the lateral distribution of charged particles; the lateral muon
distribution flattens for showers initiated at higher altitude, just when the lateral elec-
tron distribution corresponds also to older profile. This circumstance, and the opposite
situation for showers initiated deeper in the atmosphere, suggest the extension of the
concept of lateral age parameter to the total lateral charged-particles distribution of
GAS, using the skewness of the profiles described by our Gaussian hypergeometric dis-
tribution (eq. (3)); the parameters have been adjusted with MINUIT from our Monte
Carlo simulation, giving the JNC functions

�(r) = Ne · C · x−α · (1 + x)(α−η) · (1 + d · x)−β ,(11)

where x = r/rM, d = rM/r0, s = 1.03, α = a− s, η = b− s + α,

C =
1

2π · r2M
· Γ(β + η − α)

Γ(2 − α) · Γ(β + η − 2)
· 1
FHG(β, 2 − α;β + η − α; 1 − d)

with the conditions 2 − α > 0 and β + η − 2 > 0. The hypergeometrical function (FHG)
is defined in appendix A (subsect. A.1, eq. (A.3)).

We will consider 4 different lateral distributions in the form of eq. (11):

– JNC01 (solid lines in fig. 3 and parameters from table II) is the description of all
charged particle densities (s parameter dependence is presented in the top fig. 4),

– JNC02 (solid lines in fig. 5 and table III) represents e+ + e− densities only (s
parameter dependence—in the bottom fig. 4),

– JNC03 is the sum of JNC02 and muon lateral distribution (formula (B.2) with
parameters from table V) (our favorite description for scintillator detector data),

– JNC04 for e+ + e− with E > 100 MeV (solid lines in fig. 6 and parameters from
table IV).

It will be seen in sect. 4 (where the set of coefficients is reproduced in table II) that
this distribution containing a modulation via the extended s gives better χ2 values to
determine �(600) and that a special procedure can help the total size estimations. This
procedure consists of adjusting separately the electron and muon densities to receive
a correct convergence to the electron and muons sizes, Ne and Nµ, respectively (in
circumstances, where a larger number of densities are recorded very far from the axis,
there is a risk of tendency to converge to Nµ rather than to Ne). For this purpose we
shall distinguish the function JNC02 (restricted to electrons), also given by relation (11),
with the set of parameters reproduced in table III (sect. 4). Another primary energy
estimator could be the couple (�(600), s), with the correlation [26] in quadratic form
E0/�(600) = a(s− 1)2 + b that we have proposed.

An underlying fundamental condition for a correct estimation is also an accurate axis
determination. From fig. 3 we notice the linear dependence log(�) vs. log(r) near 600 m.
Therefore ∆�/� = m(600) ·∆r/r (where m(600) is in table I), and 60 m (10%) accuracy
in determining the core position corresponds to about 40% error in �(600) determination.
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Fig. 4. – Top: distribution of all charged particles with JNC01 function (see formula 11 and
table II). Bottom: JNC02 function for e+e− (see formula (11) and table III).
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Table III. – Best parameters to e+e− (E > 3 MeV) lateral-distribution fit using JNC02 for-
mula (11).

p10 p20 Fe10 Fe20

logNe 10.75 10.72 10.71 10.65
rM 20.65 20.65 28.48 28.48
r0 2698. 2698. 11423 11423
a 1.91 1.91 1.86 1.86
s 1.03 1.05 1.03 1.02
b 3.22 3.22 3.63 3.63
β 5.82 5.82 10.0 10.0

3.3. Axis determination . – The core position has been obtained by minimization with
Minuit program between different formulas available for lateral densities written vs. the
coordinates X, Y as

�(r) = �(
√

(X −Xc)2 + (Y − Yc)2),(12)

where the core coordinates Xc and Yc are taken as two additive parameters in the mini-
mization. We pointed out from the simulation that the barycenter was separated in av-
erage by about 180 m from the actual core (for a sparse array with a grid of 1.5 km [26]).
We use the barycenter position as initial values for the parameters Xc and Yc. The
procedure has been tested on simulated showers, as well as on the catalogues of Volcano
Ranch and Yakutsk experiments, by the optimization on size, core position and other
free parameters (i.e. age s).

As will be discussed in sect. 4, the core position obtained depends on the profile of
the structure function chosen which can be more or less adequate to the natural lateral
charged-particle distribution.

3.4. Adjustment to simulated lateral distributions. – In order to appreciate the ad-
vantages of the hypergeometric Gaussian approach compared to the classical Eulerian
description, we have fitted for example the average radial distributions derived from
groups of 10 showers simulated with CORSIKA for E0 = 1020 eV, for zenith angles 10◦

and 20◦, respectively, for protons and iron nuclei primaries. In each case, the adjustment
has been performed with 50 points from the simulation distributed from 0.1 m up to
10 km from axis position for charged particles (muons and electrons) as shown in fig. 3.
It appears that at distances lower than 200 m only the hypergeometric approach by rea-
son of its skewness provides a correct adjustment, when systematically Linsley’s function
(eq. (A.6)) overestimates the densities and Yakutsk (eq. (A.7)) or AGASA (eqs. (A.1)
and (A.4)) functions underestimate the densities; the consequence (table I), as a majority
of particles are contained in this area, is that the JNC function is the only one suitable
to recover the size.

This operation was repeated separately for electrons (E > 3 MeV) (using the JNC02
function, the same form as JNC01, with different parameter values listed in table III)
(see fig. 5), for electrons (E > 100 MeV) (JNC04 function, parameters in table IV)
(fig. 6), and muons (fig. 7) using the function given in relation (B.2) and parameters
from table V.
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Fig. 5. – Fits to electrons and positrons (E > 3 MeV) using formula (11) and parameters from
table III.
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Fig. 6. – Fits to electrons and positrons (E > 100 MeV) using formula (11) and parameters
from table IV.



406 J. N. CAPDEVIELLE ETC.

Table IV. – Best parameters to e+e− (E > 100 MeV) lateral-distribution fit using JNC04
formula (11).

p10 p20 Fe10 Fe20

logNe 10.11 10.07 10.04 9.97
rM 7.52 7.52 9.05 9.05
r0 3472. 3472. 4202. 4202.
a 1.88 1.88 1.85 1.85
s 1.03 1.05 1.03 1.03
b 3.62 3.62 3.73 3.73
β 3.31 3.31 2.00 2.00

We have just explored some combinations of parameters included in intervals of values
currently used in the experimental data and this does not exclude that best sets of
parameters could be obtained with different initializations (for instance starting with
one Moliére radius reduced artificially divided by 3).

The fitting procedure was carried using MINUIT and we have added for the numerical
evaluation of the quality of the adjustment the factor

χ2f (50) =
50∑

i=1

(Yi − Fi)2

Yi
,(13)

where Yi = �(ri) for the simulated average value, and Fi = �(ri) for the value evaluated
from the fit formula.

An acceptable agreement is obtained for the muon densities (fig. 7) with the Euler
beta-function (formula (B.2)); however, the situation could be improved, herealso, with
a hypergeometric description.

4. – Treatment of Volcano Ranch, Yakutsk and Akeno data

4.1. Method of localization. – We assume that the directions of registered showers
were determined sufficiently accurate by analyzing timing from many detectors. However
estimation of �(600) or Ne depends on the form of the lateral-distribution function used
to fit the registered number of particles and on localization methods (i.e. the form of the
function chosen for minimization).

Table V. – Best parameters to simulated muon lateral-distribution fit using formula (B.2) (see
fig. 7).

p10 p20 Fe10 Fe20

logNµ 8.76 8.74 8.87 8.85
r0 1098. 766. 867. 741.
α1 0.56 0.54 0.55 0.50
β1 7.04 5.65 6.04 5.60



LATERAL-DISTRIBUTION FUNCTIONS FOR GIANT AIR SHOWERS 407

Fig. 7. – Fits to muons using formula (B.2) and parameters from table V.
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We have used 6 fits to the charged-particle lateral distribution:

A) The JNC01 function for all charged particles (eq. (11) and top fig. 4). The free
parameters are x, y, Ne and s. We take the average values for other parameters: rM =
21.13 m, r0 = 9297 m, a = 1.88, b = 3.33, β = 10.

B) The JNC03 function as the sum of JNC02 function for e+e− (eq. (11) and bottom
fig. 4) and function for muons (eq. (B.2)). The free parameters are x, y, Ne and s. We
take Nµ = 0.05 ·Ne. We take the average values for JNC02 parameters: rM = 24.75 m,
r0 = 5640 m, a = 1.9, b = 3.4, β = 6.92.

C) Yakutsk function (see subsect. A.5). The free parameters are x, y and �600.

D) Linsley’s function (see subsect. A.4). The free parameters are x, y and Ne.

E) AGASA function no. 1 (see subsect. A.1). Free parameters are x, y and Ne.

F) AGASA function no. 2 (see subsect. A.2). Free parameters are x, y and Ne.

The localizations are performed with MINUIT, taking the minimization of the func-
tion

χ2 =
∑

W(Di, Ei, Fi,Ki, Si),(14)

where Di is the number of particles in the i-th detector for the registered event, and
Fi = �(ri) · Ai is the density evaluated from the fit formula multiplied by the Ai—the
area of the i-th detector multiplied by cos θ, θ is the EAS zenith angle, Ei is the estimated
accuracy of determination of number of particles, Ki the density level when cascading
processes might significantly increase the estimated particle number and Si is the particle
density corresponding to the phototube-ADC saturation level.

When Di is greater than Ki · Ai and Fi is less than Di, then W = 0 (the possible
cascading process might produce a larger signal); when �(ri) is larger than Si, then
W = 0 (the expected density is larger than the saturation level); otherwise

W(Di, Ei, Fi,Ki, Si) =
(Di − Fi)2

E2
i

,

Ei = max
(
κ ·Di,

√
Di

)
,

where κ is equal to 0.15 for Volcano Ranch and Yakutsk arrays and 0.10 for AGASA.
We put cascading level Ki equal to 200 particles/m2. In this way we introduce a special
treatment of high-density registration. Detectors registering high particle density are
very important for estimation of the shape of lateral distribution of particles, as they are
relatively near to the EAS core.

The examples of localizations of particular events are presented in appendix C.

4.2. Volcano Ranch data. – The data contained in the catalogue of Volcano Ranch
registration [1] was then analyzed event per event: the same localization procedure is
first carried with the original function used in the experiment and then repeated with
JNC01 and JNC03 functions, and the functions used in another experiments.

The results of our localization procedure are compared in fig. 8 with the original results
as given in experimental paper or recalculated by us using Linsley’s function of lateral
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Fig. 8. – Comparison of localization results for Volcano Ranch data. Original results are com-
pared with fits A, B and C.
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Fig. 9. – Comparison of localization results for Volcano Ranch data. Original results are com-
pared with fits C, D, E and F.
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Table VI. – Results of localization for the most energetic AGASA event [27]: χ2, �(600), Ne

and relative core distance from the original localization. The comparison is made for different
lateral-distribution functions. Age parameter s fitted for A and B functions is equal to 0.93
and 0.95, respectively. ∆r is the distance from the original localization (−1150.0,−1350.0).
∆R—distance from the centre for all functions (−1264.0,−1348.3).

χ2/23 �(600) Ne ∆r ∆R
(1/m2) (1010) (m) (m)

Original ? 892 7.84 0.0 114.0

A – JNC01 4.99 581 16.49 78.1 47.6
B – JNC03 5.03 474 5.05 83.8 30.3
C – Yakutsk 7.73 291 1.47 172.3 61.2
D – Linsley’s 7.07 350 6.08 144.1 35.6
E – AGASA no. 1 6.20 431 4.67 112.6 15.3
F – AGASA no. 2 5.24 632 9.23 66.8 61.2

distribution (see subsect. A.4 and fig. 13). The optimization of the localization and the
employment of the new functions turns to one general improvement of the minimization;
a better control of the convergence is obtained for JNC functions for all charged particles
and for the Yakutsk function (fig. 8 and 9). From the sizes resulting or from the densities
interpolated at 600 m, it can be seen that the primary energy originally estimated is
reduced in the case of the Yakutsk function by factor ∼ 3 and enlarged in the case of the
JNC01 function. The very large sizes obtained correspond to hopeless situations where
the information is too poor for a rigorous adjustment, i.e. 5 or less detectors hit and axis
not contained in the array. In the case of the event 19 (considered originally as the first
event above 1020 eV), the previous estimation of energy would be reduced by about a
factor of 2 for both approaches via �(600) or Ne and JNC functions.

4.3. Yakutsk data. – The same treatment has been applied to the showers reported
in the catalogue of Yakutsk [23]. The original minimization is here carried with the
Yakutsk function. Also for Yakutsk data better minimization is obtained and we observe
here that �(600) is generally the same for JNC01 and Yakutsk functions (figs. 10, 11), but
size estimations differ by more than one order of magnitude. Still the Yakutsk function
provides the smallest sizes, in which case a satisfying agreement with GZK cutoff is also
ascertained. However, as we have seen in table I that the actual size was systematically
reduced by a factor 3 for the Yakutsk function, this agreement can be only apparent.

4.4. Akeno AGASA data. – In the absence of the catalogue published for Akeno
and AGASA data, we were constrained to apply our procedure to the unique and most
energetic event of AGASA for which densities and the respective detectors positions are
available [27]. The results of the fit are given in table VI. The �(600) is reduced by 30%
from nearly 900 to about 600 particles per m2. This is mainly due to a shift of GAS
core position in similar direction for all functions used (see discussion in subsect. 3.2).
However the estimated Ne is varying within an order of magnitude, leaving discomfort
in energy estimation.
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Fig. 10. – Comparison of localization results for Yakutsk data. Original results are compared
with fits A, B and C.
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Fig. 11. – Comparison of localization results for Yakutsk data. Original results are compared
with fits C, D, E and F.
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5. – Conclusions

Although the GAS of energies above 1019 eV are being registered near to the maximum
of their development the estimation of their energy with accuracy better than 30% is still
problematic. We have presented the simplified approach neglecting the fluctuations of
size and lateral distribution in individual shower development. The size fluctuations
are relatively small near to the depth of the maximum size. The estimation of EAS
energy follows the localization procedure which fits the function of lateral distribution
of detectable particles to registered densities, to determine the core position, and finally
the normalization in terms of �(600) or Ne. In most experimental cases detectors are
separated by hundreds of meters, whereas the maximum contribution to the total number
of particles is in the range 20–200 m, therefore not measured directly. In table I we have
shown that the conversion factor E0/�(600) following from modern simulations can vary
within 10% for “perfect” EAS case and �(600) determination. Estimation of Ne from
�(600) depends on the lateral-distribution function used and is uncertain within 50%.

In the more realistic situation localization procedures are not perfect, mostly due to
the low number of detectors hit, and also due to fluctuations in lateral distribution not
correctly included in the form of the used function. We noticed that a 60 m error in
the core position determination might change normalization up to 40%. It is also worth
noticing that the determination of �(600) from data registered in arrays having clusters
of more closely separated detectors is more “stable” (e.g., Yakutsk, see figs. 10 and 11)
than in ∼ 800 m separated detectors (e.g., Volcano Ranch and figs. 8 and 9).

Similarly, there are large discrepancies between localization results when using exper-
imentally derived lateral-distribution functions. The GAS core positions are generally
localized within 300 m (between themselves) for Volcano Ranch (i.e. large, regular detec-
tor separation of about 800 m) or within 60 m for Yakutsk and AGASA events. The axis
localization is largely responsible for differences in �(600) estimation in case of Volcano
Ranch events. These are much smaller for Yakutsk events. But the estimated sizes (Ne)
can be different by an order of magnitude (or more) and are due to different shapes of
functions at distances smaller than 200 m not covered by experimental measurements.

Sizes of GAS resulting from the lateral-distribution function proposed in this work
(JNC01 and JNC03) are generally bigger than sizes obtained from functions derived ear-
lier on the base of experimental data (see figs. 10, 11, 8 and 9). This should be examined
in details, especially taking into consideration different energy thresholds of registered
particles (we have used 3 MeV threshold for charged electromagnetic component), contri-
bution from energetic photons and contribution from muons. The situation was outlined
in fig. 2.

As recently underlined by [28] and [29] the ratio of energy loss of electrons and photons
in the scintillator (�sc) to the density of charged particles (R = �sc/�ch) depends on the
distance to the core of GAS. As registrations are taken at large distances the ratio R
can be about 1.4. For the primary energy estimations discussed in this paper this would
lead to a reduction of the obtained values of �600 and Ne (and energy) by ∼40%. Such
circumstance helps a reasonable agreement between �600 and sizes from JNC functions
in table VI for the most energetic AGASA event.

It is clear for us that further efforts are required for a better understanding of local-
ization procedure and energy estimation. This should obey more realistic simulations of
GAS development in the atmosphere and critical comparison with existing data. It would
be definitely helpful if the data accumulated over the last several years were available in
the Internet network (AGASA and Yakutsk).
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Appendix A.

Empirical lateral-distribution functions

A.1. AGASA function no. 1 . – This is the function of the form

�(r) = Ne · Ce · x−α · (1 + x)−(η−α) ·
(
1 +

r

2000 m

)−0.5

,(A.1)

where x = r/rM, rM—the Molière unit, for Akeno rM = 91.6 m, α = 1.2, η = (3.80 ±
0.05)+ (0.10 ± 0.05) · log

(
N
109

)
.

This function is plotted in fig. 12 for log(N) = 8, 8.5, 9, 9.5, 10 with η = 3.7, 3.75,
3.8, 3.85, 3.9,

Ce =
Γ(η − α)

2π · Γ(2 − α) · Γ(η − 2)
· 1
r2M

.

This distribution [30], as underlined by Vishwanath [31] enters in the category of hy-
pergeometric Gaussian functions, like eq. (3) [13], under the general form of the structure
function (referred to as JNC function)

f(x) = Cj · x−α · (1 + x)−(η−α) · (1 + dx)−β(A.2)

with the conditions 2 − α > 0 and β + η − 2 > 0.
The value used in eq. (A.1) for the coefficient Ce is just an approximation; the exact

value is (symbols refer to eq. (A.2))

Cj =
Γ(β + η − α)

2π · Γ(2 − α) · Γ(β + η − 2)
· 1
FHG(β, 2 − α, β + η − α; 1 − d)

.

The hypergeometric Gaussian function can be easily calculated from the hypergeometric
series

FHG(a, b, c; z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn, c �= 0,−1,−2, ...,

(a)n = Γ(a + n)/Γ(a), (a)0 = 1.
(A.3)

A.2. AGASA function no. 2 . – This is a function used in AGASA [27, 32] suitable
for inclined showers

�(r) = Ne · Ce · x−α · (1 + x)−(η−α) ·
[
1 +

( r

1000 m

)2
]−0.6

,(A.4)

where x = r/rM, for Akeno rM = 91.6 m, α = 1.2, η = 3.97–1.79 · (sec θ − 1), with
zenith angle θ.

Ce =
Γ(η − α)

2π · Γ(2 − α) · Γ(η − 2)
· 1
r2M

.
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Fig. 12. – Top: distribution of charged particles with AGASA function n◦1 (see subsect. A
.
1).

Bottom: AGASA function n◦2 (see subsect. A
.
2). Right panel: respective distributions r2f(r),

as the total number of particles N ∼ ∫
r2f(r) d(log(r)).
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However this normalization is not perfect due to the last factor in eq. (A.4) and the
additional correction factor Ca should be applied:

Ca = 1 + 6 · exp
[−√

η − 2.07
0.218

]
.

This (corrected) distribution is represented in fig. 12 for a wider amplitude of parameters
than for AGASA no. 1, θ = 0◦, 20◦, 40◦, 50◦, 60◦, η = 3.97, 3.86, 3.42, 2.98, 2.18.

A.3. AKENO function . – This function (fig. 13) has the advantage to include the age
parameter s and is an extension of relation (2) as the sum of two Euler beta-functions [12]

�(r) = Ne · CA · [x · (x + 1)]s−2 · (x + 1)−2.5 · (1 + 0.2 · x1.3),(A.5)

where x = r/rM, rM = 91.6 m, CA =
1

2π · r2M · C0
, C0 =

1
C1

+
1
C2

,

C1 =
Γ(4.5 − s)

Γ(s) · Γ(4.5 − 2 · s) , C2 =
Γ(4.5 − s)

Γ(2.3) · Γ(3.2 − 2 · s) .

A.4. Linsley’s function . – This function [1] enters also in the category of Euler beta-
functions, like eq. (2) and takes into account the temperature effect

�(r) = Ne · Cα,η · (x)−α · (x + 1)−(η−α) · 1
r2M

,(A.6)

where x = r/rM, rM = 91.6 m is the Molière unit (generally: rM = (272.50 · T )/(P −
73.94 · cos θ), T—the temperature (K), P—the atmospheric pressure at the observation
level in mb), θ—the zenith angle, Cα,η = Γ(η−α)

2π·Γ(2−α)·Γ(η−2) , η = b0 + b1(sec θ − 1) +
b2 log

(
N
108

)
, α = α0 + α1 · η, b0 = 3.70, b1 = −0.57, b2 = 0.085, α0 = −2.135,

α1 = 0.948. This function, originally used for the treatment of the data collected in
Volcano Ranch, is plotted in fig. 13.

A.5. Yakutsk experimental function . – This function [23] is based on the scaling
properties of the density at 600 m [33]

�(r) = C · �600 · 600 m
r

·
(

1 + r
rM

1 + 600
rM

)1−b

,(A.7)

where b ≡ b(θ, �600) = (3.54± 0.12)− (2.16± 0.43) · (1− cos θ) + (0.15± 0.05) · log(�600),
(b ∼ 3.5–4), θ–zenith angle, rM is the Molière unit, rM = 7.4·104

P · T
273 , T—the tempera-

ture (K), P—the atmospheric pressure at observation level in mb, for Yakutsk rM ≈ 68 m,
�600 is particle density at the core distance of 600 m, C is the normalization factor and
C = 1. By integration over the surface �(r) one gets the total number of charged particles
N in EAS:

N =
∫ ∞

0

2π · r · �(r) dr =
2πrM
b− 2

�600 · 600 m(
1 + 600 m

rM

)1−b
.

Both lateral distributions used in Yakutsk for charged particles and muons (eq. (B.5))
are plotted in fig. 14. For the curves in fig. 14: C = 1/N .
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Fig. 13. – Top: Akeno function using age parameter (see subsect. A
.
3). Bottom: Linsley’s

function (see subsect. A
.
4).
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Fig. 14. – Lateral distributions in Yakutsk for charged particles (top) (see subsect. A
.
5) and

muons (bottom) (see eq. (B.5)).
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Table VII. – Comparison of results of localization performed for Yakutsk event 7810061014 (see
fig. 15) for 4 different lateral-distribution functions. “The principal functions” are written in
bold characters.

Left fig. 15

Function Xc(m) Yc(m) s Ne �(600) χ2/n

Yakutsk 1743.8 −21.0 1.75·109 47.5 1.43
AGASA#2 3.30·1010 90.0 2.29
JNC01 1.15 4.70·109 62.5 1.26
JNC03 1.15 3.66·109 63.8 1.33

Right fig. 15

Function Xc(m) Yc(m) s Ne �(600) χ2/n

Yakutsk 1.76·109 47.8 1.59
AGASA#2 3.25·1010 88.6 2.10
JNC01 1.15 4.65·109 61.8 1.10
JNC03 1719.3 −0.8 1.15 3.64·109 63.4 1.16

Appendix B.

Empirical lateral-distribution functions for muons

The structure functions for the penetrating component φ(x) = �µ(r)r20/Nµ (where �µ

and Nµ are, respectively, the density and the muon size, x = r/r0) have been inspired by

Fig. 15. – Yakutsk event 7810061014. Density distributions for 4 lateral-distribution functions.
The short-dashed line represents Yakutsk function, the long-dashed line AGASA#2, the dash-

dotted line JNC01 (all charged), and the solid line JNC03 (e+e
−

+ muons, Nµ/Ne = 0.05).
Vertical line at R = 600 m. “Principal functions” are Yakutsk in the left figure and JNC03 in
the right one (corresponding lines are thicker). Values of related Ne and �(600) are in table VII.
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the transverse-momenta distributions and the geometrical propagation from the initial
interactions. Normalized following

∫ ∞
0

2πxφ(x) dx = 1, they are often presented in two
versions, one integrable as the Euler gamma-function and another inspired by the NKG
formula, integrable as the Euler beta-function.

They have the forms

φ(r/r0) = Cµ(r/r0)−α exp[−r/r0], Cµ =
1

2πΓ(2 − α)
(B.1)

= Cµ(r/r0)−α1(r/r0 + 1)−β1 ,(B.2)

Cµ =
Γ(β1)

2πΓ(2 − α1)Γ(β1 + α1 − 2)
.

It is often admitted that those structure functions scale on a large interval of primary
energy, but this is an oversimplification, at least for individual showers [34]. Typical
values for r0 for muons above 300 MeV are 180 m and 320 m, respectively, for eqs. (B.1)
and (B.2). One general empirical muon lateral function has been formulated also by
Greisen [10] as follows:

�µ(r) = Nµ · 14.4
5.84 · 104

·
(

51
Eµth + 50

)0.37

·
(

2.5
Eµth + 0.82

)−0.9

×(B.3)

× r−3/4 ·
(
1 +

r

320 m

)−2.5

·
(

3
Eµth + 2

)0.14·r0.37

,

where Eµth is the muon energy threshold in GeV. The relation between Nµ and Ne is
given by

Nµ(Eµ > Eµth, Ne) = 5.84 · 104 ·
(
Ne

106

)3/4

×(B.4)

×
(

51
Eµth + 50

)0.63

·
(

2.5
Eµth + 0.82

)0.9

.

Formula (B.3) can be used for the muon energy region of 0.5 GeV < Eµth < 50 GeV.
At ultrahigh energy, the structure function of eq. (B.2) is used in Yakutsk [23] in a

form suitable for zenith angle dependence:

φµ(r) = Cµ ·K(θ) ·
(

E0

1018 eV

)0.87

·
(
r

r0

)−0.75

·
(

1 +
r

r0

)(0.75−bµ)

,(B.5)

where Cµ = 1, r0 = 280 m, K(θ) = 13.3 · exp
[
( 1
cos θ − 1) · 1020440

]
, bµ = b0 + b1 cos θ +

b2(logE0 − 18), b0 = 0.98 ±0.03, b1 = 2.28 ±0.3, b2 = 0.09 ±0.01.
In parallel, for giant EAS, a similar function is used in AGASA with an additive factor

for very large distances:

�µ(r) = Nµ

C ′
µ

r20

(
r

r0

)−0.75 (
1 +

r

r0

)−β [
1 +

( r

800

)3
]−δ

,(B.6)

where C ′
µ = 0.325 for β = 2.52, r0 = 266 m and δ = 0.6.
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Table VIII. – Comparison of results of localization performed for AGASA event #akn25400-
0296 (see fig. 16) for 4 different lateral-distribution functions. “The principal functions” are
written in bold characters.

Left fig. 16

Function Xc(m) Yc(m) s Ne �(600) χ2/n

Yakutsk 1.57·1010 310.3 9.09
AGASA#2 −1209.7 −1320.1 9.23·1010 632.4 5.24
JNC01 0.91 1.99·1011 603.1 5.02
JNC03 0.96 5.04·1010 487.3 5.27

Right fig. 16

Function Xc(m) Yc(m) s Ne �(600) χ2/n

Yakutsk 1.59·1010 312.4 8.43
AGASA#2 8.66·1010 593.1 5.76
JNC01 1.00 9.60·1010 518.1 5.15
JNC03 −1233.8 −1349.6 0.95 5.05·1010 473.5 5.03

Appendix C.

Comparison between different lateral-distribution functions and experimental
data

C.1. General remarks. – The localization procedure for a given event might give dif-
ferent coordinates of the shower core when different lateral-distribution functions were

Fig. 16. – AGASA event #akn25400-0296. Density distributions for 4 lateral-distribution func-
tions. Line description as in fig. 15. “Principal functions” are AGASA#2 in the left figure and
JNC03 in the right one. See table VIII for a comparison of numerical values.
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used. The differences are in most cases within 50 m when the number of hit detectors is
greater than 10. To compare different lateral-distribution functions with the data, we use
one function (we call it principal function) to determine (Xc, Yc) and the corresponding
size (Ne) and �(600) for this function. Then we fit another lateral-distribution function
for the already determined (and now fixed) (Xc, Yc). In this way we can present the
difference between shapes of different functions.

C.2. Example 1: Yakutsk event 7810061014. – We compare the Yakutsk event
7810061014 [23] with density distributions for 4 lateral-distribution functions. Two cases
are presented in fig. 15 for Yakutsk and JNC03 functions as the principal functions for
the localization. Some related numerical values are shown in table VII.

C.3. Example 2: AGASA event #akn25400-0296. – For the very large AGASA event
#akn25400-0296 [27] density distributions for 4 lateral-distribution functions are pre-
sented in fig. 16 and the related numbers in table VIII. The principal functions are
AGASA#2 and JNC03. It is interesting to compare the values from table VIII with
table VI with the best localizations for each function.
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