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Summary. — We explore some symmetry properties of the leading terms that
constitute the solution describing the flow field structure in a wind-driven,
bottom-dissipated ocean. Both the weakly non-linear and the highly non-linear
regime are investigated. The main result is that the northward displacement and the
westward intensification of the current system, which are typical of the subtropical
gyres (for instance the North Atlantic Ocean), can be ascribed to an interplay
between the symmetries of these terms. Moreover, a duality relationship allows us to
relate the conclusions concerning one regime to the other.

PACS 92.10.Fj – Dynamics of the upper ocean.

1. – Introduction

The main reason of the success of the classical barotropic models of wind-driven
ocean circulation lies in the overall qualitative agreement between the observed and
the predicted transport patterns, with special regard to the subtropical gyre [1]. Due to
their strictly adiabatic nature, the atmospheric forcing plays a purely mechanical role
through the wind, and it is usually represented by a steady, suitably modulated,
wind stress varying on the atmospheric sinoptic scale. As the horizontal length scale of
the motion derives essentially from the atmospheric pressure field, this fact poses a
lower bound to the extension of the flow field which the models are able to take into
account. A special, but very important, application concerns the basin-scale dynamics,
at least in its simplest form. In this framework, among the features reproduced by
these models in good qualitative accordance with the observations, we recognize the
westward intensification (WI) and the northward displacement (ND) of the gyres in
the subtropical basins. A link between geometry and dynamics is thus expected: the
present paper aims to focus just this point.

We take into account, as is traditional, a square basin on the beta plane and a
latitudinally sinusoidal wind-stress curl negative in the basin interior and vanishing
only at the latitudes of the zonal boundaries. The symmetry defect of the gyre,
producing the WI and the ND, will be analyzed by means of the East-West and
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North-South mirror reflections of the fluid domain into itself. On purpose, the forcing
field is left unchanged by these transforms.

From the dynamical point of view, in accordance with the climatological character of
the motion under investigation, there is no loss of generality by assuming the
well-known quasi-geostrophic approximations. On this subject, we recall that the
equations describing the potential vorticity conservation tendency can be doubly
classified, i.e. according to the adopted parametrization of turbulence and to the
relative importance of friction with respect to non-linearity. We know that every
parametrization of turbulence which increases the order of the differential governing
equations demands, at the same time, dynamic boundary conditions whose form is, to a
large extent, a priori arbitrary. At the same time, each special choice of these boundary
conditions influenced deeply the resulting flow field also in the basin interior, that is
far from the coastline. Therefore, to avoid an increase of the complexity of the problem
without any clear benefit, we will investigate the behaviour of a purely bottom
dissipated fluid layer and thus we will deal with boundary conditions as simple as
possible, that is only no mass flux across the coastline and we will investigate the
behaviour of a purely bottom dissipated fluid layer. In this framework, we will explore
two deeply separate regimes by using the weakly non-linear Stommel-Veronis model
[2] and the highly non-linear model of Niiler [3]. The reason of this choice is twofold: In
the first place, in both regimes a partial or total analytical approach to the circulation
problem is feasible; secondly, a surprising duality between the symmetry properties of
the solutions in the selected regimes turns out to hold.

We obtain, for each regime, the first two terms of a truncated expansion of the
gyre-like solution and each term has a definite symmetry property under the above-
quoted mirror reflections. The result allows us to see how the WI and the ND arise
from the superposition of these first two terms and to understand their different
generation in the framework of two almost opposite dynamical regimes.

2. – Geometry

We consider a non-dimensional square fluid domain D on the beta plane such
that

D4 [0GxG1]3 [0GyG1]

and assume a wind-stress curl Tfk Q˘3t vanishing in y40, and y41, negative in
the basin interior and invariant under the mid-latitude and mid-longitude mirror
reflections. This kind of field mimics the forcing that acts on the observed subtropical
gyres and, at the same time, allows us to simplify the analysis of the symmetry defect in
an idealized gyre. Explicit examples are the following:

Tf2p sin (py)(2.1)

or

Tf2p sin (px) sin (py) .(2.2)

At this point we introduce the mirror reflection transforms of D into itself defined,
respectively, by

(x , y)K (x , 12y)(2.3)
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and by

(x , y)K (12x , y) .(2.4)

It is trivial to check that the fields (2.1) and (2.2) are invariant under transforms (2.3)
and (2.4). In general we denote by a tilde every function c such that

c
A(x , y)fc(x , 12y)

and use an overbar to indicate that

c(x , y)4c(12x , y) .

Transforms (2.3) and (2.4) applied to the Jacobian and Laplacian operators yield,
respectively,

J42JA42J and ˜24˜
A24˜2 .(2.5)

With reference to (2.3), we can express every function as

c4c ( s )1c ( a ) ,(2.6)

where

c ( s )
f

1

2
(c1c

A) and c ( a )
f

1

2
(c2c

A) .

Analogously, with reference to (2.4), the identity

c4c s1c a(2.7)

holds, where

c s4
1

2
(c1c ) and c a4

1

2
(c2c ) .

Obviously,

c ( s )4c
A ( s ) , c ( a )42c

A ( a ) , c s4c s , c a42c a .(2.8)

Useful properties of the antisymmetric functions are

c ( a )gx ,
1

2
h4c ag 1

2
, yh40(2.9)

and

�
0

1

c ( a ) dy4�
0

1

c a dx40 .(2.10)

Finally, we underline that, if c40, ((x , y)�¯D, then the same boundary condition
holds also for c ( s ) , c ( a ) , c s , c a .

These are the geometrical tools we need in the development of our discussion.
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3. – Dynamics

We define preliminarily the typical intensity US of the Sverdrup current through
the equation

t 04rb m DLUS ,(3.1)

where t 0 is the typical value of the wind stress, r is the fluid density, b m is the
planetary vorticity gradient evaluated at the mean latitude of the basin, D is the depth
of the motion and finally L is the typical horizontal length of the basin-scale circulation.
Then, the basin-scale, quasi-geostrophic steady vorticity equation is written as (see the
appendix)

g d I

L
h2

J(c , ˜2 c)1
¯c

¯x
4

US

U
T2

d v

L
˜2 c ,(3.2)

where d I is the inertial boundary layer width, US /U is the ratio between the Sverdrup
current and the actual current of the interior and d v is the viscous boundary layer
width. The forcing T4T(x , y) given by (2.1) or (2.2) will be investigated in detail.
Equation (3.2) contemplates several dynamical configurations and, in particular, we
will focus on the following two.

1) Weakly non-linear Stommel-Veronis’ model: the interior is in Sverdrup
balance and the viscous boundary layer is much greater the that inertial one;

2) Highly non-linear Niiler’s model: the almost zonal interior velocity is much
greater than US defined in (3.1) and the inertial boundary layer is dominant.

In both cases the only boundary condition is

c40 ((x , y)�¯D .(3.3)

In case (1), eq. (3.2) becomes

g d I

L
h2

J(c , ˜2 c)1
¯c

¯x
4T2

d v

L
˜2 c(3.4)

and, due to the assumed smallness of the ratio (d I /d v )2, the solution of problem (3.3),
(3.4) can be approximated by the sum of the solution c 0 of the linear Stommel’s model
plus the first-order western boundary layer correction f 1 . The problem for c 0 is

¯c 0

¯x
4T2

d v

L
˜2 c 0 ,(3.5)

c 040 , ((x , y)�¯D ,(3.6)

where c 04c I1f 0 is the sum of the Sverdrup solution c I for the interior plus a
zeroth-order western boundary layer correction f 0 . For a generic forcing T, the
solution of problem (3.5), (3.6) in terms of f I and c 0 takes the form

c I (x , y)42�
x

1

T(l , y) dl ,(3.7)

f 0 (j , y)42c I (0 , y) exp [2j] .(3.8)
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The problem for f 1 is given, in terms of the western boundary layer variable j4
(L/d v ) x and the latitude y, by the equation [4]

¯f 0

¯j

¯ 3 f 0

¯j 2 ¯y
2 g ¯c I

¯y
1

¯f 0

¯y
h ¯ 3 f 0

¯j 3
42

¯f 1

¯j
2

¯ 2 f 1

¯j 2
(3.9)

with the boundary and matching conditions

f 1 (0 , y)40 ,(3.10)

lim
jK1Q

f 1 (j , y)40 .(3.11)

Thus, the total solution is

c4c 01 g d I

d v
h2

f 11O gg d I

d v
h4h .(3.12)

In case (2), putting for shortness US /Ufr, eq. (3.2) becomes (see the appendix)

g d I

L
h2

J(c , ˜2 c)1
¯c

¯x
4r gT2

d I

L
˜2 ch .(3.13)

Equation (3.13) includes the parameters d I /L and r whose relative magnitude depends
on the dynamical regime we are interested in. As, in the inertial regime, we can assume
r smaller and smaller, we must accordingly request a definite behaviour to the equation
itself in the limit for rK0. If d I /LFr , r and hence the whole rhs of (3.13) goes to zero
without influencing the lhs of the same equation; therefore the dominant vorticity
equation turns out to be simply J(c , (d I /L)2 ˜2 c1y)40. On the contrary, if d I /LEr,
the dynamical balance between the rhs and the lhs of (3.13) is preserved whatever
r (b 1) may be. This is just the regime we will investigate. The reason is that a solution,
describing both the WI and the ND of the gyre, is not consistent with an interior
strictly zonal as that implied by every unforced balance.

The smallness of r allows us to write the total solution in terms of an inertial term
and a forced correction, according to the expansion

c4c 01rc 11O(r 2 ) ,(3.14)

so, the substitution of (3.14) into (3.3) and (3.13) states, at zeroth and first order in
r, the following problems for c 0 and c 1 , respectively:

g d I

L
h2

J(c 0 , ˜2 c 0 )1
¯c 0

¯x
40 ,(3.15)

c 040 , ((x , y)�¯D ,(3.16)

g d I

L
h2

[J(c 0 ˜
2 c 1 )1J(c 1 , ˜2 c 0 ) ]1

¯c 1

¯x
4T2

d I

L
˜2 c 0 ,(3.17)

c 140 , ((x , y)�¯D .(3.18)

In the next sections we will analyze the behaviour of the solutions of the above-posed
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problems under transforms (2.3) and (2.4) in order to see how WI and ND can be
explained on the basis of the symmetry properties exhibited by these solutions.

4. – Asymmetries of the weakly non-linear gyre

In this section we will infer some useful properties of the leading terms c 0 and f 1 of
the solution of problem (3.3), (3.4) by analyzing separately problem (3.5), (3.6) for c 0

and problem (3.9), (3.10), (3.11) for f 1 .
The first feature we point out is that problem (3.5), (3.6) has a unique solution, given

by (3.7), (3.8) within the boundary layer approximation and it is inherently asymmetric
under (2.4), in the sense that both c 0s and c 0a cannot be identically vanishing.

About uniqueness, if c 0
I and c 0

II are two solutions of problem (3.5), (3.6), then their
difference Wfc 0

I 2c 0
II turns out to be solution of the problem

¯W

¯x
42

d v

L
˜2 W ,(4.1)

W40 , ((x , y)�¯D .(4.2)

We easily obtain, after multiplication of (4.1) by W and the subsequent integration on D
with the aid of (4.2), the equation

�
D

N˘WN2 dx dy40 .(4.3)

Finally, from (4.2) and (4.3) we conclude that Wf0, that is c 0
I
fc 0

II .
About asymmetry, substitution of (2.7) into (3.5) and the application of (2.4) allow us

to single out the coupled problems for c 0s and c 0a , i.e.

¯c 0a

¯x
4T2

d v

L
˜2 c 0s ,(4.4)

¯c 0s

¯x
42

d v

L
˜2 c 0a ,(4.5)

c 0s40 , ((x , y)�¯D ,(4.6)

c 0a40 , ((x , y)�¯D .(4.7)

Both the components c 0s and c 0a are non-vanishing. In fact, if c 0sf0, then (4.5)
implies ˜2 c 0a40, ((x , y)�D , but this last equation, together with (4.7), implies
c 0af0 and hence c 0f0, in contrast with the assumption of a non-vanishing forcing T.
Moreover, if c 0af0, then (4.5) implies c 0s4c 0s (y) but, in this case, (4.6) demands
c 0sf0 so, again, we have c 0f0.

The second feature we point out is the generation of the WI from the superposition
of c 0s and c 0a . To this purpose, consider the integration of (4.4) and (4.5) on D. By



SYMMETRY DEFECT IN SINGLE-GYRE, WIND-DRIVEN OCEANIC SYSTEMS 389

resorting to (4.6) and (4.7) to integrate the lhs of the equations above, we obtain,
respectively,

�
D

T dx dy4
d v

L
�

¯D

˘c 0s Qn ds(4.8)

and

�
¯D

˘c 0a Qn ds40 ,(4.9)

where n is the unit normal vector and ds is the differential line element along ¯D. In
terms of the geostrophic current u04k3˘c 0 , eqs. (4.8) and (4.9) can be written as

�
D

T dx dy4
d v

L
�

¯D

u0s Qt ds(4.10)

and

�
¯D

u0a Qt ds40 ,(4.11)

where u0s4k3˘c 0s , u0s4k3˘c 0a and t4k3n is the unit tangent vector along
¯D , positive anticlockwise.

In the interior, (4.4) gives

¯c 0a

¯x
BT(E0) .(4.12)

Equation (4.10) states that, in the subtropical gyre, �
¯D

u0s Qt dsE0, that is u0s is

clockwise along the boundary and, due to the symmetry of c 0s , we can write

0Ev0sf g ¯c 0s

¯x
h

x40

42 g ¯c 0s

¯x
h

x41

.

A set of streamlines of c 0s corresponding to the special case in which T is given by (2.1)
and d v /L40.05 is displayed in fig. 1a.

Because of (2.9) and (4.12), the current u0a has a convergence point in g 1

2
, 1h and

one of divergence in g 1

2
, 0h. The southward flow of the interior, fed by the convergence

into g 1

2
, 1h and the divergence in g 1

2
, 0h, turns northward along both the meridional

walls. Some representative streamlines of c 0a are reported in fig. 1b, for the same T
and d v /L as in fig. 1a. The antisymmetry of c 0a yields

0Ev0af g ¯c 0a

¯x
h

x40

4 g ¯c 0a

¯x
h

x41

.

Note that (4.12) implies that c 0a vanishes only in g 1

2
, yh. This is in accordance with
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Fig. 1. – a) Streamlines of the East D West invariant component of the zeroth-order solution of
problem (3.3), (3.4). b) Streamlines of the East D West antisymmetric component of the
zeroth-order solution of problem (3.3), (3.4). c) Stommel’s solution: the North D South invariance
is apparent. d) Streamlines of the first-order correction streamfunction of the western boundary
layer. e) Weakly non-linear Veronis’ solution.
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(4.11). On the whole, the meridional current vW along the western boundary is

vW4 g ¯c 0s

¯x
h

x40

1 g ¯c 0a

¯x
h

x40

4v0s1v0a ,(4.13)

while along the eastern boundary the current vE is

vE4 g ¯c 0s

¯x
h

x41

1 g ¯c 0a

¯x
h

x41

42 v0s1v0a .(4.14)

To determine the sign of vE , we evaluate the integral of (3.5) on D. The result is
�

D

T dx dy4 (d v /L) �
¯D

u0 Qt dsE0, so u0 is clockwise along ¯D and thus, in particular,

vEE0, that is

v0aEv0s .(4.15)

Equations (4.13), (4.14) and (4.15) imply

N vW

vE
N4 v0s1v0a

v0s2v0a

(4.16)

and (4.16) explains the generation of the WI on the basis of the sole zeroth-order
solution c 0 .

The zeroth-order solution c 0 is not able to generate the ND of the gyre. This fact
can be easily verified by using (2.6) into (3.5) and then (2.3) to dissociate the problem
for c 0

( a ) from that for c 0
( s ). These problems take, respectively, the following form:

¯

¯x
c 0

( a )42
d v

L
˜2 c 0

( a ) ,(4.17)

c 0
( a )40 , ((x , y)�¯D(4.18)

and

¯

¯x
c 0

( s )4T2
d v

L
˜2 c 0

( s ) ,

c 0
( s )40 , ((x , y)�¯D .(4.20)

Problem (4.17), (4.18) coincides with (4.1), (4.2) and therefore

c 0
( a )
f0 .(4.21)

On the other hand, problem (4.19), (4.20) coincides with (3.5), (3.6) but we know that
this has a unique solution, so we conclude that

c 0fc 0
( s ) .(4.22)

The streamfunction (4.22) gives the celebrated Stommel’s solution, shown in fig. 1c, for
the same T and d v /L as in figs. 1a and 1b.

The non-existence of the ND in c 0 is stated just by eqs. (4.21) and (4.22). This result
is in qualitative contraposition to the observed circulation patterns and it leads us to
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consider the small contribution coming from non-linearity and represented by the
first-order correction f 1 . To analyse the symmetry properties of f 1 with the aid of
transform (2.3), we preliminarily note that, due to the assumed invariance of the
wind-stress curl, eqs. (3.7) and (3.8) ensure us that c I4c

A
I and f 04f

A
0 , so transform

(2.3) applied to (3.9) gives

2
¯f 0

¯j

¯ 3 f 0

¯j 2 ¯y
1 g ¯c I

¯y
1

¯f 0

¯y
h ¯ 3 f 0

¯j 3
42

¯f
A

1

¯j
2

¯ 2 f
A

1

¯j 2
.(4.23)

Adding (3.9) to (4.23) we obtain

¯f 1

¯j
1

¯ 2 f 1

¯j 2
1

¯f
A

1

¯j
1

¯ 2 f
A

1

¯j 2
40 .(4.24)

If we define 2f 1
( s ) (j , y)4f 11f

A
1 , the problem for f 1

( s ) (j , y) coming from (3.10), (3.11)
and (4.24) takes the form

g ¯

¯j
1

¯ 2

¯j 2 h f 1
( s )40 ,

f 1
( s ) (0 , y)40 ,

lim
jK1Q

f 1
( s ) (j , y)40

and it has only the null solution f 1
( s ) (j , y)f0. Hence we conclude that f 142f

A
1 , that

is to say

f 1ff 1
( a ) .(4.25)

The antisymmetrical structure of f 1 together with its boundary layer character
raise the question of what kind of circulation must be associated to f 1 itself. In
particular, the cyclonic or anticyclonic nature of f 1 , say in the northern half-basin, can
be deduced by the sign of the associated zonal current

u1gj ,
1

2
hf k2 ¯f 1

¯y
l

y4
1

2

.(4.26)

If (4.26) is negative, we expect an anticyclonic circulation in the northern half of the
basin and a cyclonic one in the southern half. The opposite must happen if (4.26) is
positive. In any case

v1gj ,
1

2
h4 k ¯f 1

¯j
l

y4
1

2

40 .(4.27)

To evaluate u1 from f 1 we substitute (3.7) and (3.8) into (3.9) and obtain the following
equation for f 1 that holds just along the western boundary:

1

2

¯

¯y
[c I (0 , y) ]2 exp [2j]4

¯f 1

¯j
1

¯ 2 f 1

¯j 2
,(4.28)
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where f 1 must satisfy also the boundary and matching conditions

f 1 (0 , y)40 ,(4.29)

lim
jK1Q

f 1 (j , y)40 .(4.30)

The solution of problem (4.28), (4.29) and (4.30) is

f 1 (j , y)42
1

2

¯

¯y
[c I (0 , y) ]2 j exp [2j] .(4.31)

We easily check that

u1gj ,
1

2
hE0 ,(4.32)

where u1gj , 1

2
h4 k2 ¯

¯y
f 1 (j , y)l

y4
1

2

and f 1 is given by (4.31), and therefore in the

northern half of the basin an anticyclone develops while a symmetrical cyclone forms in
the southern half. To prove (4.32), we note preliminarily that we can write, with
reference to (4.31),

c I (0 , y)4g sin (py) ,(4.33)

where g4p or g42 in correspondence to the adopted wind-stress field (2.1) or (2.2).
At this point a straightforward computation gives, using also (4.33), u1 (j , y)4
(gp)2 cos (2py) je 2j and, in particular,

u1gj ,
1

2
h42 (gp)2 je 2j .(4.34)

Equation (4.34) trivially satisfies (4.32) and (4.27) is also verified by (4.31). Close to the
western boundary, both the cyclone and the anticyclone go linearly to zero in j while
they decay exponentially for increasing longitudes. On the whole, the superposition

c4c 0
( s )1 g d I

d v
h2

f 1
( a ) coming from (3.12), (4.22) and (4.25) explains the formation of the

ND of the weakly non-linear gyre. This superposition reproduces the well-known

Veronis’ solution, reported in fig. 1e, for c 0 as in fig. 1c, f 1 as in fig. 1d and g d I

d v
h2
4

4 Q1023. We can obtain an expression analogous to (4.16) as follows. Problem (4.19),
(4.20) implies �

D

˜2 c 0
( s ) dx dyE0 and thus k3˘c 0

( s ) is anticyclonic. Therefore

0Eu0
( s )
f g2 ¯c 0

( s )

¯y
h

y41

42 g2 ¯c 0
( s )

¯y
h

y40

.

Moreover, the previous analysis of f 1
( a ) allows us to write

0Eu1
( a )
f g2 ¯f 1

( a )

¯y
h

y41

4 g2 ¯f 1
( a )

¯y
h

y40

,
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so the zonal current uN along y41 is

uN4 g2 ¯c 0
( s )

¯y
h

y41

1 g d I

¯v
h2g2 ¯f 1

( a )

¯y
h

y41

4u0
( s )1 g d I

¯v
h2

u1
( a ) .

In the same way, the zonal current uS along y40 is

uS42u0
( s )1 g d I

d v
h2

u1
( a ) .

At this point we can write

N uN

uS
N4

u0
( s )1 g d I

d v
h2

u1
( a )

u0
( s )2 g d I

d v
h2

u1
( a )

.

This last equation shows that, due to the smallness of g d I

d v
h2

, the intensity of the

northern zonal current is only slightly greater than the southern one. In other words,
the ND is rather weak in the dissipative regime and it demands the presence of the
first-order correction term.

Equation (4.25) plays an important role in the integral vorticity balance extended to
the whole basin. In fact, integration of (3.4) on D gives, with the aid of (3.3), the
equation

�
D

T dx dy4
d v

L
�

D

˜2 c dx dy ,(4.35)

while the same procedure applied to (3.5) gives

�
D

T dx dy4
d v

L
�

D

˜2 c 0 dx dy ,(4.36)

where, in the range of weak non-linearity, expansion (3.12) can be truncated as

cBc 01 g d I

d v
h2

f 1 .(4.37)

Comparison of (4.35), written in terms of (4.37), with (4.36) shows that the vorticity
input by the wind is fully dissipated through the bottom friction associated to the
zeroth-order field c 0 and thus the following constraint must hold on the first-order
correction in order that the system be able to achieve a steady state:

04�
D

˜2 f 1 dx dy .(4.38)
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This last equation is equivalent to

�
0

1Q

�
0

1

yg L

d v
h2 ¯ 2

¯j 2
1

¯ 2

¯y 2
z f 1 dy dj40 .(4.39)

As the differential operator appearing into the square braket of (4.39) is invariant
under (2.3) and f 1ff 1

( a ), we can resort to (2.10) to conclude that (4.38) is verified, thus
implying the vorticity balance that ensures the steadiness of the motion.

5. – Asymmetries of the highly non-linear gyre

In this section we will explore some symmetry properties of the leading terms c 0

and c 1 of the solution of problem (3.3), (3.13) on the basis of problems (3.15), (3.16) and
(3.17), (3.18). We wish to anticipate that problem (3.3), (3.13) can be solved only
numerically and this has been formerly done in [5], with T given by (2.1), (2.2) and
d I

L
40.05, r40.1. The relative solutions are displayed in figs. 2a and 3a.
The basic difficulty in dealing with problems (3.15), (3.16) and (3.17), (3.18) is that,

while (3.15) allows us to write

g d I

L
h2

˜2 c 01y4F(c 0 ) ,(5.1)

where F(c 0 ) may be, a priori, an arbitrary differentiable function of its argument, on
the other hand (3.17) presupposes a link between F(c 0 ) and the forcing T. This means
that F(c 0 ) can actually be singled out only once T is explicitly given. In general, the
evaluation of F(c 0 ) requires numerical procedures, but the cases (2.1) and (2.2) have
been formerly investigated in [5], where all the details of the employed method are

extensively explained. In both cases the scatter plot of the total vorticity g d I

L
h2
˜2 c 01

y vs. c 0 , reported in figs. 2b and 3b, shows that

¯F

¯c 0

D0(5.2)

and that the unifunctional function F(c 0 ) is linear in the interior within a very good
approximation (recall that c 040 along the boundary, and F is not linear for values

close to zero). Due to the smallness of g d I

L
h2

with respect to unity, in the interior (5.1)
can be approximated by

yBF(c 0 ) ,(5.3)

so that the zeroth-order flow is zonal in this region and, because of (5.3),

u0B2
¯

¯y
F 21 (y) .(5.4)

From (5.2) and (5.4) we see that u0E0, i.e. westward, in the interior.
Inequality (5.2) implies that c 0 is invariant under transform (2.4), that is to say

c 0fc 0 .(5.5)
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Fig. 2 . – a) Streamlines of the solution of problem (3.3), (3.13) for T given by (2.1). Note the
marked ND of the gyre and its weak WI. b) Scatter plot of the total vorticity vs. the
streamfunction for the inertial problem (3.15), (3.16) where (2.1) has been used to evaluate F(c 0 ).
c) Streamlines of the zeroth-order solution, for T given by (2.1). The East-West mirror invariance
is evident. d) Streamlines of c 0

( a ) for c 0 given in c). e) Streamlines of c 0
( s ) for c 0 given in c).
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Fig. 2. (Continued) – f) Streamlines of the residual streamfunction c2c 04dc 11O(d 2 ), where
c and c 0 are displayed in a) and c), respectively. Within the approximation introduced by the
term O(d 2 ), this plot points out the antisymmetry of c 1 . g) East-West symmetric component of
c2c 0 of f). This plot supports statement (5.28).

In fact, eq. (5.1) can be transformed into

g d I

L
h2

˜2 c 01y4F(c 0 ) ,(5.6)

so (5.1) and (5.6) yield

g d I

L
h2

˜2 (c 02c 0 )4F(c 0 )2F(c 0 ) .(5.7)

Setting c 02c 04W , and hence W40 along ¯D, from (5.7) we have

g d I

L
h2

W˜2 W4W 2 F(c 0 )2F(c 0 )

c 02c 0

(5.8)

and the integration of (5.8) on D gives

2g d I

L
h2

�
D

N˘WN2 dx dy4�
D

W 2 F(c 0 )2F(c 0 )

c 02c 0

dx dy .(5.9)

Because of (5.2), the rhs of (5.9) is non-negative while the lhs of the same equation is,
trivially, non-positive. Therefore, the only possibility is W40 everywhere, that is to say
(5.5) or, with an equivalent notation,

c 0fc 0s .(5.10)

Invariance (5.10) is quite evident in figs. 2c and 3c. At this point, a kind of duality
begins to emerge between the symmetry properties of the zeroth-order solution of
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Fig. 3. – a) The same as fig. 2a), but with T given by (2.2). b) The same as fig. 2b), but with T given
by (2.2). c) The same as fig. 2c), but with T given by (2.2). d) The same as fig. 2d), but with T given
by (2.2). e) The same as fig. 2e), but with T given by (2.2).
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Fig. 3. (Continued) – f) The same as fig. 2f ), but with T given by (2.2). g) The same as fig. 2g), but
with T given by (2.2).

(3.5), (3.6) and that of (3.15), (3.16): to the North-South invariance (4.22) of the weakly
non-linear case, the invariance (5.10) of the highly non-linear regime is associated in
the duality relationship. In this relationship, the forced meridional current of the
interior (4.12) is associated with the inertial zonal current (5.4), in the sense that the
first is North-South mirror-symmetric while the second is East-West mirror
symmetric. We will see, in the last part of this section, the contribution of (5.10) to the
formation of the WI of the highly non-linear gyre, in strict duality with the contribution
of (4.22) to the formation of the ND in the weakly non-linear regime.

In analogy with the generation of the WI by means of the superposition of c 0s and
c 0a in the weakly non-linear regime, we show how, in the highly non-linear regime, the
superposition of c 0

( s ) with c 0
( a ) generated the ND. The coupled equations for c 0

( s ) and
c 0

( a ) are obtained by inserting the identity (2.6), referred to the zeroth-order solution,
into (3.15) and then by applying (2.3) to the result. The procedure leads to the following
equations:

g d I

L
h2

[J(c 0
( s ) , ˜2 c 0

( a ) )1J(c 0
( a ) , ˜2 c 0

( s ) ) ]1
¯c 0

( s )

¯x
40 ,(5.11)

g d I

L
h2

[J(c 0
( s ) , ˜2 c 0

( s ) )1J(c 0
( a ) , ˜2 c 0

( a ) ) ]1
¯c 0

( a )

¯x
40 .(5.12)

Consider first the antisymmetric component c 0
( a ) : because of (5.11), it cannot be

identically vanishing. In fact, under this circumstance, (5.11) implies that c 0
( s ) is strictly

zonal, but the no mass boundary condition, in turn, imposes c 0
( s )
f0, so, on the whole,

we would have c 0f0.
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Because of (5.2), relation (5.3) can be reverted to give, in the interior,

c 0
( s )1c 0

( a )BF 21 (y) ,(5.13)

and hence also

c 0
( s )2c 0

( a )BF 21 (12y) .(5.14)

From (5.13) and (5.14) we obtain c 0
( a )B

1

2
[F 21 (y)2F 21 (12y) ] and, in particular,

c 0
( a )gx , 1

2
h40 .(5.15)

Because of the unifunctional structure of F and (5.2), y4 1

2
is the sole latitude where

c 0
( a ) vanishes. As we already know from (5.4), the interior current is westward and

therefore the field c 0
( a ) represents an anticyclone in the northern half-basin and a

cyclone in the southern one, according to figs. 2d and 3d.
Consider now the symmetric component c 0

( s ). Neither (5.11) nor (5.12) seem to
prevent from the solution c 0

( s )
f0, however another argument can be invoked to prove

that, out of necessity, c 0
( s )
c0. In fact, integration of (3.17) on D with the aid of (3.16)

and (3.18) gives, recalling also (2.10) with ˜2 c 0
( a ) in place of c 0

( a ),

�
D

T dx dy4
d I

L
�

D

˜2 c 0
( s ) dx dy(5.16)

and, as the lhs of (5.16) is negative, (5.16) itself would be inconsistent if c 0
( s )
f0. The

behaviour of c 0
( s ) in the interior can be deduced from (5.13) and (5.14). From these two

equations we evaluate c 0
( s )B

1

2
[F 21 (y)1F 21 (12y) ] and therefore we see that c 0

( s ) is
zonal and, due to the linearity of F(y) in the interior, ¯c 0

( s )

¯y
f0. On the whole, in the

interior c 0
( s ) is flat while it describes a circulation that takes place inside a “ring” close

to the boundary of the fluid domain. Note that (5.16) can be written as �
D

T dx dy4

d I

L
�

¯D

u0
( s ) Qdt and thus �

¯D

u0
( s ) QdtE0. This means that the current associated to c 0

( s ), that

is u0
( s )4k3˘c 0

( s ), flows clockwise and c 0
( s ) represents an anticyclonic circulation. Some

streamlines of c 0
( s ) are shown in figs. 2e and 3e.

The superposition of c 0
( s ) with c 0

( a ) generates the ND of the gyre that turns out to be
a feature of the zeroth-order solution (we recall figs. 2c and 3c), in the same manner as
the WI is a characteristic of the zeroth-order solution in the weakly non-linear regime.
The current u0

( s ) has the same intensity along both the zonal boundaries, but it is
amplified in the northern half-basin by the anticyclone corresponding to c 0

( a ) while it is
weakened in the southern half-basin by the cyclone generated by the same
antisymmetric solution. We see, from this picture, that in the southern half of the basin
˘c 0

( s ) and ˘c 0
( a ) are opposite. Why the circulation produced there by c 04c 0

( s )1c 0
( a ) is

actually anticyclonic on the whole? In general, if R is any region of the fluid domain
encircled by a (close) streamline ¯R of c 0 , then integration of (3.17) written with the
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aid of (5.1) as

g d I

L
h2

J(c 0 , ˜2 c 1 )1
¯F

¯c 0

J(c 1 , c 0 )4T2
d I

L
˜2 c 0

yields

�
R

T dx dy4
d I

L
�

¯R

u0 Qdt ,(5.17)

where u04k3 (˘c 0
( s )1˘c 0

( a ) ). As the lhs of (5.17) is certainly negative, u0 QdtG0
whatever the streamline ¯R may be and every cyclonic circulation ascribed to c 0 is
excluded. The intense ND of the highly non-linear regime can be pointed out by using
the symmetry properties of c 0

( s ) and c 0
( a ). We define the westward zonal currents

0Eu0
( s )
f g2 ¯c 0

( s )

¯y
h

y41

42 g2 ¯c 0
( s )

¯y
h

y40

and

0Eu0
( a )
f g2 ¯c 0

( a )

¯y
h

y41

4 g2 ¯c 0
( a )

¯y
h

y40

and evaluate the zonal currents along the northern and southern boundaries, uN and
uS , respectively:

uN4 g2 ¯c 0
( s )

¯y
h

y41

1 g2 ¯c 0
( a )

¯y
h

y41

4u0
( s )1u0

( a )

and

uS4 g2 ¯c 0
( s )

¯y
h

y40

1 g2 ¯c 0
( a )

¯y
h

y40

42u0
( s )1u0

( a ) .

Recalling that 2u0
( s )1u0

( a )E0, we evaluate the ratio

N uN

uS
N4 u0

( s )1u0
( a )

u0
( s )2u0

( a )

that can reach values c 1 for u0
( s ) and u0

( a ) sufficiently close to each other.
The anticyclonic structure of c 0 shall reveal itself to be crucial in the generation of

the WI, as will be clarified in what follows.
To investigate the generation of the WI , we need to have suitable information about

the behaviour of c 1 in terms of its components c 1a and c 1s . To this purpose, we
substitute the identity c 14c 1a1c 1s into (3.17), recalling also (5.10) to obtain the
equations

g d I

L
h2

[J(c 0 , ˜2 c 1a )1J(c 1a , ˜2 c 0 ) ]1
¯c 1a

¯x
4T2

d I

L
˜2 c 0(5.18)
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and

g d I

L
h2

J(c 0 , ˜2 c 1s )1J(c 1s , F(c 0 ) )40 ,(5.19)

with the boundary conditions

c 1a4c 1s40 , ((x , y)�¯D .

A direct consequence of (5.18) is that c 1a cannot be everywhere vanishing in D. In fact,
under such a circumstance, we would have, point by point,

T4
d I

L
˜2 c 0

and hence, because of (5.1),

d I

L
T1y4F(c 0 ) .(5.20)

In y40 we have both T40 and c 040 and the same holds in y41. Therefore (5.20)
yields, at the same time, F(0)40 and F(0)41. This contradiction demands

c 1ac0 for some (x , y) of D .(5.21)

Because of (2.9), it follows that

c 1ag 1

2
, yh40 , (y� [0 , 1 ](5.22)

and, in the interior, (5.18) gives

¯c 1a

¯x
BT(E0) .(5.23)

Equations (5.22) and (5.23) are representative of a double-gyre flow field, with an
anticyclone on the western side and a cyclone on the eastern one. In particular,
northward return flows are expected both along the western and the eastern sides of
the basin. Numerical experiments [4] actually corroborate this picture, which is
reported in figs. 2f and 3f. Therefore

0Ev1af g ¯c 1a

¯x
h

x40

4 g ¯c 1a

¯x
h

x41

,(5.24)

while the anticyclonic structure of c 0fc 0s allows us to put

0Ev0sf g ¯c 0s

¯x
h

x40

42 g ¯c 0s

¯x
h

x41

,(5.25)

so the WI can be easily explained in terms of the superposition of v0s with v1a . In fact,
disregarding for the time being the symmetric part of the first-order correction, along



SYMMETRY DEFECT IN SINGLE-GYRE, WIND-DRIVEN OCEANIC SYSTEMS 403

the western coast the meridional current vW can be written as

vW4 g ¯c 0s

¯x
h

x40

1r g ¯c 1a

¯x
h

x40

,

while, along the eastern coast, the meridional current vE is

vE4 g ¯c 0s

¯x
h

x41

1r g ¯c 1a

¯x
h

x41

.

Therefore, in terms of (5.24) and (5.25),

vW4v0s1rv1a

and

vE42 v0s1rv1a .

The relative intensity of the meridional currents is

N vW

vE
N4 v0s1rv1a

v0s2rv1a

.(5.26)

The ratio (5.26) shows that, in the regime under investigation, the WI is weak. This

unlike (4.16) where, due to the possibility to have a small denominator, N vW

vE
Nc 1. On

the contrary, in (5.26), because of the smallness of r, N vW

vE
N4O(1).

The possible O(r) contribution (if any) of v1sf
¯c 1s

¯x
does not modify the mechanism

of the generation of the WI quoted above, as v0s1rv1s has the same symmetry property
as v0s . However, an interesting point arises: what can be inferred about c 1s ?

The first-order correction c 1 can be evaluated numerically, within a certain
approximation, as the difference between the solution of problem (3.3), (3.13) with
r = 0.1 and the solution of the same problem, for a very low value of r. In a previous
paper [4], r = 0.001 was chosen and the so-obtained solution was identified with c 0 .
Then, c 1 was evaluated through the approximate equation

c 1B10(c2c 0 ) .(5.27)

Finally, starting from (5.27) and applying (2.4) to it, both c 1a and c 1s were singled out.
The result is that, compatibly with the approximations so introduced, c 1s turns out to
be identically vanishing (figs. 2g and 3g). Actually,

c 1sf0 , ((x , y)�D(5.28)

is a special solution of (5.19) which, however, admits, in general, also non-vanishing
solutions (see the following eq. (5.36)). The question is: why the starting problem (3.3),
(3.13) does prefer (5.28)? The answer resorts to the vorticity balance of the steady
circulation, according to the following arguments. Integration of (3.13) on D gives

�
D

T dx dy4
d I

L
�

D

˜2 c dx dy ,(5.29)
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while integration of (3.17) on D yields

�
D

T dx dy4
d I

L
�

D

˜2 c 0 dx dy .(5.30)

By equating the rhs of (5.29) to the rhs of (5.30) and recalling (3.14), we obtain

�
D

˜2 (c 01rc 11R) dx dy4�
D

˜2 c 0 dx dy .(5.31)

At the first order in r, (5.31) implies

�
D

˜2 c 1 dx dy40 .(5.32)

If we set c 14c 1a1c 1s and take (2.10) into account, we conclude from (5.32) that

�
D

˜2 c 1s dx dy40 .(5.33)

Equation (5.33) is a constraint that selects, among all the possible solutions of the
problem

g d I

L
h2

J(c 0 , ˜2 c 1s )1J(c 1s , F(c 0 ) )40 , ((x , y)�D ,(5.34)

c 1s40 ,((x , y)�¯D ,(5.35)

the sole solution (5.28). This fact can be explained in the framework of boundary layer
solutions of (5.34), (5.35) by applying (5.32) to them: the only admissible solution turns
out to be just (5.28).

To this purpose, we note preliminarily that (5.34) is equivalent to

g d I

L
h2

˜2 c 1s2
¯F

¯c 0

c 1s4G(c 0 ) ,(5.36)

where G(c 0 ) is any differentiable function of its argument. Then, because of (5.35),
(5.36) implies

˜2 c 1s4 g L

d I
h2

G(0) , ((x , y)�¯D .(5.37)

Equation (5.37) will be useful in the following. Consider now (5.34) written as

g d I

L
h2

k Q˘c 03˘(˜2 c 1s )2
¯F

¯c 0

k Q˘c 03˘c 1s40 ,(5.38)

and focous attention to the western boundary. We introduce the western boundary
layer coordinate

j4
L

l
x
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and define the boundary layer non-dimensional width L/l through the equation

g d I

L
h2g L

l
h2

4F I
0(5.39)

where F0
I is the constant value that ¯F/¯c 0 takes along the boundary. From the value

taken by d I /L and the scatter plots representative of the function F(c 0 ), we see that
(5.39) implies

L

l
c 1 .(5.40)

According to the standard technique, we set

c W4c I (y)1f W (j , y) ,(5.41)

where the zonality of the interior c I (y) of c 1s immediately comes from the zonality of
c 0 and the equation J(c 1s , c 0 )40 that holds in the interior, this last being the
approximate version of (5.34), valid for this area of the fluid domain. From (5.41) we
have

˘c W4˘c I (y)1
L

l

¯

¯j
f W i1

¯

¯y
f W j

and, because of (5.40), we can introduce the basic approximation

˘c WB
L

l

¯

¯j
f W i .(5.42)

Moreover, from (5.42) we easily evaluate

˜2 c WB g L

l
h2 ¯ 2

¯j 2
f W(5.43)

whence

˘(˜2 c W )B g L

l
h3 ¯ 3

¯j 3
f W i .(5.44)

Substitution of (5.42), (5.43) and (5.44) into (5.38) with F0
I instead of ¯F/¯c 0 gives,

recalling also (5.39),

¯ 3

¯j 3
f W2

¯

¯j
f W40 .(5.45)

The unique solution of (5.45) satisfying the asymptotic behaviour

f W (1Q , y)40

and the boundary condition

c I (y)1f W (0 , y)40
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is

f W42c I (y) exp [2j]

and hence

c W4c I (y)[12exp [2j]] .(5.46)

In particular, from (5.46) we have

˜2 c W (x40)B2c I (y) g L

l
h2

(5.47)

and the comparison of (5.47) with (5.37) yields

c I (y)42
G(0)

F I
0

,

so

c W42
G(0)

F0
I

[12exp [2j]] .(5.49)

Therefore, using (5.49), the meridional current along the western boundary is

v(0 , y)4
¯c W

¯x N
x40

42
L

d I

G(0)

kF0
I

.(5.50)

By repeating analogous calculations for the remaining sides of the boundary, we
obtain

v(1 , y)4
L

d I

G(0)

kF I
0

, u(x , 1 )42
L

d I

G(0)

kF0
I

and u(x , 0 )4
L

d I

G(0)

kF0
I

.(5.51)

The integral constraint (5.33) can be written as

�
0

1

[v(1 , y)2v(0 , y) ] dy2�
0

1

[u(x , 1 )2u(x , 0 ) ] dx40(5.52)

and the substitution of (5.50) and (5.51) into (5.52) yields 4 L

d I

G(0)

kF0
I
40, that is to say

G(0)40 .(5.53)

Equation (5.53) implies, through (5.49), c W40 and, in the same way, also c N4c E4
c S40, so c 1sf0. To summarize, the boundary layer method, which is characterized in
the present context by (5.42), singles out a class of solutions, each depending on a
special value of G(0) (recall, for instance, (5.49)). Within this class, the constraint
(5.33) implies (5.53) and hence (5.28). This result is consistent with the above-described
numerical experiments but, probably, it is not exhaustive with respect to all the
solutions of problem (5.34), (5.35).
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6. – Duality

A duality relationship, between the regimes investigated in the present paper, can
be easily drawn from a summary of the basic features derived in sect. 4 and 5, according
to the following list:

Weakly non-linear regime Highly non-linear regime

Truncated streamfunction:

c4c 01 g d I

d v
h2

f 1

Truncated streamfunction:

c4c 01rc 1

c 0fc 0
( s ), i.e. N D S invariance

c 04c 0s1c 0a :

c 0fc 0s , i.e. E K W invariance

c 04c 0
( s )1c 0

( a ) :

the superposition generates a marked WI

N vW

vE
N4 v0s1v0a

v0s2v0a

the superposition generates a marked ND

N uN

uS
N4 u0

( s )1u0
( a )

u0
( s )2u0

( a )

f 1ff 1
( a ) , i.e. N D S antisymmetry

c4c 0
( s )1 g d I

¯v
h2

f 1
( a ) :

c4c 1a , i.e. E D W antisymmetry

c4c 0s1rc 1a :

the superposition generates a weak ND

N uN

uS
N4

u0
( s )1 g d I

d v
h2

u1
( a )

u0
( s )2 g d I

d v
h2

u1
( a )

the superposition generates a weak WI

N vW

vE
N4 v0s1rv1a

v0s2rv1a

The situation reported in the above scheme is amenable to a description as follows,
where the terms of the kind A/B mean A if they are referred to the weakly non-linear
regime and B if referred to the highly non-linear one. We recall that both solutions are
written as truncated expansions constituted by a suitable zeroth-order solution plus a
first-order correction multiplied by a small coupling parameter.

The zeroth-order solution is invariant under the mirror reflection N D S

E D W
, while

both its parts, that are, respectively, symmetric and antisymmetric under the E DW

N D S
exchange, are non-vanishing. Their superposition generates a marked WI

ND
, in which

NvWN

NuN N
c

NvEN

NuSN
. The first-order correction is antisymmetric under the transform N D S

E DW
and the truncated streamfunction, on the whole, generates a weak ND

WI
, in which,

because of the smallness of the coupling parameter,
NuNN

NvWN
is only slightly greater than

NuSN

NvEN
.

It is quite apparent that the conclusions concerning one regime hold also for the



F. CRISCIANI, G. FURLAN and M. GUIDARELLI408

other, provided that the formal substitutions

( N D S ) D ( E D W ) ,

WI D ND ,

vWD uN ,

vED uS

are carried out in the statements.
The duality relationship pointed out in this section can be ultimately ascribed to the

two possible magnitude orders of the ratio US

U
appearing in the starting equation (3.2).

In fact, if US

U
4O(1), then the N DS invariance of the forcing T implies, through the

Sverdrup balance, the same invariance for the interior zeroth-order streamfunction.
Further, the validity of this symmetry property also for the boundary layer solution
(recall (3.8)) implies its extension to the whole basin. On the contrary, if US

U
b 1, the

E D W invariance of the interior zeroth-order streamfunction comes from its strict
zonality due to the potential vorticity conservation applied to a flat-bottomed, unforced
ocean in the beta plane. Moreover, because of the positive definiteness of the derivative
(5.2), this symmetry extends to the whole fluid domain.

AP P E N D I X

We start from the mesoscale (index M) equation, that is eq. (2.37) of [4] with ¯

¯t
f0

and EH40:

JM (c M , ˜2
M c M )1b M

¯c M

¯xM

4
b M t 0

rVDb m l
k Q˘M3t2

kEv

2e M

˜2
M c M .(A.1)

In (A.1) b M4
b m l 2

V
, where l is the typical horizontal length of the mesoscale motion

and V is the related velocity, Ev is the vertical Ekman number and e M4
V

fm l
is the

mesoscale Rossby number, fm being the Coriolis parameter or, better, its “mean” value
for the basin under investigation. If we assume that the wind stress depends only
on the basin-scale coordinates, i.e. t4t(x , y) and ULBVl, eq. (A.1) can be written
in terms of the sole basin-scale quantities (index M dropped) as follows (see ref [4]
for details):

J(c , ˜2 c)1b
¯c

¯x
4b

US

U
k Q˘3t2

kEv

2e
˜2 c ,(A.2)

where b4
b m L 2

U
and e4

U

fm L
. In terms of the positions 1

b
4 g d I

L
h2

, where d I4o U

b m

,
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kEv

2eb
4

d v

L
, where d v4

fmkEv

2b m

and k Q˘3t4T , from (A.2) we have

g d I

L
h2

J(c , ˜2 c)1
¯c

¯x
4

US

U
T2

d v

L
˜2 c(A.3)

that coincides with eq. (3.2) of the present paper.
Consider now the highly non-linear regime, in which U c US . Along the boundary,

the current is amplified by the factor L

d I

, in the sense that UK
L

d I

U, so the

non-dimensional current grows there from O(1) to O g L

d I
h. To find the relation between

d I and d v , consider the integral of (A.3) extended on the whole basin. It takes the
form

US

U
�

D

T dx dy2
d v

L
�

¯D

u Qdt40 .(A.4)

Since �
D

T dx dy4O(1) and, as we have just seen, �
¯D

u Qdt4O g L

d I
h, eq. (A.4) states that

US

U
B

d v

d I

, i.e.

d v

L
B

US

U

d I

L
.(A.5)

Using (A.5) into (A.3) and putting US

U
4r, we finally obtain

g d I

L
h2

J(c , ˜2 c)1
¯c

¯x
4r gT2

d I

L
˜2 ch

that coincides with (3.13) of this paper.

* * *
FC is grateful to T. OZGOKMEN who carried out the numerical experiments reported

in sect. 5 and to R. PURINI for useful discussions and a critical reading of the
manuscript.
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