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Summary. — In this work an algebraic formulation to evaluate the eddy diffusivities
in the Convective Boundary Layer (CBL) is derived. The expression depends on the
turbulence properties (z height dependence) and the distance from the source. It
is based on the turbulent kinetic energy spectra and Taylor’s statistical diffusion
theory. It has been tested and compared through an experimental dataset, with
another complex integral formulation taken from the literature. The agreement
between the complex integral formulation and simple algebraic expression points
out that this new parameterization is valid and can be used as a surrogate for eddy
diffusivities in the inhomogeneous convective turbulence present in the CBL. The
validation shows that the proposed algebraic vertical eddy diffusivity is suitable for
application in advanced air quality regulatory models.

PACS 92.60.-e – Meteorology.

1. – Introduction

In principle from the Eulerian dispersion model concept it is possible to construct a
pratical model of dispersion from a continuous point source given adequate boundary
and initial conditions plus a knowledge of the time and space fields of U (mean wind
vector) and Kα (eddy diffusivities, with α = x, y, z) [1].

The choice of an adequate parameterization of concentration turbulent fluxes plays a
relevant role in air quality dispersion models which are based on the advection-diffusion
equation. As a consequence, many of the turbulent dispersion researches are related to
the specification of these fluxes.
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The principal scheme for closing the advection-diffusion equation is to relate turbulent
concentration fluxes to the gradient of the mean concentration by K eddy diffusivities,
which carry with them the physical structure of the transport. In this aspect, these eddy
diffusivities, for a continuous point source, must consider the memory effect present in
the near-source turbulent field. In fact, following Arya [2]: “To represent the near-source
diffusion in weak winds the eddy diffusivities should be considered as function of not
only turbulence (e.g., large eddy length and velocity scales), but also of distance from
the source”. Following this idea, Degrazia et al. [3] proposed for the CBL a complex
integral formulation for the eddy diffusivities having the form

(1)
Kα

w∗zi
=

0.09c1/2i ψ1/3(z/zi)4/3

(f∗m)4/3i

∞∫
0

sin
[
7.84c

1/2
i ψ1/3(f∗

m)
2/3
i n′X

(z/zi)2/3

]
(1 + n′)5/3

dn′

n′
,

where ci = αiαu(2πk)−2/3, αu = 0.5 ± 0.05 and αi =1, 4/3, 4/3 for u, v and w compo-
nents, respectively (values of αi are derived from the turbulence isotropy in the inertial
subrange) [4, 5]; (f∗m)i is the normalized frequency of the spectral peak regardless of
stratification; z is the height above ground; zi is the CBL height; ψ = εzi/w

3
∗ is the

nondimensional molecular dissipation rate function; w∗ is the convective velocity scale;
n′ is a nondimensional frequency and finally X = xw∗/Uzi can be thought as a nondi-
mensional time, since it is the ratio of travel time x/U to the convective timescale zi/w∗.

The present approach (eq. (1)) fundamentally hinges on Batchelor’s [6] time-dependent
equation for the evolution of eddy diffusivities Kα:

(2) Kα =
1
2

dσ2α
dt

which says that the generalized eddy diffusivity is the time derivative of the spacial
variance. It is important to point out the benefits of using the parameterization given by
eq. (1). Taylor’s theory is valid only for homogeneous turbulence, whereas eq. (1) that
employs a velocity spectra dependent on z is more general and can be also applied in
inhomogeneous turbulence [3,7]. More recently, Arya [2] suggested a simple interpolation
formula for the eddy diffusivities given by

(3) Kα =
σ2i x

U

(
1 +

x

bLα

)−1
,

where σ2i is the variance of the turbulent wind velocity (normally dependent on z),
Lα = UTLi

in which TLi
is the Lagrangian decorrelation time scale of velocity fluctuations

(also dependent on z) and b is a constant of order 1. We stress here that an expression
as (3) to be applicable to real cases in the planetary boundary layer (PBL), must be
dependent on z (σ2i , U and Lα functions of z). Only in this case we can construct an
eddy diffusivity for inhomogeneous turbulence. If it is not a function of z, then this limits
the approach to much fewer atmospheric conditions and locales.

In this work we derive initially the turbulent decorrelation time-scale TLi
for the CBL

based upon convective similarity and statistical diffusion theory [7]. This decorrelation
time-scale will be used to obtain a simple algebraic expression for the eddy diffusivities
in the CBL which depends on the turbulence properties (inhomogeneous turbulence) and
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the distance from the source. The hypothesis to be tested in this study is whether the
complex integral formulation (1) for eddy diffusivities in inhomogeneous turbulence can
be expressed by a simple algebraic equation of the same sort of eq. (3) but here valid for
the CBL. Furthermore, the simple algebraic expression is evaluated against the complex
integral formulation (eq. (1)) using an air pollution model and atmospheric dispersion
experiments that were carried out in the Copenhagen area under moderately unstable
conditions [8].

2. – Algebraic formulation for the eddy diffusivity depending on height and
source distance

An analysis of estimates for σα [9] (the generalized-dispersion parameter) obtained
from data collected during a field study suggests the following model for the dispersion
parameters of elevated releases in the CBL:

(4) σα =
σit

(1 + t/2TLi
)1/2

,

where σ2i is given by [7]

(5) σ2i =
1.06ciΨ2/3 (z/zi)

2/3
w2∗

(f∗m)2/3

and TLi
is obtained for large diffusion travel times of the relation [10]

(6) Kα = σ2i TLi
=
σ2i βiFi(0)

4

and consequently

(7) TLi
=
βiFi(0)

4
,

where according to Degrazia and Anfossi [11], βi = 0.55U/σi is defined as the ratio of the
Lagrangian to the Eulerian time-scales; Fi(0) is an Eulerian one-dimensional turbulent
velocity spectrum at the origin normalized by the turbulent velocity variance having the
form

(8) Fi(0) =
z

(f∗m)U
.

The substitution of βi and (8) in (7) results in the following equation for the turbulent
decorrelation time-scale in the CBL:

(9) TLi
=

0.13z2/3z1/3i

c
1/2
i Ψ1/3(f∗m)2/3i w∗

.
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A formulation for the time-dependent coefficients Kα has been derived by [6] and as a
consequence from eqs. (2) and (4) we obtain

(10) Kα =
σ2i t

(1 + t/2TLi
)2

(
1 +

t

4TLi

)
.

Equations (1), (3) and (10) have the same behaviour for small and large times. As a
consequence, eq. (10) can be utilised to generate a simple algebraic expression that can
be used as a surrogate of eq. (1). Thus, replacing eqs. (5) and (9) into algebraic expres-
sion (10) the following generalized eddy diffusivities depending on the source distance
can be written as

(11)
Kα

w∗zi
=

0.583ciΨ2/3(z/zi)4/3X
[
0.55(z/zi)2/3 + 1.03c1/2i Ψ1/3 (f∗m)2/3i X

]
[
0.55(z/zi)2/3 (f∗m)1/3i + 2.06c1/2i Ψ1/3 (f∗m)iX

]2 .

3. – Vertical eddy diffusivities from eqs. (1) and (11)

For horizontal homogeneity the CBL evolution is mainly driven by the vertical trans-
port of heat. Therefore, the analysis will focus on the vertical eddy diffusivities. These
eddy diffusivities can be derived from eqs. (1) and (11) by assuming

(12) (f∗m)w =
z

(λm)w
= 0.55

(
z

zi

)[
1 − exp

[
−4z
zi

]
− 0.0003 exp

[
8z
zi

]]−1
,

where (λm)w = 1.8zi
[
1 − exp

[
− 4zzi

]
− 0.0003 exp

[
8z
zi

]]
is the value of the vertical wave-

length at the spectral peak, which was obtained from empirical data by Caughey and
Palmer [12]. To proceed, the vertical eddy diffusivities described in terms of energy-
containing eddies and function of the downwind distance X and the height z can be
obtained from eqs. (1), (11) and (12) using cw = 0.36 [7], as follows:

(13)
Kz

w∗zi
= 0.12ψ1/3q4/3

∞∫
0

sin
(
3.17q−2/3ψ1/3Xn′

)
(1 + n′)5/3

dn′

n′

and

(14)
Kz

w∗zi
=

0.38ψ2/3X
[
1 + 0.75ψ1/3q−2/3X

]
[
0.82q−1/3 + 1.24ψ1/3q−1X

]2 ,

where q =
[
1 − exp

[
−4z
zi

]
− 0.0003 exp

[
8z
zi

]]
.

The dissipation function ψ according to ref. [13] has the form

(15) ψ1/3 =

[(
1 − z

zi

)2(
z

−L
)−2/3

+ 0.75

]1/2
,

where L is the Monin-Obukhov length in the surface layer.
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Fig. 1. – Vertical eddy diffusivities calculated from eqs. (13) (integral, dashed line) and (14)
(algebraic, solid line) for three different values of z/zi = 0.2 (a), 0.5 (b), 0.8 (c).
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In fig. 1 are depicted the curves for Kz/w∗zi given by integral (13) and algebraic (14)
formulas for three different heights: z/zi = 0.2 (a), 0.5 (b), 0.8 (c) considering z/L = −10.
The curves show a good agreement between the two expressions. For a given height, the
Kz/w∗zi is initially zero, increases with X, at first linearly and then more slowly, and
finally tends to a constant value.

As a test for the algebraic formula (14) we introduce the vertical eddy diffusivities (13)
and (14) in an air pollution model to simulate the ground level cross-wind integrated con-
centrations of contaminants released from an elevated continuous source in an unstable
PBL.

4. – Air pollution model

Following Vilhena [14,15], for a Cartesian coordinate system in which the x direction
coincides with that one of the average wind, the steady-state advection-diffusion equation
is written as [2]

(16) U
∂c

∂x
=
∂

∂x

(
Kx
∂c

∂x

)
+
∂

∂y

(
Ky
∂c

∂y

)
+
∂

∂z

(
Kz
∂c

∂z

)
,

where c denotes the average concentration, U the mean wind speed in x direction andKx,
Ky and Kz are the eddy diffusivities. The cross-wind integration of eq. (16) (neglecting
the longitudinal diffusion) leads to

(17) U
∂cy

∂x
=
∂

∂z

(
Kz
∂cy

∂z

)

subject to the boundary conditions of zero flux at the ground and CBL top, and a source
with emission rate Q at height Hs

(18) Kz
∂cy

∂z
= 0 in z = 0, zi ,

(19) Ucy(0, z) = Qδ(z −Hs) in x = 0 ,

where now cy represents the average cross-wind integrated concentration.
Bearing in mind the dependence of the Kz coefficient and wind speed profile U on

the variable z, the height zi of a CBL is discretized in N sub-intervals in such a manner
that inside each interval Kz(z) and U(z) assume the average value

(20) Kn =
1

zn+1 − zn

zn+1∫
zn

Kz(z)dz ,

(21) Un =
1

zn+1 − zn

zn+1∫
zn

U(z)dz .
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For the vertical eddy diffusivity depending on x and z (eqs. (13) and (14)), initially
we take the average in z variable

(22) Kn(x) =
1

zn+1 − zn

zn+1∫
zn

Kz(x, z)dz .

The procedure is quite similar for x variable. Indeed the domain in x variable is
discretized into variable sub-intervals of length ∆xi and in each sub-interval the following
average value for the eddy diffusivity is considered:

(23) Ki,n =
1

xi+1 − xi

xi+1∫
xi

Kn(x′)dx′ .

Recall that Ki,n assumes a constant value at xi � x � xi+1 and zn � z � zn+1.
Therefore the solution of problem (17) is reduced to the solution of N problems of the
type

(24) Un
∂cyn
∂x

= Ki,n
∂2cyn
∂z2

, zn � z � zn+1, xi � x � xi+1

for n = 1 : N , where cyn denotes the concentration at the n-th sub-interval. To determine
the 2N integration constants the additional (2N − 2) conditions, namely continuity of
concentration and flux at interface are considered

(25) cyn = cyn+1 n = 1, 2, ...(N − 1) ,

(26) Ki,n
∂cyn
∂z

= Ki,n+1

∂cyn+1
∂z

n = 1, 2, ...(N − 1) .

Applying the Laplace transform in eq. (24) there results

(27)
∂2

∂z2
cyn(s, z) − Uns

Ki,n
cyn(s, z) = − Un

Ki,n
cyn(0, z) ,

where cyn(s, z) = Lp

{
cyn(x, z);x→ s

}
, which has the well-known solution

(28) cyn(s, z) = Ane
−Rnz +Bne

Rnz +
Q

2Ra

(
e−Rn(z−Hs) − eRn(z−Hs)

)
,

where

Rn = ±
√
Uns

Ki,n
and Ra = ±√

UnKi,ns .
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Finally, applying the interface and boundary conditions, we come out with a linear
system for the integration constants. Henceforth the concentration is obtained inverting
numerically the transformed concentration cy by the Gaussian quadrature scheme [16]

(29) cyn(x, z) =
8∑

j=1

Aj
Pj

x

(
Ane

−
(√

PjUn

xKi,n

)
z

+Bne

(√
PjUn

xKi,n

)
z

)
,

cyn(x, z) =
8∑

j=1

Aj
Pj

x

[
Ane

−
(√

PjUn

xKi,n

)
z

+Bne

(√
PjUn

xKi,n

)
z

+(30)

+
1
2

Q√
PjKnUn

x

(
e
−(z−Hs)

(√
PjUn

xKi,n

)
− e(z−Hs)

(√
PjUn

xKi,n

))
 .

The solution (29) is valid for layers that no contain the contaminant source. On the
other hand, the solution (30) can be used to evaluate the concentration field in the layer
that contains the continuous source. These solutions are only valid for x > 0, once the
quadrature scheme of Laplace inversion does not work for x = 0. Aj and Pj are the
weights and roots of the Gaussian quadrature scheme and are tabulated in the book by
Stroud and Secrest [17].

At this point it is important to mention that this procedure leads to a solution for
the concentration with a continuous dependence on z and sectionally continuous on x
because there is imposed the condition of continuity of concentration and flux concentra-
tion at interface zn. To get a solution with continuous dependence on x and z variables,
we must apply, besides the boundary conditions, the interface conditions of continuity
of concentration at xi and zn. The justificative for the adopted approach stems from
the simplicity resulting from the straight application of the formulation for concentra-
tion encountered by Moreira [18], when the eddy diffusivity coefficient varies only the
z variable. Furthermore, no additional computational effort is required to evaluate the
concentration when the eddy diffusivity depends on x and z. We are awared that this
procedure is an approximation because of the discontinuity of concentration at interface
xi, but it improves the results. It is also relevant to recall that for both approaches,
the number of integration constants are equal to the number of boundary and interface
conditions, consequently the integration constants are uniquely determined.

5. – Model evaluation

The performance of the present model (eqs. (29), (30), (13) and (14)) has been evalu-
ated against experimental ground-level concentration using tracer SF6 data from disper-
sion experiments carried out in the northern part of Copenhagen, described in Gryning et
al. [19]. The tracer was released without buoyancy from a tower at a height of 115 m, and
collected at the ground-level positions at a maximum of three crosswind arcs of tracer
sampling units. The sampling units were positioned 2–6 km from the point of release.
Tracer releases typically started 1 h before the start of tracer sampling and stopped at
the end of the sampling period; the average sampling time was 1 h. The site was mainly
residential with a roughness length of 0.6 m. Table I shows the meteorological data from
Gryning and Lick [8] and Gryning et al. [19] utilized during the experiments that were
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Table I. – Summary of meteorological conditions during the Copenhagen experiments.

Exp. U u∗ L w∗ zi

(ms−1) (ms−1) (m) (ms−1) (m)

1 3.4 0.36 −37 1.8 1980
2 10.6 0.73 −292 1.8 1920
3 5.0 0.38 −71 1.3 1120
4 4.6 0.38 −133 0.7 390
5 6.7 0.45 −444 0.7 820
6 13.2 1.05 −432 2.0 1300
7 7.6 0.64 −104 2.2 1850
8 9.4 0.69 −56 2.2 810
9 10.5 0.75 −289 1.9 2090

used for the validation of the proposed approach. The mean wind speed measured at
the released heigth and presented in table I was used to calculate the vertical eddy diffu-
sivity (eqs. (13) and (14)) for each dispersion experiment. To calculate w∗, the relation
w∗/u∗ = (−zi/kL)1/3 was used. The Copenhagen data set was chosen since most of the
experiments were performed during unstable moderately atmospheric conditions, and
without strong buoyancy, so that ground-level cross-wind integrated concentration can
be simulated by an advection-diffusion equation. The stability parameter zi/L indicates
cases in which the unstable PBL presents weak to moderate convection.

The wind speed profile used in eqs. (29) and (30) has been parameterized following
the similarity theory of Monin-Obukhov and OML model [20]:

(31) U =
u∗
k

[ln(z/z0) − Ψm(z/L) + Ψm(z0/L)] if z � zb ,

(32) U = U(zb) if z > zb ,

where zb = min [|L|, 0.1zi], and Ψm is a stability function given by [21]

(33) Ψm = 2 ln
[

1 +A
2

]
+ ln

[
1 +A2

2

]
− 2 tan−1(A) +

π

2

with

(34) A = (1 − 16z/L)1/4 ,

k = 0.4 is the Von Karman constant, u∗ is the friction velocity and z0 the roughness
length.

In table II the measured and computed ground-level crosswind concentrations of the
both approaches (eqs. (29), (30), (13) and eqs. (29), (30), (14)) are presented. A good
agreement with the observed results of ground-level crosswind concentrations was ob-
tained by the use of the algebraic vertical eddy diffusivity in eqs. (29) and (30). Figure 2
shows the scatter diagram between the observed and predicted cross-wind integrated
concentations. The results given by the simulations are quite satisfactory for both pa-
rameterizations (eqs. (13) and (14)). Subsequently, aiming to confirm this analysis, an
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Table II. – Observed and modeled ground-level crosswind integrated concentration cy(x, 0)/Q at
different distances from the source.

Distance Data Model equations Model equations
Exp. (m) (10−4s m−2) (29), (30), (13) (29), (30), (14)

(10−4s m−2) (10−4s m−2)

1 1900 6.48 8.33 7.58
3700 2.31 4.53 4.07

2 2100 5.38 4.28 4.62
4200 2.95 2.56 2.60

3 1900 8.20 8.67 8.92
3700 6.22 5.32 5.06
5400 4.30 3.99 3.86

4 4000 11.66 8.97 8.58
5 2100 6.72 7.55 8.88

4200 5.84 5.64 5.79
6100 4.97 4.43 4.47

6 2000 3.96 3.22 3.63
4200 2.22 2.02 2.10
5900 1.83 1.58 1.61

7 2000 6.70 4.91 4.87
4100 3.25 2.73 2.59
5300 2.23 2.21 2.10

8 1900 4.16 5.30 5.39
3600 2.02 3.35 3.22
5300 1.52 2.60 2.57

9 2100 4.58 4.19 4.31
4200 3.11 2.48 2.47
6000 2.59 1.80 1.82

evaluation between the observed and predicted results was made by applying the follow-
ing statistical indices [22]:

– Nmse (normalized mean square error) = (Co − Cp)2/CoCp,
– Fa2 = fraction of data (% ) for 0.5 � (Cp/Co) � 2

– Cor (correlation coefficient) = (Co − Co)(Cp − Cp/σoσp,
– Fb (fractional bias) = Co − Cp/0.5(Co + Cp),

– Fs (fractional standart deviations) = (σo − σp)/0.5(σo + σp),

Table III. – Statistical indices evaluating the model performance.

Model Nmse Fa2 Cor Fb Fs

Eqs. (29), (30), (13) 0.06 1.00 0.89 0.025 0.095
Eqs. (29), (30), (14) 0.07 1.00 0.88 0.020 0.078
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Fig. 2. – Observed (Co) and predicted (Cp) scatter diagram of ground-level crosswind concen-
trations, normalised with emission (cy/Q), using the approach (29) and (30) with vertical eddy
diffusivities given by eqs. (13) and (14).

where subscripts “o” and “p” refer to observed and predicted quantities, and an overbar
indicates an average. These results are shown in table III.

The statistical evaluation highlights a quite satisfactory performance of both vertical
eddy diffusivities for all the experiments considered: all the values for the numerical
indices are within ranges that are characteristics of those found for other state-of-the-art
models applied to other field datasets. The results point out that the parameterization of
the turbulent transport given by a simple algebraic interpolation formula can accuratelly
represent the near-source diffusion in weak winds. Therefore, the hypothesis that the
eddy diffusivities as functions of distance from the source can be estimated from a simple
algebraic equation is valid.

6. – Conclusions

This paper describes the development and testing of an algebraic formulation for
the eddy diffusivity depending on the source distance and turbulence in the CBL. The
approach is based on spectral properties and Taylor’s statistical diffusion theory. By
considering a model for the dispersion parameters that incorporates a decorrelation time
scale and a variance of the turbulent wind velocity dependent on z, an algebraic ver-
tical eddy diffusivity for inhomogeneous turbulence in a CBL is derived. This simple
algebraic formulation (eq. (14)), for different heights was compared with a vertical eddy
diffusivity calculated from a complex integral. The comparison exhibits a good degree
of numerical agreement between algebraic and integral formulations. Furthermore, both
expressions (eqs. (13), (14)) were introduced in an air pollution model and validated with
a dataset from Copenhagen experiments. The statistical analysis of the results shows a
good agreement between the observed ground-level crosswind concentrations and those
simulated employing both formulations. These validations point out that the algebraic
vertical eddy diffusivity can accurately represent the turbulent transport of contami-
nants released from a continuous point source in a CBL. The great advantage of using
the algebraic expression for Kz is the fact that this formula, under the computational
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point of view, is roughly forty times faster than the numerical integration of eq. (13)
and, consequently, it is useful in the solution of large and complex atmospheric diffusion
models.
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