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Summary. — We present a supervised three-stage classification (labeling) scheme
applied to SAR images of polar regions for detecting different sea-ice types. The
three-stage labeling procedure consists of: 1) a speckle noise filtering stage, based
on a sequence of contour detection, segmentation and filtering steps, which removes
SAR speckle noise (and texture information as well) without losing spatial details; 2)
a second stage providing Bayesian, maximum-a-posteriori, hierarchical (coarse-to-
fine), adaptive (data-driven) and contextual labeling of piecewise constant intensity
images featuring little useful texture information; and 3) an output stage providing a
many-to-one relationship between second stage output categories (types or clusters)
and desired output classes. Modules 1) and 2), which demonstrated their validity
in several applications in the existing literature, are briefly recalled in the current
paper. The proposed labeling scheme features some interesting functional properties
when applied to sea-ice SAR images: it is easy to use, i.e. it requires minor user
interaction, is robust to changes in input conditions and performs better than a non-
contextual (per-pixel) classifier. Application results are presented and discussed for
a pair of SAR images extracted, respectively, from an ERS-1 scene acquired on
November 1992 over the Bellingshausen Sea (Antarctica) and from an ERS-2 scene
of the East Greenland Sea acquired on March 1997 when a field experiment by the
research vessel “Jan Mayen” was conducted in the same area.

PACS 92.10 — Physics of the oceans.
PACS 92.10.Rw — Sea ice.

Acronym list

MRGMAP: Modified Refined Gamma Maximum A Posteriori
PAC: Pappas Adaptive Clustering
MPAC: Modified PAC
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HCM: Hard c-Means
SEM: Stochastic Expectation Maximization
RMS: Region Merging Step

1. — Introduction

Satellite SAR imagery provides an excellent tool for continuous observation of sea-ice
in polar regions. These regions are almost in the darkness for half of the year and quite
often covered by clouds, thus their observation is nearly impossible with optical and
thermal sensors.

The mapping of sea-ice characteristics has great scientific and economic importance:
it is important for weather and climate studies and it has economic relevance for trans-
portation and ship routing among ices.

In recent years several works have been published on segmentation and classification
of SAR imagery, some of them specifically oriented to sea-ice parameter extraction [1-10].
This paper describes a contextual and easy to use three-stage supervised classification
(labeling) scheme for sea-ice-type detection in SAR images. This three-stage labeling
sequence consists of:

1) A pre-processing filtering stage, based on a sequence of contour detection, seg-
mentation and speckle filtering steps, capable of removing SAR, speckle noise (and
texture information as well) without losing spatial details.

2) A Bayesian contextual labeling procedure exploiting an adaptive and multiresolu-
tion estimate of system parameters which applies to piecewise constant or slowly
varying intensity images, ¢.e. to images with little useful texture information, that
may be corrupted by an additive white Gaussian noise field independent of the
scene. This module is robust to changes in initial conditions and requires few and
intuitive user-defined parameters to run.

3) An output stage equivalent to a multiple-prototype classifier exploiting a many-to-
one relationship between second-stage output categories (types, clusters or labels)
and supervised output classes. The relationship between label types and output
classes is either user-defined (when the user initializes classification stage 2 with
supervised reference vectors) or based on majority voting (when initial reference
vectors in classification stage 2 are detected by means of unsupervised clustering
algorithms). Since this third stage is trivial, it will not be further discussed in the
rest of this paper.

Functional properties of modules 1) and 2), which are taken from the literature, are
summarized in sects. 2 and 3. Section 4 presents the data set to be classified and
the training procedure adopted for the classifier. Application results are presented and
discussed in sect. 5. Conclusions are reported in sect. 6.

2. — First stage: speckle noise removal

Our first processing stage consists of a SAR speckle filtering procedure, identified
as MRGMAP [11], which is a Modified version of the Refined Gamma Maximum A
Posteriori SAR speckle filter proposed in several states of development in recent years [5-
7]. MRGMAP consists of three functional boxes which are processed in sequence and
whose characteristics are summarized below:
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1) A SAR contour detection box, proposed in [7], where speckle noise is considered a
multiplicative random process, i.e. speckle is supposed to be fully developed. Since
the fully developed speckle hypothesis does not hold true across image boundaries,
this contour detector employs adaptive (multi-scale, oriented) rectangular masks
collecting local statistics to assess whether these masks cross image boundaries.

2) A segmentation box capable of detecting closed image segments out of noncon-
nected contour pixels. This procedure is based on a region growing mechanism
exploiting geometric information exclusively, i.e. no intensity information is em-
ployed here.

3) The SAR filter box, which applies the Gamma Maximum A Posteriori SAR speckle
filter equation [7] to local areas of increasing size within the segment boundaries
detected at segmentation box 2. The input data to this box are: i) the speckled raw
image; and ii) the segmented image obtained with segmentation box 2. Around a
central pixel of interest, the implemented filter scheme grows a local area that must
be part of the segment to which the central pixel belongs. Thus, local statistics are
extracted within segment boundaries, i.e. within spectrally homogeneous regions
in which the fully developed speckle hypothesis holds.

The output product of the MRGMAP module is a de-speckled, slowly varying or
piecewise constant intensity image (i.e. this image features little useful texture informa-
tion) where spatial details are preserved (due to speckle low-pass filtering within segment
boundaries). This output image satisfies the functional constraints required by the second
stage of our three-stage classification scheme.

3. — Second stage: Contextual labeling for image segmentation

The second stage of our classification scheme employs a Modified version, identified
as MPAC [12], of the well-known Pappas Adaptive Clustering (PAC) algorithm for image
segmentation [13]. MPAC differs from PAC in its spectral class-conditional model where
global and local (i.e. multi-scale) estimates of intensity averages are employed simulta-
neously. Advantages of MPAC with respect to other segmentation algorithms found in
the literature are [12]

1) Compared with other (noncontextual) clustering algorithms like Hard c-Means
(HCM) [13,14], MPAC is less sensitive to changes in the user-defined number of
input clusters as it allows the same region (label) type to feature different intensity
averages in different parts of the image, as long as they are separated in space.

2) Although it employs no Markov Random Field model supporting special image
features (e.g., thin lines [15,16]), MPAC has demonstrated to preserve image de-
tails better than i) HCM, which is a hard-competitive, Bayesian, noncontextual,
Maximum-Likelihood labeling procedure [12]); ii) Stochastic Expectation Maxi-
mization (SEM), which is a soft-competitive, Bayesian, contextual labeling proce-
dure) [12]; and iii) PAC.
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Fig. 1. — A) ERS-1 SAR scene over the Bellinghausen Sea (Antarctica) of November 22, 1992
(Orbit: 7078, Frame: 5733). B) ERS-2 SAR scene over the Odden Ice Tongue, East Greenland
Sea, of March 8, 1997 (Orbit: 9840, Frame: 2115).

4. — Data set and classification training procedure

The proposed processing scheme is applied to two test images extracted from two
different SAR scenes of polar regions (see figs. 1A and B). The two scenes are geo-
referenced by means of the commercial software TeraScan (by SeaSpace, Poway, U.S.A.)
and calibrated by means of the European Space Agency SAR image Toolbox.

Test image A, 512 x 512 pixels in size (equivalent to a surface area of about 6 x 6
km), is taken from an ERS-1 scene of the Bellingshausen Sea (Antarctica) acquired on

Fig. 2. — Test images A and B exctracted from the SAR scenes of figs. 1A and B. A) full
resolution window, 512 X 512 pixels in size. B) Full resolution window, 1000 x 1000 pixels in
size.
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Fig. 3. — Reference data, selected by an expert sea-ice photointerpreter, for the test images of
figs. 2A and B. The 3 different gray-levels correspond to the 3 classes. A) C1 (floes), C2 (mixed
sea-ice) and C3 (open water); B) C1 (frazil ice), C2 (pancake ice) and C3 (open water).

November 22, 1992. Test image B, 1000 x 1000 pixels in size (equivalent to a surface area
of about 12 x 12 km), is taken from an ERS-2 scene of the Odden Ice Tongue region in
the East Greenland Sea acquired on March 8, 1997, at the time when a field experiment
by the research vessel “Jan Mayen” was conducted in the same area as part of the EU
funded ESOP-2 Project [17].

Our aim is to distinguish sea-ice types: floes, mixed sea-ice and open water (no ice) in
test image A (fig. 2A), and pancake ice, frazil ice and open water (no ice) in test image
B (fig. 2B).

To evaluate the accuracy of our classification procedure by means of an error (or
confusion) matrix [18], test images A and B are supplied with ground truth data, shown
in figs. 3A and B, respectively, selected by an expert sea-ice photointerpreter of the Scott
Polar Research Institute, University of Cambridge (U.K.). In deeper detail, in test image
A 55924 (= 46313 4 5198 + 4413) reference pixels are selected for classes C1 (floes), C2
(mixed sea-ice) and C3 (open water) respectively, while in test image B 302319 (= 47814
+ 94455 + 160050) reference pixels are selected for classes C1 (frazil ice), C2 (pancake
ice) and C3 (open water).

In both test cases, to train the second-stage of our classifier only three labeled pixels
are interactively selected by an expert photo-interpreter to be used as MPAC’s initial
cluster templates, each supervised pixel belonging to class C1 to C3, respectively. In
the case of test image B, this supervised pixel selection is validated by the “Jan Mayen”
ground truth data.

5. — Results

When the MRGMAP filtering box is applied to the two test images, which visually
look very fragmented, it detects a large number of spectrally homogeneous segments. To
reduce segment-based computation time, MRGMAP is provided with a post-processing
step to merge small segments (e.g., whose area is < 4 pixels). In table I, the number
of detected segments before and after the Region Merging Step (identified as RMS) is
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TABLE I. — No. of segments in output images.

Test Image MRGMAP MRGMAP + RMS MPAC
A 106207 5812 655
B 254547 15218 965
TABLE II. — Test image A. Three-stage sea-ice classification with MPAC.
Category C1 C2 C3 Misclas. % Error
R1 45937 358 21 379 0.82
R2 1456 3432 310 1766 33.97
R3 5 722 3686 727 16.47
Total Error 2872 5.13
TABLE III. — Test image B. Three-stage sea-ice classification with MPAC.
Category C1 c2 c3 Misclas. % Error
R1 47683 131 0 131 0.27
R2 4694 89454 307 5001 5.29
R3 0 4434 155616 4434 2.77
Total Error 9566 3.16
TABLE IV. — Test image A. Three-stage sea-ice classification with HCM.
Category C1 C2 C3 Misclas. % Error
R1 45935 360 21 381 0.82
R2 1768 2856 574 2342 45.05
R3 10 677 3726 687 15.56
Total Error 3410 6.09
TABLE V. — Test image B. Three-stage sea-ice classification with HCM.
Category C1 C2 C3 Misclas. % Error
R1 47495 299 20 319 0.66
R2 7811 85490 1154 8965 9.49
R3 0 6736 153314 6736 4.21
Total Error 16020 5.29
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Fig. 4. — A and B, output images of the MRGMAP module applied to the test images of figs. 2A
and B, respectively.

reported in the second and third column. The two de-speckled output images are shown in
figs. 4A and B. Next, MPAC, provided with three initial reference vectors corresponding
to classes C1 to C3, is applied to figs. 4A and B to generate labeled output images 5A
and B, respectively, whose number of segments (equivalent to connected areas featuring
the same label type) is reported in the fourth column of table I.

Tables II and IIT represent the confusion matrices of test images 2A and B, respec-
tively, where R1, R2 and R3 are the reference data pixels while acronyms C1, C2 and C3
identify the classified data pixels. For result comparison, the same three-stage classifica-
tion scheme is employed when its second stage is implemented as the well-known Hard
c-means (HCM) non-contextual (per-pixel) algorithm (see tables IV and V). In line with
a visual inspection of the labeled output images generated by the two tested classifiers,
the quantitative comparison of tables II to V confirms that, by exploiting contextual
information, MPAC is capable of reducing the well-known salt-and-pepper classification
noise effect which typically affects non-contextual (per-pixel) classifiers. This result is
also in line with other MPAC applications [12].

6. — Conclusions

A three-stage classification procedure, whose blocks are taken from the literature, is
employed to classify sea-ice types in SAR imagery of polar regions.

The first processing stage is a speckle filtering block which removes textural informa-
tion from the original SAR image while preserving small details (i.e. this block generates
a piecewise constant or slowly varying intensity output image). This output image can be
successfully labeled through a second stage, named MPAC, which makes use of a spectral,
contextual, iterative, hierarchical clustering algorithm for 2-D data (image) segmenta-
tion. This second stage preserves small but genuine regions, is quite robust to changes
in the number of initial clusters, intuitive to use and effective in reducing the salt-and-
pepper classification effect which typically affects non-contextual (per-pixel) classifiers.
In the detection of three sea-ice types in two SAR test images, the contextual clustering
classifier performs 16% and 40% better than a non-contextual classifier.
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Fig. 5. — A and B, final result of the classification procedure applied to the test images of figs. 2A
and B, respectively.

Some theoretical weaknesses and limitations of the MPAC algorithm are: i) MPAC
applies only to images with little useful texture and additive Gaussian noise, independent
of the scene; ii) it is unable to detect outliers which may affect the estimate of spectral
parameters. iii) Although it is less sensitive to changes in the user-defined number of
input clusters than traditional (noncontextual) clustering algorithms, MPAC is still a
suboptimal labeling procedure sensitive to initial conditions; therefore, one main issue
in the user interaction with MPAC remains the choice of the number of clusters to be
detected.

Further applications of the proposed classification scheme for SAR images of polar
regions will regard: i) first- and multi-year sea-ice detection; ii) position and character of
the ice edge in the Marginal Ice Zone; iii) size and dynamics of ice floes; iv) ship routing
in sea-ice areas.
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