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Abstract: In his book “Medical Philosophy: Conceptual issues in Medicine”, Mario Bunge provides a
unique account of medical philosophy that is deeply rooted in a realist ontology he calls “systemism”.
According to systemism, the world consists of systems and their parts, and systems possess emergent
properties that their parts lack. Events within systems may form causes and effects that are constantly
conjoined via particular mechanisms. Bunge supports the views of the evidence-based medicine
movement that randomized controlled trials (RCTs) provide the best evidence to establish the truth
of causal hypothesis; in fact, he argues that only RCTs have this ability. Here, we argue that Bunge
neglects the important feature of patients being open systems which are in steady interaction with
their environment. We show that accepting this feature leads to counter-intuitive consequences
for his account of medical hypothesis testing. In particular, we point out that (i) the confirmation
of hypotheses is inherently stochastic and affords a probabilistic account of both confirmation and
evidence which we provide here; (ii) RCTs are neither necessary nor sufficient to establish the
truth of a causal claim; (iii) testing of causal hypotheses requires taking into account background
knowledge and the context within which an intervention is applied. We conclude that there is
no “best” research methodology in medicine, but that different methodologies should coexist in a
complementary fashion.

Keywords: Bayesianism; confirmation; evidence; evidence-based medicine; Mario Bunge;
mechanisms; systemism; systems thinking; philosophy of medicine; philosophy of science

1. Introduction

In his book “Medical Philosophy: Conceptual issues in Medicine” the scientist and philosopher
Mario Bunge contrasts what he calls “scientific medicine” with complementary and alternative
medicine (CAM)1 which according to him “is a broad panoply of therapies lacking in both scientific
basis (knowledge of mechanism) and evidence (randomized controlled trials)” [1]. His distinction
between these two types of medicine is not only epistemological (according to him only scientific
medicine has knowledge of mechanisms and is evidence-based), but also an ontological one (that refers
to the some features of the world): While he perceives CAM embedded in a holistic worldview
(“the hole precedes and dominates its parts”), scientific medicine “treats patients like . . . systems that
can be dismantled, at least conceptually, with the help of modern biology: it is systemic.”

1 Bunge makes no further distinction between traditional, complementary, and alternative medicine, which is problematic,
since all three refer to different concepts of medical systems. However, a detailed criticism of this conflation is not our
concern here.
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Bunge’s ontological characterization of modern medicine as systemic follows his earlier work on
the philosophy of social science. It is not found within other books on the philosophy of medicine [2–5].
It therefore deserves a critical appraisal, in particular concerning its implications for epistemology
and medical research praxis (methodology). This is what we aim for in this paper. We are thereby not
concerned with his philosophy of medicine as such, but with the broader implications that emerge
from his realist-systemic ontology concerning emergence of new properties not reducible to some
more fundamental properties and evidence. We agree that such an ontology seems indeed quite
reasonable given the successful history of systems thinking in biology and its increasing applications
in medicine [6–8]. However, there is a lack of meta-research on the implications of systems thinking
for the hallmarks of modern medicine such as randomized controlled trials (RCTs) and evidence-based
medicine (EBM) in general.

In the next section, we first provide a motivation for systems thinking and anti-reductionism
in medicine and then describe Bunge’s account of systemism in medicine that adopts the Humean
conception of causality in which cause and effect are constantly conjoined. In Section 3, we will review
Bunge’s epistemological principles for good scientific practice in medicine, and relate it to the current
paradigm of EBM. We are going to highlight that both Bunge and EBM emphasize a hierarchical
structure of medical evidence and research methodologies, with RCTs conceived as providing the
highest quality evidence for establishing the truth of medical hypotheses. In Section 4 we are going to
develop our critique of Bunge’s conception of causality based on the argument that humans are not
closed, but open systems which are in steady interaction with their environment. The acceptance of
this fact is at odds with both a constant conjunction of events and the proposition of a hierarchy of
methodologies with RCTs on top. Instead, we argue for a “circular” or integrative view of evidence
in which multiple methodologies coexist with each other and the best method is dependent on the
particular context and research question.

2. Systemism, Emergence and Medicine

2.1. Background

The view that every medical phenomenon can be explained by referring to entities at a lower
ontological level, also called entity reductionism, appears to be the default view in medicine [3].
Examples abound: Diseases are reduced to their syndromes which are treated by pharmaceutical
drugs; individual biomarkers which lie outside their normal range are “corrected” without considering
system-wide effects [6]. Tumors are mostly conceived as independent entities and ultimately reduced
to the level of oncogenic driver mutations or tumor suppressor loss-of-function mutations for which
targeted therapies could be designed—which is then called “precision medicine”. Humans with a
disease are reduced to patients instead of also being agents (capable of taking actions by themselves) [9].
Finally, a reductionist view may also be held responsible for the “junk science” produced within the
field of nutrition research where dietary complexity and that of the person or animal eating the diet
are all too often reduced to associations of single macro- and micronutrients with certain outcomes,
leading to false and sometimes counter-intuitive conclusions [10,11].

Such reductionism in medicine is challenged from a biological perspective considering that
macroscopic multicellular life possesses a kind of complexity that cannot be solely explained through
the properties of its constituent parts. Bains and Schulze-Makuch, for example, by comparing a fruit
fly to an equivalent mass of Escherichia coli (E. coli), write [12]:

The mass of E. coli can be described by describing one E. coli and then saying “grow 109

of them”, [while] describing a fruit fly requires describing all of its cell types and their
interactions in chemistry, space and time.

This example highlights Bunge’s conception of emergence. The fruit fly possesses certain properties
that none of its constituents possesses, e.g., sexuality. These are emergent properties [13]. In contrast,
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the conglomerate of E. coli bacteria lacks any special property that would not also be possessed by an
individual E. coli bacterium, and hence has no emergent properties. More generally, Bunge defines
emergent properties as systemic properties that none of the parts of the system share, but that are
explainable by the parts of the system and its entire organization [13]. In other words, according to
him, certain systemic properties are ontologically emergent properties, and are not anyway reducible
to some more basic properties. Insofar, he is an ontological anti-reductionist. He thinks, however,
that every system with emergent properties can be explained by our knowledge about its lower-level
properties and their connections. Thus, he is an epistemological reductionist. Bunge calls his stance
rational emergentism. In his view, every aspect of the fruit fly within a given context should be principally
explainable if all of the fly’s constituents plus all their interactions within this context would be known.
Since diseases can be conceptualized as emerging properties of individual patients, scientific medicine
should aim at understanding (i) the underlying properties that give rise to a disease; (ii) their interaction
with the environment; and (iii) their manipulation through medical interventions. Our argument,
developed in more detail below, will be that the second point is strongly neglected in Bunge’s account
of medical hypothesis testing.

2.2. Bunge’s Ontological Systemism

Bunge’s systemism is influenced by Paul Henri Thiry d’Holbach’s Système de la Nature (published
in 1770) and Ludwig von Bertalanffy’s General System Theory [14]. For Bunge, the world is an objective
reality made up of systems or parts thereof and therefore stratified into different levels or “layered”.
This is the ontology he refers to as “systemism”. In more detail, his systemic worldview rests on the
following two postulates, stated in an earlier paper [15]:

(S1) Everything, whether concrete or abstract, is a system or an actual or potential component of a system;

(S2) Systems have systemic (emergent) features that their components lack.

Bunge argues that “systemism is the only ontology that fits the modern sciences” and that,
“because it entails emergentism, systemism overcomes reductionism in its various forms” (p. 15).2

He emphasizes that systemism entails ontological emergence since systems are postulated to possess
properties that only emerge from the interaction of their parts. As examples for such emergent
properties within medicine, Bunge names apoptosis on the level of cells (p. 138) or being alive, thinking
and socializing (p. 16) on the level of the whole system.

Bunge classifies systems broadly into being concrete/material (stars, cells, humans, social
systems, etc.) or abstract (properties, events, ideas, feelings, etc.). Concerning the former, he writes [1]
(pp. 13–14):

The conceptual or empirical analysis of a concrete system, from atom to body to society,
consists in identifying its composition, environment, structure, and mechanism. These
components may be schematically defined as follows:

Composition = Set of constituents on a given level (molecular, cellular, etc.)
Environment = Immediate surrounding (family, workplace etc.)
Structure = Set of bonds among the components (ligaments, hormonal signals, etc.)
Mechanism = Process(es) that maintain(s) the system as such (cell division, metabolism,
circulation of the blood, etc.)

Bunge defines the environment of a system as the set of all entities not being part of the system,
but interacting with it. He generally conceives causal mechanisms as processes (sequences of events) in

2 Bunge speaks of emergentism instead of emergence as in his former publications.
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concrete systems involving energy transfer that are activated by particular events (the causes) [16,17].
Mechanisms can act between different levels of a system in both top-down and bottom-up direction
(Figure 1). Bunge adopts the Humean view of causation − event X is a cause of event Y if and only
if (i) X is both a necessary and sufficient condition for Y to happen, and (ii) X happens before or
simultaneously with Y. In this sense, mechanisms act as mediators between causes and their effects.

While Bunge mentions the importance of the (social) environment and its interaction with patients,
he makes no distinction between open and closed systems in his medical philosophy. This is despite the
concept of an open system as “the characteristic state of the living organism” having been introduced
by von Bertalanffy [14] who is cited as an influencer of systemism in Bunge’s book. According to
von Bertalanffy, an open system is characterized by a “steady inflow and outflow of materials” [14].
Contrary to closed systems, open systems therefore transcend both conventional thermodynamics and
one-way causality of the form “this one event always causes this or that effect” [18]. We more generally
conceive an open system as a system which is in steady interactions with its environment, whereby
these interactions can give rise to events and the triggering or avoidance of mechanisms; they hence
influence causal effects. As we will argue in Section 4, Bunge’s failure to clearly characterize patients
as open systems is the major flaw in Bunge’s medical philosophy, giving rise to several epistemological
and methodological problems in his account.
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Figure 1. Two examples for mechanisms acting across levels in top-down or bottom-up direction.
In the former case, macrosocial factors such as unemployment or gender discrimination induce chronic
stress in affected individuals which in turn negatively affects gene transcription through epigenetic
modifications. Such modifications of gene transcription can promote the development of systemic
diseases such as (type II) diabetes which in turn has negative effects on the social level by decreasing
productivity or inflicting additional costs to the health care system. These examples are taken from
page 35 of Bunge’s book [1].

3. Bunge’s Epistemology

Bunge’s epistemological principles for scientific medicine can best be summarized by three further
postulates that he stated in a previous paper along with the two ontological postulates cited in the
previous section [15]:

(S3) All problems should be approached in a systemic rather than in a sectorial fashion;

(S4) All ideas should be put together into systems (theories); and

(S5) The testing of anything, whether idea or artifact, assumes the validity of other items, which are taken as
benchmarks, at least for the time being.

According to Bunge, and in line with several other philosophers of science, biomedical research
is particularly concerned with the testing of causal hypotheses3. Causal hypotheses require causal

3 He broadly distinguishes three kinds of causal hypotheses: (i) Null hypotheses of no association between two putatively
causally connected variables. (ii) General hypotheses of the form “X is a cause of that disease” or “the mechanism of X is Y”.
(iii) Particular hypotheses such as “that individual is likely to suffer from that disease”.
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mechanisms which may be conjectured based on statistical data (e.g., observational studies) [1,16].
Bunge has a Humean conception of causality in which cause and effect are constantly conjoined.
Such conception was once the standard view in medicine. It was first questioned in the 1950s when the
problem whether smoking causes lung cancer was being investigated more thoroughly [5]. Smoking
is neither necessary (asbestos, e.g., can also cause lung cancer) nor sufficient (not every smoker gets
lung cancer) for lung carcinogenesis. This example clearly showed that there could be causes that are
not always followed by their effects; it required a new concept of causality called indeterministic or
probabilistic causality and spurred new philosophical investigations of the link between causality and
probability that last until today [5]. Bunge, however, rejects any fundamental connection between
causation and probability. On Bunge’s account, probability measures the objective possibility or
likelihood of an individual fact, but only when there is chance involved, either within things themselves
(e.g., atoms) or the sampling procedure that determines the observation of the facts (e.g., randomization).
He therefore rejects Bayesianism in its broadest sense which he accuses of being subjective, absurd and
even dangerous when applied to diseases and therapy [1] (p. 101).4 We are going to discuss the AIDS
example which he uses to justify this claim in the next section.

The adoption of causal determinism and abandonment of probabilities5 characterize his account
of medical hypothesis testing and his concepts of evidence and confirmation. For Bunge, it is
necessary to subject medical hypotheses to tests of two kinds—a conceptual test according to his
postulate (S5), evaluating whether the hypothesis is consistent with the bulk of prior knowledge;
and an experimental test that can only be conducted through a randomized controlled trial (RCT).
Bunge conceives randomization into a treatment and control group necessary to correct for biases that
are due to the heterogeneity of human individuals. Only randomization could guarantee an equal
distribution of all unknown variables with a possible influence on the outcome between treatment and
control group, “so that the intervention stand out as the only cause of the difference in the outcome of
the study” [1] (p. 142).

This argument echoes the one made by the evidence-based medicine (EBM) movement that has
always considered RCTs as the “gold standard” providing the best available evidence, because only RCTs
would theoretically balance any unknown factors between treatment and control group confounding
the association between an intervention (the cause) and its effect. Hence, RCTs (and their meta-analyses)
were conventionally placed on top of the so-called “evidence hierarchy”, in which non-randomized
trials and observational studies are graded with much lower evidence quality [19]. We agree with EBM
proponents who claim that “the higher the quality of evidence, the closer to the truth are estimates of
diagnostic test properties, prognosis, and the effects of health interventions” [19]; however, if high
quality evidence is set equivalent to particular quantitative research methods generating the evidence
as suggested by various EBM “evidence hierarchies”, this amounts to embracing a positivist-empiricist
philosophy.6 Such reasoning has evoked much criticism from both medical practitioners [20–23],
methodologists, and philosophers of science [24–30].

Bunge rejects most of the criticisms against the evidence hierarchy and “uphold[s] the ruling
opinion that the RCT is the gold standard of biomedical research [since] it is the most objective
and impartial, hence also the most reliable and responsible, method for assessing the effectiveness
of medical interventions on members of heterogenous populations” [1] (p. 149). According to
Bunge, RCTs are necessary, although not sufficient, to establish the truth of a medical hypothesis.

4 This sounds like an argument by definition. Bunge postulates a meaning for “probability” and then concludes that the
Bayesian conception is absurd. However, we are not going to pursue this point further here.

5 Bunge seems to have missed that Bayesians of the personalist stripe are ontological determinists and epistemic probabilists.
6 We use the term positivist-empiricist referring to a conjunction of concepts of logical positivism and Humean empiricism.

The former rejects any reference to unobservable (metaphysical) entities, while the latter describes the scientific endeavor
to test causal hypotheses by finding quantitative associations between observed events. Indeed, the literature on the
philosophical and methodological foundations of EBM emphasizes statistical methodologies and avoids any reference to a
particular ontology [2,19].
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They are insufficient because they overlook mechanisms of action. Therefore, Bunge proposes a new
pinnacle of the methodological hierarchy (the “platinum standard”) consisting of (i) double-blind
and placebo-controlled RTCs with (ii) the explicit statement of a mechanism of action which can
account for the observed associations (Figure 2). The order below his supposed platinum standard is
analogous to the traditional EBM evidence pyramid in that it ranks evidence from RCTs higher than
that from non-RCTs (e.g., case-control or cohort studies) which in turn deliver evidence that is ranked
higher than that from case series and case reports. Through his emphasis on evidence for mechanisms
contributing to the platinum standard, Bunge departs from EBM in which studies providing evidence
for mechanisms are ascribed the lowest quality at the bottom of the various evidence hierarchies [31].
In this way, he attempts a rationalism-empiricism synthesis that “is fruitful only jointly with realism” [1]
(p. 81). However, Bunge’s views on the epistemological merits of research methodologies below RCTs
appear even more extreme than those of EBM; he simply denies that they have any power for testing
causal hypotheses:

[O]nly RCTs allow researchers to find out whether a medical treatment is effective. (If preferred,
this method is used to find out whether propositions of the form “This therapy is effective”
are true or false.) [1] (p. 143).
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Bunge uses the word “true” referring to the concept of factual truth that he sharply distinguishes
from probability. For him, truth is a property of propositions such as hypotheses, while probability is a
property of individual random facts (“things and events out there”, p. 99) and therefore ontological.
Truth values measure the degree to which a hypothesis corresponds to the facts and are measured
by conducting experiments. In contrast, probability values are theoretically assumed, guessed or
calculated by frequencies, but never directly measured. Hence, it is not the goal of RCTs to estimate
probabilities of individual facts, but rather to estimate truth values of hypotheses. Concerning the
assignment of such truth values to scientific hypotheses Bunge writes:
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The aim of an experiment, contrary to that of an observation or a measurement, is to garner
empirical data relevant to a hypothesis, to test it and find out its degree of factual (or empirical)
truth (true, true within such an error, or false). When there is a theory (hypothetico-deductive
system of propositions) referring to the same facts, the hypothesis that undergoes an empirical
test can also be assigned a theoretical truth value. In both cases, the truth in question is
factual, not formal or mathematical [1] (p. 131).

Therefore, according to Bunge, it is empirical data stemming from an experimental study and
being relevant to a hypothesis that are necessary for both testing the hypothesis and assigning it a
truth value. Such data then become evidence:

A datum becomes evidence when confronted with a hypothesis: in this case it either confirms
or weakens the hypothesis to some extent [1] (p. 28).

Thus, in Bunge’s view, data that are relevant to a hypothesis are evidence for the hypothesis and
simultaneously confirm/disconfirm and assign a truth value to it. However, Bunge gives no unequivocal
answer to the question of how exactly a causal hypothesis is supposed to be confirmed or refuted.
On one occasion he claims that “[o]nly the unveiling of a mechanism can confirm or refute a causal
guess” (p. 100), while on another occasion he states that “confirming or refuting a causal hypothesis,
is what is gained when one subjects it to a controlled experiment” (p. 155). We will show in Section 4
how the important role of both mechanisms and statistical data for confirming a causal hypothesis
follows naturally from a Bayesian analysis of causal hypotheses. We also show how a conceptual
distinction between evidence and confirmation is helpful to understand scientific inference including
inference in the medical sciences. In contrast to Bunge’s description of medical hypothesis testing,
our concepts of evidence and confirmation are able to account for prior knowledge, uncertainties in
inference and the objective comparison between different hypotheses based on observed data.

4. A Critique of Bunge’s Medical Philosophy

Having reviewed the ontological and epistemological principles of Bunge’s medical philosophy,
which heavily rests on his general account of systemism, we are now going to formulate our major
critique against Bunge’s account:

Humans are open systems ⇒

(C1) The confirmation of hypotheses is inherently stochastic and must be distinguished from the notion of
objective truth; only comparisons between hypotheses in light of background knowledge and their ability to
explain the observed data are objective

(C2) RCTs are neither necessary nor sufficient to establish the truth of a causal claim

(C3) Testing of causal hypotheses requires taking into account background knowledge and the context within
which an intervention is applied

In the following three subsections we will justify our claims (C1) to (C3) in more detail.

4.1. Evidence and Confirmation as Separate Concepts

According to von Bertalanffy, who is cited in Bunge’s book as a pioneer of systemism, every
living system is an open system [14,18]. In system terms, open systems are characterized by steady
interactions between the different components of the systems, the systems as a whole with their
components and the systems and their components with other systems and their components in the
environment. These interactions would give rise to events and hence causality, because interactions
represent causal relationships between events; however, they are so complex and dynamic that causality
cannot be considered as a constant conjunction of events. That would only be the case in closed systems,
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something that can be only be established artificially through particular experimental setups in some
natural sciences such as physics. In natural open systems, however, causality arises from a tendency
on behalf of the system to produce certain patterns or regularities under particular contexts [32]. As a
consequence, there are no universal regularities of the form “whenever event X, then event Y”, only
what appear as such on average and what Lawson has named “demi-regularities”. Conceptualizing
humans as open systems, it becomes clear that the same medical intervention applied in different study
settings not always leads to the same outcome since the outcome depends on the environment/context
in which it occurs. It is crucial to point out that statistical methodologies not only presuppose, but
only work in closed systems if the goal is to establish causality [33]. One must therefore accept
that variations in regularity are predicted to occur in experimental studies in biology, medicine, and
sociology. This will require the utilization of probabilities:

Variations in regularity are generally specified probabilistically or stochastically, as random
processes occurring in the ontic domain. Probability is a measure of the likelihood of an
event occurring. The re-conceptualization of stochastic event regularities using the concepts
of probability, might be styled ‘whenever event x, then on average event y’ [33].

For realists, the truth of causal hypotheses cannot be established in an objective way through
statistical data alone due to the unavoidable limitations of experiments conducted on biological open
systems, or in other words, the impossibility to achieve complete closure of a biological open system
in order to nail down the true causal effect of an intervention. It follows that the confirmation or
disconfirmation of a hypothesis by statistical data is not about assigning (objective) truth values as
Bunge claims, but about raising or lowering an agent’s (subjective) belief in the truth of the hypothesis.
Once framed, a realist will seek to scrutinize a causal hypothesis in further tests which hopefully
provide stronger and stronger confirmation of it [32]. At the same time, the realist will consider
different competing hypotheses/models about the data-generating causal processes that she attributes
to different entities that are or may be real; the data may then decide between these hypotheses in an
objective way.

We have developed two distinct Bayesian accounts to capture these two concepts about the testing
of statistical hypotheses [34,35]. The first is an account of belief/confirmation, the second of evidence.
Many Bayesians interpret confirmation relations in various ways. For us, an account of confirmation
explicates a relation, C(D,H,B) among data D, hypothesis H, and the agent’s background knowledge B.
For Bayesians, degrees of belief need to be fine-grained. A satisfactory Bayesian account of confirmation,
according to us, should be able to capture this notion of degree of belief. In formal terms:

D confirms H to some degree if and only if P(H|D) > P(H)

The posterior/prior probability of H could vary between 0 and 1. Confirmation becomes strong or
weak depending on how great the difference is between the posterior probability, P(H|D), and the prior
probability of the hypothesis, P(H). P(H|D) represents an agent’s degree of belief in the hypothesis
after the data are accumulated.7 P(H) stands for an agent’s degree of belief in the hypothesis before the
data for the hypothesis have been acquired. The likelihood function, P(D|H), provides an answer to
the question “how likely are the data given the hypothesis”? P(D) is the marginal probability of the
data averaged over the hypothesis being true or false. The relationships between these terms, P(H|D),
P(H), and P(D|H), and P(D) are succinctly captured in Bayes’ theorem:

P(H|D) = P(D|H) × P(H)/P(D) > 0.

7 More precisely, we can speak of the degree of belief in the truth of the hypothesis; this unifies Bunge’s arguments about
hypotheses being confirmed and hypotheses being assigned truth values.
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While this account of confirmation is concerned with belief in the truth of a single hypothesis,
our account of evidence compares the merits of two hypotheses, H1 and H2 (which could be ¬H1)
relative to the data D, auxiliaries A, and background information B. We conceive the evidence of one
hypothesis versus the other as an objective function of the data generating process8, which takes
place via observed or unobserved mechanisms within the system under study. This is also how
Bandyopadhyay, Brittan, and Taper interpret the likelihood that determines the evidence [35] (p. 30):

It is natural to assume that the “propensity” of a model to generate a particular sort or set
of data represents a causal tendency on the part of natural objects being modeled to have
particular properties or behavioral patterns and this tendency or “causal power” is both
represented and explained by a corresponding hypothesis.

As such, evidence provides the link between “the Real” about which we construct hypotheses and
“the Empirical” which we observe as patterns or regularities.9 Our concept of evidence is therefore
consistent with a realist-systemic ontology. Note that this concept also fulfills Bunge’s postulate (S5) by
explicitly taking background knowledge into account. Such background knowledge and auxiliaries
allow deriving evidence through a variety of methodologies, as long as the data are relevant to an
aspect of the hypotheses being compared. For example, observing a high correlation between treatment
X and effect Y in a RCT may in theory provide the strongest evidence for the claim that X causes Y when
the alternative is that X is no direct cause of Y, but X and Y are correlated because both are caused
by some third (confounding) factor. In contrast, a single case report of a patient taking a drug and
developing a serious side effect together with background knowledge about the biological actions
of the drug may provide strong evidence for the hypothesis that the drug is harmful in particular
contexts.10 Finally, preclinical in vitro and in vivo studies may provide strong evidence in favor of a
particular mechanism underlying an observed correlation between treatment and outcome.

Because evidence is not a belief relation, but a likelihood ratio, it need not satisfy the probability
calculus. The data D constitute evidence for H1&A1&B against H2&A2&B if and only if

[P(D|H1,A1&B)/P(D|H2,A2&B)] > 1.

Bayesians use the Bayes factor (BF) to make this comparison, while others use the likelihood ratio
(LR) or other functions designed to measure evidence. For simple statistical hypotheses with no free
parameters, the Bayes factor and the likelihood ratio are identical, and capture the bare essentials
of an account of evidence without any appeal to prior probability. However, the LR becomes an
inadequate measure of evidence whenever there are free parameters to estimate; the greater the number
of parameters, the more biased the LR becomes. This is what information criteria such as AIC or BIC
try to account for [39]. For hypotheses under which there are unknown parameters θ, the densities11

P(D|H,A&B) are obtained by integrating over the parameter space, so that [42]

8 The data generating process is covered by the auxiliary hypotheses which can be about mechanisms. These auxiliaries serve
as links between theoretical entities of the system under study and observable features in nature, in this way generating
observable predictions [36].

9 The distinction between the Real and the Empirical is borrowed from Critical Realism which itself exhibits many features of
systems thinking [37].

10 An example is a recent case report of a patient with chronic kidney disease experiencing severe lactic acidosis from taking
the widely prescribed anti-diabetic drug metformin [38]. In the case report, the authors state their background knowledge
as follows: “In the setting of dehydration with resultant acute kidney injury, metformin can accumulate, leading to type B
lactic acidosis, especially in the presence of other nephrotoxic agents (ACEi and loop diuretics)”. They conclude to “use this
patient as an example of the population that actually needs dosing adjustments”, a theoretical generalization supported by
the evidence obtained from observations on this single patient.

11 These probabilities of the data are also known as marginal or integrated likelihoods; some authors also denote them as
“evidence” (e.g., [40,41]) which must not be confused with our account of evidence that always implies a comparison
between two competing simple statistical hypotheses.
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P(D|H,A&B) =

∫
P(D|θ,H,A&B)π(θ|H,A&B)dθ.

An immediate corollary of the evidential condition (E) is that there is equal evidential support for
both hypotheses only when BF = 1 (or LR = 1). The numerical value of the BF or LR which distinguishes
weak from strong evidence for H1 versus H2 is determined contextually and may vary depending on
the nature of the problem. It also follows that evidence is accompanied by confirmation and vice versa
in the special case that two hypotheses are mutually exclusive and jointly exhaustive. In this case,
if the data provide evidential support for H against ¬H, i.e., P(D|H) > P(D|¬H), then it follows from
Bayes’ theorem that P(H|D) > P(H). However, even in this case, a hypothesis for which the evidence
is very strong may not be very well confirmed while a claim that is very well confirmed may have
no more than weak evidence going for it [35] (p. 38). Finally, we note that in most scientific studies,
no precise quantitative determination of likelihoods, priors, and posteriors of hypotheses might be
possible. Even then our concepts remain useful for making qualitative or comparative statements about
hypotheses. For example, a qualitative evidential statement may be “the data provide more/equal/less
evidence for H1 compared to H2”; a comparative statement relating to confirmation may be “H1 is
better confirmed/equally confirmed/less confirmed by the data than H2”.12

We will now demonstrate the usefulness of our confirmation/evidence distinction using an
example provided by Bunge himself, the purpose of which was supposed to reject Bayesianism as
unreasonable [1]:

It is well known that HIV infection is a necessary cause of AIDS: no HIV, no AIDS. In other
words, having AIDS implies having HIV, though not the converse. Suppose now that a
given individual b has been proved to be HIV-positive. A Bayesian will ask what is the
probability that b has or will eventually develop AIDS. To answer this question, the Bayesian
assumes that the Bayes’ theorem applies, and writes down this formula: P(AIDS|HIV) =

P(HIV|AIDS). P(AIDS)/P(HIV), where an expression of the form P(A) means the absolute (or
prior) probability of A in the given population, whereas P(A|B) is read (or interpreted) as
“the conditional probability of A given (or assuming) B.”

If the lab analysis shows that b carries the HIV, the Bayesian will set P(HIV) = 1. And,
since all AIDS patients are HIV carriers, he will also set P(HIV|AIDS) = 1. Substituting
these values into Bayes’ formula yields P(AIDS|HIV) = P(AIDS). But this result is false, since
there are persons with HIV but no AIDS. What is the source of this error? It comes from
assuming tacitly that carrying HIV and suffering from AIDS are random facts, hence subject
to probability theory. The HIV-AIDS connection is causal, not casual; HIV infection is only
a necessary cause of AIDS. In conclusion, contrary to what Bayesians (and rational-choice
theorists) assume, it is wrong to assign probabilities to all facts. Only random facts, as well
as facts picked at random, have probabilities.

The example is supposed to show a paradox arising from Bayesian reasoning. The paradox is that
a positive HIV test result provides no confirmation for the hypothesis AIDS, i.e., that b has or will
develop AIDS, since the posterior probability of AIDS after obtaining a positive test result is the same
as its prior probability. However, the paradox only arises because Bunge is wrong in two assumptions:
First, that a positive test result is “true”, so that P(HIV) = 1, and second that the test has perfect
sensitivity, so that P(HIV|AIDS) = 1. Both assumptions are at odds with realistic assumptions about
tests on open systems which are never perfect. Regarding Bunge’s first assumption, he mistakenly
identifies “knowing or observing the data” with “the probability of the data” [35] (p. 137). For a

12 See Klement [43] for such a qualitative medical application of the evidence/confirmation distinction.
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Bayesian realist, the positive test result is the realization of some data generating mechanisms (in this
case, mechanisms of the disease AIDS) modelled by a binary random variable taking on the value of
either 0 or 1, so that the correct way of writing P(HIV) is

P(HIV=1) =
∑

P(HIV = 1|Hi)P(Hi) = P(HIV = 1|AIDS)P(AIDS) + P(HIV = 1|¬AIDS)P(¬AIDS).

This expression includes both the true positive rate (sensitivity) and false positive rate (1- specificity)
none of which are exactly 100% or 0%, respectively, in medical tests. In this specific example,
the assumptions P(HIV|AIDS) ≈ 1 and P(HIV|¬AIDS) ≈ 0 can indeed be justified based on generally
very high sensitivity and specificity of HIV tests (although there is clear variation in these test
performances across different settings [44], emphasizing the importance of environment/context).
However, the prior probability of b having or not having AIDS before the test result is known is also
important. In general, observing HIV is the case does not therefore imply P(HIV) = 1.

On our account, a positive test indeed provides strong evidence for the AIDS hypothesis because
P(HIV|AIDS)� P(HIV|¬AIDS). In accordance with our intuition, this does not depend on our prior
beliefs about the person having or not having AIDS in the first place. What we should believe about
b having AIDS after the positive test result has been obtained is however a different question, and
again in accordance with our intuition, the answer to this question should now depend on the context,
e.g., what we know about the individual and its social relationships. Bunge is not able to capture these
intuitions. On his account, solving the inverse problem of going from the results of a medical test
or some sign S of a disease D to the precise diagnosis of D can only be achieved if there is a single
mechanism M that when conjoined with S is necessary and sufficient for D to occur. In the AIDS
example above, his reasoning goes as follows: AIDS occurs⇔ HIV infection & slow immune reaction,
where slow immune reaction describes the mechanism by which HIV leads to immune system failure.
More generally, his reasoning is (p. 88):

For all x: (Dx⇔Mx) & For all x: (Mx⇔ Sx) ∴ For all x: (Dx⇔ Sx)

Bunge’s solution presupposes that the mechanisms causally linking the signs and the disease
always operate the same way, regardless of the context. In other words, he presupposes a closed
system, which is not even approximately the case given that medical tests have sensitivities and/or
specificities varying across contexts and often less than 100%.

Bunge simply fails to realize that medical (as well as biological and social) observations are never
“facts” because we deal with open systems and hence uncertain inferences.

4.2. RCTs and the Truth Claim

We are now investigating Bunge’s claim that RCTs are necessary to infer the truth of a causal
hypothesis in more detail. To this aim, it is helpful to first review some methodological principles of
RCTs. A good overview has recently been provided by Deaton and Cartwright [27], and we follow
their account to a large extent. Without loss of generality we assume that the medical hypothesis to be
tested in a RCT is a proposition of the form “treatment T is effective” the truth of which is typically
assessed by measuring some particular outcomes in the randomly allocated treatment and control
groups. To measure the truth of a medical hypothesis then means to measure the true average treatment
effect (ATE) of the intervention, where the ATE is the difference between the average outcome in the
treatment group and the average outcome in the control group.13 Assuming a linear causal model for
the individual treatment effects one could write for an individual outcome

13 Actually, the very significance of knowing the average treatment effect for medical practice may be questioned. See
Subramanian et al. [45] for a brief commentary.
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Yi = βiTi +

J∑
j=1

γ jxi j

Here, Yi is the outcome for patient i, Ti is a treatment indicator (Ti = 1 if treatment, Ti = 0 if
control), βi the individual treatment effect for patient i, and the x’s are observed or unobserved other
linear causes of the outcome. By averaging the effects in both treatment (T) and control (C) group and
subtracting the means one obtains an estimate for the ATE

YT − YC = βT +

J∑
j=1

γ j
(
xTij − xCij

)
(ATE)

The major interest in conducting a RCT is on βT which is the true ATE in case that the averages of
the other causes are exactly balanced between both groups. Bunge claims that the aim of randomization
is to bring the error term on the right-hand side of the (ATE) equation as close to zero as possible.
However, this is not what any RCT can guarantee [24,26]. What randomization actually does is
guaranteeing that the error term is zero only in expectation. The expectation refers to an infinite number
of repeated randomizations of the trial sample into treatment and control group—for an individual
randomization the estimated ATE can be arbitrarily far away from the true ATE. Repeating the trial
and estimating the ATE many times allows one to estimate a mean ATE and its standard error—this is
the true benefit of randomization. Contrary to what Bunge claims, therefore, randomization will not
guarantee that an individual RCT will provide us with an estimate of the ATE that is close to the truth.
Instead, if there is background knowledge about the main other causes of the outcome one would be
better of matching patients according to these other causes without randomization. But background
knowledge is exactly what is omitted by Bunge when he proposes RCTs as the gold standard of clinical
trials. Deaton and Cartwright put it this way [27]:

The gold standard or “truth” view does harm when it undermines the obligation of science
to reconcile RCTs results with other evidence in a process of cumulative understanding.

The conception of patients as open systems forces us to accept that we can never infer the true
effect of a treatment through RCTs, even if we would be able to repeat one and the same trial an
infinite number of times. The reason is that in each repetition, some changes in the environment or
context in which the RCT is conducted are unavoidable. The best we can therefore do is to seek higher
and higher confirmation for our hypotheses and determine their evidence against realistic competing
hypotheses. But these goals are achievable by collecting relevant data across a variety of study types of
both statistical and mechanistic character. A famous example is the establishment of the hypothesis
that smoking causes lung cancer that was based on observational and laboratory data, but not on RCTs.
Surprisingly, Bunge himself has used this example in one of his previous papers [16]:

For example, since the mid-20th century, it has been known that lung cancer and smoking
are strongly correlated, but only laboratory experiments on the action of nicotine and tar on
living tissue have succeeded in testing (and confirming) the hypothesis that there is a definite
causal link underneath the statistical correlation: we now know definitely that smoking may
cause lung cancer.

Note that for Bunge it was knowledge of the mechanisms that confirmed the hypothesis that
smoking causes lung cancer. However, on our account, the strong correlational data between smoking
and lung cancer on its own provided a strong degree of confirmation for the hypothesis that smoking
causes lung cancer. Knowing the mechanism regarding how smoking may cause lung cancer provided
an additional, independent confirmation of this hypothesis so that the total confirmation became higher
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than with either the statistical or mechanistic data alone.14 However, causation was not established by
the observational studies alone since the data they provided for a direct causal relationship between
smoking and lung cancer was interpreted as not providing strong enough evidence compared to
alternatives such as a “smoking gene” increasing both the tendency to smoke and to develop lung
cancer.15 Only by knowing the carcinogenic mechanisms of tar and nicotine directly linking smoking
and lung tumorigenesis was the observed correlation to be interpreted as strong data that smoking
directly causes lung cancer instead of both being due to some third factor. Given our likelihood-based
account of evidence, which must be comparative, we have three possible ways to compare two
hypotheses. One could be a comparison between a causal hypothesis and a statistical hypothesis.
The second could be a comparison between a causal hypothesis with another causal hypothesis.
The third and final one could be between a statistical and another statistical hypothesis. The current
scenario is concerned with case one in which a comparison is made between a causal hypothesis and a
non-causal statistical hypothesis. Given the accumulated data regarding several observational studies
on the proportion of tar in tobacco, the hypothesis that smoking causes cancer was supported more
strongly than the hypothesis that smoking and cancer were merely correlated without implying any
causal connection between them. This evidential relationship between the hypotheses, smoking causes
cancer, and smoking and cancer are statistically related, given the data, holds independent of what an
agent believes about those hypotheses and data. Therefore, from the basis of our account of evidence,
we could say that data provide strong evidential support for the hypothesis that smoking causes cancer
as against its alternative. So, from the perspectives of both accounts of evidence and confirmation,
the hypothesis “smoking causes cancer” is more evidentially supported by data than its alternative
hypothesis as well as it is strongly confirmed. This both-way vindication is possible because of the
theorem: If two hypotheses are mutually exclusive and jointly exhaustive as well as simple statistical
hypotheses, then data will provide evidential support for a hypothesis over its alternative if and only
if data will confirm the hypothesis to some degree:

[Pr(D|H)/Pr(D|¬H)] > 1 iff Pr(H|D) > Pr(H).

Another example, also mentioned by Bunge himself [1] (p. 147), is appendectomy to treat
appendicitis. In this case, conducting a RCT with a control group receiving sham operation would
not only be unethical, but also not necessary to highly confirm the hypothesis that appendectomy is
an effective treatment. The reason is that the mechanism (infection of the appendix) and the way to
shut it down (by removing the appendix) are very well known. This example is noteworthy since it
could serve to illustrate that a causal hypothesis may be established by knowledge of mechanisms
alone without the necessity for statistical data.16 A third example is the treatment of the rare disease
glucose transporter 1 (GLUT1) deficiency syndrome through prescribing a high-fat, low-carbohydrate
ketogenic diet: despite only “low level” clinical evidence available, a recent consensus guideline
recommends ketogenic diets as the treatment of choice for GLUT1 deficiency syndrome mainly based on
the physiological mechanism that ketone bodies are able to cross the blood–brain barrier independent
from GLUT1, providing an alternative fuel for the brain instead of glucose [51].17

14 This is a consequence of the so-called “variety-of-evidence thesis” [46,47]. On our account, this is a slight misnomer. We call
this the “variety-of-data thesis”.

15 See chapter 5 in Judea Pearl’s “Book of Why” [48] for a detailed historical summary on how causation between smoking and
lung cancer became established, including the argument that a “smoking gene” might be the underlying confounding factor.

16 The example is a counter-example to the Russo-Williamson thesis according to which both statistical and mechanistic evidence
is required to establish a causal claim [49]. See also Claveau [50] for another counter-example to the Russo-Williamson thesis
from the social sciences.

17 Ketone bodies are produced under conditions of low insulin levels such as during fasting or very low carbohydrate
intake; in this respect, ketogenic diets can mimic fasting without necessarily restricting energy intake. Ketone bodies
are transported through the blood-brain barrier by monocarboxylate transporters; this transport mechanism is therefore
completely insulin- and GLUT-independent.



Philosophies 2019, 4, 50 14 of 19

As these examples show, RCTs are neither necessary nor sufficient for determining whether
some factors cause a disease or an intervention is effective. Rather, causal claims may be established
based on a variety of data from mechanistic, observational, and other study types that conventionally
sit below RCTs in the “evidence hierarchy”. We note that the difference between mechanistic and
statistical (or probabilistic) data is not one between qualitative and quantitative data, nor one between
observations stemming from laboratory versus clinical studies. In fact, mechanistic hypothesis may be
framed as statistical models and applied to clinical data. For example, in radiotherapy, mathematical
models describing the mechanisms of cell killing through DNA damage caused by ionizing radiation
are frequently utilized. They may be used clinically to convert between different fractionation schemes
having the same biological effect or for predicting radiotherapy outcomes such as tumor control and
normal tissue complication probability [52,53]. In our interpretation, the main distinction between
mechanistic and statistical data is that the former can explain why the latter are observed. In the
radiotherapy example, the mechanism itself is stochastic as it describes the killing of cells which
obeys statistical laws; however, it also explains why higher radiation doses result in higher probability
of tumor control, and even allows the derivation of the mathematical form of the dose-response
relationship [52].

Each causal claim has both probabilistic and mechanistic consequences that may be observed or not.
Therefore, either mechanistic or statistical data are able to confirm a causal claim to some degree, whereas
data from both sources provide even stronger confirmation according to the “variety-of-evidence
thesis” [46,47]. Mechanisms can also serve as background knowledge to increase the evidence of a
causal hypothesis over a merely statistical one; this was the case in the smoking and lung cancer
example. Finally, the optimal methodology for establishing a causal claim may depend on the exact
type of hypothesis posed, e.g., the claim that an intervention worked in some setting versus the claim
that it works for a particular patient, or a claim about a harmful effect [28].

4.3. RCTs and Background Knowledge

For any researcher, prior or background knowledge plays a crucial role for the evaluation of
causal hypotheses. This is naturally captured in our account of evidence and confirmation described
in Section 4.1, but not in Bunge’s account relying on RCTs as necessary methods for hypothesis
testing. Andrew Gelman [54] has pointed out that using tools such as randomization and p-values to
enforce scientific rigor misses the most important point of causal inferences, which is interpreting and
understanding the results within the context of background knowledge. RCTs are not designed to rely
on background knowledge which “is an advantage when persuading distrustful audiences, but it is a
disadvantage for cumulative scientific progress, where prior knowledge should be built upon, not
discarded” [27]. Thus, demanding the conduct of a RCT as a necessary condition for confirming a
causal hypothesis, as Bunge does, violates his own postulates (S4) and (S5), because it discourages
grouping hypotheses into medical theories and makes only minimal assumptions about the validity of
other benchmark items, i.e., background knowledge. Judea Pearl has emphasized that if an agent is able
to use her background knowledge in order to frame a causal model of reality, RCTs are no longer the
only means to estimate the effect of interventions. In this case observational studies can do just as good
with two additional advantages: their conduction is often more practical, and they study populations in
their natural environment, instead of an artificial environment created by experimental protocols [55].
It is also well known that RCTs are not immune to bias, so that poorly designed RCTs may provide less
certain results than well designed observational studies [27]. Background knowledge of the structure
and mechanisms in the system under study is also important for meaningfully interpreting RCT results,
or generally results from any statistical study. Deaton and Cartwright illustrate this using Bertrand
Russel’s famous chicken example [27] (p. 11):

The bird infers, on repeated evidence, that when the farmer comes in the morning, he feeds
her. The inference serves her well until Christmas morning, when he wrings her neck and
serves her for dinner. Though this chicken did not base her inference on an RCT, had we
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constructed one for her, we would have obtained the same result that she did. Her problem
was not her methodology, but rather that she did not understand the social and economic
structure that gave rise to the causal relations that she observed.

The importance of taking background knowledge into account also arises each time that results
are discordant either between individual RCTs or between a RCT and another study type. From a
purely empiricist standpoint ignoring what we know about the interplay between an intervention,
the context under which it is applied and its mechanisms, such discrepancies are usually explained by
invoking certain quality criteria based on design and statistical arguments [56]. For example, if there
is discrepancy between RTCs and observational studies, results from the former are usually taken
to “override” results from the latter. However, acknowledging that observing an intervention effect
presupposes some mechanisms at work whose activation in turn may be context-dependent opens
up much more possibilities for interpreting negative study results or discrepancies between study
types. In particular, studies investigating an intervention may vary in context, in the mechanism that is
exerted, or in both simultaneously [56]. An example for the latter situation is the supplementation of
antioxidant vitamins for preventing cardiovascular disease which have been declared ineffective based
on mostly negative findings in RCTs, although evidence from observational studies showed preventive
effects. Connelly [56] emphasizes the realist standpoint that different antioxidant vitamins may act via
different mechanisms that in turn may depend on the age of an individual and whose effects may only
be observed over much longer follow-up periods than usually used in RCTs. He concludes:

It seems that an alternative realistic perspective on this question [whether antioxidant
vitamins can prevent cardiovascular disease] is again ignored in favour of what purports to
be an unassailable scientific observation of the results from RCTs. Here, once more, the effect
of ignoring differences in mechanisms and contexts may be to close down research in this
area prematurely.

By claiming that only RCTs can establish or not establish the efficacy of medical interventions, both
Bunge and EBM discourage realist thinking about mechanisms and contexts whenever RCT results
are available. As the antioxidant example shows, such thinking may preclude scientific progress,
especially when interventions and effects are related via complex mechanisms. This is despite EBM
explicitly stating the importance of evaluating “the totality of evidence” as one of its epistemological
principles [19]. Maybe this is also the reason why Bunge downgrades complementary and alternative
medicine (CAM) as “unscientific”, because by its very nature CAM works with complex interventions
differently from simple drug administrations for which an evidence hierarchy with RCTs on top appears
inadequate [29]. While for Bunge mechanisms are essential for understanding empirical phenomena
through what he calls mechanismic explanation [16], he restricts their main epistemological role within
the context of scientific medicine to “boosting” the confirmation of causal hypotheses provided by
RCTs – in fact, no mention is made in his book how mechanisms may be used in conjunction with
methodologies other than RCTs. In our opinion, this underestimates the role mechanisms should play
in medical hypothesis testing and treatment design. As the examples of appendectomy and GLUT1
deficiency syndrome given in Section 4.2 show there are situations where data of mechanisms become
equally or more important than statistical data for establishing a causal claim of treatment efficacy.

As another example, consider the establishment of a causal relationship between benzo[a]pyrene
exposure and carcinogenesis in humans despite a lack of clinical data. Wilde and Parkkinen [57] have
argued that one is justified in believing that benzo[a]pyrene causes cancer in humans because animal
studies have provided evidence for both the robustness of the causal association and the mechanisms
at work. In this example, knowledge of mechanisms provides the basis for the extrapolation of study
results across different contexts, or more generally for building a causal theory that can then be applied
to varying contexts. Such a theory resting on mechanismic explanation is much more flexible than
individual hypotheses. In particular, predictions can be made from one context to another. At the same
time, once particular mechanisms have confirmed a causal theory, “we should attempt to eliminate
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alternative explanations by testing the potential effects of these mechanisms, particularly in contexts
other than the one where the theory was created” [58]. In other words, we should try to establish
evidence that the mechanisms that are part of our theory are at work across a variety of contexts.
To this aim, even case studies are valuable tools because they usually study individuals within more
natural environments different from the ones artificially created by clinical study protocols and at the
same time perform more thorough measurements than epidemiological studies.

5. Conclusions

Mario Bunge has provided a unique treatise of the philosophy of medicine which is based on
a realist-systemic ontology. In Bunge’s view, the world consists of systems, which in turn consist
of components, structures, mechanisms, and an environment. These four constituents should be
taken into account when studying any individual system. Bunge supports the methodology of EBM
which considers RCTs to possess the most rigorous study design and to provide the best evidence for
establishing the truth of causal hypotheses. Both Bunge and EBM thereby adopt a Humean view of
causality in which causes and effects are constant conjunctions of events which in Bunge’s ontology
are mediated through mechanisms. However, as we have argued in this paper, the view of RCTs as the
best or even the only methodology for achieving knowledge about the efficacy of medical interventions
is incompatible with a realist-systemic ontology. The reason is that the Humean view of causality only
holds in closed systems, but patients and study populations are heterogonous open systems, and even
the most rigorously conducted RCTs cannot guarantee closure of the system under study. This implies
that the Humean view of causality cannot be sustained in medicine. Hence, Bunge’s claim that RCTs
are necessary to establish the truth of the efficacy of an intervention must be rejected.

Another consequence of the failure of Bunge’s and EBM’s Humean view of causality is that we
need a probabilistic account of both evidence and confirmation. We have provided such accounts in
this paper, building on the subjective Bayesian concept of confirmation and the objective concept of
a likelihood ratio or Bayes factor to compare two competing hypotheses. Our Bayesian account of
evidence is compatible with a realist-systemic ontology insofar as evidence is conceived as an objective
function of the data generating process, which takes place via observed or unobserved mechanisms
within the system under study. Finally, we maintain that Bunge’s general critique of Bayesianism is
based on wrong interpretations of central concepts of probability, as the AIDS example discussed in
Section 4.1 has shown.

We agree with Bunge that statistical data alone are not sufficient for causal reasoning; instead,
what is needed is a causal hypothesis or causal model which can only be arrived at by thinking about
structures and mechanisms. However, Bunge must accept the critique of overrating the merits of
RCTs since he fails to account for the epistemological role of both already established mechanisms
and statistical associations observed in different contexts. In fact, the environment which determines
whether causal effects will emerge or not, is almost completely neglected in his account of medical
hypothesis testing. His conception of an evidence hierarchy is at best unnecessary, at worst, however, an
obstacle to scientific progress in the design and evaluation of medical treatments for individual patients.
An analogous proposition applies to EBM with its various forms of methodological hierarchies [28].
The role of background knowledge of both mechanisms and the stability of statistical regularities
across various contexts must be taken into account, which requires a variety of research methodologies.
For example, critical realism, which has an ontology similar to Bunge’s systemism18, embraces a
multitude of methodologies co-existing along each other, with no particular general preference for one
methodology over any other [37,59]. We, along with an increasing number of critical philosophers

18 Critical realism maintains the naïve realistic view of an independently existing world of objects and structures giving rise to
events that do and do not occur, while at the same time acknowledging the epistemological limitations of our observations
and knowledge that are relative to our time period and culture [37]. Emergence and the concept of systems are central
themes in critical realism [37], similar to Bunge’s systemism.
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and medical methodologists [30], encourage a similar approach in medicine, where “[t]he important
point is not whether a study is randomized or not, but whether it uses a method well suited to
answer a question and whether it implements this method with optimal scientific rigor” [29] (p. 5).
This implies considering results from preclinical and theoretical modelling studies, non-randomized
cohort studies, observational and case studies along with those from RCTs (if available) in an integrated
or “circular” [29] rather than dogmatic-hierarchical framework, evaluating evidence based on those
methodologies that best provide the data relevant to the particular hypothesis under investigation.
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