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Modified BMIA/CAG method for the electromagnetic analysis
of large-scale problems of random rough-surface scattering(∗)
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Summary. — An efficient technique based on two-dimensional Fast Fourier Trans-
form (FFT) and linear interpolation is presented for the evaluation of the scattering
by a rough terrain surface which is of interest in remote-sensing applications char-
acterized by a very large correlation length. Such technique, where introduced in a
BMIA/CAG method, can reduce the computation time appreciably.

PACS 41.20 – Applied classical electromagnetism.
PACS 42.25 – Wave optics.

1. – Introduction

Over the past few years, theoretical and empirical models have been developed in an
attempt to predict the scattering of rough soil surfaces modeled as a homogeneous half-
space medium with a rough interface and an effective dielectric constant. These models
have very low computational cost but can be considered sufficiently accurate only in a
limited region. Recently, enhanced computational capabilities of digital computers have
increased the interest in Monte-Carlo simulations of random rough-surface scattering.
In this kind of study the scattered field intensity is averaged over one hundred of typi-
cal realizations of the assumed scenary built in conformity with its statistical behavior.
Obviously, it is very important to minimize the computation time for the analysis of
each realization and several techniques have been developed for the fast computation of
deterministic profile scattering. These techniques are based on the modification of the
classical method of moments (MoM) to allow a fast evaluation of the reaction integral
and, when an iterative solver is used, a fast matrix-vector multiplication. Examples
include the impedance matrix localization (IML) technique [1], the complex multipole
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Fig. 1. – Geometry of the problem.

beam approach (CMBA) [2], the fast multipole (FMM) [3], the matrix decomposition al-
gorithm (MDA) [4], the adaptive integral method (AIM) and the banded matrix iterative
approach/canonical grid method (BMIA/CAG) [5,6].

Specifically, the BMIA/CAG method is one of the most efficient when applied to
the studying of rough profiles. The majors feature of BMIA/CAG is that it separates
the near-field interaction from the far-field one. The latter one is efficiently evaluated
through a Taylor series expansion. On the contrary, the near-field interaction requires the
evaluation of several reaction integrals and their storage in a banded matrix form. Even
if the above-mentioned method is fast and reliable to analyze very large one-dimensional
terrain profile, some problems can arise in evaluating and storing the banded matrix
when applied to two-dimensional surfaces.

In this paper, we propose an efficient technique to evaluate the near-field interac-
tion, which employs a Fast Fourier Transform algorithm and linear interpolation. When
introduced into a BMIA/CAG method, it can reduce the computation time apprecia-
bly. Furthermore, because the proposed technique allows a very fast evaluation of the
elements of the near-field interaction banded matrix, we can avoid the storage of these
elements and evaluate them every time the conjugate gradient solver needs. This allows
to drastically reduce the request of dynamic memory and to analyze rough surfaces with
very large correlation length.

The accuracy of the proposed method is explored for a one-dimensional profile by com-
paring the results with that produced by a plain BMIA/CAG technique and a classical
Method of Moments formulation.

2. – Formulation

Figure 1 shows an example of a two-dimensional rough surface S illuminated by a
tapered plane wave �Ei. The surface is considered as a perfect electric conductor with a
random height profile z = f(x, y). The incident field induces surface currents �J on the
rough surface that produce an electric scattered field �Es. The latter can be computed
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from the surface currents by �Es = −jω �A − ∇φ, with the magnetic vector potential �A
and the scalar potential φ defined as{

�A(�r)
φ(�r)

}
=

j

4π

∫ ∫
S

{
−jµ �J(x′, y′)

∇ · �J(x′, y′)/ωε

}
G(�r, �r′) dS′ ,(1)

where G(�r, �r′) = exp[−jkR]/R and R = |�r − �r′|. When the incident wave is tapered, the
illuminated rough surface can be confined to a surface Lx × Ly, and we can derive an

integrodifferential equation for �J by enforcing the boundary condition n̂×
(
�Ei + �Es

)
= 0

on S, obtaining

n̂× �Ei
∣∣∣
S

= n̂×
(
jω �A+ ∇φ

)∣∣∣
S
.(2)

Equations (1) and (2) represent the so-called electric-field integral equation (EFIE). A
method of moments is applied to obtain a linear system of equations for the surface
current that makes use of the set of triangular basis functions introduced by Glisson [7].
The approach combines the advantages of triangular patch modeling and the EFIE for-
mulation, and gives origin to an algorithm which is simple and efficient.

Following the procedure described in [7], the rough surface is modeled by triangular
patches. The surface current density on the surface is then approximated as

�J(�r) =
N∑

n=1

In
�jn(�r) ,(3)

where N is the number of interior edges and �j(�r) is the vector basis function defined on
the adjacent triangles associated with the n-th edge, and it is given as

�jn(�r) =



�j+n =
ln

2A+
n
�ρ+n , �r ∈ T+

n ,

�j−n = − ln

2A−
n
�ρ−n , �r ∈ T−

n ,

0 , otherwise ,

(4)

in which ln is the length of the edge, A±
n is the area of the triangle T±

n , and �ρ±n is the
position vector, as shown in fig. 2.

The surface divergence of �jn is found as

∇ ·�jn(�r) =


+

ln

A+
n
, �r ∈ T+

n ,

− ln

A−
n
, �r ∈ T−

n ,

0 otherwise .

(5)

When the expansions for �J(�r) and ∇ · �J(�r) are used in (1) and a Galerkin weighted
residual method is employed a N ×N system of linear equations is obtained, which may
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Fig. 2. – Triangle pair and geometrical parameters associated with interior edge.

be written in matrix form as

Z I = V .(6)

Even if the analysis is restricted to a finite region, the latter is usually very large in
terms of wavelength, and a direct application of the method of moments (MoM) is not
possible because of large computational times and storage requirements. To overcome
this limitation for each observation point �r on the rough surface we can define a distance
rd = |�r − �r′| that separate two regions: a near-interaction region and a weak-interaction
region [5]. Under these hypothesi we can split the integral in eq. (1) as{

�A(�r)

φ(�r)

}
=

j

4π

∫ ∫
S

{
−jµ �J(x′, y′)

∇ · �J(x′, y′)/ωε

}
G(�r, �r′)U(rd − dxy) dS′ +(7)

+
j

4π

∫ ∫
S

{
−jµ �J(x′, y′)

∇ · �J(x′, y′)/ωε

}
G(�r, �r′)U(dxy − rd) dS′ ,

where U(x) is the Heaviside step function and dxy =
√

(x− x′)2 + (y − y′)2. In the
last equation the first integral represents the strong interaction, while the second one
represents the weak interaction. Accordingly, the impedance matrix Z in eq. (6) can be
considered as the sum of a strong-interaction matrix Zs and a weak-interaction matrix
Zw (i.e. Z = Zs + Zw).

Since in the weak-interaction region h = |f(x, y) − f(x′, y′)| � dxy we can approxi-
mate the square root appearing in the Green’s function by using M̃ terms of the relevant
Taylor series with respect to the height, resulting

G(dxy, h) 	
M̃∑

m=0

am(dxy) exp[−jkdxy]/dxy h
2m ,(8)

where a0 = 1, a1 = (1 + jkdxy)/2, a2 = (3 + 3jkdxy − k2d2xy)/8, . . . .
Furthermore, since the surface height is known, we can project the integration domain

on the plane x-y, thus obtaining

dS′ =

√
1 +

[
∂f(x′, y′)

∂x′

]2

+
[
∂f(x′, y′)

∂y′

]2

dx′ dy′ = P (x′, y′) dx′ dy′ .(9)
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Fig. 3. – Centroids of triangular elements and FFT sampling joints.

As a consequence, the weak term of eq. (7) can be written as

M̃∑
m=0

j

4π

∫ ∫
S

{
−jµ �J(x′, y′)

∇ · �J(x′, y′)/ωε

}
am(dxy) exp[−jkdxy]/dxy ·(10)

· [f(x, y) − f(x′, y′)]2m
P (x′, y′) dx′ dy′ .

By analyzing the integrals in eq. (10) we can easily recognize that they take a two-
dimensional convolution form of the type

M∑
m=0

Rm(x, y)
∫ ∫

S

{
−jµ �J(x′, y′)

∇ · �J(x′, y′)/ωε

}
Am(x− x′, y − y′)Tm(x′, y′) dx′ dy′ ,(11)

where M = (M̃ + 1)2 − 1, and they can efficiently be evaluated by means of a two-
dimensional FFT. The only limitation is due to the fact that the observation points
represent an equispaced rectangular grid. Since we have chosen a triangular patch model
of the rough surface, it is then necessary to oversample the FFT. For example, we can
use a domain subdivision as sketched in fig. 3, where the Nc centroids of the triangular
elements are pointed out by a dot, while the additional sampling points are shown as
crosses. Even if the total number of sampling points is now Nt = 4.5Nc, the efficiency
of the method is not compromised and the little added computational effort is well
repaid by the accuracy in modeling the rough surface and by the efficiency in the code
implementation.

For the generic i-th triangular element of centroid coordinates (xi, yi), we can write
each term of the sum appearing in eq. (11) in a matrix form as

Vm
φ = R(m)A(m)T(m)Jφ ,(12)

Vm
A = R(m)A(m)T(m)JA ,(13)
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Fig. 4. – Np parallel planes that intercept the terrain profile.

where A(m) = {Am(xi − xj , yi − yj)}, JA =
{
−jµ �J(xj , yj)

}
, Jφ =

{
∇ · �J(xj , yj)/ωε

}
,

R(m) = {Rm(xj , yj) δi,j}, T(m)={Tm(xj , yj) δi,j}, with δi,j the Kronecker delta-function,
and V

(m)
A and V

(m)
φ represent the contribution to the vector and scalar potential, respec-

tively. By expanding the density current as in eq. (6) and by using the relationships (4)
and (5), we can easily join JA, Jφ to the global vector unknown I through matrices
Hi, with i = x, y, z, and Hφ, respectively. By applying the standard Galerkin weighted
residual method to eq. (2) [7], we obtain for each weighting functions n

M∑
m=0

{[
V

(m)
A

]
i=c+

n

· �ρc+
n

2
+

[
V

(m)
A

]
i=c−n

· �ρc−n
2

}
+(14)

+
M∑

m=0

{[
V

(m)
φ

]
i=c+

n

−
[
V

(m)
φ

]
i=c−n

}
= �Ei

tan(�rc+
n
) · �ρc+

n

2
+ �Ei

tan(�rc−n ) · �ρc−n
2

.

By introducing matrices Qi, with i = x, y, z, and Qφ we obtain

Zw I =
M∑

m=0

 ∑
i=x,y,z

QiR
(m)A(m)T(m)Hi I + QφR(m)A(m)T(m)Hφ I

 .(15)

It is worth noting that matrix A(m) in the last equation is a block Toeplitz matrix, while
matrices R(m) and T(m) are diagonal and matrices Hi and Hφ are extremely sparse (three
valued elements per row), such as Qi and Qφ (two valued elements per row). The Zw

matrix is a full matrix with O(N2) elements and usually cannot be stored for large-
scale problems. On the contrary, matrix A(m) requires the storage of O

(
(M̃ + 1)Nt

)
elements, while the other matrices needed the storage of O (8Nt + 20Nc) elements.

Furthermore, when the conjugate gradient (CG) method is used to solve the matrix
equation (6), the ZwI product can be conveniently evaluated by performing, for each term
m, first the product T(m)Hi I (pre-multiplication), where i = x, y, z, φ, then the product
A(m) by

(
T(m)Hi I

)
by means of a 2D FFT, since A(m) is a block Toeplitz matrix.

Finally, the product QiR
(m)

(
A(m)T(m)Hi I

)
is performed (post-multiplication). The

latter scheme allows to evaluate the ZwI product by O (4MNt [log(Nt) + 3]) operations
instead of O

(
N2

)
. For instance, to model a 50× 50 square wavelength surface with rms
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Fig. 5. – Relative error of the magnetic field on the conducting surface with respect to the MoM
solution.

height h = 0.5λ by using M̃ = 2 and 218 unknowns, the proposed scheme gets only 2%
of the computational time required by the standard ZwI product.

Concerning the strong-interaction matrix Zs this is sparse and, with an appropriate
numbering of the triangular patches, it can be put in a banded form. If b is the band of
the Zs matrix the memory requirement to store it is O(bN) and the LU decomposition
requires O(b2N/2), while the backsubstitution requires O(2bN). However, if the rough
terrain is discretized with small triangular patches, we can suppose that the z-variation
of the profile is negligible in each trial function. Therefore, the term f(xi, yi) − f(xj +
x′, yj + y′) 	 f(xi, yi) − f(xj , yj) = ∆zij can be considered as a constant: thus the first
integral in eq. (7) takes a convolution form. This means that we can efficiently evaluate
it using a 2D FFT [8]. However, when making the 2D FFT we also get all the interaction
values of all pairs of trial and weighting functions whose distance along the z-direction
is ∆zij . This suggests the possibility of introducing a set of Np parallel planes that
intercept the terrain profile as sketched in fig. 4. Notice that a gap ∆z � λ is chosen
(usually λ/20 ≤ ∆z ≤ λ/10). Then, we can store the samples of Np 2D FFTs evaluated
with ∆zij = n∆z, where n = 0, 1, 2, . . . , Np − 1 as the columns of a matrix S. In this
way the generic element of the strong-interaction matrix Zs can be estimated through an
interpolation applied to a pair of appropriate elements of the S-matrix. In particular,
the interpolation requires only two multiplications for each interaction, instead of one
integral evaluation, as in a classic MoM method.

This means that, after the S-matrix is evaluated, the proposed technique allows a
much faster process of evaluation of the banded matrix elements. Furthermore, it is
worth noting that in a Monte-Carlo method we need to evaluate the matrix S once for all
the terrain profiles simulated (usually more than one hundred), at the beginning of the
simulation. This means that the time necessary to evaluate the required Np 2D FFTs is
negligible compared to the full process time.

Furthermore, the dynamic memory required to store the S-matrix is also negligible
with respect to that needed to store the banded matrix Zs of the BMIA/CAG method.
As matter of fact, the number of rows in the matrix S is equal to the band b of Zs, and
the number Np of parallel planes (i.e. the number of FFTs) needed to intercept the
terrain profiles is usually much smaller than the number of rows N of the Zs matrix.
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Fig. 6. – Real and imaginary part of the magnetic field on the conducting surface normalized to
the incident magnetic-field amplitude.

3. – An application to one-dimensional profiles

To evaluate the reliability of the proposed method, the scattering from a deterministic
profile has been analyzed. In particular, we have considered the case of a TE polarized
plane wave impinging orthogonally on a perfectly electric conductor. This is assumed
as uniform along the y-direction and sinusoidally modulated along the x-direction with
amplitude 0.25λ and period 1.9λ.

Figure 6 shows the real and imaginary parts of the normalized magnetic field on
the conducting surface. In particular, the BMIA/CAG solution with rd = 2λ (dashed
line) and the proposed modified BMIA/CAG solution with ∆z = λ/20 (dash-dotted
line) are compared with a classic MoM solution (solid-line) with 0.1λ rectangular trial
functions, which can be regarded as exact. Notice that for this case, the Physical Optics
approximation (dotted line) is not valid [9].

To highlight the differences between the two methods, fig. 5a shows the relative error
due to the BMIA/CAG (solid line) and the modified BMIA/CAG (dashed line) approx-
imations compared to the MoM solution. No significant differences are evident between
the obtained results, but the proposed formulation is about eleven times faster than the
plain BMIA/CAG.

Furthermore, to emphasize the errors introduced by the proposed technique alone, we
have evaluated all the elements of the impedance matrix without using the BMIA/CAG
approximation. Figure 5b shows the relative error concerning the MoM solution, when
∆z = λ/20 or ∆z = λ/10 linear interpolation is used (solid line). It can be noted that
the error is smaller than that introduced by the BMIA/CAG approximation (see fig. 5a).

Figure 5b also reports the relative error when a quadratic interpolation, instead of a
linear, is used (dashed line). Notice that the error is not strongly reduced and the evalua-
tion time increased (four products were needed instead of one), so the linear interpolation
seems the best approach.

Figure 7 shows the normalized bistatic scattering coefficient, averaged over 100 re-
alizations, for a random rough profile illuminated orthogonally by a plane wave (TE
case). The surface length is set L = 50λ, the correlation length l = 2λ and the rms
height h = 0.5λ. In fig. 7 we report the BMIA/CAG solution with rd = 3λ (dotted line)
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Fig. 7. – Normalized bistatic scattering coefficient of a 1D random rough surface for a sur-
face length of 50λ, a correlation length of 2λ and a rms height of 0.5λ: (solid line) modified
BMIA/CAG, (dotted line)BMIA/CAG.

compared with the proposed modified BMIA/CAG solution with ∆z = λ/20 (solid line).
A very good agreement from the two solutions is evident but we have recorded 28.43∆t
by using the BMIA/CAG technique and only 2.58∆t employing the proposed method,
where ∆t = 60 s on a Pentium 200 MHz.

4. – Conclusion

An efficient technique that allows a very fast evaluation of the elements of the near-
field interaction banded matrix of the BMIA/CAG method has been described.

The approximation introduced in the discretization of the terrain surfaces produces
an error in the valuation of the field that, when a ∆z = λ/20 gap is chosen, is about a
fifth of that introduced by the BMIA/CAG method.

When used in a Monte-Carlo simulation of the electromagnetic scattering from a
random rough surface, the proposed technique produces results which appear indistin-
guishable from those obtained with the plain BMIA/CAG method, but the computing
is time reduced of a factor ten.
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