
IL NUOVO CIMENTO Novembre-Dicembre 2000VOL. 23 C, N. 6

Prey-predator dynamics with periodic solar input - Part II

L. SERTORIO and G. TINETTI

Dipartimento di Fisica Teorica, Università di Torino - Torino, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Torino - Torino, Italy

(ricevuto il 18 Maggio 2000; approvato il 20 Settembre 2000)

Summary. — We study a two-component model ecosystem driven by a sinusoidal
solar radiation. The governing dynamical system is expressed by two nonlinear
differential equations, where the driving term appears factorized to one of the two
unknown functions. We show that the solution is asymptotically periodic, with the
period of the driving term. Moreover, we find that the asymptotic solution, with the
variation of the frequency of the input, shows a resonant-like behaviour. We discuss
the interesting similarity between the response of the ecosystem to the external
driving term and the response of a genuine resonant system.

PACS 92.60.Ry – Climatology.
PACS 92.70.Gt – Climate dynamics.
PACS 91.10.Vr – Ocean/Earth/atmosphere interaction.
PACS 92.60.Vb – Solar radiation.

1. – The governing equations and the asymptotic behaviour

In this paper we consider the dynamical system studied in [1] when the driving
term is time dependent, and, in particular, periodic.

Let us recall the governing equations when the driving term is constant [1]. We
write

.
`
/
`
´

n
.
4an gD2p

c 0

f 0

2nh2anp ,

p
.
42 bp1bp g f 0

c 0

n2ph .

(1.1)

We have used exactly the same symbols as in [1].
We consider now a time-dependent driving term. To this purpose we adopt the

G Società Italiana di Fisica 655

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Open-access Literature Archive and Repository

https://core.ac.uk/display/294761926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


L. SERTORIO and G. TINETTI656

following expression:

D(t)4
f D

max

f 0

f (t)4
f D

max

f 0

12cos vt

2
,(1.2)

where v is assigned. The form of f (t) given in (1.2) is chosen in such a way that D(t)
oscillates in the range

04 DminG D(t)G Dmax4
f D

max

f 0

4n max(1.3)

and D40 for t40, D4 Dmax for t4 t

2
, where t4

2p

v
.

The average of D over the period t is

D4
1

t
�
t

t1t

D(t 8 ) dt 84
n max

2
.(1.4)

Moreover, to fix the ideas, we set t424 h.
Now we insert (1.2) in the dynamical system (1.1) and we get the following

system:

.
`
/
`
´

n
.
4an g f D

max

f 0

12cos vt

2
2p

c 0

f 0

2nh2anp ,

p
.
42bp1bp g f 0

c 0

n2ph .

(1.5)

This is the dynamical system that we analyze in this paper. Notice that this system is
not autonomous. We wish to show first of all that the solution n(t), p(t) of (1.5) is
asymptotically periodic with the period t of the driving term D. To this purpose, we
perform the following procedure: we insert into (1.5), in place of D(t), n(t), p(t) the
averages

.
`
`
/
`
`
´

D4
n max

2

n(t)4
1

t
�
t

t1t

n(t 8 ) dt 8

p(t)4
1

t
�
t

t1t

p(t 8 ) dt 8 .

(1.6)
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In this way we obtain the “segmented system”

.
`
/
`
´

n
.
4an g n max

2
2p

c 0

f 0

2nh2anp ,

p
.
42bp1bp g f 0

c 0

n2ph .

(1.7)

The statement that n(t) and p(t) are asymptotically periodic is equivalent to the
statement that n(t) and p(t) tend to a constant value for tKQ . Obviously the concept

of segmented system makes sense if tb
1

a
, which is our case and theorems 11.5, 11.6

§ 11.8 in the book of F. Verhulst.
This is in turn immediately seen if we notice that system (1.7) has a fixed point n

A
, p

A

solution of

.
`
/
`
´

an g n max

2
2p

c 0

f 0

2nh2anp40 ,

2bp1bp g f 0

c 0

n2ph40 .

(1.8)

Disregarding the trivial case n4 p40, the solution of (1.8) is given by

.
`
`
/
`
`
´

n
A
4

b

b
g a

a
1

c 0

f 0
h1 n max

2

21
a

a

f 0

c 0

,

p
A
4

g2 b

b
1

f D
max

2c 0
h

21
a

a

f 0

c 0

,

(1.9)

the constants n
A

, p
A

are the asymptotic period averages of respectively n(t), p(t).
The divergence of the vector flow (n

.
, p

.
) (1.7) is negative. System (1.7) can be

linearized and we find two eigenvalues with negative real part. This ensures that the
fixed point (1.9) is reached either monotonically or with a spiral, in the diagonal basis.

The reader may compare this proof with theorem 2) and relative footnote, in
chapter V, § 25, second part, in the book of Arnold and theorems 11.5, 11.6 and 11.8 in
the book of F. Verhulst [2]. See also the foregoing sect. 4.

2. – The inner parameters

In the dynamical system (1.5) we have v , f D
max , external parameters;

f 0 , c 0 , a , b , a , b , internal parameters.
Eight parameters affecting a system of two differential equations are evidently too

many. We need to search for an underlying logic in this complexity. Let us consider the
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couples f 0 , c 0 and a , b . Some help is given by allometric considerations [3], relating

the size of a living organism and its typical mean life. In our case t a4
1

a
is the typical

time of growth and t b4
1

b
is the time of death. In general, the size can be considered

proportional to the metabolism and we consider a generic law such that f 0 large goes

with 1

a
large and, analogously, c 0 large goes with 1

b
large. So we are left with the

consideration of small prey and big predator, f 0Ec 0 ; or big prey and small predator.
To summarize this situation, we define a parameter z in this way:

c 04zf 0 ,(2.1)

and, accordingly,

b 214za 21 K b4
1

z
a .(2.2)

If the linear relationship

t aAf 0 , t bAc 0 ,(2.3)

appears to be too simple, it may be improved, and (2.2) will change accordingly. In the

following we choose arbitrarily f 040.498 W

m2
, so that D4

f D
max

f 0

4700. This simply fixes

the numerical scale of n . Due to (2.1), c 0 follows.
Concerning a and b , we see easily, with the consideration of system (1.5) in the

particular case pf0, namely

n
.
4an( D(t)2n) ,(2.4)

that the parameter a controls the amplitude of the oscillations of n(t). A rigorous
discussion of this point is given in sect. 4. Here we take as an obvious fact that a small a
means a small amplitude of oscillation of n(t). So, in principle, we may start with a given
a , and b follows from (2.2).

The presence of the external parameter v fixes a time scale in the numerical
calculations. In fact v must be given in certain units of time (for instance second21 ,
hour21 , year21 , etc.) and the parameters of the ecosystem a , b , a , b will be given in
units of v . Given v , we may choose an appropriate value for a . We know from (1.5) that

a gives the growth rate of the prey, we may define t a4
2p

a
as the time of growth. We

assume arbitrarily that t a4200t , or

a4
1

200
v40.005 v .(2.5)

Concerning the coupling constants a and b we follow the analysis of ref. [1] and
we put

b4b min1
g

12g
a ,(2.6)
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where

b min4b
2c 0

f D
max

(2.7)

and 0EgE1.
We will select certain values of g and analyze the approach to the asymptotic

behaviour of n(t) and p(t) as a function of the remaining coupling parameter a .
We focus our attention on the behaviour of system (1.5) in the region of the phase

space where the t-average of the predator is maximum, keeping in mind that such
region varies with g .

When p
A

is maximum, we have

dp
A

da
40 , g fixed .(2.8)

Equation (2.8) has the root

a4a×04
2ac 0

f 0
g bf 0 (12g)

agf D
max h1/2

42a
u z

f 0

f D
max

(12g)

g

v1/2

.(2.9)

We may proceed with the study of the domain of the fixed point n
A

, p
A

, eq. (1.9) in the
phase space n , p . Each fixed point depends on the eight parameters f 0 , c 0 , a , b , a , b ,
but the boundary of the domain depends only on f 0 , c 0 and z . In fact the boundary is
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Fig. 1. – Domains of the fixed point n
A

, p
A

in the phase space n , p for z42 (a) and z40.5 (b), where

the segment A8B8 belongs to the line: p42
f 0

c 0
n1

f D
max

2c 0
and the segment OA8 to the line p4

f 0

c 0
n. If we choose f 040.498 W

m2
, we obtain: n

A max4
f D

max

2f 0
4350 for both z42, z40.5. On the

contrary p
A max487.5 for z42, and p

A max4350 for z40.5. The triangles OA, AB correspond to the
input D4n max , these are the domains discussed in [1]. The triangles OA8, A8B8 correspond to the

input D4
n max

2
.
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given, according to (1.8), by the two straight lines

.
`
/
`
´

n max

2
2p

c 0

f 0

2n40 ,

f 0

c 0

n2p40 .

(2.10)

In fig. 1 we show the allowed domain in two cases:

1) z42, small prey, large predator,

2) z4 1

2
large prey, small predator.

3. – The transient

The dynamical system (1.5) has two regimes: the transient, which depends on the
initial condition n(t40), p(t40), and the forced asymptotic, which is independent of
the initial condition. When we analyze the transient, the interesting question is: how
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Fig. 2. – In these figures we show three particular trajectories in the phase space n , p ,
corresponding to z42 and to different values of a and g : a) a410 a×0 , g40.5, z42; b) a410 a×0 ,
g40.1, z42; c) a4a×0 , g40.5, z42. In all the three cases, the initial condition is n04p041 and
the little cross indicates the asymptotic average values n

A
(a , g), p

A
(a , g). Notice that the trajectory

intersects itself, since the system is not autonomous. The trajectories a) and b) correspond to very
strong coupling. The trajectory c) corresponds to the case in which the predator number is
maximum.
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Fig. 3. – In these figures we show three particular trajectories in the phase space n , p ,

corresponding to z4 1

2
and to different values of a and g : a) a410 a×0 , g40.5, z40.5; b) a4

10 a×0 , g40.1, z40.5; c) a4a×0 , g40.5, z40.5. In all the three cases, the initial condition is n04
p041 and the little cross indicates the asymptotic average values n

A
(a , g), p

A
(a , g). Notice that the

trajectory intersects itself, since the system is not autonomous. The trajectories a) and b)
correspond to very strong coupling. The trajectory c) corresponds to the case in which the
predator number is maximum.

does the initial condition, namely the “creation” of the ecosystem, affect its evolution?
To this purpose, we evaluate numerically two initial conditions:

1) the ecosystem begins with a seed n(0)41, p(0)41, that we call “minimum
creation”;

2) the ecosystem begins with a grown prey and only one predator, n(0)An max ,
p(0)41, the “creation by steps”.

Are the two initial conditions independent or related? We show in the following
figures the evolution of the ecosystem with “minimum creation”, for z42, small

predator (fig. 2 and fig. 4) and z4 1

2
, large predator (fig. 3). We see that the initial

condition with p041 and n0An max , namely prey fully grown, is nothing else than the
successive step following the “minimum creation”.

The trajectory with a4a×0 and g40.5 can be considered the “reference trajectory”:
in fact g40.5 means b4b min1a , moreover a4a×0 means maximum predator.
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Fig. 4. – In these figures we show the approach to the asymptotic behaviour of n(t) and p(t). The
time t is expressed in hours. The initial condition is n04p041. a) and b) the reference case, a4
a×0 , g40.5, z42. c) and d) the strong coupling case, a410 a×0 , g40.5, z42. Notice that with
respect to the reference case, in the strong-coupling case the transient regime is shorter, the
amplitude of the oscillation of n is smaller, and the oscillation of p is larger.

4. – The asymptotic regime

In general the properties of the asymptotic regime are expressed by the shape and
size of the closed curves representing the solution in the phase space, plus the time

displacement of the solution with respect to the driving term D(t)4n max 12cos vt

2
.

Once the solution is settled in the asymptotic periodic regime, there is no longer
memory of the initial condition that existed in the past. Therefore, we may choose a new
origin of time as we wish, since the solution is periodic. We measure the time according
to the convention that t40 for D40. With this setting of the clock, we discuss the
properties of the solution n(t), p(t) with respect to the sinusoidal driving term D(t)
(eq. (1.2)). Notice that the parameters f 0 , c 0 , a , b can be, in principle, determined
when a particular couple of species is selected. The parameter a gives the rate of
growth of the prey alone, b gives the death rate of the predator alone. On the contrary
a and g are elusive, in the sense that they represent on the macroscopic scale, namely
the species numbers, some unknown biological properties of the prey predator coupling
on the microscopic scale.

We analyze what happens to the trajectory in the phase space n , p for tKQ for g
fixed and when the coupling parameter a is either smaller or larger than the value a×0 ,
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Fig. 5. – Three asymptotic trajectories with g40.9, for z42 and for z4 1

2
. 1) Weak coupling: a4

0.1a×0, the fixed point is the cross on the right-hand side of A8. 2) Maximum predator: a4a×0 , the
fixed point is the cross almost coincident with A8. 3) Strong coupling a410. a×0 , the fixed point is
the cross on the left-hand side of A8.

which is the coupling value giving the maximum value p
Amax . We show the results in

fig. 5. The amplitude of the predator oscillation is smaller when the coupling is weak
(smaller than a 0 ), and keeps increasing for increasing a . Moreover the trajectory is
nearly elliptic for aGa 0 , and becomes deformed for aDa 0 .

We observe that only for the trigonometric functions the concept of time
displacement appears as a phase shift. In our case n(t) and p(t) are periodic, but not
sinusoidal, therefore the time displacement needs to be defined in some operational
way. We adopt as definition of time displacement D2n , the distance in hours between
the time at which n is maximum and the time at which D reaches the first maximum
after D40. The same definition applies to the time delay n2p (fig. 6).
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Fig. 6. – Asymptotic regime in the reference case: a4a×0 , g40.5, for z42 and for z4 1

2
. The

solutions of the equation of motion, n(t) and p(t), are compared to the input term D(t) (eq. (1.2)).
Time is expressed in hours.
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5. – The linearization and perturbation

We said, at the beginning of the preceding section, that the properties of the
asymptotic solution are: shape, size, and time displacement. In that section we have
presented a set of figures that show numerically how these properties depend on z and a .

Now we wish to understand analytically (not numerically) how these properties
depend on the inner parameters. This can only be done by a process of linearization,
whereby the system can be solved analytically. There is a cost in such approach: we
miss the property of shape, as the solutions of a linear system driven by a sinusoidal
term are also sinusoidal; in other words the shape is given a priori, we can only dig on
amplitude and displacement. Moreover, we must be aware that in the process of
approximating a periodic nonlinear solution with a sinusoid, we may violate the request
n(t)D0, p(t)D0. This request is embedded in the dynamical system (1.5) and is
obvious: negative numbers n and p are meaningless. Therefore, we need to reset the
formalism appropriately. For the discussion of the linearization, we introduce a
perturbation parameter e , running in the interval 0GeG1, multiplying cos vt , so that
we start with the dynamical system

.
`
/
`
´

n
.
4an g f D

max

f 0

12e cos vt

2
2p

c 0

f 0

2nh2anp ,

p
.
42bp1bp g f 0

c 0

n2ph .

(5.1)

Furthermore we like to deal with an autonomous system. This is easily obtained at the
cost of introducing an extended phase space with two additional dimensions for the two
variables q(t) and r (t), which together with n(t) and p(t) satisfy the “extended
system”:

.
`
`
/
`
`
´

n
.
4an g f D

max

f 0

12eq

2
2p

c 0

f 0

2nh2anp ,

p
.
42bp1bp g f 0

c 0

n2ph ,

q
.
4r ,

r
.
42v 2 q .

(5.2)

Clearly the third and the fourth equations in (5.2), with initial conditions q(t40)41,
r (t40)40, produce the solution

.
/
´

q(t)4cos vt ,

r (t)42v sin vt ,
(5.3)

and therefore (5.2) is the right extension of system (5.1). System (5.2) is autonomous
and we can study the topology of the flow n(t), p(t), q(t), r (t) in the 4-dimensional phase
space. The role of the parameter e will be discussed in the following. We show first of
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all that (5.2) has only one fixed point (nD0, pD0) solution of

.
`
/
`
´

an g f D
max

f 0

12eq

2
2p

c 0

f 0

2nh2anp40 ,

2bp1bp g f 0

c 0

n2ph40 ,

2v 2 q40 ,

r40 .

(5.4)

The solution of (5.4) is

.
`
`
`
/
`
`
`
´

n×4

b

b
g a

a
1

c 0

f 0
h1 f D

max

2f 0

21
a

a

f 0

c 0

,

p×4
g2 b

b
1

f D
max

2c 0
h

21
a

a

f 0

c 0

,

q×40 ,

r×40 .

(5.5)

The values n×, p× coincide with the values n
A

, p
A

given in (1.9).
After these preliminaries we proceed with the usual calculations. For the sake of

simplicity we adopt the notation

x
K
.
4 f

K
(x
K

) ,(5.6)

with

x
K
4 (n , p , q , r) , f

K
4 ( fn , fp , fq , fr )(5.7)

and fi are the right-hand side of eq. (5.2). The linear system is

j
K
.
4 ( D f

K
)x
K
4 x×

K Q j
K

,(5.8)

where

j
K
4 x

K
2 x×

K
,(5.9)

and explicitly

j
K
4 (j n , j p , q , r) , x×

K
4 (n×, p×, 0 , 0 ) ,(5.10)

n× and p× are given by (5.5). Finally D f
K
4 k ¯fi

¯xj
l is the Jacobian matrix of the first partial
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derivatives of f
K

. Performing the calculation of the Jacobian matrix, we end up with the
following system (D f

K
fA ( e ) ; the index (e) stands for extended):

j
K
.
4A ( e ) Q j

K
,(5.11)

where

A ( e )4

.
`
`
`
´

a11

a21

0

0

a12

a22

0

0

a13

0

0

2v 2

0

0

1

0

ˆ
`
`
`
˜

, A4 ua11

a21

a12

a22

v(5.12)

and, explicitly,

.
`
`
`
/
`
`
`
´

a1142 2an×2ap×2a
c 0

f 0

p×1
1

2
a

f D
max

f 0

42an×E0 ,

a1242an×2a
c 0

f 0

n×E0 ,

a1342 ea
f D

max

2f 0

n×E0 ,

a214b
f 0

c 0

p×D0 ,

a2242 b1b
f 0

c 0

n×22bp×42 bp×E0 .

(5.13)

We perform a linear transformation on the matrix A ( e ) , bringing it to a diagonal
form:

.
`
/
`
´

a118 4l 14
1

2
(Tr A1k( Tr A)224 det A)

a228 4l 24
1

2
(Tr A1k( Tr A)224 det A) ,

a338 4l 34 iv ,

a448 4l 442 iv ,

(5.14)

where

Tr A4a111a22E0 , det A4a11 a222a12 a21D0 .(5.15)

(Notice that the eigenvalues of A do not depend on the perturbation parameter e . ) We
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E

E

c

s

ξ

ξ ’ 

’ 

p

n

Fig. 7.

see that the eigenvalues l 1 and l 2 are either real negative for

( Tr A)2

4
2det AD0 ,(5.16)

or complex with negative real part for

det A2
( Tr A)2

4
fv 1

2D0 .(5.17)

The phase portrait of system (5.2) corresponding to the case (5.17) is shown in fig. 7.
The center has frequency v , the spiral has frequency v 1 . The plane j n , j p is the stable
manifold, the straight line Ec stands for the two-dimensions center manifold q , r . We
must return from the vector j

K
8 to the original vector j

K
; this is done, evidently, with the

same transformation matrix that has diagonalized A , therefore the j
K

components are a
linear combination of j

K
8 components, and this transformation preserves the property

of asymptotic periodicity.
The reader will notice that since in our problem (5.2) the center manifold is

linear, because the third and fourth equations are linear, the connection between the
nonlinear flow (5.2) and the linear flow (5.11) is trivial, or, in other words, we do not
need the use of the center manifold theorem [4]. This is, by the way, a proof of the
asymptotic periodicity of n(t) and p(t), equivalent to that given in sect. 1.

6. – The resonant behaviour

The analysis of the preceding session suggests the possibility of a resonance
between v 1 and v . In order to understand the problem, we need a detailed study of the
asymptotic solution of system (5.11). Having established the general properties of the
4-dimensional autonomous linear system, we use from now on the short notation of the
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two-dimensional linear forced system. We write

.
/
´

x
.

14a11 x11a12 x21a13 cos vt ,

x
.

24a21 x11a22 x2 .
(6.1)

We call A the matrix

A4 ua11

a21

a12

a22

v ,(6.2)

where aij are given by (5.13). The relationship between x1 , x2 and n , p is given by

.
/
´

n4n×2x1 ,

p4 p×2x2 .
(6.3)

In the asymptotic regime we can take the origin of time as we wish. We have from
(5.1)

.
/
´

D(t)4
f D

max

f 0

12e cos vt

2
,

D(t40)4 Dmin ,

(6.4)

and from (6.1)

a13 cos v(t40)4a1342ea
f D

max

2f 0

n× ,(6.5)

finally from (6.3)

.
/
´

x14x1
maxKn4n min ,

x24x2
maxKp4p min .

(6.6)

We now consider the following particular solution of (6.1):

.
/
´

x14 A cos (vt1W a ) ,

x24 Bcos (vt1W b ) .
(6.7)

With the position (6.7), the minimum of n , p comes with the maximum of x1 , x2 ,
namely

.
/
´

x14 A ,

x24 B ,
(6.8)
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which implies

.
`
/
`
´

vt a1W a40 K t a42
W a

v
,

vt b1W b40 K t b42
W b

v
.

(6.9)

In conclusion we have a time advance or delay

t aD0

t bD0

t aE0

t bE0

K

K

K

K

W aE0 ,

W bE0 ,

W aD0 ,

W bD0 ,

time delay ,

time delay ,

time advance ,

time advance .

After these preliminaries, we insert (6.7) into (6.1), equate like terms and find

.
`
/
`
´

Aa11 cos W a1 Ba12 cos W b1 Av sin W a

2 Av cos W a1 Aa11 sin W a1 Ba12 sin W b

Aa21 cos W a1 Aa22 cos W b1 Bv sin W b

2 Bv cos W b1 Aa21 sin W a1 Ba22 sin W b

4a13 ,

40 ,

40 ,

40 .

(6.10)

The solution is

.
`
`
/
`
`
´

W a4arctan yv a22 Tr A2 ( det A2v 2 )

a22 ( det A2v 2 )1v 2 Tr A
z4W b2arctan

v

a22

,

A42
a13ka22

2 1v 2

k( det A2v 2 )21v 2 ( Tr A)2
4e A 8 ,

W b4arctan k v Tr A

det A2v 2 l ,

B42
a13 a21

k( det A2v 2 )21v 2 ( Tr A)2
4e B8 .

(6.11)

From (6.11) we see first of all how the cut-off parameter e works. In fact, given a set of
values a , f 0 , z , a , g , the amplitudes A 8 and B8 are determined, and, correspondingly,
we may evaluate n×2 A , p×2B. When the straight line A4e A 8 (or B4e B8 ) reaches
the value n× (or p×) we get a critical value e4e c , which is the value that must be used in
(5.1) in order to avoid unphysical values in the phase space n , p . In fig. 8-10, we show
the situation for two values of z .

The comparison of fig. 8 and 9 with 5 and 6 shows that the linearized system is not a
completely faithful representation of the nonlinear system, as long as shape and size of
the analytic solutions are concerned.

Next we consider the time displacement. For the nonlinear system the driving term
is sinusoidal, while n(t) and p(t) are oddly shaped. We define the time displacement t dn
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Fig. 8. – Three trajectories in the phase space, with n and p solutions of the linearized system

(6.1), (6.3) with g40.9, for z42 (a) and for z4 1

2
(b). 1) Weak coupling: a40. 1 a×0 , the fixed

point is the cross on the right-hand side of A8. 2) Maximum predator: a4a×0 , the fixed point is the
cross almost coincident with A8. 3) Strong coupling a410 a×0 , the fixed point is the cross on the
left-hand side of A8. Compare this plot with fig. 5.

the distance in time between the time at which n is maximum and the time at which D
is maximum. Similarly for p :

.
/
´

t dn4 tn max2 td max ,

t dp4 tp max2 td max ,
(6.12)

t dn and t dp can be calculated numerically. For the linear system both the driving term
and the solution n , p are sinusoidal and therefore the time displacement is simply
related to the frequency of the input v by a fixed angular displacement, as we pointed
out with (6.9):

W a4vt a , W b4vt b .(6.13)

We can use a dimensionless quantity, in analogy with (6.13), also for the nonlinear case,

5 10 15 20 t

100
200
300
400
500
600
700

n

D

p

5 10 15 20 t

200

400

600

n

D

p

a) b)

Fig. 9. – Asymptotic regime in the reference case: a4a×0 , g40.5, for z42 (a) and for z4 1

2
(b).

The solutions of the linearized system (6.1), (6.3), n and p , are plotted together with the input term
D(t) (eq. (1.2)). Compare this graph with fig. 6. Time is expressed in hours.
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Fig. 10. – n×, p×, A , B as a function of e . We have chosen a4a×0 , g40.5, z42 (a) and z40.5
(b).

and we define the nonlinear phase shifts:

W dn4vt dn , W dp4vt dp .(6.14)

We can compare the phase shifts (6.14), calculated numerically, with the angular
displacement (6.13), calculated analytically. The result is shown in fig. 11. This shows
that the linearization is excellent as far as the reproduction of the phase shifts is
concerned.

Finally, we consider the resonant behaviour.
The matrix A has two real negative eigenvalues for

( Tr A)2

4
2det AD0 K l 1, 24

1

2
Tr A6o ( Tr A)2

4
2det A(6.15)

and two complex conjugate eigenvalues for

det A2
( Tr A)2

4
D0 K l 1, 24

1

2
Tr A6 iodet A2

( Tr A)2

4
.(6.16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-3

-2

-1

1

P
h

a
se

sh
ift

s

D-n

D-p

ω

Fig. 11. – Phase shifts W a and W b (eq. (6.11), dotted lines) compared to the phase shifts W dn , W dp
numerically calculated from the nonlinear system (5.1) as a function of v (in h21 ). In this
calculation we have chosen a4a×0 , g40.5, z42. The vertical line indicates the value v4v day4
2p

24
h21 .
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In this second case, the linear system contains the inner frequency

v 14odet A2
( Tr A)2

4
.(6.17)

Now we consider the behaviour of A and B given in (6.11) as functions of v . B has a
peak for the value of v that satisfies

¯ B
¯v

40 , v b4odet A2
( Tr A)2

2
,(6.18)

while the peak of A g ¯ A

¯v
40h occurs for

v a4o2a22
2 1k(a22

2 1det A)22a22
2 ( Tr A)2 .(6.19)

How this situation compares with a genuine resonance?

Resonance for the driven dissipative harmonic oscillator.

We consider the system that defines the concept of resonance: the dissipative
driven harmonic oscillator. The equation of motion is

x
..
1nx

.
1v 2

0 x4d cos vt .(6.20)

This equation may represent the spring in a dissipative medium or a L , C , R electric
circuit. In the first case x is the elongation of the unit mass point, n is the friction
coefficient, v 0

2 is the constant of the spring. In the second case x is the electric charge,

n4
R

L
and v 0

24
1

LC
. In the absence of friction, n40, and in the absence of the driving

force, the problem is Hamiltonian:

x
..
42v 0

2 x ,(6.21)

with potential

U4
1

2
v 0

2 x 2 ,(6.22)

and a conserved total energy:

E4
1

2
x
. 21

1

2
v 0

2 x 2 .(6.23)

Equation (6.20) can be written in the form of a system of two first-order equations
introducing the two variables

.
/
´

x14 x
.

,

x24x ;
(6.24)
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in this way we obtain

.
/
´

x
.

142 nx12v 0
2 x21d cos vt ,

x
.

24x1 .
(6.25)

System (6.25) is evidently in the form (6.1). The first important observation is that in
the case of the genuine resonance the matrix A has the form

A4 ga11

1

a12

0
h .(6.26)

From this fact follows that the original variable is x4x2 , while x1 is an auxiliary
variable related to x2 by a derivative, x14 x

.
2 . In Hamiltonian language x2 is the

coordinate, x1 is the momentum.
The second observation comes by writing explicitly the matrix elements aij :

(6.27) A4g2n

1

2v 0
2

0
h , a1142n , a1242v 2

0, a2141 , a2240 , and a134d .

We have

Tr A42 n , det A4v 0
2 .(6.28)

The eigenvalues of A are either real negative:

l 1, 242
n

2
6o n 2

4
2v 0

2 ,(6.29)

or complex conjugate:

l 1, 242
n

2
6 iv 1 ,(6.30)

and

v 14ov 0
22

n 2

4
.(6.31)

The Tr A contains the friction, the det A contains the inner frequency, namely the
Hamiltonian part of the problem. Tr A and det A are independent of each other. The
general solution (6.11), valid for a generic matrix A , becomes, by direct application of
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(6.27), (6.28),

.
`
`
/
`
`
´

W a4arctan y v 0
22v 2

nv
z4W b1

p

2
,

A42
vd

k(v 0
22v 2 )21n 2 v 2

,

W b4arctan y 2nv

v 0
22v 2

z ,

B42
d

k(v 0
22v 2 )21n 2 v 2

.

(6.32)

In particular, the limit of no dissipation, nK0 (v 1Kv 0 ), is physically conceivable,

because n and v 0 are independent of each other. The maximum of Bgsolution of d B

dt
40h

occurs at the value

v b4odet A2
( Tr A)2

2
4ov 0

22
n 2

2
,(6.33)

while the maximum of A gsolution of d A

dt
40h occurs at the value

v a4kdet A4v 0 .(6.34)

We have

v 0Dv 1Dv b .(6.35)

Final remark. To see a peak in the amplitude B, we need v bD0, and this implies the
condition of complex eigenvalues of A , namely v 1D0. On the other hand, the auxiliary
amplitude A has always a peak, even if the constraint v 1D0 is not satisfied. In fact, in
this case, B is a monotonous decreasing function of v and A is the product v B,
therefore has a maximum for v4v 0 . This situation is summarized in fig. 12, where we
show in the parameter space the domains in which v 1D0, v bD0, v aD0. Inside the
domain Da there is a peak of A but no complex eigenvalues.

We compare now these results to the properties of the ecosystem equation (6.1). In
the ecosystem case, x1 and x2 have independent physical meanings, x1 is the prey and x2
is the predator. They are no longer simply related as coordinate and momentum. In the
ecosystem case there is no det A independent of Tr A , or, in other words, no proper
frequency independent of friction. We may call

Tr A42an×2bp×(6.36)

the friction of the ecosystem, if we wish, but such generalized friction is a rather
complex function of the parameters. Similarly we may call

det A4abn×p×1b
f 0

c 0

p×gan×1a
c 0

f 0

n×h4v 0
2(6.37)
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the proper frequency, but such generalized frequency is a rather complex function of
the parameters. Moreover the matrix element a2242bpA cannot be considered
negligible, because the limit a22K0 implies p×K0, in other words Tr A and det A are
uncoupled only if one component, the predator, disappears. For this reason the ideal
limit of vanishing friction does not exist.

In the ecosystem, we have that the condition that must be satisfied in order to have
a sufficiently narrow peak in the amplitudes A and B is a constraint in the
multidimensional parameter space. We have already noticed that f 0 simply gives the
scale in the variable n . We may choose a typical value for a and z , in this way we are left
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Fig. 13. – The resonant domain in phase space. The curve n(g a1 (a) ), p(g a1 (a) ) (continuous line);
the curves n(g b1 (a) ), p(g b1 (a) ) and n(g b2 (a) ), p(g b2 (a) ) (dash-dotted lines), almost
indistinguishable; the curves n(g c1 (a) ), p(g c1 (a) ) and n(g c2 (a) ), p(g c2 (a) ) (dashed lines) and the
curve n(a 0 (g) ), p(a 0 (g) ) (dotted line). Concerning the last, it begins at B for g40 and ends at A
for g41.
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Fig. 14. – The resonant domain in the parameter space (a) z42; b) z40.1). Curves g a1 (a)
(continuous line), g b1 (a), g b2 (a) (dash-dotted lines) g c1 (a), g c2 (a) (dashed lines) plotted in the
parameter space, as a function of a (in units of a) and g . In the domain Da there is a peak of A
(dimensionless), but no complex eigenvalues.

with two free parameters, a and g . We therefore find that the constraint

det AF
( Tr A)2

2
(6.38)

selects the region in the parameter space in which B shows a resonant behaviour.
Equation (6.38) is of the kind F(a , g)D0, namely is a constraint on the variables a , g .
In particular we find that the condition (6.38) is satisfied for

g b1 (a)GgGg b2 (a) , v bD0 .(6.39)

The amplitude A has a peak in v a (eq. (6.19)) if

det AFa22
2 uo11

( Tr A)2

a22
2

21v ,(6.40)
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Fig. 15. – The excursions 2 A and 2 B (eq. (6.11), dotted lines) compared to those numerically
calculated from the nonlinear system (5.1) as a function of v (in h21 ). In this calculation we have
chosen a4a×0 , g40.5, z42. The vertical line indicates the value v4v day4
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that is satisfied for

gGg a1 (a) , v aD0 .(6.41)

Moreover, the eigenvalues are complex, when

det AF
( Tr A)2

4
,(6.42)

that gives

g c1 (a)GgGg c2 (a) , v 1D0 .(6.43)

The curves g a (a), g b (a), g c (a) delimiting these regions, can be calculated analytically.
The results are plotted in fig. 13, in the phase space and, in fig. 14, in the parameter
space. Notice the analogy between fig. 12 and fig. 14. In both cases the domain v b is
contained in the domain v 1 , and the domain v a has a sub-domain Da external to the
domain of complex eigenvalues. Finally the region of low predator efficiency g
corresponds to the region of high friction n .

The last comment about the linearization concerns the description of the amplitudes
of the oscillations of n and p . This is shown in fig. 15. This figure indicates that the
linear system is a faithful tool in the understanding of the reason why in certain
regions of the parameters space the amplitudes of the oscillations of n and p are
particularly large.

* * *
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