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Prey-predator dynamics driven by the solar radiation - Part I
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Summary. — We study a model ecosystem represented by two components: prey
and predator. The predator feeds only on the prey, the prey, in turn, feeds on the
solar radiation. In this scheme the two-species dynamics is no longer independent of
the external physical conditions. Such independence was instead postulated in the
Lotka-Volterra scheme. In this paper we consider the growth of the prey not
unbounded (exponential), but logistic, where the saturation factor is governed by the
available solar flux, more precisely by the percent of the solar flux that contains the
photon frequencies which can drive the photosynthesis. In this way the solar flux
represents the driving term of the dynamics, as we expect in general for a realistic
ecosystem. The system is asymptotically stable. The equilibrium values of the prey
and predator numbers depend on several parameters. The system contains two
nonlinear coupling terms and two coupling parameters. The dependence of the
equilibrium point on the coupling parameters is studied in detail. According to this
model, we can define a predator efficiency and a global solar efficiency. We discuss
the relationship between these two functions of the coupling parameters and the
maximum value that the predator population can reach.

PACS 92.60.Ry – Climatology.
PACS 92.70.Gt – Climate dynamics.
PACS 91.10.Vr – Ocean/Earth/atmosphere interaction.
PACS 92.60.Vb – Solar radiation.

1. – The Lotka-Volterra system

In this section we present some concepts and known results that help in the
understanding of the new model that will be developed in the following sections.

The Lotka-Volterra system belongs to the type of equations describing collective
behaviours. By collective behaviour we mean that a “population” n(t) (atoms, members
of a species, the amount of a reservoir) changes in time in such a way that each member,
or parcel of such population, behaves exactly as any other one. More precisely we
have
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1) Collective growth or decay:

dn

dt
46 an(t), n(t40)4n0 ,(1.1)

with solution

n(t)4n0 e 6at .(1.2)

2) Collective growth with saturation:

dn

dt
4an(t)(n max2n(t) ) , n(t40)4n0 .(1.3)

Equation (1.3) says that n(t) changes in proportion to the joint effect of n(t) itself
and the “residual” nmax2n(t); this residual is the saturation factor. Equation (1.3) is
sometimes called Verhulst equation. Its solution is known:

n(t)4
n max

11e 2an max tg n max

n0

21h
.(1.4)

The curve n(t) given by (1.4) is called logistic curve of the quantity n . We may consider
the function

n
.
(t)4

dn

dt
4

ae 2an max t (n max )2g n max

n0

21h
y11e 2an max tg n max

n0

21hz2
,(1.5)

which is obtained either deriving the solution (1.4) with respect to the time, or by
performing the multiplication on the right-hand side of (1.3). The curve of n

.
is also

called logistic curve of the flow n . Notice that in (1.1) and (1.3) the coefficient a has
dimension

dim a4
1

t
,(1.6)

while the unknown n(t) and the parameter n0 are dimensionless. The parameter a is the
only quantity that qualifies the collective physical system.

In fig. 1 and 2 we show how the solution n(t), given by (1.4), and the solution n
.
(t),

given by (1.5), depend on a . The figures are given in arbitrary units of t . If a is
experimentally known, for instance is the coefficient of growth or of decay measured
experimentally (in other words, we know a specific property of the physical system
under consideration), we can infer from a a typical time, which will be expressed in the
units of time used to evaluate a itself. For eq. (1.1) we have the doubling time (aD0) or
the half time, or mean life (aE0). For the Verhulst equation (1.3) we can define a
typical time as follows. Consider the curves of fig. 2 and define the width t a of the
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Fig. 1. – This figure shows n(t) (eq. (1.4)) for different values of the parameter a . In particular we
have chosen a142 Qa2 , a242 Qa3 . The variables are given in arbitrary units.

bell-shaped curves n
.
(t) at half height. We can calculate t a explicitly from (1.5) and

get

t a4
1

an max

312 k2

322k2
.(1.7)

Obviously larger a means steeper growth of n(t) towards the saturation value n max or
narrower peak of n

.
(t).

The above remarks are important in the actual use of the logistic curves, which are
rather successful in several problems. For instance they explain and predict the
behaviour of the consumption of either renewable or fossil resources by humankind [1].

At this point we may consider the Lotka-Volterra system (1925) [2]. The collective

Fig. 2. – This figure shows n
.
(t) (eq. (1.5)) for different values of the parameter a . In particular we

have chosen a142 Qa2 , a242 Qa3 . The variables are given in arbitrary units. We have shown on the
curves the typical time t a (eq. (1.7)), defined as the width of the bell-shaped curves n

.
(t) at half

height.
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dynamics here concerns a prey species n(t) and a predator species p(t). The equations
are

.
/
´

n
.
4an(t)2an(t) p(t) ,

p
.
42 bp(t)1bn(t) p(t) .

(1.8)

The phase space n , p of (1.8) is the quarter of plane nD0, pD0.
The above equations are asymmetric in a very important way. The prey by itself

grows, with the factor a , and dies with the factor 2ap(t).
The predator by itself dies, with the factor b , and grows with the factor 1bn(t).
So the noninteracting prey grows exponentially, while the noninteracting predator

dies also exponentially. This asymmetry qualifies the fact of being prey or predator. In
principle a and b can be determined by measuring the behaviour of the prey alone and
the predator alone. We do not touch here the profound issue whether the consideration
of a single species alone makes sense or not, because this question touches the problem
of evolution, which is outside the scope of the Lotka-Volterra model. For simplicity, we
assume here that a and b can be determined in principle.

Let us consider the fixed point or equilibrium point of system (1.8). This point is
defined by the condition

.
/
´

n
.
40 ,

p
.
40 .

(1.9)

We get from (1.9) that the fixed point (with nD0, pD0) has coordinates

.
`
/
`
´

nA4
b

b
,

pA4
a

a
.

(1.10)

Notice from (1.10) that the uncoupled solution n (0) (t) (n without p) and p (0) (t) (p
without n) cannot be reached from the fixed point (1.10) by letting aK0, bK0.

We linearize around the fixed point putting

.
/
´

n4nA1j n

p4 pA1j p .
(1.11)

Inserting (1.11) into (1.8) and retaining only the linear term, in j n , j p , we get the
linear system

j
K
.
4A Q j

K
,(1.12)
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where, obviously,

j
K
4 uj n

j p

v , A4 u 0

ab

a

2
ab

b

0
v .(1.13)

In the linear phase space j n , j p the flow of j
K

is incompressible, or

div j
K
40 ,(1.14)

as we see immediately from (1.12).
We search for a solution of the type j4j 0 e lt , and to this purpose we need to

diagonalize the matrix A . This implies the condition

det (A2l 1)40 ,(1.15)

which is the secular equation

l 21ab40 ,(1.16)

and the roots are

l46ikab .(1.17)

In other words, the linear solution j n (t), j p (t) in the phase space j n , j p is a
combination of sin lt , cos lt , so the trajectory is a closed curve with period

t4
2p

kab
.(1.18)

Notice that the period of the solution does not depend on the coupling coefficients a
and b .

The dimensions are

dim a4
1

t
, dim b4

1

t
.

In principle a and b can be determined experimentally and expressed in a given unit of
time. As a consequence (1.18) gives a typical time (the period) of the Lotka-Volterra
dynamics.

2. – The power input. The constant driving term

Our criticism of the Lotka-Volterra model is that the two species n and p are
positioned nowhere, they have no relationships with the rest of the Universe. Now any
conceivable ecosystem must be positioned on a planet and everything happening on a
planet is driven by the flux of energy (in W/m2 ) coming from the star (the Sun, for
instance) to which the planet belongs.
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In this section we consider the case of the constant power input. Moreover we state
that the prey (herb) is a certain species of vegetation, the predator (herbivore) is a
species feeding on the above vegetation species.

The prey feeds on the solar radiation, using not the total flux, but only that portion
that is spanned by the frequency window that is able to produce the photosynthesis.
The herb cannot feed on the solar radiation indefinitely, but only until there is
radiation available.

For the couple Sun-Earth, we have that the solar flux impinging on a unit surface
orthogonal to the direction of the photons is [3]

f max4 (12a e ) 4C (120.3) Q1350
W

m2
4945

W

m2
,(2.1)

where 4 is the solar constant (integral of the solar Planck spectrum over all
frequencies) and a e40.3 is the average albedo. The photosynthesis window is the
following frequency band Dn [4]:

n 140.42 Q1015 s21GnGn 240.75 Q1015 s21 .(2.2)

The portion of the flux (2.1) that belongs to the constraint (2.2) can be calculated [5].
Consequently, we define an effective flux

f D
max4kf max , k40.37 .(2.3)

In conclusion

f D
max40.37 Q945

W

m2
4348.6

W

m2
.(2.4)

Let us consider now the prey alone, and the predator alone. The prey alone is
represented by n(t) members, each one characterized by a metabolism f 0 (in W/m2 ). So
the power processed by the prey is f 0 Qn(t). In the absence of the predator the prey
grows according to the logistic equation

f 0 n
.
(t)4an(t)(f max

D 2f 0 n(t) ) , aD0(2.5)

(this equation is in W/(m2 Qs ) ). We may divide eq. (2.5) by f 0 and rewrite it as

n
.
(t)4an(t)(n max2n(t) ) ,(2.6)

where we have put

n max4
f max

D

f 0

.(2.7)

Notice that f max
D is given by the external power input (the Sun), while f 0 is somehow

arbitrary; we can either fix our attention on f 0 or on n max .
The predator, represented by p(t), does not feed on the solar flux, it feeds only on

the prey. Therefore the predator alone (prey absent) can only die according to the
collective law

p
.
(t)42bp(t) , bD0 .(2.8)
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We can also define a constant c 0 , which is the metabolism of the predator, so that (2.8)
can also be rewritten as

c 0 p
.
(t)42bc 0 p(t) .(2.9)

At this point also c 0 is arbitrary. We may consider several cases:

f 0Dc 0 tree and insect,
f 0Ec 0 grass and cow,
etc.

In the following we will adopt f 0Ec 0 and bEa . There is a logic in this choice.
Larger metabolism implies larger size, and this generally implies death rate b smaller
than growth rate a . This means qualitatively that the larger predator dies at a slower
rate with respect to the prey growth rate [6].

When prey and predator couple, we have only one acceptable scheme of coupling,
which is dictated by the energy conservation:

.
`
/
`
´

n
.
4an g f D

max

f 0

2p
c 0

f 0

2nh2anp ,

p
.
42bp1bp g f 0

c 0

n2ph .

(2.10)

The term f D
max2pc 02nf 0 is the saturation factor for the prey population power

f 0 n(t), while the growth of the predator power c 0 p(t) saturates at the value
f 0 n(t).

In (2.10) the dimensions are

[a]4 [b]4 [a]4 [b]4 t 21 .

In this section we study the mathematical properties of (2.10). Let us first examine the
fixed point of system (2.10). The fixed point has coordinates nA and pA solution of

.
/
´

n
.
40 ,

p
.
40 ,

(2.11)

or

.
`
/
`
´

an g f D
max

f 0

2p
c 0

f 0

2nh2anp40 ,

2bp1bp g f 0

c 0

n2ph40 .

(2.12)

We look for the nontrivial solution nAD0, pA D0, so that we write

.
`
/
`
´

a g f D
max

f 0

2p
c 0

f 0

2nh2ap40 ,

2b1b g f 0

c 0

n2ph40 .

(2.13)
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From (2.13) we get

.
`
`
/
`
`
´

nA4

b

b
g a

a
1

c 0

f 0
h1 f D

max

f 0

21
a

a

f 0

c 0

,

pA4
g2 b

b
1

f D
max

c 0
h

21
a

a

f 0

c 0

.

(2.14)

The condition pA D0 imposes the constraint

bDb
c 0

f D
max

4b min ,(2.15)

while the condition nAD0 holds for every aD0.
Notice that the explicit expression (2.14) contains the inequality

pA c 0GnAf 0 ,(2.16)

and also the inequality

nAf 01pA c 0Gf D
max .(2.17)

Equation (2.17) comes by direct application of the constraint (2.15), in fact

(2.18) nAf 01pA c 04

b

b
g a

a
1

c 0

f 0
h1 f D

max

f 0

21
a

a

f 0

c 0

f 01

2
b

b
1

f D
max

c 0

21
a

a

f 0

c 0

c 04

4

b

b
g a

a
f 01c 0h1f D

max2
b

b
c 01f D

max

21
a

a

f 0

c 0

4

b

b

a

a
f 012f D

max

21
a

a

f 0

c 0

G

G

f D
max a

a

f 0

c 0

12f D
max

21
a

a

f 0

c 0

4f D
max .
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Fig. 3. – Domain of the fixed point in the phase space n , p, where the segment AB belongs to the

line p42
f 0

c 0
n1

f D
max

c 0
and the segment OA belongs to the line p4

f 0

c 0
n . The point A has

coordinates g f D
max

2f 0
,

f D
max

2c 0
h . If we choose f 040.498 W

m2
and c 042f 040.996 W

m2
, we obtain nAmax4

f D
max

f 0
4700 and pAmax4pA4175.

Therefore the domain of the fixed point nA, pA, in the phase space n , p is the triangle
OAB (fig. 3), where the segment AB belongs to the line

p42
f 0

c 0

n1
f D

max

c 0

and the segment OA belongs to the line

p4
f 0

c 0

n .

The point A has coordinates

nA4
f D

max

2f 0

, pA4
f D

max

2c 0

.

We adopt here and in the following the arbitrary choice

f 040.498
W

m2
,

so that

nAmax4n max4
f D

max

f 0

4700 ,

c 042f 040. 996
W

m2
,



L. SERTORIO and G. TINETTI644

so that

pAmax4pA4175 .

The input term f D
max and the parameters f D

max , f 0 , c 0 , a and b have been assumed to
be given, while the coupling parameters a and b are in principle free.

In general we may define the solar efficiency of the prey-predator system by

h4
nf 01pc 0

f D
max

.(2.19)

We have

h(nA, pA)G1 ,

by virtue of (2.18). Clearly, h41 for values of n , p lying on the segment AB; and h40
for n40, p40. The plane h(nA, pA) is shown in fig. 4.

We analyze now the temporal evolution of a volume in the phase space in the
neighbourhood of the fixed point. We know that for a differential system x

K
.
4 v

K
(x
K

)
(where v

K
(x
K

(t) ) and x
K

(t) are vectors in the phase space x
K

), if we call Dt a volume

element surrounding a certain value x
K

0 , we have 1

Dt

¯(Dt)

¯t
4div v

K
[7]. In our case, we

have

(2.20) div v
K
4 { ¯n

.

¯n
1

¯p
.

¯p
}

n4nA; p4 pA
4

4a g f D
max

f 0

2pA
c 0

f 0

2nAh2apA2anA2b1b g f 0

c 0

nA2pAh2bpA 42 anA2bpA E0 ,

in the last step we have used (2.13). Thanks to this result we can say that the system of
equations (2.10) is dissipative.

Fig. 4. – The efficiency h(nA, pA)4
nAf 01pA c 0

f D
max

calculated as a function of nA, pA. The domain of the fixed

point in the phase space n , p is the triangle drawn in fig. 3. In particular, for nA and pA lying on the

line p42
f 0

c 0
n1

f D
max

c 0
, namely AB, we have h41; for nA40 and pA 40 we have h40.
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We have seen in the preceding session that the fixed point of the Lotka-Volterra
system is a center. We show now that the fixed point of our system (2.10) is a sink. To
this purpose we analyze system (2.10) in the linear approximation.

Let us put

.
/
´

n
.
4 fn (n , p) ,

p
.
4 fp (n , p) ,

(2.21)

and

n4nA1j n , p4 pA1j p .(2.22)

The linear system is

.
`
/
`
´

j
.

n4 g ¯fn

¯n
h

nA , pA
j n1 g ¯fn

¯p
h

nA , pA
j p ,

j
.

p4 g ¯fp

¯n
h

nA , pA
j n1 g ¯fp

¯p
h

nA , pA
j p .

(2.23)

Performing the partial derivatives, we find immediately

.
`
/
`
´

j
.

n4 ga f D
max

f 0

22anA2apA2a
c 0

f 0

pAh j n2 ganA1a
c 0

f 0

nAh j p ,

j
.

p4bpA
f 0

c 0

j n1 gbnA
f 0

c 0

2b22bpAh j p .

(2.24)

We can write it in a matrix form:

j
K
.
4A Q j

K
,(2.25)

where

j
K
4 uj n

j p

v ,

A4

.
`
`
`
`
`
´

2a

b

b
g a

a
1

c 0

f 0
h1 f D

max

f 0

21
a

a

f 0

c 0

b
f 0

c 0

f D
max

c 0

2
b

b

21
a

a

f 0

c 0

2a g a

a
1

c 0

f 0
h

b

b
g a

a
1

c 0

f 0
h1 f D

max

f 0

21
a

a

f 0

c 0

2b

f D
max

c 0

2
b

b

21
a

a

f 0

c 0

ˆ
`
`
`
`
`
˜

,
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in A we have used for nA and pA the explicit expressions given in (2.14). We study now the
two eigenvalues of the matrix A written above. To this purpose we write the secular
equation

det (A2l 1)40 ,(2.26)

from which we get

(2.27) l 1, 24
1

2 g21 a

a

f 0

c 0
h
{2a g f D

max

f 0

1
c 0

f 0

b

b
1

b

a

f D
max

c 0

1
a

a

b

b
2

b

a
h6

6ya 2g f D
max

f 0

1
c 0

f 0

b

b
1

b

a

f D
max

c 0

1
a

a

b

b
2

b

a
h2

2

24ab g f D
max

c 0

2
b

b
h g f D

max

f 0

1
a

a

b

b
1

c 0

f 0

b

b
h g a

a

f 0

c 0

12hz1/2}
or in short

l 1, 242l (0)6l (1) ,(2.28)

where

(2.29)

.
`
`
/
`
`
´

l (0)4
1

2 g21 a

a

f 0

c 0
h
{a g f D

max

f 0

1
c 0

f 0

b

b
1

b

a

f D
max

c 0

1
a

a

b

b
2

b

a
h} ,

l (1)4
1

2 g21 a

a

f 0

c 0

h
ya 2g f D

max

f 0

1
c 0

f 0

b

b
1

b

a

f D
max

c 0

1
a

a

b

b
2

b

a
h2

2

24ab g f D
max

c 0

2
b

b
h g f D

max

f 0

1
a

a

b

b
1

c 0

f 0

b

b
h g a

a

f 0

c 0

12hz1/2

.

We see that l (0) is positive because

b

a

f D
max

c 0

D
b

a
,(2.30)

thanks to (2.15). Moreover, l (1) is either positive and smaller than l (0) or imaginary,
again thanks to (2.15). The net result is that the fixed point is a sink with either two
straight directions of approach, in the first case, or a spiral, in the second case. In
conclusion, every trajectory n(t), p(t) originated at n0 , p0 for t40 in the phase space,
for a given value of a and b , will fall in the point nA(a , b), pA(a , b) lying in the triangle of
fig. 3.

Given two points, namely (n0 , p0 ) for t40 and (nA, pA) for t4Q , the linear trajectory
and the nonlinear trajectory joining them can be close to each other or distant from
each other depending on the a , b chosen. This fact is nontrivial and implies the
understanding of the functional relationship a , bKnA, pA.
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Now we study how the fixed point nA, pA moves in the allowed triangular domain in
phase space when the parameters a , b span their own domain:

bDb min , aD0 .(2.31)

Notice that the map a , bKnA, pA is not a homeomorphism, because the function pA(a , b)
is not single valued. In order to analyze the relationship a , bKnA, pA, we remark that
the consideration of the parameters a and b as two independent variables is not
realistic. In fact b contains the information of how the population p(t) grows by feeding
on n(t) and a contains the information of how the population n(t) is diminished by the
same cause. It makes sense to consider a linear relationship between a and b of the
kind

b2b min4b 84ka .(2.32)

In such a way we scan the domain b 8D0, aD0 by straight lines.
From (2.32) we may define a parameter g in this way:

k4
g

12g
,(2.33)

or

g4
b 8

b 81a
,(2.34)

and we see that g can be considered as a measure of the efficiency of the predator. In
fact gK0 means b 8K0 for a given aD0, which means that the predator wastes its
prey with a rate a without any benefit (for b 8K0 the predator equation has no growth
contribution); for gK1, we have that for a given b 8 , aK0, that is the predator has a
benefit without a loss of a prey. On the other hand, we have previously defined a solar
efficiency of the prey-predator system:

h4
nf 01pc 0

f D
max

4h(a , g) .(2.35)

It is therefore quite interesting to see how h depends on a for various values of g . In
conclusion we study the motion of the fixed point nA, pA as a function of a , for various
values of g .

Remember that in this section system (2.10) contains a typical scale for the power:
f D

max , which is given from the outside; conversely c 0 and f 0 are properties of the
chosen species, and can be chosen in such a way that the domain of the fixed point in
the phase space, the triangle of fig. 3, is determined. On the opposite, there is no
external time scale, no privileged unit of the time t and consequently no privileged
values of a and b . We have given a reasonable guess to relate f 0 , c 0 to a , b , namely a
larger than b implies c 0 larger than f 0 . To fix the ideas, we chose for the numerical
calculations

c 042f 0 , a42b .(2.36)

This is all we can say. At the end, the parameter a remains undetermined and
consequently we let the remaining parameter a be specified simply in units of a . This is
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what we will do in the calculations that follow. Having established the linear
relationship (2.32), or

b4b min1
g

12g
a ,(2.37)

we rewrite here the two functions nA, pA (eq. (2.14)) as follows:

.
`
`
`
/
`
`
`
´

nA4nA(a , g)4

b

b min1
g

12g
a

g a

a
1

c 0

f 0
h1 f D

max

f 0

21
a

a

f 0

c 0

,

pA4 pA(a , g)4

u2 b

b min1
g

12g
a

1
f D

max

c 0 v
21

a

a

f 0

c 0

.

(2.38)

We find that

dnA

da
E0 , g fixed ,(2.39)

while pA(a , g) has a maximum at a certain value a 0 , solution of

dpA

da
40 , g fixed .(2.40)

The root of (2.40) is

a4a 0 (g)4
2ac 0

f 0
g bf 0 (12g)

2agf D
max h1/2

.(2.41)

Let us consider now

h4h(nA, pA)4h(a , g) .(2.42)

We find that

dh

da
E0 , for aD0 , g fixed ,(2.43)

and that h(a , g) has a flex point

d2 h

da 2
40 ,(2.44)
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Fig. 5. – In this figure we show the behaviour of nA as a function of a for a in the interval 0EaE4a
and for three selected values of g: g40.01, g40.1, g40.9. The reference case g40.5 is very close
to the curve corresponding to g40.9.

at a value a 1 , which can be calculated explicitly

a4a 14
2ac 0

f 0

g b(12g)f 0

2agf D
max h1/3

1 g 2agf D
max

b(12g)f 0

h1/3

21

11
2agf D

max

b(12g)f 0

.(2.45)

It is possible to show that

a 0Da 1D0 ,(2.46)

for any value of g .
After these preliminaries, we possess the background necessary to understand the

graphs that follow. In fig. 5 we show nA as a function of a , for a in the interval

0EaE4a ,(2.47)

and for three selected values of g:

.
/
´

g40.01 ,

k40.01 ,

g40.1 ,

k40.11 ,

g40.9 ,

k49 .
(2.48)

Figure 6 shows the behaviour of pA in the same interval of a values (2.47) and for the
same three selected values of g (2.48). We see that the peak value of pA increases for g
approaching the limit value 1.

Figures 5 and 6 are combined in fig. 7, where we see the position of the fixed point
nA, pA in the triangular domain of the phase space n , p .

The relationship between the global solar efficiency h and the predator efficiency g
is shown in fig. 8. In this figure we have chosen for a the value a4a 0 (g), namely the
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Fig. 6. – In this figure we show the behaviour of pA as a function of a , for a in the interval 0EaE
4a and for the three selected values of g (2.48). We see that the peak value of pA increases for g
approaching the limit value 1. The reference case g40.5 is very close to the curve corresponding
to g40.9.

value that maximizes the predator population:

h(a 0 , g)4h(a 0 (g), g) .(2.49)

We are finally ready to discuss the flow n(t), p(t) of the equation of motion (2.10). In
the phase space every trajectory is a finite line joining n(t40), p(t40) and n(t4Q),
p(t4Q) for a given choice of a , g (fig. 9). In general, we may assume that the
parameters f 0 , c 0 , a , b can be estimated phenomenologically, but a and g remain
unknown. Nevertheless, the preceding discussion enables us to relate each couple a , g

Fig. 7. – In this figure we see the position of the fixed point nA, pA in the triangular domain of the
phase space n , p . The running parameter is a . For a40, nA4700, pA 40 (namely point B). For
aKQ , we see from (2.14) that nA, pA K0. Notice that the curve corresponding to g40.9 is
practically indistinguishable from the segments BA, AO. In the figure the ensemble of the points
nA, pAmax , where nA4nA(a 0 (g) ) pAmax4 pA(a 0 (g) ) is also shown (dashed line). The reference case g4
0.5 is very close to the curve corresponding to g40.9.
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Fig. 8. – In this figure we show the solar efficiency h as a function of g , having chosen for a the
value a4a 0 (g), namely the value that maximizes the predator population. Notice that, due to this
particular choice of a , hK1 for gK0 and for gK1, and the function h(g) has a minimum for g4

g2 a

b

f D
max

f 0
11h21

43.57 Q 1024. The choice gK0 means no predator, and in this case the prey

saturates the solar flux, h41. As the predator comes in, and begins to interact with low efficiency
g , the solar efficiency h drops to a minimum and then grows with g . We remark that, from the
definition of g (2.33), the limit values gK0 and gK1 are unrealistic. The reference case g40.5
corresponds to h40.98.

Fig. 9. – Particular trajectories in the phase space n , p , solutions of the system (2.10) and of the
linearized system (2.22), starting at the point n04p041 at t40, and ending at the point nA(a , g),
pA(a , g) at t4Q . a) a420a 0 , g40.9; b) a42a 0 , g40.001; c) a4a 0 , g40.5; d) a40.05a 0 , g4
0.5. Notice that the spiralization in a) is due to the complex conjugate eigenvalues. In b) and d) the
linear trajectory is almost indistinguishable from the non linear one.
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Fig. 10. – In the figures on the left-hand side we show the approach to the asymptotic value of n(t)
and p(t) corresponding to different values of a and g , solutions of the system (2.10), starting at the
point n04p041 at t40, and ending at the point nA(a , g), pA(a , g) at t4Q . The figures on the
right-hand side show the efficiency h . a) a420a 0 , g40.9; b) a4a 0 , g40.5. The time is
expressed in units of 1022 a21 .

to a position of the end point nA, pA in the triangle OAB. Therefore, in principle, the
experimental observation of the trajectory n0 , p0KnA, pA gives a method for identifying
a and g .

The following figures are divided into two groups. In fig. 10 we study the development
of the system when the initial condition is the minimum seed: n041, p041. The
behaviour of the various solutions belonging to different couples a , g has these features:

– the prey develops quickly, tending to its maximum value if the coupling a is
small compared to a , then the predator takes over, reduces the prey number and the
two species together tend to the end point;

– when the coupling maximizes the predator (a4a 0 (g) ), the corresponding nA, pA

values lie roughly at the center line of the triangle (g not too small), see fig. 7;

– for aDa 0 the end point lies on the left sector of the triangle.

In fig. 11 we study the development of the system when the initial condition is the
fully grown prey n04698 and the predator comes in as a seed p041. With n04698 and
p041, we have an initial state that satisfies the energy balance: 698f 011c 04
f D

max .
It is interesting to remark that our model predicts for a certain a and g a transient

of overgrowth, namely an interval of time in which the power of the system is larger
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Fig. 11. – In the figures on the left-hand side we show the approach to the asymptotic value of n(t)
and p(t) corresponding to different values of a and g , solutions of the system (2.10), starting at the
point n04698, p041 at t40, and ending at the point nA(a , g), pA(a , g) at t4Q . The figures on the
right-hand side show the efficiency h . a) a420a 0 , g40.9; b) a4a 0 , g40.5. The time is
expressed in units of 1022 a21 .

than the solar flux: f 0 n(t)1c 0 p(t)Df D
max . The overgrowth appears in the strong-

coupling case, a420a 0 and not in the reference case a4a 0 .
From fig. 10 and 11 we observe that the time necessary for n(t) and p(t) to get very

close to nA and pA is of the order of A1022 a21 in the strong-coupling case a420a 0 and is
of the order of A30 Q1022 a21 in the reference case a4a 0 . We can have a deeper

Fig. 12. – Nl 11l 2 N as a function of a (in units of a) for the values of g40.9, 0.5, 0.1. Nl 11l 2N
large means short transient time, Nl 11l 2N small means long transient time.
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insight into this fact by considering the behaviour of the roots l 1 and l 2 of the
linearized system (2.22) which governs the exponential decay of the solution to the
asymptotic value nA, pA. Let us consider

Nl 11l 2N4
1

21
a

a

f 0

c 0

{a g f D
max

f 0

1
c 0

f 0

b

b
1

b

a

f D
max

c 0

1
a

a

b

b
2

b

a
h} ,(2.50)

this quantity is real and negative and has dimension t 21 . Nl 11l 2N large means short
transient time, Nl 11l 2N small means long transient time. In fig. 12 we show the plot of
eq. (2.50).

We conclude this section with a remark on “the good predator”.
Nature comes in such a way that there are preys and predators. Whether this is an

initial decision of God or a product of the evolution we do not know. Anyhow it is a fact.
Our model gives the simplest dynamical description of this fact. The prey alone can
only grow up to its solar saturation. The predator can only predate, and tries to
increase its own number p(t), which, after a transient, tends to the equilibrium value pA.
Moreover the predator may try to modify its coupling parameters a and g in order to
reach the maximum equilibrium value pAmax . This process implies a loss of the prey
population. The best predator is the one that gets the maximum advantage from the
minimum loss of the prey, because too little prey implies decreasing predator. So the
good predator tries to organize its activity in such a way that

gK1 ,

and the result shown in fig. 8 indicates that the good predator maximizes its number at
the same time maximizing the global solar efficiency.

This is the intelligent predator, the one that does not waste uselessly the prey. The
good predator predates taking care of its prey.

Is this the behaviour of humankind? The answer is clearly “no”. Humankind
exploits not the solar harvest, but mainly the nonrenewable resources. Humankind
grows by feeding on the fossil resources. This implies a completely different model.
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