
IL NUOVO CIMENTO Settembre-Ottobre 2000VOL. 23 C, N. 5
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Summary. — A model for the dynamics of dense water plumes in a homogeneous sea
initially at rest, suddenly perturbed on the air-sea surface by a series of random
buoyancy inputs localized on small space and time scales, is presented here. A
Lagrangian representation allows the time evolution for a single, mixing plume able
to carry down dense water mass to be obtained. Moreover scaling laws are found for
long times, which depend on the surface air-sea interaction statistics involved and on
the forcing time scale: in this way it is shown that the asymptotic time evolution of the
plumes is the result of surface heterogeneous buoyancy forcing inputs.

PACS 91.10.Vr – Ocean/Eart/atmosphere interaction.
PACS 91.50.Ey – Ocean bottom processes.

1. – Introduction

Sudden cooling and evaporative events occur on the sea surface during the winter in
several regions, inducing buoyancy instabilities and convective mixing, an important
mechanism responsible for deep water formation (DWF). A recent review and
references are given in Maxworthy (1997) and in Marshall and Schott (1998). The
known experimental observations of these phenomena in an open sea (Marshall et al.,
1994; 1998; Schott et al., 1993; 1994; Medoc, 1970) can be summed up in four phases: a
preconditional (or doming formation) phase, a violent mixing (or plume formation)
phase, a plume mixing (or rotating chimney formation) phase, a chimney baroclinic
instability (or cone formation) phase until the chimney finally breaks off as the external
forcing dies down. The dynamics of plumes during the second above-mentioned phase
has in recent years been the focus of observational, laboratory, numerical and
theoretical studies (Fernando et al., 1991; Coates et al., 1995; Maxworthy and
Narimousa, 1994; Marshall et al., 1993; 1994; 1998). These studies suggest some scale
relations for the convective layer in a homogeneous sea relating the layer depth h , its
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velocity (u
K
4 (u , w)) and the reduced gravity g 8 to the assumed basic physical

quantities controlling the whole phenomenon (i.e. the surface buoyancy flux B0 ,
assumed as homogeneous and constant, and the time t): hC (B0 t 3 )1/2 ,
uAwA (B0 t)1/2A (B0 h)1/3 , g 842bA (B0 t 21 )1/2AB 1/3

0 h 21/3 ; a self-similarity process
is assumed for the plume dynamics (Send et al., 1995).

The object of the present work is to discuss the plume formation process in a
homogeneous sea when the surface buoyancy flux is not assumed to be homogeneous or
constant but a statistical set of buoyancy inputs; the existence, in such a case, of scale
laws and their consistency with the observed phenomenology and the Marshall scale
laws are examined. These transient phenomena are indeed fundamental factors in the
comprehension of the chimney dimension and its critical depth.

For the sake of simplicity we neglect the Earth’s rotation effect by studying a
bidimensional case (vertical plane), in Boussinesq approximation. The Coriolis force f is
thus disregarded. This is in any case a good step toward understanding plume
evolution because experimental and numerical studies demonstrate that the convective
layer deepening is a small space and time scale phenomenon (h much less than the sea
depth, t b f 21) and is not controlled by the Earth’s rotation.

The sea is assumed to be initially still, but is then perturbed on the surface by
sudden transversal dry (or cool) winds: these phenomena in fact occur under strong
meteorological perturbations (mistral, monsoon) that appear as a large series of random
events occurring in a short period of time. The result of the winds on the sea surface is as-
sumed to be equivalent to sudden space and time non-homogeneous surface cooling; in
fact the analysis of field data, as obtained by Schott and Leaman (1991) in the Gulf of
Lions, suggests that the turbulent plumes are generated by the non-uniformities of the
cooling effects. But MEDOC observations (Schott et al., 1996) show decorrelation
between plumes on a 2 km horizontal range. This allows us to follow the dynamics of a
single plume space uncorrelated with the others but forced by localized small inputs.

Here two limiting cases are analysed:

a) deterministic evolution of a single plume due to a sudden single localized
buoyancy input (DE);

b) its evolution under the effect of many random localized external buoyancy
inputs occurring during a finite time (SE).

Both a Eulerian and a Lagrangian representation of the plume formation process
are presented; the asymptotic time evolution of the single plumes, able to carry the
dense water mass down and to mix it under different air-sea interaction statistics, is
described. The Marshall scale laws are identified again in the case (DE), or when a
very rapid linear multiplicative white noise or a constant buoyancy input are given to
the sea surface. A new behaviour and new scale laws are found when some different
interaction statistics are assumed: in such cases the plume time evolution is ruled by
the spread buoyancy initial conditions, which dominate the single input of the buoyancy
parcel.

2. – The model

Consider a bidimensional, homogeneous model for a vertical plane (x , z) of a sea in
Boussinesq approximation (Phillips, 1966; Garrett et al., 1996). Its dynamics is described
by two coupled equations (derived from the Navier-Stokes and continuity equations) for
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Fig. 1. – The spread vorticity sources forming the spread “quadrupoles” by the “image charge
method”. The squares are the charges 6Ndq(x0 , z0 )N ; at P(x , z) the streamfunction dc generated
by everyone of them is a function of ri (x2xi , z2zi ) for i41, R 4.
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with the boundary and initial conditions

c(x , 0 , t) )4c(x , H , t)40 ,(1c)

¯c

¯x
(x , z , t40)4

¯c

¯z
(x , z , t40)40 .(1d)

Here g is the gravity acceleration, r 0 , r are the unperturbed and perturbed
densities, u , w are the horizontal and vertical components of the velocity field. The
buoyancy input is schematized here as a sudden event (a single Dirac function d(t))
localized in a single point (x40), but spread over a range a as a Gaussian and is also
penetrating; l21 is the penetration depth. In order to examine the effect of the
buoyancy loss, we neglect the effect of the transversal wind stress.
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In order to compare the results of our model with the classical Marshall laws, it is
necessary to rewrite our model as a function of the surface buoyancy flux; it is possible
to do this, if we note that in a sea with a flat surface (without doming due to
preconditioning) an evaporation or cooling event corresponds to giving a vertical

velocity w0 to the sea surface such that w4w01
¯c

¯x
, where ¯c

¯x
is the vertical velocity

taken in the moving surface reference frame and w0 is its velocity in the laboratory
reference; this velocity is connected with the lowering of the surface position because
of the evaporation and cooling event, which differs from zero only in the instant t40 as
shown in the footnote (1). The consequence is that this model corresponds to a single

localized buoyancy flux B04b0 w04
b 2

a

lg 8
d(t) e 2lz e 2x 2 /2a 2

such that its time and space

average is (1)

aB0 b4
l

at
�

0

t

dt 8 �
2L

L

dx�
0

H

dz B0C
NbaN

lt
.(2)

Such a singular forcing is a very idealized one, entailing an instantaneous response
of the sea surface to an external atmospheric event: it may be thought of as identically a
very fast external forcing or a sudden surface cooling event due to a past, longer
atmospheric event.

Equations (1a)-(1d) form a non-linear system, whose symmetries in space and time
allow us to say that:

– The buoyancy input is symmetric around x40 and decreases down to a
thickness of 30 mGl21G100–200m; the penetration depth may have a large spatial
range extending from the radiative penetration depth to the thermal boundary layer
depth, depending on the heat diffusion coefficient k . We will actually show later how in
our model it coincides with the initial convective source depth. We analyse the
non-diffusive limiting case, such that l21C30 m; but in order to compare our results
with the experimental ones, a larger l21 has to be chosen.

– The consequence is the formation of a horizontal buoyancy gradient which is
antisymmetric around the perturbation centre; two opposite space-diffused,
time-dependent, vorticity sources appear around x46a . The velocity field is such that
its horizontal component is antisymmetric around the perturbation centre and its
vertical component is symmetric around it.

– The buoyancy suddenly changes locally because of the surface input, and is
then driven by the velocity field along the streamlines.

We thus start to analyze the initial evolution of the system for tC0: b(x , z , 0 )4

(1)

w04
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dt Nz40
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ba e 2lz e 2x 2 /2a 2
is thus fixed by the initial input of buoyancy by integration of eq. (1a) for

short times, when the streamfunction c and its space derivatives are approximately
zero, whilst c(x , z , t) is the solution of the linearly time increasing equation

D2 c42�
0

t
¯b

¯x NtC0
dt 84

ba x

a 2
e 2lz e 2x 2 /2a 2

t

with the boundary condition c(x , 0 , t)40. This may be identified as a Poisson
problem: the vorticity field is generated by a space distributed source, namely a
linearly time increasing «charge density». The boundary conditions (1c), (1d) and the
symmetry properties of the vorticity sources allow the problem to be transformed into
a bidimensional Laplace problem, soluble by the «image charge method, well known in
electrostatics (see fig. 1). The «charge density» may thus be thought of as a continuous
envelope of space spread vorticity “quadrupoles”, centred on the origin, whose
“charges”, symmetrically arranged around the axes, have intensity

Ndq(x0 , z0 , t)N4�
0

t

N2 ¯b

¯x
(x0 , z0 )Ndt 8 dx0 dz04�

0

t

dt 8 Ndq(x0 , z0 )Ndx0 dz0 ,

and whose sizes are z42z0 , D42x0 . For short times, each of these generates a

streamfunction such as dc4NdqN
x

NxN
log r2 r3

r1 r4

, where ri (i41, R 4) are the distances

of the generic point P(x , z) from the four “quadrupole charges” as shown in fig. 1: here
it is evident that
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1 gz1 z

2
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,
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2
h2

1 gz2 z

2
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,

so that, for x , z ,K0, dcP
NdqNzD

(z 21D2 )2
NxNz and for D

x
, z

z
K0, dcP

NdqNx

NxN

zDNxNz

(x 21z 2 )2

decaying as r 24 for long distances. If we consider every vorticity source as independent
of the others, near each one the streamlines are closed lines (such as ellipses whose
focus is near the source) that at a certain distance become hyperbolae NxNz4const ,
whose asymptotes coincide with the axes; a net downward velocity is thus observed
around x40; an antisymmetric horizontal velocity u(x)42u(2x) is thus also
obtained near the axes. But it is possible intuitively to see how the envelope of all the
closed streamfunctions dc generated by every “quadrupole” (whose charge is dq) is
destroyed by interference: the streamfunctions are actually additive only near the
origin where every dc assumes a hyperbolic form; we are thus justified in thinking of
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our model streamfunction for short times such that the non-linear terms are
negligible:

c4�
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DzNxNz

(z 21D2 )2
dx0 dz0 dt 8 .

The integrated, concentrated “quadrupole charges”, whose intensity is NqN4

s
q
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(x0 , z0 ) dx0 dz04

ba x

NxNl
are localized at z46z/246

1

l
log 2 ,

x46D/246ak2 log 2 , so that s
0

z

dz b(0 , z)4 1

2
s

0

H

dz b(0 , z); b(x, z)4
b(0 , z)

2
; this is,

for the Boussinesq approximation, a conserved quantity during the following evolution;
its position will be the initial condition for its following evolution.

2.1. Lagrangian representation of one plume formation. – The hyperbolic
streamfunction form, good for short times, is valid for all the times. If we follow the
buoyancy along its path, for the continuity equation we have

(4) b(x(t), z(t), t)4

4b ux(0)1�
0

t

u(x(0), z(0), t 8 ) dt 8 , z(0)1�
0

t

w(x(0), z(0), t 8 ) dt 8 , 0v .

The initial convective process formation is described in fig. 2. The buoyancy is dragged
along the streamfunction, like the vorticity sources; as the latter, situated initially at
(x0 , z0 ), move downwards along the isolines NxNz , they produce increasingly new
streamlines depending on their position (figs. 2, 3). The significant part of the

Fig. 2. – The diffuse vorticity quadrupoles dq42(¯b/¯x)(x0 , z0 ) dx0 dz0 and the hyperbolic
streamfunctions driving them during the initial convective process.
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Fig. 3. – The diffuse vorticity quadrupoles driven by the streamfunctions and the new streamlines
generated.

streamfunction generated by the whole spread vorticity source is

c(x , z)4�
q

dq(D , z)�
0

t
zD

(z 21D2 )2
NxNz dt 8 ,(3a)

where s
0

L

s
0

H

2
¯b

¯x
dx0 dz04s

q
dq(D , z).

It is possible to introduce a transformation from the Eulerian (x , z , t) to the
Lagrangian (x(0), z(0), t) variables (Salmon, 1999): every fluid particle retains the
same values of (x(0), z(0)) the whole time; along the hyperbolic streamlines the

convective derivative is D

Dt
4

¯

¯t
, and ¯

¯x
4a11

¯

¯x(0)
1a12

¯

¯z(0)
; here a1240 and, for

long times, a11C1.
The path followed by the vorticity sources may be identified as the quadrupole size

evolution, such that

D(t)4 x1�
0

t

u(x(0), z(0), t 8 ) dt 8 , z(t)4 z1�
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t

w(x(0), z(0), t 8 ) dt 8(5)
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dw
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4
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dt
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h

0

C�
q
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Dz

(z 21D2 )2
zz4z/2 .(6)

Each infinitesimal vorticity source dq moves along a hyperbola, as shown in fig. 2, so
that NxNzCconstD0; during its motion it does not change, so that dq4dq(x, z). As it
seeps z c D , but zD4const4C so that eq. (6) becomes

d2 z

dt 2
C�

q

dq(x, z )
C

z 3
4

NbaN

l

C

z 3
.(7)
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Fig. 4. – The whole vorticity sources ever closer to the axes x40 for long times: a) at time t ; b) at
time t1Dt.

If we now follow the water parcel giving rise to all the vorticity, we find that it moves
along the stream, but remains unchanged. It is thus reasonable to assume that every dq
vorticity source moves asymptotically along the same path independently of the others,
so that the whole point-sized “charge” integrated q , of order NbaNl21 , eventually
makes its contribution to the convective velocity. The long-time convective process is
described in fig. 4. In the simple case considered so far of one single sudden buoyancy
input the integration of eq. (7) for the scaled variable z 84lz gives, if we rename z 84z
(see the appendix),

dz

dt
4

NbaNCt

[11CNbaNt 2 ]1/2
,(8)

tending to (CNbaN)1/2 for long times.
This result shows that the plume evolution is able, as in the classical theory, to carry

the water mass down, so as to mix it. So, if we could know the value of NbaN in an
experimental or field observation we would measure a constant velocity of the water
plume as a function of this quantity; but the Marshall scale laws are functions of the
surface buoyancy flux (2) whose values are generally calculated by an averaging process
(daily, weekly or monthy) from satellite or meteorological observations; these scaling
laws are thus recognized if, by using eq. (2), we remember that NbaN4 aB0 b t , so that,

for long times, the scaled variable z scales as zC (CaB0 b t 3 )1/2 , and dz

dt
C (CaB0 b t)1/2 .

(2) Remember that (Gill, 1982) the buoyancy flux is defined as

B042
gaQ

r 0 cw

1gbs
E2P

r 0

,

where Q is the heat flux, a4
21

r
g ¯r

¯T
h

p , T

, b4
1

r
g ¯r

¯s
h

p , T

, E is the evaporation rate and P the

rainfall rate, s the salinity, cw the water specific heat.
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The impulsive nature of the event described through our model, such that the generally
measured averaged value aB0 b is in inverse relation to the time, gives such a
t 1/2-dependence of the velocity. A deeper analysis of these results will be discussed in
the conclusive section.

3. – Stochastic approach

This delta-function approach is idealized because it assumes a single sudden
variation of the surface buoyancy whatever the meteorological conditions may be (in
any case a single storm): it is only presumptive about the plume dynamics whose time
scale is experimentally longer than the external time variability. It is possible to verify
for a 100–500 m plume that for a turbulent velocity of 5–10 cm/s (as experimentally
measured, e.g. at the Medoc region) the time scale of the variation of the plume is about
2000 s as its lifetime is A2h while the time scale of the cat’s paws of wind is about
3–10 s. That means that during the convective stage we do not have a single variation of
the surface buoyancy, but many, each of which is related to a cat’s paw: the plume
dynamics is the effect of an integration over the fast time variation and has to be
dependent on the air sea statistics. In order to compare many kinds of air-sea
interaction statistical models, we analyse in particular a Wiener process, a linear white
noise process and a softer one (deterministic with noise) in the separate cases of high
and low frequency of the external event.

3.1. Wiener. – If we assume that many random “delta” events (Gardiner, 1983)
impinge on the same region, so that at random times 0G t1GR tnETKQ we have a
lot of inputs ba changing randomly so that their increments dbaAe 1/2 dW(t) are

independent, the generalized equation (7) scaled with l becomes d2sdz

dt 2
4

Ce 1/2sdW(t)

z 3
(3). Physically this model shows a series of different evaporation or cooling

events, each able to change the absolute buoyancy: given ba4b i
a at the time t4 ti , we

have ba4b i
a1dba (such that adba b40, but aba bA aW(t)bc0) at the time t4 ti11 ;

namely every density increment may vary in size, but the final result is in any case an
evaporation or cooling process such that the buoyancy is always negative and aba b4
aba b1e 1/2�adW(t)b. Each of these random events is an external forcing dragging the
plume downward: it is added randomly to the former events so that the plume path
g�dzh is randomly changed. On mathematical grounds, we can consider z4z(ke ); if
e b 1, then zCz 01kez 1 R , so that we can have a set of differential equations for
every order. At the 0th-order in ke (e40, so that only the single event at t40 is
considered) we have z 041. Its integration at the first order in ke gives z 14

Ce 1/2s
t

dt 8s
t 8

dt 9s
t 9

dW(tA) whose mean value is zero; if we square and average this

(3) The latter process is defined as a stochastic one whose mean value is zero, and whose variance

increases with time so that s
t

s
s

adW(t 8 ) dW(t 9 )b4min [t , s]. The parameter e has the dimensions

of b 2
a

t
, that is the mean square variability over a time such that t21 is the process probability over

unit time, i.e. the process variability aDb 2
a b

1/2 over unit time (we have chosen an ideal process
whose probability distribution is diffusive with a constant diffusion coefficient).
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expression, we have (see the appendix)

d

dt
[az 2 b2 azb2 ]1/24

5Ce 1/2

4 k3
t 3/2 .(9)

It should be noted that the integration leading to this equation is made only after
elevation to a second power, so that the time evolution of the vorticity sources is given
by their space dispersion, as led by the external process time dispersion.

In order to explain this result, and to compare it with the similarity scaling laws, it
is possible to define a time scale t (time scale between buoyancy inputs); if we use
dimensional arguments, a scale stochastic buoyancy flux may be defined as

[aB 2
0 b2 aB0 b

2 ]1/24 aDb 2
a b

1/2 w4
aDb 2

a b
1/2

lt
(10)

(where aDb 2
a b

1/24 (et)1/2 is the mean variability between buoyancy inputs for unit time)
and if we scale the time as t4 t

t
as well as every length as z 84lz , eq. (9) becomes (by

renaming z4z 8)

d

dt
[az 2 b2 azb2 ]1/2C [aB 2

0 b2 aB0 b
2 ]1/2 t 3/2 .(10a)

In such a case, the plume evolution is ruled by the spread surface buoyancy flux,
dominating the single DE buoyancy parcel dynamics and leading to an increasingly
accelerated crash on the bottom. A similarity process can be recognized, but with new
scale relations.

If e c 1, a 1

e
expansion does not show any physical solution because only a

non-physical, instantaneous plume deepening seems possible, but a suitable time scale
transformation leads to the time power law shown in eqs. (9), (10a) (Bouché, 2000).

3.2. Linear multiplicative white noise. – If we assume a process such as (defined in
Gardiner, 1983, p. 103) (4)

dbaAba e 1/2 dW(t) ,(11)

eq. (7), scaled with l , becomes d2sdz

dt 2
4

Ce 1/2sba (t 8 ) dW(t 8 )

z 3
, where ba (t)4ba (t0 ) Q

Q e kesdW2
e

2
t ; for e b 1 (so that ba (t)Cba (t0 )(11kesdW ) ) , if we perform the same

expansion as before, we can integrate till the first order in ke , square and average and
get (see the appendix)

d

dt
[az 2 b2 azb2 ]1/2C

5

2
y Ceb 2

a (t0 )

2 k3
z1/2

t 3/2 .(12)

(4) This is a kind of multiplicative white noise, where the constant e is t21.



STATISTICAL CONVECTIVE DOWN MOTION DRIVEN ETC. 479

If we scale the time as t4 t/t , and the buoyancy flux as B04
ba (t0 )

lt
, we have

d

dt
[az 2 b2 azb2 ]1/2CB0 t 3/2 ,(12a)

so that the convective velocity scales with B0 t 1/2 instead of (B0 t)1/2 .
For e c 1, a 1

e
expansion gives (see the appendix)

»u d2sdz

dt 2
v2

«
1/2

C
Cba (t0 )

(az 2 b1/2 )3
.(13)

We recognize here the same equation as DE, and the same scaling laws.

3.3. Softer stochastic air-sea interaction. – So far we have analysed only
discontinuous cases; furthermore, a softer superficial density changing process may be
realistic. If the air-sea interaction is simulated by

dbaAa(t) dt1e 1/2 ba dW(t) ,(14)

where a(t) (5) is a generic time function, we have (Gardiner, 1983, p. 112)

ba (t)4e kes
0

t
dW2

e

2
tyba (t0 )1�

0

t

e 2kes
t

t 8
dW1

e

2
t 8 a(t 8 ) dt 8z ;(15)

if e c 1, the plume evolution is deterministic and its deepening velocity time powers
are produced wholly by the rate a(t); if e b 1, by an e expansion we find at the
0th-order that the plume time behaviour depends on a(t) and not on the stochastic
term. But the non-linearity of the equations is such that it is generally not possible to
be sure about the uniqueness of the solution and many possible temporal evolutions are
possible. In fact at the next order, small amplitude variance oscillations, whose
frequency is dependent on time, appear in any case (see the appendix).

3.4. Constant surface buoyancy flux. – It is in any case interesting to see how this
equation leads naturally to the Marshall laws in the classical case of constant surface
buoyancy flux; in fact, if

Db

Dt
4

¯B0

¯z
(16)

with B04Ba e 2lz e 2
x 2

2a 2 , the function b(x , z , t) is not a conserved quantity any more;
but for Boussinesq approximation, it is possible to say that the quantity

q(t0 )4�
0

t0

dt 8 �
0

L/2

dx0�
0

H

dz0 dq(x0 , z0 )

remains anyway constant during the next times: q4q(t) changes, but q(t0 ) is
conserved. It is so possible to follow its evolution along the hyperbolic lines, so that the

(5) a(t) is a function giving a deterministic finite velocity to the buoyancy variability.
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plume evolution may be described by the equation

d2 z

dt 2
4Nq(t0 )N

C

z 3
,(17)

where t0 is the time during which the buoyancy flux is applied; the scaled variable z
thus behaves as zC (CBa t0 )1/2 (t2 t0 ). If the time is scaled with t0 , for long times we
have

zC (CBa t 3
0 )1/2 t(18)

and

dz

dt
C (CBa t0 )1/2 .(18a)

4. – Conclusions

In order to check the postulated generation of turbulent plumes as a result of time
and space surface heterogeneous buoyancy forcing inputs, we investigated the
asymptotic time evolution of a single plume due to an external forcing, localized in
space and horizontally decaying as a Gaussian, by testing various time distribution
functions for the air-sea interaction. In every case we assumed that the global effect of
the diffuse vorticity sources can be viewed as a destructive interference by the closed
streamlines in their vicinity, so that only the hyperbolae near the origin can be
summed: the consequence is that the vorticity sources are driven by the latter; as the
vorticity approaches the central axes, the mixing closed lines are increasingly in phase,
so that their interference is no longer destructive and their turbulent effect increases
constantly.

The vorticity sources generate an increasingly diminishing horizontal scale
convective motion, whose vorticity is conserved; so if a single d(t) event (DE) sweeps
the localized region, the sinking velocity, driven along the hyperbola, will become
constant and very slow; i.e. the single plume will be able to carry the water mass down,
but, as it goes, it will give rise to convective mixing too, so that its velocity becomes
constant. Only a continuous recurrence of the event can push down the heavy water
with an accelerated motion. For long times, the DE plume evolution satisfies the
Marshall scaling laws, as in the classical case in which the time constant surface
buoyancy flux is given if every length is scaled with l . It shows that the long-time
behaviour of the plumes is not really a collective effect, but depends only on the
external source and its statistics. When a small-amplitude random Wiener process,
such as a linear white noise, is assumed for the air-sea interaction, a self-similar
behaviour may be identified for long times, but new scaling laws are found for the
convective velocity and depth if the time is scaled with a time scale related to the input
probability. This assumes a statistics, like the simple ones analysed here, specific to a
random walk process for which a constant jump probability per unit time is defined. It
is possible to predict that, if the air-sea interaction statistics is such that it is not
possible to define such a time scale, we will no longer find any self-similar behaviour. It
must in any case be noted that the plume evolution and scaling laws are defined
through the mean square deviation, ruled by the spread buoyancy inputs: this hides the
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single buoyancy parcel dynamics because it is ruled by a higher time power; therefore,
the plume dynamics and scaling laws are produced by the external statistics. Moreover,
if the air-sea interaction is simulated by a Wiener process, the convective quantities
scale with the scaled surface buoyancy flux variability, while they scale with the scaled
mean buoyancy flux if a linear multiplicative white noise is used. At the continuous limit
(tK0) of a multiplicative white noise the Marshall scale laws are in any case
recognized again. This kind of statistics is specific to a random walk process, so that
every ba is independent of the others and no memory of the past is assumed. The
Wiener process is an extremely limiting case, generally assumed when
thermodynamically non-homogeneous, far from equilibrium conditions are imposed.
Both appear as idealized statistics that are no longer reliable in our real case of a storm
during which strong winds blow over the sea surface; the statistics involved depends on
the characteristics of the real process, and only a deep analysis of the experimental
atmospheric data allows us to infer it. But it is important to note how the time evolution
depends on the air-sea interaction statistics involved. If a softer stochastic air-sea
interaction is assumed, the plume evolution is no longer defined: it depends on the rate
a(t), but the noise introduces small-amplitude variance oscillations whose frequency is
dependent on the time. Moreover, it is possible to infer that, if the air-sea interaction
statistics is such that it is not possible to define a time scale t any more, we will no
longer find any self-similar behaviour. Both the plume evolution and the scaling laws
are defined except for the constant C : it is the hyperbolic isoline along which the
vorticity source runs; its value is undefined because of the roughness of the model: in
fact, C4C(t), because during the vorticity source dragging, newer and newer stream-
functions, just as new smaller C hyperbolae, are generated; but for DK0 it is
reasonable to neglect its variation, as compared with the vertical movement z (Bouché,
2000). We may conclude that, for long times, the plume time evolution is not really a
collective effect, but depends only on the external source and its statistics. A
forthcoming analysis is planned for the observed distance among the developed plumes
and their dimensions.

AP P E N D I X

Calculations for one plume evolution

a) DE

If we multiply both members of eq. (7) by dz

dt
, we have

1

2

d

dt
g dz

dt
h2

4�
q

dq
C

2

d

dt
g2 1

z 2 h ,(A.1)

so that

dz

dt
4 y�

q

dq C g 1

z(0)2
2

1

z 2 hz1/2

.

The following integration and some algebra, together with the boundary conditions
z(0)4 z, z

.
(0 )40, lead to eq. (8).
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b) Wiener process

If we again write eq. (7) scaled with l as

d2sdz

dt 2
4

Ce 1/2sdW

z 3
,(A.2)

so that the whole “force” is the sum of the infinitesimal “forces” given by the single
buoyancy inputs, we can transform it into the coupled system

dv

dt
4

Ce 1/2sdW

z 3
,(A.3a)

dsdz

dt
4v .(A.3b)

Here z4z(ke ), v4v(ke ) so that, if e is small, it is possible to write z4z 01
kez 11R and to transform the coupled equation system (A.3a), (A.3b) into a series of
coupled systems for every ke-order:

dvi

dt
4C�dW

di21

de (i21)

1

z 3 Ne40
,

dsdz i

dt
4vi .(A.4)

At the 0th-order, dvi

dt
40; for the boundary conditions the only solution is z 04 z; at the

first order, we have

dv1

dt
4

C�dW

z 3
,

so that (if we remember that zA1)

z 14C�
t

d y�t 8dt 9�
t 9

d t�
t

dW(t ) z ,(A.5)

whose mean value is zero. It is easy to verify that

az 2 b2 azb24eaz 2
1 b ,(A.6)

so that if we square and average, remembering that et4 as
t

dW(t 8 ) s
t

dW(t 8 )b, we obtain
eq. (9). If the value of e is large, the last series expansion is no longer possible; if the

opposite expansion in e21/2 is performed, the only possible solution of CsdW

z 3
0

40 is
zAO(Q).

c) Linear multiplicative white noise

If again

d2sdz

dt 2
4

Ce 1/2s
t

ba (t 8 ) dW(t 8 )

z 3
,(A.7)
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we have

d2sdz

dt 2
4

e 1/2 Cba (t0 )

z 3
e kesdW2

e

2
(t2 t0 ) .(A.8)

If e b 1, so that ba (t)Cba (t0 )(11kesdW), the same series expansion as before, at
the first order in ke , leads to the equation

d2sdz 1

dt 2
4

Cba (t0 )�
t

dW(t 8 )

z 3
0

.(A.8a)

If we integrate this equation, square and average as before, we get the results
shown in eq. (19). If e c 1, ba (t)Cba (t0 ) e 2

et

2 , so that

d2sdz

dt 2
C

Ce 1/2

z 3
ba (t0 )�

t

e 2et 8 /2 dW(t 8 ) ,(A.9)

whose mean is zero; but if we square and average this equation, we have

»u d2sdz

dt 2
v2

«C C 2 eba (t0 )s
t

e 2et 8 dt 8

az 6 b
(A.10)

that, in the limit e c 1, leads to eq. (13).

d) Soft stochastic model

If e c 1, eq. (A.1) becomes

d2sdz

dt 2
4

Cba (0) e 2et/2

z 3
y11b 21

a (0)�
t

e et 8 /2 a(t 8 ) dt 8z .(A.11)

After a very short time t42/e , the first term on the right-hand side of this equation
goes to zero; the plume evolution depends mainly on the soft cooling or evaporative

rate a(t); if this is a polynomial, its integration gives terms such as g 2

e
hn t m 1 decaying

terms, so that

d2sdz

dt 2
4

C

z 3
S k akg 2

e
hk

t m .

If a 1

e
expansion is done, at the 0th-order this equation is equal to zero, so that z 04 z.

At the next orders the above-mentioned conclusions may be drawn.
If e b 1 an e expansion of eq. (A.11) gives, at the 0th-order,

d2sdz 0

dt 2
4

Cba (0)

z 3
0

k11b 21
a (0)�a(t 8 ) dt 8l .
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At the first order

d2sdz 1

dt 2
4a(t) z 11z 81 (t) ,

where

a(t)42
3Cba (0)

z 4
0

y11b 21
a �

t

a(t 8 ) dt 8z
and

z 81 (t)4
Cba (0)

z 3
0

yy11b 21
a �

t

a(t 8 ) dt 8z�
t

dW(t 8 )1b 21
a (0)�

t

dt 8 a(t 8 )�
t 8

dW(t )z .

It may be transformed into a linear coupled system

dv1

dt
4a(t) z 11z 81 ,(A.12a)

dz 1

dt
4v1 ,(A.12b)

whose solution is

v1AAe iv(t)y11A 21�
t

e 2iv(t 8 )z 81 (t 8 ) dt 8z ,

where

v(t)A
(3Cba (0) )1/2

z 2
0 (t)

y11b 21
a (0)�

t

a(t 8 ) dt 8z1/2

.

But z 814z 81 ( dW), so that az 81 b40, and

az 2 b2 azb2Aeaz 2
1 b .

If we integrate eq. (A.12b) and square it, simple calculations lead to the conclusions
discussed at the end of subsect. 3.3.

* * *
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CASSANDRO and A. VULPIANI for their criticism, and to the referees.
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BOUCHÉ V., On a statistical approach of convective motions in the sea driven by random

buoyancy inputs on a homogeneous and non homogeneous, viscous sea, submitted to J.
Marine Res., 2000.


