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Summary. — The weather is a chaotic system. Small errors in the initial condi-
tions of a forecast grow rapidly and predictability is limited by model errors due to
the approximate simulation of atmospheric processes of the state-of-the-art numeri-
cal models. These two sources of uncertainties limit the skill of single, deterministic
forecasts in an unpredictable way, with days of high/poor quality forecasts randomly
followed by days of high/poor quality forecasts. Two recent advances in numerical
weather prediction, the operational implementation of ensemble prediction systems
and the development of objective procedures to target adaptive observations are
discussed. These advances have been thought and designed to reduce forecast er-
rors and to provide forecasters with more complete weather predictions. Ensemble
prediction is a feasible method to estimate the probability distribution function of
forecast states. Ensemble systems can provide forecasters with an objective way to
predict the skill of single deterministic forecasts. Adaptive observations targeted in
sensitive regions can reduce the initial conditions’ uncertainties, and thus decrease
forecast errors. Singular vectors that identify unstable regions of the atmospheric
flow can be used to identify optimal ways to adapt the atmospheric observing system.
The European Centre for Medium-Range Weather Forecasts Ensemble Prediction
System is described, and targeting experiments are discussed.

PACS 92.60.−e – Meteorology.
PACS 92.60.Wc – Weather analysis and prediction.
PACS 47.52.+j – Chaos.

1. – Introduction

A dynamical system shows a chaotic behavior if most orbits exhibit sensitive depen-
dence (Lorenz, 1993). An orbit is characterized by sensitive dependence if most other
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Fig. 1. – (a–c) Forecast for the geopotential height at 1000 hPa (this field illustrates the at-
mospheric state close to the surface) given by three forecasts started from very similar initial
conditions, and (d) verifying analysis. Contour interval is 5 m, with only values smaller than
5 m shown.

orbits that pass close to it at some point do not remain close to it as time advances.
The atmosphere exhibits this behavior. Figure 1 shows three different weather fore-

casts, all started from very similar initial conditions. The differences among the three
initial conditions were smaller than estimated analysis errors, and each of the three initial
conditions could be considered as an equally probable estimate of the “true” initial state
of the atmosphere. After 5 days of numerical integration, the three forecasts evolved
into very different atmospheric situations. In particular, note the different positions of
the cyclone forecast in the Eastern Atlantic approaching United Kingdom (fig. 1(a–c)).
The first forecast indicated two areas of weak cyclonic circulation west and south of the
British Isles; the second forecast positioned a more intense cyclone southwest of Corn-
wall, and the third forecast kept the cyclone in the open seas. This latter turned out to
be the most accurate when compared to the observed atmospheric state (fig. 1(d)).
The atmosphere is an intricate dynamical system with many degrees of freedom. The

state of the atmosphere is described by the spatial distribution of wind, temperature,
and other weather variables (e.g., specific humidity and surface pressure). The mathe-
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matical differential equations describing the system time evolution include Newton’s laws
of motion used in the form “acceleration equals force divided by mass” and the laws of
thermodynamics.
Richardson (1922) can be considered the first to have shown that the weather could be

predicted numerically. In his work, he approximated the differential equations governing
the atmospheric motions with a set of algebraic difference equations for the tendencies
of various field variables at a finite number of grid points in space. By extrapolating the
computed tendencies ahead in time, he could predict the field variables in the future.
Unfortunately, his results were very poor, both because of deficient initial data, and
because of serious problems in his approach.
After World War II the interest in numerical weather prediction revived, partly be-

cause of an expansion of the meteorological observation network, but also because of the
development of digital computers. Charney (1947, 1948) developed a model applying an
essential filtering approximation of the Richardson’s equations, based on the so-called
geostrophic and hydrostatic equations. In 1950, an electronic computer (ENIAC) was
installed at Princeton University, and Charney, Fjørtoft and Von Neumann and Ritch-
meyer (1950) made the first numerical prediction using the equivalent barotropic ver-
sion of Charney’s model. This model provided forecasts of the geopotential height near
500 hPa, and could be used as an aid to provide explicit predictions of other variables
as surface pressure and temperature distributions. Charney’s results led to the devel-
opments of more complex models of the atmospheric circulation, the so-called global
circulation models.
With the introduction of powerful computers in meteorology, the meteorological com-

munity invested more time and efforts to develop more complex numerical models of the
atmosphere. One of the most complex models used routinely for operational weather pre-
diction is the one implemented at the European Centre for Medium-Range Weather Fore-
casts (ECMWF). At the time of writing (December 2000), the ECMWF model (Simmons
et al., 1989, Courtier et al., 1991, Simmons et al., 1995) is integrated with a horizontal
spectral triangular truncation TL511 (the subscript L indicates that a linear grid is used
in grid-point space) and with 60 vertical levels. The model includes a parameterization of
many physical processes such as surface and boundary layer processes (Viterbo and Bel-
jaars, 1995) radiation (Mocrette, 1990) and moist processes (Tiedtke, 1993, Jacob, 1994).
The initial conditions of any numerical integration is given by a very complex assim-

ilation procedure that estimates the state of the atmosphere by considering all available
observations. This computational process is referred to as data assimilation (Talagrand
and Courtier, 1987, Courtier and Talagrand, 1987, Courtier et al., 1994). The fact that
a limited number of observations are available (limited compared to the degrees of free-
dom of the system) and that part of the globe is characterized by a very poor coverage
introduces uncertainties in the initial conditions. The presence of uncertainties in the
initial conditions is the first source of forecast errors.
A requirement for skilful predictions is that numerical models are able to accurately

simulate the dominant atmospheric phenomena. The fact that the description of some
physical processes has only a certain degree of accuracy, and the fact that numerical
models simulate only processes with certain spatial and temporal, is the second source of
forecast errors. Computer resources contribute to limit the complexity and the resolution
of numerical models and assimilation, since, to be useful, numerical predictions must be
produced in a reasonable amount of time.
These two sources of forecast errors cause weather forecasts to deteriorate with fore-

cast time.
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Fig. 2. – The deterministic approach to numerical weather prediction provides one single forecast
(continuous line) for the “true” time evolution of the system (dashed line). The ensemble
approach to numerical weather prediction tries to estimate the probability density function
of forecast states (white shapes). Ideally, the ensemble probability density function estimate
includes the true state of the system as a possible solution.

Initial conditions will always be known approximately, since each data is characterized
by an error that depends on the instrumental accuracy. Observational errors, usually in
the smaller scales, amplify and through non-linear interactions spread to longer scales,
eventually affecting the skill of these latter ones (Somerville, 1979).
The error growth of the 10-day forecast of the ECMWF model from 1 December 1980

to 31 May 1994 was analyzed in great detail by Simmons et al. (1995). It was concluded
that 15 years of research had improved substantially the accuracy over the first half of the
forecast range (say up to forecast day 5), but that there had been little error reduction in
the late forecast range. While this applied on average, it was also pointed out that there
had been improvements in the skill of the good forecasts. In other words, good forecasts
had higher skill in the nineties than before. The problem was that it was difficult to
assess a priori whether a forecast would be skilful or unskillful using only a deterministic
approach to weather prediction.
A complete description of the weather prediction problem can be stated in terms of the

time evolution of an appropriate probability density function (PDF) in the atmosphere’s
phase space (fig. 2). Although this problem can be formulated exactly through the
continuity equation for probability (Liouville equation, see, e.g., Ehrendorfer, 1994),
ensemble prediction based on a finite number of deterministic integrations appears to be
the only feasible method to predict the PDF beyond the range of linear error growth.
Since December 1992, both the U. S. National Center for Environmental Predic-

tions (NCEP, previously NMC) and ECMWF have integrated their deterministic high-
resolution prediction with medium-range ensemble prediction (Tracton and Kalnay, 1993,
Palmer et al., 1993). These developments followed the theoretical and experimental work
of, among others, Epstein (1969), Gleeson (1970), Fleming (1971a-b) and Leith (1974).
NCEP and ECMWF followed the same strategy of providing an ensemble of fore-

casts computed with the same model, one started with unperturbed initial conditions
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referred to as the “control” forecast and the others with initial conditions defined adding
small perturbations to the control initial condition. Broadly speaking, the two ensemble
systems differ in the ensemble size, in the fact that at NCEP a combination of lagged fore-
casts is used, and in the definition of the perturbed initial. The reader is referred to Toth
and Kalnay (1993) for the description of the “breeding” method applied at NMC and
to Buizza and Palmer (1995) for a thorough discussion of the singular vector approach
followed at ECMWF.
A different methodology was followed few years later at the Atmospheric Environ-

ment Service (AES, Canada), where a system simulation approach was used to generate
an ensemble of initial perturbations (Houtekamer et al., 1996). At AES, a number of
parallel data assimilation cycles is run randomly perturbing the observations, and using
different parameterisation schemes for some physical processes in each run. The ensem-
ble of initial states generated by the different data assimilation cycles defines the initial
conditions of the Canadian ensemble system. Moreover, forecasts started from such an
ensemble of initial conditions are used to estimate forecast-error statistics (Evensen, 1994,
Houtekamer and Mitchell, 1998).
Ensemble prediction can be considered one of the most recent advances in numerical

weather prediction: it is the first topic discussed in this work. The development of
objective procedures to target adaptive observations is the second topic.
The idea of targeting adaptive observations is based on the fact that weather fore-

casting can be improved by adding extra observations only in sensitive regions. These
sensitive regions can be identified using tangent forward and adjoint versions of numerical
weather prediction models (Thorpe et al., 1998, Buizza and Montani, 1999). Instruments
can be deployed in the identified sensitive regions to take the required observations using
pilot-less aircraft, or energy-intensive satellite instruments can be activated to sample
the sensitive regions with higher frequency.
After this Introduction, sect. 2 describes some early results by Lorenz, and illustrates

the chaotic behavior of a simple 3-dimension system. In sect. 3 the main steps of nu-
merical weather prediction are delineated. The impact of initial condition and model
uncertainties on numerical integration is discussed in sect. 4. The ECMWF Ensemble
Prediction System is described in sect. 5. Targeting adaptive observations using singular
vectors is discussed in sect. 6. Conclusions are reported in sect. 7. Mathematical details
are reported in two appendices.

2. – The Lorenz system

One of the fathers of chaos theory is E. Lorenz (1963, 1965, 1993). Results from the
3-dimentional Lorenz system

Ẋ = −σX + σY,(1)

Ẏ = −XZ + rX − Y,

Ż = XY − bZ,

illustrate the dispersion of finite time integrations from an ensemble of initial conditions
(fig. 3). the different initial points can be considered as estimates of the “true” state of
the system (which can be thought of as any point inside ellipsoid), and the time evolution
of each of them as possible forecasts. Subject to the initial “true” state of the system,
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a)

b) c)

Fig. 3. – Lorenz attractor with superimposed finite-time ensemble integration.

points close together at initial time diverge in time at different rates. Thus, depending on
the point chosen to describe the system time evolution, different forecasts are obtained.
The two wings of the Lorenz attractor can be considered as identifying two different

weather regimes, for example one warm and wet and the other cold and sunny. Suppose
that the main purpose of the forecast is to predict whether the system is going through
a regime transition. When the system is in a predictable initial state (fig. 3a), the rate
of forecast diverge is small, and all the points stay close together till the final time.
Whatever the point chosen to represent the initial state of the system, the forecast is
characterised by a small error, and a correct indication of a regime transition is given. The
ensemble of points can be used to generate probabilistic forecasts of regime transitions.
In this case, since all points end in the other wing of the attractor, there is a 100%
probability of regime transition.
By contrast, when the system is in a less predictable state (fig. 3b), the points stay

close together only for a short time period, and then start diverging. While it is still
possible to predict with a good degree of accuracy the future forecast state of the system
for a short time period, it is difficult to predict whether the system will go through a
regime transition in the long forecast range. Figure 3c shows an even worse scenario,
with points diverging even after a short time period, and ending in very distant part of
the system attractor. In probabilistic terms, one could have only predicted that there is
a 50% chance of the system undergoing a regime transition. Moreover, the ensemble of
points indicates that there is a greater uncertainty in predicting the region of the system
attractor where the system will be at final time in the third case (fig. 3c).
The comparison of the points’ divergence during the three cases indicates how en-
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semble prediction systems can be used to “forecast the forecast skill”. In the case of the
Lorenz system, a small divergence is associated to a predictable case, and confidence can
be attached to any of the single deterministic forecasts given by the single points. By
contrast, a large diverge indicate low predictability.
Similar sensitivity to the initial state is shown in weather prediction. Figure 4 shows

the forecasts for air temperature in London given by 33 different forecasts started from
very similar initial conditions for two different dates, 26 June 1995 and 26 June 1994.
There is a clear different degree of divergence during the two cases. All forecasts stay
close together up to forecast day 10 for the first case (fig. 4(a)), while they all diverge
already at forecast day 3 in the second case (fig. 4(b)). The level of spread among the
different forecasts can be used as a measure of the predictability of the two atmospheric
states.

3. – Numerical weather prediction

Numerical weather prediction is realised by integrating primitive-equation models.
The equations are solved by replacing time derivatives by finite differences, and spatially
either by finite difference schemes or spectral methods. The state of the atmosphere
is described at a series of grid-points by a set of state variables such as temperature,
velocity, humidity and pressure.
At the time of writing (December 2000) the ECMWF high-resolution deterministic

model is integrated with a spectral triangular truncation TL511, which is equivalent to
a grid-point spacing of about 40 km, and 60 vertical levels.
Meteorological observations made all over the world (fig. 5) are used to compute the

best estimate of the system initial conditions. Some of these observations, such as the
ones from weather balloons or radiosondes, are taken at specific times at fixed locations
(fig. 6). Other data, such as the ones from aircrafts, ships or satellites, are not fixed in
space. There is a great variability in the observation network, with data over land/oceanic
regions characterised by very high/coarse density.
Observations cannot be used directly to start model integration, but must be modified

in a dynamically consistent way to obtain a suitable data set. This process is usually
referred to as data assimilation. At the time of writing (December 2000), ECMWF uses
a 4-dimensional data assimilation scheme to estimate the actual state of the atmosphere
(Courtier et al., 1994).
In the ECMWF model, dynamical quantities as pressure and velocity gradients are

evaluated in spectral space, while computations involving processes such as radiation,
moisture conversion, turbulence, are calculated in grid-point space. This combination
preserves the local nature of physical processes, and retains the superior accuracy of the
spectral method for dynamical computation.
The physical processes associated with radiative transfer, turbulent mixing, moist

processes, are active at scales smaller than the horizontal grid size. The approximation
of unresolved processes in terms of model-resolved variables is referred to as parameter-
isation (fig. 7). The parameterisation of physical processes is probably one of the most
difficult and controversial area of weather modelling (Holton, 1992).

4. – Sources of forecast error

Indications of the relative importance of the initial and model uncertainties on forecast
error can be deduced from the works of Downton and Bell (1988) and Richardson (1998),
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Fig. 4. – ECMWF forecasts for air temperature in London started from (a) 26 June 1995 and
(b) 26 June 1994.
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Fig. 7. – Schematic diagram of the different physical processes represented in the ECMWF
model.

between the ECMWF and the UKMO operational forecasts could mostly be traced to
differences between the two operational analyses, rather than between the two forecast
models. On the other hand, recent results from Harrison et al. (1999) indicate that the
impact of model uncertainties on forecast error cannot be ignored.
These results suggest that an ensemble system should certainly simulate the presence

of uncertainties in the initial conditions, since this is the dominant effect, but it should
also simulate model uncertainties.
The first version of the ECMWF Ensemble Prediction System (hereafter EPS, Palmer

et al., 1993, Molteni et al., 1996) implemented operationally in December 1992 included
only a simulation of initial uncertainties. A similar “perfect model” strategy was followed
at the US National Centers for Environmental Prediction (NCEP, Tracton and Kalnay,
1993).
Houtekamer et al. (1996) first included model uncertainties in the ensemble prediction

system developed at the Atmospheric Environment Service in Canada. Following a sys-
tem simulation approach to ensemble prediction, they developed a procedure where each
ensemble member differs both in the initial conditions, and in sub-grid scale parameters.
In this approach, each ensemble member is integrated using different parameterizations
of horizontal diffusion, convection, radiation, gravity wave drag, and with different orog-
raphy.
There are certainly good grounds for believing that there is a significant source of ran-

dom error associated with the parameterized physical processes. For example, consider a
grid point over the tropical warm pool area during a period of organized deep convection.
By definition, the actual contributions to the tendencies due to parameterized physical
processes are often associated with organized mesoscale convective systems whose spatial
extent may be comparable with the model resolution. In such a case, the notion of a
quasi-equilibrium ensemble of sub-grid-scale processes, upon which all current param-
eterizations schemes are based, cannot be a fully-appropriate concept for representing
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the actual parameterized heating (Palmer, 1997). For example, even if the parameter-
ized heating fields agree on average (i.e. over many time steps) at the chosen grid point,
there must inevitably be some standard deviation in the time-step by time-step difference
between observed and modeled heating.
Since October 1998, a simple stochastic scheme for simulating random model errors

due to parameterized physical processes has been used in the ECMWF EPS (Buizza et
al., 1999). The scheme is based on the notion that the sort of random error in param-
eterized forcing are coherent between the different parameterization modules, and have
certain coherence on the space and time scales associated, for example, with organized
convection schemes. Moreover, the scheme assumes that the larger the parameterized
tendencies, the larger the random error component will be. The notion of coherence
between modules allows the stochastic perturbation to be based on the total tendency
from all parameterized processes, rather than on the parameterized tendencies from each
of the individual modules. In this respect the ECMWF scheme differs conceptually from
that of Houtekamer et al. (1996). More details about the scheme are reported in the
following section.

5. – The ECMWF ensemble prediction system

Routine real-time execution of the ECMWF EPS started in December 1992 with a 33-
member T63L19 configuration (spectral triangular truncation T63 and 19 vertical levels,
Palmer et al., 1993, Molteni et al., 1996). A major upgrade to a 51-member TL159L31
system (spectral triangular truncation T159 with linear grid) took place in 1996 (Buizza
et al., 1998). A scheme to simulate model uncertainties due to random model error in
the parameterized physical processes was introduced in 1998. A second major resolution
upgrade took place on the 21st of November 2000, when the EPS resolution was increased
from TL159L31 to TL255L31, which is equivalent to a grid-point spacing of about 80 km.

5.1. The original EPS configuration: initial perturbations only . – Schematically, each
ensemble member ej was defined by the time integration

ej(t) =
∫ t

t=0

[
A(ej , t) + P (ej , t)

]
dt(2)

of the model equations

∂ej

∂t
= A(ej , t) + P (ej , t),(3)

starting from perturbed initial conditions

ej(t = 0) = e0(t = 0) + δej(t = 0),(4)

where A and P identify the contribution to the full equation tendency of the non-
parameterized and parameterized physical processes, and where e0(t = 0) is the op-
erational analysis at t = 0.
The initial perturbations δej(t = 0) were generated using the singular vectors of

the linear version of the ECMWF, computed to maximize the total energy norm over
a 48-hour time interval (Buizza and Palmer, 1995), and scaled to have an amplitude
comparable to analysis error estimates.
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The singular vectors of the tangent forward propagator sample the phase space di-
rections of maximum growth during a 48-hour time interval. Small errors in the initial
conditions along these directions would amplify most rapidly, and affect the forecast ac-
curacy. The reader is referred to appendix A for a more complete mathematical definition
of the singular vectors.
Figure 8 illustrates the typical structure of the leading singular vector used to generate

the ensemble of initial perturbations for 17 January 1997. The left panels show the
singular vector at initial time, and the right panels at final time at two levels, 500 hPa
(top) and 700 hPa (bottom). This singular vector has been computed using a total energy
norm (see appendix A for details). Total energy singular vectors are usually located in the
lower troposphere at initial time, with total energy peaking at between around 700 hPa
(i.e. around 3000m), in regions of strong barotropic and baroclinic energy conversion
(Buizza and Palmer, 1995). During their growth, they show an upscale energy transfer
and upward energy propagation (Hartmann et al., 1995). Figure 8 confirms this behavior:
the amplitude is larger at 700 hPa than at 500 hPa at initial time, but the amplitude at
the two levels is similar at final time. Figure 8 also shows that the singular vector has
larger scale at the final than at the initial time.
Results published in the literature (Buizza and Palmer, 1995) have indicated a very

good agreement between the regions where singular vectors are located and other mea-
sures of baroclinic instability such as the Eady index introduced by Hoskins and Valdes
(1990). The Eady index

σE = 0.31
f

N

du
dz

(5)

is an expression for the growth rate of the most unstable Eady mode, and can be con-
sidered as a measure of the level of baroclinic instability of the atmosphere. In eq. (5)
the static stability N and the vertical wind shear du/dz (u is the wind magnitude) can
be estimated using the 300 and 1000 hPa potential temperature. Figure 9 shows the
agreement between the singular vectors geographical distribution and the Eady index
for singular vectors growing between 12 UTC of 17 and 19 January 1997. The reader is
referred to Hoskins et al. (2000) for a discussion of the nature of singular vector growth
and structure in terms of basic theoretical concepts.
The EPS 50 perturbed initial conditions were generated by adding and subtracting 25

perturbations defined using 25 singular vectors selected from computed singular vectors
so that they do not overlap in space. The selection criteria were that the leading 4
singular vectors are always selected, and that subsequent singular vectors are selected
only if less than 50% of their total energy cover a geographical region where already 4
singular vectors are located.
Once the 25 singular vectors were selected, an orthogonal rotation in phase-space

and a final re-scaling were performed to construct the ensemble perturbations. The
purpose of the phase-space rotation is to generate perturbations with the same globally
averaged energy as the singular vectors, but smaller local maxima and a more uniform
spatial distribution. Moreover, unlike the singular vectors, the rotated singular vectors
are characterized by similar amplification rates (at least up to 48 hours). Thus, the
rotated singular vectors diverge, on average, equally from the control forecast. The
rotation is defined to minimize the local ratio between the perturbation amplitude and
the amplitude of the analysis error estimate given by the ECMWF data assimilation
procedure.
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Fig. 8. – Most unstable singular vector growing between 17 and 19 January 1997 at initial (left
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component (gray-shading with solid contour lines for positive and gray-shading with dashed
contour lines for negative values) and the atmospheric state (geopotential height) at 500 hPa (i.e.
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Until 26 March 1998, the EPS initial perturbations were computed to sample insta-
bilities growing in the forecast range, and no account was taken of perturbations that
had grown during the data assimilation cycle leading up to the generation of the initial
conditions (Molteni et al., 1996). A way to take into account perturbations growing
during the data assimilation period was to generate the EPS initial perturbation using
two sets of singular vectors. In mathematical terms, since 26 March 1998 (Barkmeijer
et al., 1999) the day d initial perturbations have been generated using both the singular
vectors growing in the forecast range between day d and day d + 2 at initial time, and
the singular vectors that had grown in the past between day d−2 and day d at final time

δej(t = 0) =
25∑

i=1

[
αi,jv

d,d+2
i (t = 0) + βi,jv

d−2,d
i (t = 48 h)

]
,(6)

where vd,d+2
i (t = 0) is the i-th singular vector growing between day d and d+ 2 at time
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t = 0. The coefficients αi,j and βi,j set the initial amplitude of the ensemble pertur-
bations, and are defined by comparing the singular vectors with estimates of analysis
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errors (Molteni et al., 1996). Furthermore, the coefficients αi,j and βi,j are set so that
on average the ensemble standard deviation (which is a measure of the average distance
of a single member from the ensemble mean) is comparable to the error of the ensemble-
mean (which is a measure of the distance of the analysis from the ensemble mean). This
gurantees that, on average, the analysis has the same distance from the ensemble mean
as a perturbed member.
The initial perturbations are specified in terms of the spectral coefficients of the 3-

dimensional vorticity, divergence and temperature fields (no perturbations are defined for
the specific humidity since the singular vector computation is performed with a dry linear
forward/adjoint model), and of the 2-dimensional surface pressure field. They are added
and subtracted to the control initial conditions to define perturbed initial conditions.
Then, 50 + 1 (control) 10 day non-linear integrations are performed.

5.2. Simulation of random model errors in the ECMWF EPS. – In October 1998, a
scheme to simulate random model errors due to parameterized physical processed was
introduced (Buizza et al., 1999). This scheme can be considered as a simple first attempt
to simulated random model errors due to parametrized physical processes. It is based
on the notion that random errors due to parametrized physical processes are coherent
between the different parametrization modules and have a certain coherence on the space
and time scales represented by the model. The scheme assumes that the larger the
parametrized tendencies, the larger the random error component.
In the new EPS, each ensemble member ej can be seen as the time integration

ej(t) =
∫ t

t=0

[
A(ej , t) + P ′

j(ej , t)
]
dt(7)

of the perturbed model equations

∂ej

∂t
= A(ej , t) + P ′

j(ej , t)(8)

starting from the perturbed initial conditions defined in eq. (1), where A and P ′ identify
the contribution to the full equation tendency of the non-parameterized and parame-
terized physical processes. For each grid point x = (λ, φ, σ) (identified by its latitude,
longitude and vertical hybrid coordinate), the perturbed parameterized tendency (of each
state vector component) is defined as

P ′
j(ej , t) =

[
1 +

〈
rj(λ, φ, t)

〉
D,T

]
P (ej , t),(9)

where P is the unperturbed diabatic tendency, and 〈··〉D,T indicates that the same ran-
dom number rj has been used for all grid points inside a D ×D degree box and over T
time steps.
The notion of space-time coherence assumes that organized systems have some intrin-

sic space and time-scales that may span more than one model time step and more than
one model grid point. Making the stochastic uncertainty proportional to the tendency
is based on the concept that organization (away from the notion of a quasi-equilibrium
ensemble of sub-grid processes) is likely to be stronger, the stronger is the parameterized
contribution. A certain space-time correlation is introduced in order to have tendency
perturbations with the same spatial and time scales as observed organization.
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Fig. 10. – Random numbers used to perturb the tendencies due to parameterised physical pro-
cesses. Panel a) shows the case of no spatial scale, in other words when different random
numbers are used at each grid point. Panel b) shows the case when the same random num-
ber was used for grid points inside 5-degree boxes. Crosses identify grid points with random
numbers −0.5 ≤ rj ≤ −0.3, diamonds points with −0.1 ≤ rj ≤ 0.1, and squares points with
0.3 ≤ rj ≤ 0.5.

Figure 10 shows a map of the random numbers used in a configuration tested when
developing the so-called stochastic physics scheme. Figure 10a shows the matrix of
random numbers rj when each grid point was assigned an independent value, while
fig. 10b shows the matrix when the same random number was used inside 5-degree boxes.
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Results indicated that even perturbations without any spatial structure (i.e. with random
numbers as in fig. 10a) had a major impact on 10 day model integrations (Buizza et al.,
1999). On 21 October 1998, following extensive experimentation, the stochastic physics
scheme has been implemented in the operational EPS with random numbers sampled
uniformly in the interval [−0.5, 0.5], a 10- degree box size (D = 10), and a 6 hours time
interval (T = 6).
Mullen and Buizza (2001) compared the accuracy of the EPS precipitation prediction

over the United States for the period 1 January 1997 to 31 January 1999. They concluded
that the implementation of stochastic physics appears to have raised short-range skill for
thresholds between 1–20mm during winter.

6. – Targeted observations

Consider a meteorological system evolving between time t0 and t, localised at final
time t inside a geographical area σt (hereafter verification area). Suppose that extra
observations could be taken inside a geographical area σ0 at initial time t0 (hereafter
target area), with the purpose of improving the time t forecast inside σ.
Singular vectors with maximum energy at final time inside a verification area can

be used to identify the target area where extra observation should be taken, at initial
time, to reduce the forecast error inside the verification area itself (Buizza and Montani,
1999). The reader is referred to appendices A and B for a more complete description of
the mathematical formulation.
Other strategies can be used to target adaptive observations. Langland and Rohaly

(1996), following the work of Rabier et al. (1996) on sensitivity vectors, proposed to use
the lower tropospheric vorticity of the forecast state as cost function, and to target the
region where the sensitivity field is maximum. A similar technique, but based on the
use of a quasi-inverse linear model, was proposed by Pu et al. (1997, 1998). Bishop and
Toth (1999) introduced the Ensemble Transform technique, in which linear combinations
of ensemble perturbations are used to estimate the prediction error variance associated
with different possible deployments of observational resources (see Bishop et al., 2000 for
theoretical aspects of this technique). Finally, following Hoskins et al. (1985) and Ap-
penzeller et al. (1996), a more subjective strategy based on the use of potential vorticity
to analyse atmospheric was also developed.
All these techniques were applied to target observations for the first time during

FASTEX, the Fronts and Atlantic Storm Track Experiment (Joly et al., 1996, Thorpe
and Shapiro, 1995, Snyder, 1996).
The focus of the FASTEX campaign was the extra-tropical cylonic storms that form

over the western and mid Atlantic Ocean, and take about 2 days to develop and move
towards Europe. Forecast failures are often associated with these very active atmospheric
phenomena.
Figure 11 shows the tracks of one of the storms observed during FASTEX, IOP 17

(IOP stands for Intensive Observation Period), and the location of various aircrafts that
made additional observations between 17 and 19 February 1997 (Montani et al., 1999).
Singular vectors, computed to have maximum total energy inside a verification region
centred on the British Isles, were used to identify the most sensitive regions where obser-
vations were made. The comparison of the central pressure of two forecasts, one started
from initial conditions computed with and one without the extra observations, with the
observed value (fig. 12) indicates that additional, targeted observations can improve the
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Fig. 11. – Map summarising the extra observations taken during the FASTEX experiment for
IOP 17. The solid track with full-black circles (with lables listing the date, time and MSLP
pressure) identifies the location of the cyclone minimum pressure; the solid lines with arrows
starting either from New Foundland (52W, 47N) and from Ireland identify the aircraft missions;
the balloon and ship symbols indicate the location of additional radio-soundings (from Montani
et al., 1999).

forecast accuracy. Figure 13 shows the average impact of the targeted observations on
the forecast error. Results indicated up to 20% forecast error reduction.
After FASTEX, NORPEX-98, the North Pacific Experiment (Langland et al., 1999)

and CALJET, the California Land-falling Jets experiments (Emanuel et al., 1995, Dab-
bert et al., 1996) had been realised. Results from all these experiments confirmed that
taking extra observations in sensitive regions could reduce forecast errors. Other similar
field experiments are been planned to take place over the US (see http://box.mmm.ucar.
edu/uswrp/fieldprojects/fieldprojects.html). PACJET (Pacific Landfalling Jets
Experiment) has been planned for Jan-Feb 2001 to develop and test methods to improve
short-term (0–24 hour) forecasts of damaging weather on the USWest Coast. THORPEX
(The Hemispheric Observing system Research and Predictability Experiment) is planned
as a 5–10 years international research program to test the hypothesis that 2 to 10 day nu-
merical forecasts of high-impact weather events can be significantly improved by adding
high-quality observations in critical areas of the extra-tropical oceanic storm-tracks and
other data-sparse remote areas.
It is still unclear whether a best targeting technique can be defined, whereby “best”

means that will lead to the largest forecast error reduction. In fact, it is impossible to
define the best targeting technique without considering the metric used to assess the fore-
cast error. As discussed in mathematical terms in appendices A, B, the metric defines the
problem, and one technique could be best according to one metric (e.g., root-mean-square
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Fig. 12. – 6-hourly time series of the cyclone central pressure forecast without (dashed line) and
with (dotted line) extra observations, and observed (solid line), for IOP 17 (from Montani et
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error of mean-sea-level-pressure predictions) but not according to another one (e.g., total
energy, or precipitation mean absolute error). Despite this, it is anyway interesting to
compare different targeting techniques to gauge the range of variability among targets
computed following different procedures. Majumdar et al. (2001) compare targets com-
puted using the Ensemble Transform Kalman Filter Technique (Bishop and Toth, 1999)
and ECMWF and NRL singular vectors (Buizza and Montani, 1999, Gelaro et al., 1999)
for 10 cases during the NORPEX 1998 field experiment. They show summary maps and
highlight similarities/differences between the different targets, but they explicitly encour-
age the readers to draw their own conclusions. They conclude that the three targets have
strong large-scale similarities but have significantly different small-scale features.
Robotic aerosondes capable of long-range monitoring could be used operationally in

a very near future to fill chronic gaps in the global upper-air sounding network (Holland
et al., 1992), and take extra observations in objectively identified regions. This follows
years of intensive research at the Bureau of Meteorology of Melbourne, Australia, that
culminated with the first-ever unmanned aircraft crossing of the Atlantic Ocean in August
1998 (http://www.aerosonde.com/opshist.htm).

7. – Summary and future developments

Two of the most important advances in numerical weather prediction of the last
10 years, the operational implementation of ensemble prediction systems and the devel-
opment of objective techniques to target adaptive observations, have been discussed.
Ensemble systems provide a possible way to estimate the probability distribution

function of forecast states. Results have demonstrated that a probabilistic approach to
weather prediction can provide more information than a deterministic approach based
on a single, deterministic forecast.
Ensemble prediction systems are particularly useful, if not necessary, to provide early

warnings of extreme weather events (Buizza and Hollingsworth, 2000). Ensemble systems
can be used to predict probabilities of intense precipitation events (fig. 14). Ensemble-
based probabilistic predictions can be used to optimise business activities (Taylor and
Buizza, 2001). Global ensemble systems can be used to provide boundary and initial
conditions for higher-resolution, limited-area ensemble prediction systems (Molteni et
al., 2001, Marsigli et al., 2001).
At ECMWF, work is in progress in many different areas to further improve the current

ensemble prediction system.
Linearized versions of the most important physical processes have been developed

(Mahfouf, 1999), and investigation into the behaviour of the linear models in the compu-
tation of tropical singular vectors has started. The tropical target area has been chosen
because the current EPS lacks perturbations of the initial condition in this area, where
moist processes are of key importance. Results (Barkmeijer et al., 2001, Puri et al.,
2001) indicate that the inclusion of tropical singular vectors is essential in cases of hur-
ricane prediction. Results indicate that tropical singular vectors are needed to generate
a realistic spread among the ensemble of hurricane tracks.
The operational initial perturbations of the ECMWF EPS are constructed using sin-

gular vectors with maximum total energy growth. Total energy singular vectors have
no knowledge of analysis error statistics. Generally speaking, it would be desirable to
use information about analysis error characteristics in the singular vector computation.
One way of improving upon this is to use in the singular vector computation statistics
generated by the data assimilation system. Work is in progress to use the Hessian of
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Fig. 14. – High-resolution TL319L31 forecasts for the flood in Piemonte, Italy, 5-6 November
1994. (a) Precipitation forecast, accumulated between t + 96 h and t + 120 h, predicted by the
control forecast. (b) Observed precipitation field. (c) Ensemble probability forecast of more
than 20 mm/d of precipitation. (d) Ensemble probability forecast of more than 40 mm/d of
precipitation. Contour isolines 2, 20, 40 and 100 mm/d for precipitation, and every 20% for
probabilities.

the cost function of the 3-dimensional (or 4-dimensional) variational assimilation system
(3D/4D-Var) to define singular vectors (Barkmeijer et al., 1998). These so-called Hes-
sian singular vectors are constrained at initial time by analysis error statistics but still
produce fast perturbation growth during the first few days of the forecast.
Work is in progress to investigate whether a so-called consensus analysis, defined as

the average of analyses produced by different weather centres, is a better estimate of the
atmospheric initial state than the ECMWF analysis (Richardson, 2000, personal commu-
nication). The operational EPS configuration has been run from the consensus analysis,
average of the ECMWF, UKMO (UK Meteorological Office), Météo-France, NCEP (Na-
tional Centers for Environmental Prediction, Washington) and DWD (Deutscher Wet-
terDienst, Offenbach) analyses. The same perturbations as used in the operational EPS
have been added to the consensus analysis to create the 50 perturbed initial conditions.
Preliminary results show that the skill of the control forecast is improved if the consensus
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analysis is used instead of the ECMWF analysis as the unperturbed initial condition.
Results also indicate that the difference between the spread in the two systems is rather
small, while the ensemble-mean forecast of the system started from the consensus analysis
is more skilful.
The quantitative evaluation of ensemble systems should be based on the comparison

of the forecast PDF with the observed PDF, and verification measures should be designed
to assess the statistical consistency and usefulness of the predicted PDF (Talagrand et
al., 1999; Buizza, 1997, 2001). These two properties should be verified by considering
not only first-order (ensemble mean) but also second-order (ensemble standard deviation)
moments of the predicted PDF and the second-order moment, and should be performed
both a grid point level and considering large-scale atmospheric patterns (Molteni and
Buizza, 1999). The reader is referred to Wilks (1995) for a review of commonly used
accuracy and verification measures. New measures have been developed to assess the
potential economic value of ensemble prediction (Richardson, 2000, Buizza, 2000). These
measures are defined by coupling contingency tables and costloss decision models (Katz
et al., 1982, Wilks and Hamill, 1995).
At ECMWF, an ensemble approach to data assimilation is under investigation (Buizza

and Palmer, 1998). Following Houtekamer et al. (1996), but with the ECMWF approach
to represent model uncertainties, work has started at ECMWF to generate an ensemble
of initial perturbations using the ECMWF 3D/4D-Var data assimilation. The purpose of
this work is to investigate whether a better estimate of the “true” state of the atmosphere
can be computed using this probabilistic approach.
The weather is a chaotic system, and numerical weather prediction is a very difficult

task. This work has shown that the application of linear algebra (i.e. the use of singular
vectors computed by solving an eigenvalue problem defined by the tangent forward and
adjoint versions of the model) to meteorology can help in designing new ways to numerical
weather prediction (Buizza, 1997). The same technique can be applied to any dynamical
system, in particular to very complex systems with large dimensions.

∗ ∗ ∗
The ECMWF Ensemble Prediction System is the result of the work of many ECMWF

staff members and consultants. It is based on the Integrated Forecasting System/Arpege
software, developed in collaboration by ECMWF and Meteo-France. The work of many
ECMWF and Meteo-France staff and consultants is acknowledged. I am grateful to R.
Hine for all his editorial help.

Appendix A.

Singular vector definition

Farrell (1982), studying the growth of perturbations in baroclinic flows, showed that,
although the long time asymptotic behavior is dominated by discrete exponentially grow-
ing normal modes when they exist, physically realistic perturbations could present, for
some finite time intervals, amplification rates greater than the most unstable normal
mode amplification rate. Subsequently, Farrell (1988, 1989) showed that perturbations
with the fastest growth over a finite time interval could be identified solving the eigen-
value problem of the product of the tangent forward and adjoint model propagators.
His results supported earlier conclusions by Lorenz (1965) that perturbation growth in
realistic models is related to the eigenvalues of the operator product.
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Kontarev (1980) and Hall and Cacuci (1983) first used the adjoint of a dynamical
model for sensitivity studies. Later on, Le Dimet and Talagrand (1986) proposed an
algorithm, based on an appropriate use of an adjoint dynamical equation, for solving
constraint minimization problems in the context of analysis and assimilation of meteo-
rological observations. More recently, Lacarra and Talagrand (1988) applied the adjoint
technique to determine optimal perturbations using a simple numerical model. Following
Urban (1985) they used a Lanczos algorithm (Strang, 1986) in order to solve the related
eigenvalue problem. For a bibliography in chronological order of published works in me-
teorology dealing with adjoints up to the end of 1992, the reader is referred to Courtier
et al. (1993).
After Farrell and Lorenz, calculations of perturbations growing over finite-time inter-

vals were performed, for example, by Borges and Hartmann (1992) using a barotropic
model, and by Molteni and Palmer (1993) using a barotropic and a 3-level quasi-geo-
strophic model at spectral triangular truncation T21. Buizza (1992) and Buizza et al.
(1993) first identified singular vectors in a primitive equation model with a large number
of degrees of freedom.
Let χ be the state vector of a generic autonomous system, whose evolution equations

can be formally written as

∂χ

∂t
= A(χ).(A.1)

Denote by χ(t) an integration of eq. (A.1) from t0 to t which generates a trajectory from
an initial point χ0 to χ1 = χ(t). The time evolution of a small perturbation x around the
time evolving trajectory χ(t) can be described, in a first approximation, by the linearized
model equations

∂x

∂t
= Alx ,(A.2)

where Al = (∂A(x)/∂x)|χ(t) is the tangent operator computed at the trajectory point
χ(t).
Let L(t, t0) be the integral forward propagator of the dynamical eq. (A.2) linearized

about a non-linear trajectory χ(t)

x(t) = L(t, t0)x(t0),(A.3)

that maps a perturbation x at initial time t0 to the optimization time t. The tangent
forward operator L maps the tangent space Π0, the linear vector space of perturbations
at χ0, to Π0, the linear vector space at χ1.
Consider two perturbations x and y, e.g., at χ0, a positive definite Hermitian matrix

E, and define the inner product (··; ··)E as

(x; y)E = 〈x;Ey〉(A.4)

on the tangent space Π0 in this case, where 〈··; ··〉 identifies the canonical Euclidean scalar
product,

〈x; y〉 =
N∑

i=1

xiyi.(A.5)
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Let ‖ · ·‖E be the norm associated with the inner product (··; ··)E ,

‖x‖2E = (x;x)E = 〈x;Ex〉.(A.6)

Let L∗E be the adjoint of L with respect to the inner product (··; ··)E ,
(
L∗Ex; y

)
E
= (x;Ly)E .(A.7)

The adjoint of L with respect to the inner product defined by E can be written in terms
of the adjoint L∗ defined with respect to the canonical Euclidean scalar product,

L∗E = E−1L∗E.(A.8)

From eqs. (A.3) and (A.8) it follows that the squared norm of a perturbation x at time
t is given by

‖x(t)‖2E =
(
x(t0);L∗ELx(t0)

)
E
.(A.9)

Equation (A.9) shows that the problem of finding the phase space directions x for which
‖x(t)‖2E/‖x(t0)‖2E is maximum can be reduced to the search of the eigenvectors vI(t0)

L∗ELvi(t0) = σ2i vi(t0)(A.10)

with the largest eigenvalues σ2i .
The square roots of the eigenvalues, σi, are called the singular values and the eigen-

vectors vi(t0) the (right) singular vectors of L with respect to the inner product E (see,
e.g., Noble and Daniel, 1977). The singular vectors with largest singular values iden-
tify the directions characterized by maximum growth. The time interval t− t0 is called
optimization time interval.
Unlike L itself, the operator L∗EL is normal. Hence, its eigenvectors vI(t0) can be

chosen to form a complete orthonormal basis in the N -th dimensional tangent space of
the perturbations at χ0. Moreover, the eigenvalues are real, σ2i ≥ 0.
At optimization time t, the singular vectors evolve to

vi(t) = L(t, t0)vi(t0),(A.11)

which in turn satisfy the eigenvector equation

LL∗Evi(t) = σ2i vi(t).(A.12)

From eqs. (A.9) and (A.12) it follows that

‖vi(t)‖2E = σ2i .(A.13)

Since any perturbation x(t)/‖x(t0)‖E can be written as a linear combination of the
singular vectors vI(t), it follows that

max
‖x(t0)‖E �=0

( ‖x(t)‖E

‖x(t0)‖E

)
= σi.(A.14)
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Thus, maximum growth as measured by the norm ‖ · ·‖E is associated with the dominant
singular vector v1.
Given the tangent forward propagator L, it is evident from eq. (A.10) that singu-

lar vectors’ characteristics depend strongly on the inner product definition and to the
specification of the optimization time interval.
The problem can be generalized by selecting a different inner product at initial and

optimization time. Consider two inner products defined by the (positive definite Hermi-
tian) matrices E0 and E, and re-state the problem as finding the phase space directions
x for which

‖x(t)‖E

‖x(t0)‖E0

=
〈Lx(t0);ELx(t0)〉
〈x(t0);E0x(t0)〉(A.15)

is maximum. Applying the transformation y = E
1/2
0 x, the right hand side of eq. (A.15)

can be transformed into

〈
LE

−1/2
0 y(t0);ELE

−1/2
0 y(t0)

〉
〈y(t0); y(t0)〉 =

〈
y(t0);E

−1/2
0 L∗ELE

−1/2
0 y(t0)

〉
〈y(t0); y(t0)〉 .(A.16)

Since

E
−1/2
0 L∗ELE

−1/2
0 =

(
E−1/2LE

−1/2
0

)∗(
E−1/2LE

−1/2
0

)
,(A.17)

the phase space directions which maximize the ratio in eq. (A.16) are the singular vectors
of the operator E−1/2LE

−1/2
0 with respect to the canonical Euclidean inner product.

With this definition, the dependence of the singular vectors’ characteristics on the inner
products is made explicit.
At ECMWF, due to the very large dimension of the system, the eigenvalue problem

that defines the singular vectors is solved by applying a Lanczos code (Gelub and Van
Loan, 1983).

Appendix B.

Projection operators

The set of differential equations that defines the system evolution can be solved nu-
merically with different methods. For example, they can be solved with spectral methods,
by expanding a state vector onto a suitable basis of functions, or with finite-difference
methods in which the derivatives in the differential equation of motions are replaced by
finite-difference approximations at a discrete set of grid points in space. The ECMWF
primitive equation model solves the system evolution equations partly in spectral space,
and partly in grid point space.
Denote by xg the grid point representation of the state vector x, by S the spectral-

to-grid point transformation operator, xg = Sx, and by Gxg the multiplication of the
vector xg, defined in grid point space, by the function g(s):

g(s) = 1 ∀s ∈ Σ, g(s) = 0 ∀s �∈ Σ,(B.1)

where s defines the coordinate of a grid point, and Σ is a geographical region.
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Define the function w(n) in spectral space as

w(n) = 1 ∀n ∈ Ω, w(n) = 0 ∀n �∈ Ω,(B.2)

where n identifies a wave number and Ω is a sub-space of the spectral space.
Consider a vector x. The application of the local projection operator T defined as

T = S−1GS,(B.3)

to the vector x sets the vector x to zero for all grid points outside the geographical region
Σ. Similarly, the application of the spectral projection operator W to the vector x sets
to zero its spectral components with wave number outside Ω.
The projection operators T and W can be used either at initial or at final time, or

at both times. As an example, these operators can be used to formulate the following
problem: find the perturbations with i) the fastest growth during the time interval t− t0,
ii) unitary E0-norm and wave components belonging to Ω0 at initial time, iii) maximum
E-norm inside the geographical region Σ and wave components belonging to Ω1 at opti-
mization time. This problem can be solved by the computation of the singular values of
the operator

K = E−1/2TS1LS0E
−1/2
0 .(B.4)

REFERENCES

[1] Appenzeller Ch., Davies H. C., Popovic J. M., Nickovic S. and Gavrilov M. B.,
Met. Atmos. Phys., 58 (1996) 21-40.

[2] Barkmeijer J., van Gijzen M. and Bouttier F., Q. J. R. Meteor. Soc., 124 (1998)
549, 1695-1713.

[3] Barkmeijer J., Buizza, R. and Palmer T. N., Q. J. R. Meteor. Soc., 125 (1999) 2333-
2351.

[4] Barkmeijer J., Buizza R., Palmer T. N., Puri K. and Mahfouf J.-F., Q. J. R.
Meteor. Soc., 127 (2001) 685-708.

[5] Bishop C. H. and Toth Z., J. Atmos. Sci., 56 (1999) 1748-1765.
[6] Bishop C. H., Etherton B. J. and Majumdar S. J., Mon. Wea. Rev., 2000, in press.
[7] Borges M. and Hartmann D. L., J. Atmos. Sci., 49 (1992) 335-354.
[8] Buizza R., Unstable Perturbations Computed Using the Adjoint Technique. ECMWF

Research Department Technical Memorandum No. 189 (ECMWF, Shinfield Park, Reading
RG2 9AX, UK) 1992.

[9] Buizza R., The singular vector approach to the analysis of perturbation growth in the
atmosphere, Ph.D. thesis, University College London, Gower Street, London, 1997.

[10] Buizza R., submitted to Mon. Wea. Rev., 2000.
[11] Buizza R. and Palmer T. N., J. Atmos. Sci., 52 (1995) 9, 1434-1456.
[12] Buizza R. and Montani A., J. Atmos. Sci., 56 (1999) 2965-2985.
[13] Buizza R. and Palmer T. N., Ensemble data assimilation in Proceedings of the 17th

Conference on Weather Analysis and Forecasting, 13-17 September 1999, Denver, (AMS)
1999, p. 241.

[14] Buizza R. and Hollingsworth A., submitted to Meteorol. Appl., 2000.
[15] Buizza R., Tribbia J., Molteni F. and Palmer T. N., Tellus, 45A (1993) 388-407.



CHAOS AND WEATHER PREDICTION - A REVIEW OF RECENT ADVANCES ETC. 299

[16] Buizza R., Petroliagis T., Palmer T. N., Barkmeijer J., Hamrud M.,

Hollingsworth A., Simmons A. and Wedi N., Q. J. R. Meteorol. Soc., 124 (1998)
1935-1960.

[17] Buizza R., Miller M. and Palmer T. N., Q. J. R. Meteorol. Soc., 125 (1999) 2887-2908.
[18] Charney J. G., J. Meteor., 4 (1947) 135-162.
[19] Charney J. G., Geofys. Publ., 17 (1948) 1-17.
[20] Courtier P. and Talagrand, Q. J. R. Meteorol. Soc., 113 (1987) 1329-1347.
[21] Courtier P., Freydier C., Geleyn J.-F., Rabier F. and Rochas M., The Arpege
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No. 6. The FASTEX Project Office, Météo-France, CNRM, 42 Avenue Coriolis, Toulouse,
France. (Also submitted to Bull. Am. Met. Soc.) 1996.

[51] Katz R. W., Murphy A. H. and Winkler R. L., J. Appl. Meteorol., 21 (1982) 518-531.
[52] Kontarev G., The adjoint equation technique applied to meteorological problems.

Technical Report No. 21 (European Centre for Medium-Range Weather Forecasts, Shinfield
Park, Reading RG2 9AX, UK) 1980.

[53] Lacarra J.-F. and Talagrand O., Tellus, 40A (1988) 81-95.
[54] Langland R. H. and Rohaly G. D., Adjoint-based targeting of observations for FASTEX

cyclones, in American Meteorological Society preprints of the 7th Conference on Mesoscale
Processes, September 9-13, 1996, Reading, UK (1996).

[55] Langland R. H., Toth Z., Gelaro R., Szunyogh I., Shapiro M. A., Majumdar

S. J., Morss R. E., Rohaly G. D., Velden C., Bond N. and Bishop C. H., Bull.
Amer. Meteor. Soc., 80 (1999) 1363-1384.

[56] Le Dimet F.-X. and Talagrand O., Tellus, 38A (1986) 97-110.
[57] Leith C. E., Mon. Wea. Rev., 102 (1974) 409-418.
[58] Lorenz E. N., J. Atmos. Sci., 20 (1963) 130-141.
[59] Lorenz E. N., Tellus, 17 (1965) 321-333.
[60] Lorenz E. N., The Essence of Chaos (UCL Press) 1993, p. 227.
[61] Mahfouf J.-F., Tellus, 51A (1999) 147-166.
[62] Majumdar S. J., Bishop C. H., Buizza R. and Gelaro R., submitted to Q. J. R.

Meteorol. Soc., 2001.
[63] Marsigli C., Montani A., Nerozzi F., Paccagnella T., Tibaldi S., Molteni F.

and Buizza R., A strategy for high resolution ensemble prediction. Part II: limited-area
experiments in four Alpine flood events, to be published in Q. J. R. Meteorol. Soc., 2001.

[64] Mocrette J.-J., Mon. Wea. Rev., 118 (1990) 847-873.
[65] Molteni F. and Palmer T. N., Q. J. R. Meteorol. Soc., 119 (1993) 1088-1097.
[66] Molteni F. and Buizza R., Mon. Wea. Rev., 127 (1999) 2346-2358.
[67] Molteni F., Buizza R., Palmer T. N. and Petroliagis T., Q. J. R. Meteorol. Soc.,

122 (1996) 73-119.
[68] Molteni F., Buizza R., Marsigli C., Montani A., Nerozzi F. and Paccagnella T.,

to be published Q. J. R. Meteorol. Soc., 2001.
[69] Montani A., Thorpe A. J., Buizza R. and Unden P., Q. J. R. Meteorol. Soc., 125

(1999) 3219-3240.
[70] Mullen S. and Buizza R., to be published in Mon. Wea. Rev., 2001.
[71] Noble B. and Daniel J. W., Applied Linear Algebra (Prenctice-Hall, Inc.) 1977, p. 477.
[72] Palmer T. N., On parametrizing scales that are only somewhat smaller than the smallest

resolved scales, with application to convection and orography, in Proceedings of the ECMWF
Workshop on New Insights and Approaches to Convective Parametrization (ECMWF,
Shinfield Park, Reading RG2-9AX, UK) 1997, pp. 328-337.

[73] Palmer T. N., Molteni F., Mureau R., Buizza R., Chapelet P. and Tribbia J.,
Ensemble prediction, in Proceedings of the ECMWF Seminar on Validation of Models over
Europe, Vol. I (ECMWF, Shinfield Park, Reading, RG2 9AX, UK) 1993.

[74] Pu Z.-X., Kalnay E., Sela J. and Szunyogh, Mon. Wea. Rev., 125 (1997) 2479-2503.
[75] Pu Z.-X., Kalnay E. and Toth Z., Application of the quasi-inverse linear and adjoint

NCEP global models to targeted observations during FASTEX. Preprints of the 12th
Conference on Numerical Weather Prediction, 11-16 January 1998, Phoenix, AZ, (AMS)
1998, p. 8-9.



CHAOS AND WEATHER PREDICTION - A REVIEW OF RECENT ADVANCES ETC. 301

[76] Puri K., Barkmeijer J. and Palmer T. N., Q. J. R. Meteorol. Soc., 127 (2001) 709-731.
[77] Rabier F., Klinker E., Courtier P. and Hollingsworth A., Q. J. R. Meteorol. Soc.,

122 (1996) 121-150.
[78] Richardson L. F., Weather Prediction by Numerical Process (Cambridge University

Press) (reprint Dover, New York) 1922.
[79] Richardson D. S., The relative effect of model and analysis differences on ECMWF and

UKMO operational forecasts, in Proceedings of the ECMWF Workshop on Predictability
(ECMWF, Shinfield Park, Reading RG2 9AX, UK) 1998.

[80] Richardson D. S., Q. J. R. Meteorol. Soc., 126 (2000) 649-668.
[81] Simmons A. J., Burridge D. M., Jarraud M., Girard C. and Wergen W., Meteorol.

Atmos. Phys., 40 (1989) 28-60.
[82] Simmons A. J., Mureau R. and Petroliagis T., Q. J. R. Meteorol. Soc., 121 (1995)

1739-1771.
[83] Snyder C., Bull. Am. Meteor. Soc., 77 (1996) 953-961.
[84] Somerville R. C. J., Predictability and prediction of ultra-long planetary waves Pre-

prints of the American Meteoreological Society Fourth Conference on Numerical Weather
Prediction (Silver Spring, MD) (AMS) 1979, pp. 182-185.

[85] Strang G., Introduction to Applied Mathematics (Wellesley-Cambridge Press) 1986.
[86] Talagrand O. and Courtier P., Q. J. R. Meteorol. Soc., 113 (1987) 1311-1328.
[87] Talagrand O., Vautard R. and Strauss B., Evaluation of probabilistic prediction

systems, in Proceedings of the ECMWF Workshop on Predicability, 20-22 October 1997
(ECMWF, Shienfild Park, Reading RG2-9AX) 1999, pp. 1-26.

[88] Taylor J. and Buizza R., Energy demand prediction using the ECMWF ensemble
prediction system, to be published in Int. J. Forecasting (2001). Also available as ECMWF
technical memorandum n. 312, (ECMWF, Shinfield Park, Reading, RG2-9AX, U.K.).

[89] Thorpe A. J. and Shapiro M. A., FASTEX: Fronts and Atlantic Storm Track
Experiment. The Science Plan. Available form the FASTEX Project Office, July 1995.

[90] Thorpe A. J., Buizza, R., Montani, A. and Palmer T. N., Chaotic control for weather
prediction, in Royal Society New Frontiers in Science Exhibition, June 1998 (The Royal
Society, 6 Carlton House Terrace, London SW1Y-5AG, UK) 1998.

[91] Tiedtke M., Mon. Wea. Rev., 121 (1993) 3040-3060.
[92] Toth Z. and Kalnay E., Bull. Am. Met. Soc., 74 (1993) 2317-2330.
[93] Tracton M. S. and Kalnay E., Weather and Forecasting, 8 (1993) 379-398.
[94] Urban B., Error maximum growth in simple meteorological models (in French).

Meteorologie Nationale Internal Report, 1985.
[95] Viterbo P. and Beljaars C. M., J. Clim., 8 (1995) 2716-2748.
[96] von Neumann J. and Richtmeyer R. D., J. Appl. Phys., 21 (1950) 232.
[97] Wilks D. S., Statistical Methods in Atmospheric Sciences (Academic Press) 1995, (ISBN

0-12-751965-3).
[98] Wilks D. S. and Hamill T. M., Mon. Wea. Rev., 123 (1995) 3564-3575.


