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Summary. — An identification problem for a coupled dynamical system is ad-
dressed. More specifically, the system, known from measurements of a scalar quan-
tity, is governed by a set of Langevin equations coupled to a deterministic forc-
ing evolving in a much slower fashion. A statistical method is presented which
identifies the deterministic forcing without assuming any parameterization for both
sub-systems. This procedure, which is based on a proper orthogonal decomposition
applied on probability density functions, works when measurement sampling times
remain much smaller than the characteristic time of the forcing. Several test cases
are performed.

PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian
motion.
PACS 47.20.Ky – Nonlinearity (including bifurcation theory).
PACS 47.52.+j – Chaos.

1. – Introduction

Time series methods [1-3] aim at extracting, from an experimental data set, a dynam-
ical system which reproduces such a data and is capable to forecast future measurements.
The difficulties of identification problems clearly depend on the a priori knowledge one
assumes on the system. Most methods presently available in the tool box of the non-
linear dynamicist, are derived under the assumption of determinism. In this context,
the so-called observational noise, due to measurement errors, may be taken into account
even though it deteriorates the efficiency of classical procedures [3, 4] such as fractal di-
mension computations algorithms. By contrast, dynamical noise [5-7] that characterises
stochastic systems, has been less considered. This case however drastically modifies the
identification procedure and classical algorithms should then be thought over anew.

(∗) The authors of this paper have agreed to not receive the proofs for correction.
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Coupled deterministic systems may also be rather challenging for nonlinear time series
methods [8,9] in particular when different characteristic times are simultaneously present,
e.g., when a fast and a slow dynamical system are coupled. In such a context, i.e.
standard procedures which compute embedding dimensions, fractal dimensions could be
a priori directly applied. However they may slowly converge with the total number of
measurement points, or may suffer from a high sensitivity to additive noise determining
their failure in the presence of a very small amount of observational noise.
In the present study, we consider both effects: coupled interactions and stochasticity.

More specifically, measurements are assumed to be produced by a stochastic system with
a white Gaussian noise, which is forced by a deterministic system evolving in a much
slower fashion. No peculiar forms are given for both dynamical systems and sampling
measurement time may be greater than the correlation time of the Langevin sub-system.
In such a case, it is hopeless to use deterministic aspects such as orbit tracking meth-
ods [10, 11]: only a statistical approach is then pertinent to identify the slow determin-
istic behaviour from the knowledge of the observed time series of the full system. The
reconstruction approach presented below is based on a set of probability density func-
tions (p.d.f.). Each p.d.f. is obtained by collecting data during a period which is large
compared to the correlation time of the Langevin system but small compared to the
characteristic time of the forcing. The set of these probability density functions is then
decomposed on a Proper Orthogonal Basis (POD) [12]. It is shown that the resulting
components are governed by a set of deterministic equations which contains the dynam-
ical system describing the forcing as a sub-system. In section 2, we first recall some
particulars from stochastic equation theory. The connection between the deterministic
system and the POD components is then derived and discussed. In sect. 3, this procedure
is implemented on two examples of coupled systems: a stochastic Lorenz system when
forced by another chaotic Lorenz system or by a two-dimensional oscillator. Finally the
procedure is tentatively applied to the case of two coupled deterministic systems.

2. – The statistical approach

Let us consider a system defined as two coupled sub-systems. The first one is charac-
terised by N stochastic variables x ≡ (x1, ..., xN ) satisfying a set of N nonlinear Langevin
equations(1)

dxi

dt
= Fi(x;µ) + σiθi(t),(1)

where µ ≡ (µ1, .., µP ) are P forcing parameters and σi denote dynamical noise ampli-
tudes. Quantities θi stand for normalised uncorrelated white Gaussian noise functions
such that 〈θi(t)θj(t′)〉 = 2δijδ(t− t′) with δij the Kronecker symbol and δ(t− t′) a Dirac
distribution.
The second sub-system

dµi

dt
= εGi(µ)(2)

(1) For the sake of clarity, we associate to eq. (1) a companion deterministic system dxi/dt =
Fi(x;µ) which will be denoted by CDS.
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is autonomous, deterministic and governs the dynamics of the forcing parameters µ of
eq. (1). Parameter ε in (2) stands for a dimensionless constant which governs the ra-
tio tD/tL between the characteristic times tD and tL (see below for a definition) of the
deterministic and Langevin sub-systems, respectively. When ε is small enough, the de-
terministic system (2) evolves with a much slower time dependence than the full coupled
system (1), (2). In such a case, a method is proposed to retrieve some of the basic char-
acteristics of sub-system (2), from measurements of a unique scalar variable of the full
system

v(t) = V[µ(t);x(t)].(3)

More specifically, the full data set

S = (v(tk); tk = kT, k = 1..,M)(4)

is produced by M such measurements sampled every time period T .

2.1. The p.d.f. time evolution for ε = 0. – It is known from stochastic equation
theory [13,14], that, for Langevin processes (1) the p.d.f. P (x, t) of finding at time t the
orbit at position x is governed by the Fokker-Planck equation

∂P (x, t)
∂t

= LµP (x, t),(5)

LµP (x, t) ≡ −
N∑

i=1

∇i.[Fi(x, µ(t))P (x, t)] +
N∑

i=1

σ2i
∂2P (x, t)
∂x2i

.(6)

The second term of the r.h.s. in (6), which contains the noise amplitude σi, may be
interpreted as a diffusion process which smoothes the probability density. When param-
eters µ are constant—e.g., when ε = 0 or when the orbit µ(t) has reached a fixed point
of sub-system (2)—the p.d.f. P (x, t) is attracted towards a stationary solution P0(x;µ)
which satisfies LµP0(x;µ) = 0. This occurs for times t large enough to ensure that tran-
sients have elapsed. In the absence of dynamical noise, the function P0(x;µ) is known
to be of fractal type for chaotic attractors. On the contrary, when noise amplitudes are
not zero, the p.d.f. is smooth. It is thus possible to get a sufficient estimate with a finite
set of data points. Note, however, that evaluating integrals of p.d.f. might be done even
for pure chaotic system.
In the present work, the eigenvectors (Φj(x, µ), j = 1, · · ·) of the linear operator Lµ,

are assumed to form an infinite, complete and discrete set [13,14] on which to expand any
p.d.f. The stationary solution P0(x;µ) is associated with the first one Φ1(x, µ) which has
hence a zero eigenvalue λ1(µ) = 0. Each eigenvector Φj(x, µ) with j 
= 1 is characterised
by an eigenvalue λj(µ) the real part of which is always strictly negative (no ordering is
assumed for the eigenvalues). As a consequence, any p.d.f. P (x, t) is attracted towards
the stationary solution P0(x;µ) and the characteristic time tL necessary to reach this
equilibrium then scales as tL = 1/β with β = −Min(Re(λj), j = 2, · · ·) (Re means that
the real part is taken). In addition, a set (Φ∗

k(x, µ(t)), k = 1, · · ·) of eigenfunctions of the
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backward Fokker-Planck equation

N∑
i=1

Fi(x, µ(t)).∇i[Φ∗
k] +

N∑
i=1

σ2i
∂2Φ∗

k

∂x2i
= λk(µ)Φ∗

k(7)

may be associated [13] to the previous eigenvectors and the following bi-orthogonal rela-
tion holds:

(Φ∗
k,Φj) = δkj ,(8)

where the scalar product reads

(Φ∗
k,Φj) ≡

∫
Φ∗

k(x, µ)Φj(x, µ)dx.(9)

Note that, for standard non-reflecting conditions, the adjoint eigenvector associated with
the stationary solution reads Φ∗

1 = 1.

2.2. The p.d.f. time evolution when the forcing is slowly evolving . – Let us now
assume that the forcing µ(t) slowly evolves with respect to the stochastic system, i.e.
parameters µ change according to eq. (2) with a characteristic time tD much larger than
the typical time tL. In such a case, we show that a quasi-static approximation may be
found for the probability density function. This is done as follows: first, at each time t,
an eigenvector basis is defined which is associated with the operator Lµ(t). Let us expand
the p.d.f. P (x, t) over this instantaneous eigenvector basis

P (x, t) =
∞∑

j=1

aj(t)Φj(x, µ(t)).(10)

By construction of operator (6) and a normalisation prescription, eigenvectors Φj(x, µ)
are such that

(Φ∗
1,Φj) =

∫
Φj(x, µ)dx = δ1j .(11)

This equality ensures the conservation of the total probability, i.e. the integral of P (x, t)
over the entire phase space. Normalisation of Φ1 then imposes that a1(t) = 1 in (10).
Introducing expansion (10) in the Fokker-Planck equation (5), one gets

P∑
p=1

dµp

dt
∂Φ1
∂µp

(x, µ(t)) +
∞∑

j=2

[
daj

dt
Φj(x, µ(t)) + aj(t)

P∑
p=1

dµp

dt
∂Φj

∂µp
(x, µ(t))

]
=(12)

∞∑
j=2

aj(t)λj(µ(t))Φj(x, µ(t)).

By taking, for k 
= 1, the scalar product of eq. (12) with the adjoint eigenvector
Φ∗

k(x, µ(t)) and by using eq. (2), one gets the infinite linear system

dak

dt
= Bk1(µ) +

∞∑
j=2

Lkj(µ)aj(13)
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for variables ak with k 
= 1, where

Lkj(µ) = λk(µ)δkj + Bkj(µ),(14)

Bkj(µ) = −ε
P∑

p=1

Gp(µ)(Φ∗
k(x, µ),

∂Φj

∂µp
(x, µ))(15)

are nonlinear functions of µ. It is easily seen that the scalar product of eq. (12) with the
adjoint eigenvector Φ∗

1 = 1 does not provide any constraint on variables ak.
Within the quasi-static approximation, nonlinear functions λk(µ), Bkj(µ) may be

considered as constant coefficients and eq. (13) thus becomes a nonhomogeneous linear
system with constant coefficients. Its solutions either rapidly diverge—an unrealistic case
which would lead to inconsistencies—or converge, on a time scale tL, towards a “fixed”
point ak(t) = Ak(µ(t)). Within this approximation, the p.d.f. entirely depends on time
through forcing µ(t)

P (x, t) = Φ1(x, µ(t)) +
∞∑

j=2

Aj(µ(t))Φj(x, µ(t)).(16)

In the extreme case in which the linear damping term λkak in eq. (13) is predominant
with respect to Bkj , variables ak for k > 1 rapidly converge towards

ak ∼ −εBk1(µ)
λk(µ)

+O(ε2).(17)

When µ is fixed, one recovers the standard result ak(t) = 0 for k > 1. A straightforward
consequence follows from the above analysis: any variable extracted at any given time
t from the p.d.f. P (x, t), exhibits a slow deterministic dynamics that only depends on
µ(t).
The validity of the above analysis clearly depends on the value of tD(ε). More specif-

ically, tL � tD must be satisfied (this is true for ε � 1). When tL ∼ tD, there exists a
set J of N indices j such that 1/Re(λj) is of the same order of magnitude than tD. The
above analysis then fails. The problem, however, may be reformulated by separating the
set of modes ak with k belonging to J from the others. The latter modes are slaved to
µ(t) and aj with j in J . The center manifold theory [15] may then be invoked to ensure
that the time evolution of the p.d.f. is described by a deterministic system of dimension
N +NP . Consider, for instance, the Langevin bistable potential model (s > 0)

dx1
dt

= (2sx1 − 3x31) + σθ1(t)(18)

which possesses a stationary probability

P (x1, t) ∼ exp
[
sx21 − x41
σ2

]
.(19)



310 L. BATTISTON and M. ROSSI

When s/σ is large(2), orbits may remain trapped for a long time, close to one of the two
deterministic fixed points and tL thus increases. This feature may be put on quantitative
terms for a bistable model with a rectangular potential well [14]. For this analytically
solvable model, the lowest nonzero eigenvalue decreases to zero, with increasing H/σ2,
as σ2 exp[−(H/σ2)]. For weak noise, the above analysis thus fails since time tL becomes
large. Conversely, the method should work for large noise amplitudes since the lowest
nonzero eigenvalue linearly increases as σ2. When the CDS is a chaotic system, i.e. a
system with highly mixing properties, the time tL does not unboundedly increase in the
weak noise limit and the method presented here is more robust.
The above results have been established in the framework of a stochastic sub-system

with an uncorrelated white noise. For other cases, e.g., a pure chaotic deterministic
sub-system (σi = 0) or a stochastic sub-system with coloured noise, it is argued that
this method, which relies on general properties of the spectrum of operator Lµ(t), may
be tentatively used (see below for numerical results of the pure deterministic case). The
p.d.f. of a stochastic process with coloured noise satisfies an equation like (5) with
very similar properties [16] though the operator Lµ must be modified. Consider, for
instance, that functions θi in eq. (1), are normalised coloured noises with a decay time
tc, 〈θi(t)θj(t′)〉 = (δij/tc) exp

[
−|t−t′|

tc

]
. This noise is produced [14] by equation

dθi
dt
= −θi

tc
+
γi(t)
tc

(20)

with γi a normalised uncorrelated white noise. As a consequence, the coloured stochastic
system may be written in a system of the form (1) with i) greater dimension since θi
become additional stochastic variables and with ii) some noise amplitudes put to zero.

2.3. Extracting the data: theoretical aspects . – In this subsection, we show how to
obtain from the scalar measurements S of the stochastic quantity v, a deterministic time
variable b(t). This latter quantity is then used to identify the deterministic part of the
system.
Assume that variable v varies in S between vmin ≤ v ≤ vmax. The total range of

variation [vmin, vmax] is then divided into D non-overlapping intervals ∆k (k = 1, ...,D).
By virtue of definition (3), each ∆k corresponds to a specific phase space region for x. The
probability pv(k, t) of measuring v inside ∆k during the time interval

[
t− ∆T

2 , t+
∆T
2

]
,

where ∆T = 2ZT corresponds to the time betweenQ ≡ 2Z+1 consecutive measurements,
reads

pv(k, t) =
1
∆T

∫
t−∆T

2 ≤s≤t+∆T
2

ds

(∫
H∆k

(v(x, µ(s)))P (x, s)
N∏

r=1

dxr

)
,(21)

where H∆k
(v) equals 1 if v is contained in the interval ∆k and 0 otherwise. Within the

quasi-static approximation (16), the phase space integral

Pk(µ(t)) =
∫
H∆k

(v(x, µ(t)))P (x, t)
N∏

r=1

dxr(22)

(2) This may occur because the noise amplitude σ2 is small or the potential barrier height H

between the two fixed points x1 = ±
√
2s/3 is large.
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is only a function of µ. In this case, the relation

dpv

dt
(k, t) =

1
∆T

[
Pk

(
µ

(
t+

∆T
2

))
− Pk

(
µ

(
t− ∆T

2

))]
(23)

holds. If parameters µ slightly evolve during the time interval ∆T between Q consecutive
measurements, eq. (23) reads

dpv

dt
(k, t) =

P∑
p=1

dµp

dt
∂Pk

∂µp
= ε

P∑
p=1

Gp(µ)
∂Pk

∂µp
(µ).(24)

As a consequence, any linear combination of variables pv(k, t) (k = 1, ...,D) defines a
scalar b(t), the dynamics of which is described by a P +1 deterministic system emulating
eqs. (2) and (24). Moreover, since eq. (2) does not depend on the continuous variable
b(t), the correlation dimension of b(t) is less or equal than Dim + 1, where Dim denotes
the correlation dimension of the attractor of (2).

2.4. Extracting the data: practical aspects. – This subsection is divided into two dis-
tinct parts. In the first place, various vectors are computed from the data set. The
reconstructed time series b(t) is then extracted by applying a POD method to such
vectors.
Given a time t = tm, the quantity pv(k, tm) can be numerically estimated as pv(k, tm) ∼

Nk/Q, where Nk denotes the number of v(ts) with m− Z ≤ s ≤ m+ Z which lie inside
∆k. A D-vector (pv(1, tm), ..., pv(D, tm)) which depends on µ(tm) can be thus generated.
From M measurements in S, q ∼ M/S overlapping such intervals tm−Z ≤ ts ≤ tm+Z ,
may be defined each one being translated of S measurements from the previous one
(S ≤ Q). Finally this procedure yields q consecutive D-vectors (pv(1, tm), ... , pv(D, tm))
separated by a time interval ST , i.e. tm = mST .
A coherence does exist between such D-vectors since they are produced by the sys-

tem (1), (2). This coherence however may be hidden because of obvious statistical
limitations arising from the data set S. A Proper Orthogonal Decomposition (POD) [12]
determines which linear combination b(t) =

∑
αjpv(j, t) contains the greatest part of

the coherence. This method, which separates the time evolution from the “phase space”
coherence, is technically identical to the singular value decomposition (SVD) used for
classical deterministic cases. However the present method should not to be confused
with SVD (when applied to stochastic data S, SVD actually fails to retrieve any features
of the deterministic sub-system) since we work on vectors extracted from probability
density functions and not from any time delay algorithms. The POD, which solves
the eigenvalue problem [12] of the auto-correlation matrix built from the D-vectors
(pv(1, tm), ..., pv(D, tm)), provides an empirical basis of D-vectors (Kn(1), ...,Kn(D))
with n = 1, ...,D such that the expansion

pv(k, tm) =
D∑

n=1

bn(tm)Kn(k)(25)

is optimal. This means that POD coefficients |bn(tm)| decrease faster with n than coeffi-
cients of other possible expansions. The first coefficient b1(tm), i.e. the scalar product of
(pv(1, tm), ..., pv(D, tm)) with (K1(1), ...,K1(D)), contains the greatest coherent part of
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the signal. As a consequence, we use, in the sequel, the reconstructed variable b(t) ≡ b1(t)
sampled every time ST .
The value of Q is a major factor to get an adequate b(t): if Q is too small, the

number of data points is insufficient to estimate the quantity pv(k, tm) though the first
coefficient of the POD does filter out part of fluctuations due to finite measurement
sets. This effect can be directly seen on the convergence of the empirical functions and
eigenvalues coefficients with respect to the number of points Q as well as on the projection
b(t) ≡ b1(t) itself. Conversely if Q becomes too large, parameters µ significantly evolve
during the time interval ∆T = (Q− 1)T and eq. (24) is then no more valid. One should
check a posteriori that such constraints are verified.
From the results of subsect. 2.3, variable b(t) sampled each time interval ST may be

used to characterise and emulate eqs. (2) and (24) with the aid of suitable chaotic indi-
cators such as minimal sufficient embedding dimension (here the false nearest-neighbours
method) or mutual information. This is done in the next section. We did not attempt
to compute the correlation dimension since measurement noise in the present calcula-
tions is too large for this algorithm to be effective with a realistic number of points M
(correlation dimension algorithms are known to be very sensitive to additive noise [4]).

3. – Application to two cases of coupled systems

The above technique is now applied to two cases of coupled systems. For the first one
(hereafter denoted case A), the forcing µ(t) is governed by a Lorenz system in a chaotic
regime [17]

dµ1
dt
= ε[a(µ2 − µ1)], dµ2

dt
= ε[bµ1 + µ2 − µ1µ3], dµ3

dt
= ε[−cµ3 + µ2µ1] ,(26)

while, in the second case (hereafter denoted case B), µ(t) behaves like a linear oscillator

dµ1
dt
= −εµ2, dµ2

dt
= εµ1 .(27)

In both cases, the stochastic sub-system satisfies a Lorenz system

dx1
dt
= a(x2 − x1) + σθ1(t), dx2

dt
= f(µ2)x1 + x2 − x1x3 + σθ2(t),(28)

dx3
dt
= −cx3 + x2x1 + σθ3(t)(29)

with white noise of amplitude σ. In the above equations, parameters a, b and c are taken
to be equal to a = 10, b = 28, c = 2.666. The coupling between the two sub-systems
is implemented through the Rayleigh parameter. This coefficient is given by a suitable
function of the slow variable µ2. For case A, f(µ2) = 40− 0.5µ2 is used, while, for case
B, f(µ2) = 40 − 15µ2. In both instances, such a transformation maintains the CDS of
the stochastic sub-system (1) in the chaotic range.
The full system is simulated with the one time step numerical algorithm explained

in [18] with time step ht = 0.001. For most cases considered below, the algorithm is
tested using a synthetic data produced with noise amplitude σ = 5. However a single
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Fig. 1. – Case A: (a) behaviour of variable µ2(t) of the deterministic sub-system (2); (b) be-
haviour of variable x1(t) of the coupled system (1), (2) for σ = 0 and (c) for σ = 5.

reconstruction is attempted for a system (1) with σ = 0, i.e. two coupled deterministic
Lorenz sub-systems. The parameter ε in eq. (2) is typically of the order 10−3 for the
Lorenz system and 10−2 for the regular system. For case A, fig. 1 provides a hint about
the respective characteristic times of eq. (2) (fig. 1a), eq. (1) with σ = 0 (fig. 1b) and
σ = 5 (fig. 1c). The data set S is obtained by M = 106 scalar measurements(3) sampled
every time period T = 0.1. The scalar variable v is here equal to the fast variable x1.

3.1. Results of classical methods. – Standard methods, such as Fourier analysis or non-
linear time series methods, are first directly implemented on series v(t). A visual inspec-

(3) We also tried for some cases a data set with M = 107 and checked the persistence of the
reconstruction results.
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Fig. 2. – Case A with M = 106: the percentage of false nearest neighbours of v as a function of
the embedding dimension for σ = 5 (dashed), σ = 0 (solid) without observational noise, σ = 0
(dot-dashed) with an observational noise of two percent in r.m.s. units.

tion of the data set v(t) for a long time period shows, for case B, some regular behaviour
on the amplitude. However the Fourier spectrum is incapable to find a distinct feature at
forcing frequency ε: in the complete system, this component is hidden by the presence of
noise or chaotic dynamics of the Langevin sub-system (1) which generates a broad spec-
trum. Filtering out by a low-pass filter this component is thus helpless. For case A, a
visual inspection shows no trend of an underlying deterministic or large-scale behaviour.
The series v can be analysed using nonlinear time series analysis softwares such as

those given in the package [19]. The time delay is determined by the minimum of the
mutual information (program mutual of the package [19]). For case A with σ = 5 or

Table I. – Case A, σ = 5: Eigenvalues and eigenvectors of the first, second and fifth components
for S = 100, D = 10, Q = 2000, with M = 106.

0.16227 0.00076 0.00011

−0.00073 0.00314 0.00371
−0.03852 0.05886 −0.00910
−0.24234 −0.09368 −0.14794
−0.45932 −0.66466 0.16934
−0.45725 −0.23623 −0.59878
−0.45272 0.10173 0.70668
−0.47350 0.59264 −0.26955
−0.29480 0.35756 0.12299
−0.06061 0.02743 0.06012
−0.00185 0.00083 0.00211
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Table II. – Case A, σ = 5: the first eigenvector and eigenvalue (S = 100, D = 10) for various
Q (Q = 100, Q = 500, Q = 1000, Q = 2000, Q = 3000, Q = 10000), with M = 106.

0.16232 0.16228 0.16228 0.16227 0.16226 0.16223

−0.00072 −0.00073 −0.00073 −0.00073 −0.00073 −0.00074
−0.03836 −0.03847 −0.03849 −0.03852 −0.03856 −0.03871
−0.24173 −0.24216 −0.24224 −0.24234 −0.24242 −0.24270
−0.46006 −0.45940 −0.45933 −0.45932 −0.45932 −0.45935
−0.45677 −0.45728 −0.45732 −0.45725 −0.45718 −0.45691
−0.45209 −0.45261 −0.45270 −0.45272 −0.45270 −0.45269
−0.47438 −0.47368 −0.47356 −0.47350 −0.47347 −0.47338
−0.29451 −0.29467 −0.29471 −0.29480 −0.29488 −0.29514
−0.06029 −0.06050 −0.06054 −0.06061 −0.06068 −0.06088
−0.00185 −0.00185 −0.00185 −0.00185 −0.00185 −0.00187

σ = 0, the mutual information fails when applied on the data set S since it does not
show any clear minimum. This may be explained since, for a deterministic Lorenz system
with parameters a = 10, b = 28, c = 2.666, the mutual information shows a minimum
for t = 0.16 a value of the same order of sampling measurement time T = 0.1 of data
set S. The time delay 0.1 is thus introduced in the false-nearest algorithm (false-nearest
program of the package) which provides the minimal sufficient embedding dimension.
For case A and noise amplitude σ = 5, the percentage of false nearest neighbours does
not go to zero at the embedding dimension 3 + 3 (dashed line in fig. 2). Even though,
for the deterministic case A with σ = 0 and no observational noise (solid line in fig. 2),
the correct value is recovered, an addition of a very small amount of additive noise is
sufficient to deteriorate this result (dot-dashed line in fig. 2). This sensitivity is due
to the disparity in time scales between the two coupled sub-systems and to the lack of
measurement points to catch the longest time scales. Similar results are obtained for
case B where 3 + 2 is an expected value for the embedding dimension. Finally it was
checked that the SVD technique applied to v does not indicate any trend whatsoever of
a large-scale dynamics.

3.2. Results of the statistical method . – The data set S obtained for noise amplitude
σ = 5 is now analysed using the method of sect. 2. The following parameters have been
chosen: temporal windows are translated of S = 100 measurements and the range of vari-
ation of v is divided into D = 10 intervals(4). The POD representation hence generates
ten empirical vectors (Kn(1), ...,Kn(D)) (n = 1, ...., 10). We have used different numbers
Q of consecutive measurements: Q = 100, Q = 500, Q = 1000, Q = 2000, Q = 3000,
Q = 104. For Q = 2000 and both cases, the spectrum of the correlation matrix, which
estimate the relative contribution of each POD component in expansion (25), indicates
that the first one contains most part of vector (pv(1, tm), ..., pv(D, tm)) (see table I for
case A). This result is confirmed by other values of Q. The first eigenvector and eigen-
value for case A and σ = 5 are shown in table II for various window widths Q (Q = 100,
Q = 500, Q = 1000, Q = 2000, Q = 3000, Q = 104). A comparison of the first eigen-
vector ensures that results are almost convergent. For eigenvectors (Kn(1), ...,Kn(D))

(4) We have tried D = 30. For cases considered, we did not find any significant change.
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Fig. 3. – Case A, σ = 5 with S = 100, D = 10. The orbit (top) and 2D phase plot
(µ2(tj), µ2(tj+10)) or (b(tj), b(tj+10)) (bottom) for (a) the true forcing series µ2(t), (b) the
reconstructed variable b(t) with Q = 500.

with 5 ≤ n, results do not converge due to lack of points. However such eigenvectors are
not significant since only a small fraction of the total vector (pv(1, tm), ..., pv(D, tm)) in
expansion (25) is contained in these higher empirical modes.
For each time series v(t), one now compares two deterministic series: the exact forcing

µ2(tj) and the reconstructed series b(tj) for tj = jST . Note that no noise reduction
is applied on the reconstructed data. A visual inspection of b(tj) ascertains that the
statistical method is capable to grasp some dynamical features of µ2(tj): in fig. 3, a phase
space plot (µ2(tj), µ2(tj+10)) for the true forcing or (b(tj), b(tj+10)) for the reconstructed
series and a time evolution curve are shown for case A and window widths Q = 500. In
fig. 4, the same is done for Q = 2000 and Q = 3000. Equivalent plots for Q = 2000 and
Q = 104 are presented in fig. 5 for the linear oscillator (case B). For small Q, the error
on the probability distribution induces on the reconstructed value b(tj) an observational
noise. A region may then be identified where the value of Q is not significant and the
measurement error seems to reach a minimum. Note that, when Q becomes too large,
the theory should be modified as mentioned in subsect. 2.4. This problem appears in
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Fig. 4. – Case A, σ = 5 with S = 100, D = 10. The orbit (top) and 2D phase plot
(µ2(tj), µ2(tj+10)) or (b(tj), b(tj+10)) (bottom) for (c) the reconstructed variable b(t) with
Q = 2000, (d) the reconstructed variable b(t) with Q = 3000.

fig 5 for the phase plot of case B Q = 104.
Using the software given in the package [19], we quantitatively analyse the true forcing

µ2(tj) with tj = jST and the reconstructed series b(tj) for cases A and B with σ = 5. We
set the parameters for the false nearest-neighbours algorithm, so that the analysis of the
true series µ2(tj) provides the known correct values 2 for oscillator (see table III) and 3

Table III. – Case B with Q = 2000, percentage of false nearest neighbours for increasing em-
bedding dimensions (ED) for b(t) with σ = 5 and σ = 0 and for the true variable µ2(t).

ED σ = 5 σ = 0 µ2(t)

1 0.937 0.887 0.694
2 0.0177 0.00813 0.0
3 0.0 0.0 0.0
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Fig. 5. – Case B, σ = 5 with S = 100, D = 10. The orbit (top) and a 2D phase plot
(µ2(tj), µ2(tj+10)) or (b(tj), b(tj+10)) (bottom) for (a) the reconstructed b(t) with Q = 2000,
(b) the reconstructed b(t) with Q = 104.

for Lorenz (see table IV). For case A and σ = 5, the time delay was obtained to be very
stable with Q and equal to t = 190 which favourably compares with the expected value
t = 160 (since 0.16 should be divided by a renormalized time factor ε = 10−3). For case
B and σ = 5, the time delay was very stable with Q and equal to t = 160. This result is
close to the value t = 150 corresponding to one fourth of the period with ε = 10−2. Using
the time delay computed, table III shows, for Case B and Q = 2000, the percentage of
false nearest neighbours of b(t). The minimal sufficient embedding dimension for b(tj) is
obtained to be 3 = 2+1 which, according to the previous analysis, correctly implies that
the forcing µ lives in a 2-dimensional phase space. For case A and Q = 2000, table IV
indicates that the minimal sufficient embedding dimension takes the value 4 = 3+1. It is
known that the correlation dimension of the Lorenz attractor is 2.05. If we increase too
much the heuristic threshold of the false nearest-neighbours algorithm, we underestimate
the correct minimal sufficient embedding dimension of one unit: for the real forcing µ
we get 2 and for the reconstructed variable b we obtain 2 + 1.
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Table IV. – Case A with Q = 2000, percentage of false nearest neighbours for increasing
embedding dimensions (ED) for b(t) with σ = 5 and σ = 0 and for the true variable µ2(t).

ED σ = 5 σ = 0 µ2(t)

1 0.951 0.942 0.893
2 0.0474 0.0211 0.00358
3 0.000445 0.000625 0.0
4 0.0 0.0 0.0

3.3. Case of two deterministic coupled sub-systems. – The reconstruction method has
been applied on data produced by two coupled deterministic sub-systems, namely we
set σ = 0 for case A and case B. Though this case is a priori out of the range of our
assumptions, results are nonetheless satisfactory. As stated previously, this is due to two
ingredients: a) the Lorenz sub-system (1) always remains in the chaotic regime which
ensures that tL does not unboundedly increases, and b) the integral of the p.d.f. P (x, t)
over an interval might be correctly evaluated with a reasonable number of points. Note
that, if system (1) with σ = 0 were a regular deterministic nonlinear system, the p.d.f.
would be a singular delta-function associated with a fixed point or periodic or quasi-
periodic orbits. The integration over an interval of such a p.d.f. leads to a drastic loss
of information determining the failure of the present method.
For case A (respectively, case B), the time delay was obtained to be very stable with

Q and equal to t = 170 (respectively, t = 160). For case A and S = 100, D = 10,
table V shows, for various Q, the first eigenvalue and eigenvector containing most part
of the coherence. The orbit and 2D phase plot for the reconstructed variable b(t) with
Q = 2000 are then presented in fig. 6. All these results are quite satisfactory when
compared to the true forcing. Similarly the percentage of false nearest neighbours of b(t)
shown in table III (respectively, table IV) is correct for Case B (respectively, Case A)
with Q = 2000.

Table V. – Case A, σ = 0: the first eigenvector and eigenvalue (S = 100, D = 10) for various
Q (Q = 100, Q = 500, Q = 1000, Q = 2000, Q = 3000, Q = 10000), with M = 106.

0.14908 0.14907 0.14907 0.14906 0.14905 0.14902

−0.00371 −0.00370 −0.00370 −0.00371 −0.00372 −0.00376
−0.09466 −0.09483 −0.09487 −0.09496 −0.09505 −0.09534
−0.32132 −0.32149 −0.32151 −0.32152 −0.32156 −0.32163
−0.42248 −0.42266 −0.42265 −0.42261 −0.42262 −0.42253
−0.45669 −0.45691 −0.45692 −0.45688 −0.45681 −0.45654
−0.45731 −0.45746 −0.45748 −0.45744 −0.45737 −0.45712
−0.42873 −0.42813 −0.42807 −0.42810 −0.42814 −0.42841
−0.31749 −0.31726 −0.31725 −0.31733 −0.31740 −0.31766
−0.08353 −0.08371 −0.08375 −0.08383 −0.08391 −0.08418
−0.00282 −0.00281 −0.00282 −0.00282 −0.00283 −0.00286
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Fig. 6. – Case A, σ = 0 with S = 100, D = 10 and Q = 2000. The orbit and a 2D phase plot
(b(tj), b(tj+10)) for the reconstructed b(t) with Q = 2000.

4. – Conclusion

We have presented a new method which can retrieve a deterministic forcing from
scalar measurements of a forced stochastic or deterministic system. Classical procedure
fails in case considered because of dynamical noise or because of the presence of various
characteristic times. The statistical method presented, which computes integrals of p.d.f.
and their projections on a POD basis, produces a reconstructed deterministic quantity.
Examples indicate that qualitative as well as some quantitative features can be correctly
obtained from this approach.
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