
UML Consistency Rules:
a Case Study with Open-Source UML Models

Damiano Torre
damiano.torre@uni.lu

University of Luxembourg
Luxembourg

Yvan Labiche
yvan.labiche@carleton.ca

Carleton University
Ottawa, Canada

Marcela Genero
marcela.genero@uclm.es

University of Castilla-La Mancha
Ciudad Real, Spain

Maged Elaasar
melaasar@gmail.com
Carleton University
Ottawa, Canada

Claudio Menghi
claudio.menghi@uni.lu

University of Luxembourg
Luxembourg

ABSTRACT
UML models are standard artifacts used by software engineers for
designing software. As software is designed, different UML diagram
types (e.g., class diagrams and sequence diagrams) are produced by
software designers. Since the various UML diagram types describe
different aspects of a software system, they are not independent
but strongly depend on each other, hence they must be consis-
tent. Inconsistencies cause faults in the final software systems. It is,
therefore, paramount that they get detected, analyzed, and fixed.
Consistency rules are a useful tool proposed in the literature to
detect inconsistencies. They categorize constraints that help in
identifying inconsistencies when violated. This case study aims at
collecting and analyzing UML models with OCL consistency rules
proposed in the literature and at promoting the development of a
reference benchmark that can be reused by the (FM-)research com-
munity. We collected 33 UML consistency rules and 206 different
UML diagrams contained in 34 open-source UML models presented
in the literature. We propose an FM-based encoding of the con-
sistency rules in OCL. This encoding allows analyzing whether
the consistency rules are satisfied or violated within the 34 UML
models. To assess the proposed benchmark, we analyzed how the
UML models, consistency rules, diagram types contained in the
benchmark help in assessing the consistency of UML models, and
the consistency of diagrams across the different software develop-
ment phases. Our results show that the considered UML models
and consistency rules allowed identifying 2731 inconsistencies and
that those inconsistencies refer to different software development
phases. We concluded that the considered UML models and consis-
tency rules could be considered as an initial benchmark that can be
further extended by the research community.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7071-4/20/05. . . $15.00
https://doi.org/10.1145/3372020.3391554

KEYWORDS
Case Study, UML consistency rules, Benchmark, OCL, Open-source
models, Model Checking

ACM Reference Format:
Damiano Torre, Yvan Labiche, Marcela Genero, Maged Elaasar, and Claudio
Menghi. 2020. UML Consistency Rules: a Case Study with Open-Source
UML Models. In 8th International Conference on Formal Methods in Software
Engineering (FormaliSE ’20), October 7–8, 2020, Seoul, Republic of Korea.ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3372020.3391554

1 INTRODUCTION
Model-Driven Software Engineering (MDSE) [17] promotes the
usage of models starting from requirement analysis to design, im-
plementation, and finally to software deployment [25]. MDSE has
lately received considerable attention in academia and industry [10],
which has resulted in models gaining even more importance in soft-
ware development. The Unified Modeling Language (UML) [18] is
the de facto standard modeling language for object-oriented de-
sign [21]. It is also frequently the chosen modeling language when
implementing MDSE. UML provides 14 diagram types [18] that
can be used to describe a system from different perspectives (e.g.,
structure, behavior) and/or abstraction levels (e.g., requirements
elicitation, system design). This helps to deal with the complexity of
a system specification and distributing the responsibilities between
different stakeholders, among other benefits.

Since the various UML diagram types describe different aspects
of a software system, they are not independent but strongly depend
on each other, hence they must be consistent [28]. Consistency rules
are useful and powerful tools proposed in the literature that allow
detecting inconsistencies across UML diagrams. Using consistency
rules on models is a well-spread practice used across several differ-
ent domains, such as safety-critical systems [20], robotics [22] or
legal compliance [31]. In an attempt to obtain an accurate picture
of the current research in the area of UML consistency, we initi-
ated a long-term investigation [26] that started with a Systematic
Mapping Study (SMS) of the UML consistency rules discussed in
literature [28]. This SMS allowed us to make several observations:
(1) practitioners who rely on consistency rules do so for a variety of
reasons (e.g., code generation, testing); (2) they rely on various sets
of consistency rules, involving varied UML digram types; (3) they

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/294761467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3372020.3391554
https://doi.org/10.1145/3372020.3391554

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Damiano Torre, Yvan Labiche, Marcela Genero, Maged Elaasar, and Claudio Menghi

typically rely on very similar, sometimes identical, sets of consis-
tency rules; and (4) 116 rules, which are not documented in the UML
standard, are relevant for practitioners [30]. To further assess and
compare current usages of consistency rules, we tried to classify
those 116 rules (e.g., identify what the context-dependent and the
general-purpose rules are), and identify the set of UML consistency
rules that should always be enforced. This has been performed
by interviewing experts in the field of MDSE from academia and
industry [29]. Among other results [29], we identified a subset of 52
general-purpose rules out of the 116 UML consistency rules, which
the MDSE experts considered should always be enforced in UML
models.

Formal methods (FM) techniques are widely used in the liter-
ature to check that UML models are compliant with a given set
of consistency rules [4]. A common practice is to use the Object
Constraint Language (OCL) [19] to specify those rules and to use
an appropriate solver to check them. After a solver is modified, or
a new solver is proposed, FM experts usually have to check for
the presence of bugs and assess performances. A frequent problem
with this practice is related to the absence of existing benchmarks
that contain a sufficiently large set of consistency rules and UML
models to be verified.

This case study aims at collecting and analyzing UML models
with OCL consistency rules that were proposed in the literature
and at promoting the development of a reference benchmark that
can be reused by the research community. To reach this goal, we
(1) collected a relatively large set of 34 open-source UML models.
Those UML models contained in a total set of 206 different UML
diagram types; (2) considered 116 UML consistency rules proposed
in the literature [30] and formalized 52 of them using the Object
Constraint Language (OCL); (3) imported the UML models and the
OCL rules into the Eclipse Papyrus modeling tool1; (4) analyzed
the satisfaction of the OCL rules and recorded the obtained results;
and (5) performed an in-depth analysis of the results to assess the
characteristics of the proposed benchmark. In total, we identified
2731 inconsistencies over the considered 34 UML models.

To assess the characteristics of the proposed benchmark we ana-
lyzed how useful the UML models of the proposed benchmark are
in assessing consistency rules (RQ1), how useful the consistency
rules of the proposed benchmark are in assessing the consistency of
UML models (RQ2), how useful the different UML diagram types of
the proposed benchmark are in assessing consistency rules (RQ3),
and how useful the different UML models of the proposed bench-
mark are in assessing the satisfaction of consistency rules UML in
different software development phases (RQ4).

Our results show that the UML models of the proposed bench-
mark contain a variable number of inconsistencies that are suffi-
cient for allowing an effective assessment of the consistency rules.
The number of inconsistencies associated with the different consis-
tency rules is variable. This indicates that the proposed benchmark
contains consistency rules that help to assess the consistency of
UML models to different degrees. Except for Object diagrams (OD)
and Composite Structure diagrams (CSD), which contained a small
number of inconsistencies, the other UML diagram types are useful
for assessing consistency rules. Finally, the UML models of the

1https://www.eclipse.org/papyrus/download.html

proposed benchmark contain models that show examples of in-
consistencies in different development phases. Those results show
that the considered UML models and OCL consistency rules can be
considered as an initial benchmark that can be further extended by
the research community.

Organization. Section 2 describes the set of UML models in-
volved in this work. Section 3 shows how consistency rules have
been collected and formalized in OCL. Section 4 presents how the
OCL rules were validated on the considered UML models. Section 5
evaluates the characteristics of the proposed benchmark. Section 6
explains the threats to the validity of this case study. Section 7
discusses our findings. Section 8 provides a summary of the related
work. Section 9 concludes this work.

2 UML MODELS
UML is not tied to a specific software development method [2].
The diagrams types provided by UML are designed to effectively
support an iterative and incremental process [1]. Several tools have
been proposed in the literature to support users in developing UML
models in practical applications. In this work, we are considering
Eclipse Papyrus because it is an industrial-grade open source Model-
Based Engineering tool that has been used successfully in industrial
and academic projects 2. According to Ed Seidewitz [24], Papyrus is
the only 100% conformant implementation of the standard UML, and
it allows developing the complete set of UML diagrams. In Table 1,
we report the diagrams involved in this study. In the following
subsections, we describe the five steps we carried out to identify
the UML models used for this study.

Step 1. Due to the current lack of shareable, industrial UML
models, we considered three open-source UML repositories to iden-
tify our UML models: the UML Repository 3 (R1), the Repository
for Model-Driven Development (ReMoDD) 4 (R2) and the Lindhol-
men Dataset 5 [14] (R3). These three repositories aim at supporting
researchers and practitioners of the Model-Driven Development
community. We downloaded all the UML models from the three
repositories’ websites. R1, R2, and R3 contained respectively 32, 4,
and 5974 models, leading to a total of 6010 UML models.

Step 2. Since the UML models available on these three reposi-
tories were developed with different UML tools, we filtered only
UML models that were developed by the Eclipse Papyrus tool. This
leads to a set of 276 UML Papyrus models.

Step 3. We manually analyzed the 276 models and excluded 242
of them for the following reasons:

– 193 did not contain any diagram that involved at least a total
of ten of the following model elements: classes (for Class
(CD), Object (OD), and Composite Structure (CSD) diagrams),
interactions (for Communication (COMD), Sequence (SD)
and Interaction (ID) diagrams), actions and decisions (for
Activity diagram (AD)), states (for State Machine diagram
(SMD)), and use cases (for Use Case diagram (UCD)). As

2https://www.eclipse.org/papyrus
3http://models-db.com/
4http://www.remodd.org/
5http://oss.models-db.com

UML Consistency Rules:
a Case Study with Open-Source UML Models FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

such, we considered those models not representative of real
applications and any analysis meaningless;

– Ten models were duplicates;
– 15 were corrupt files and could not be loaded in Eclipse
Papyrus;

– 14 were UML profiles, which are not the type of UML models
targeted in this work;

– Seven were empty models;
– Three models only contained diagrams (i.e., Component,

Package, Deployment diagrams) that are not covered by our
33 consistency rules presented in Table 2. Those rules are
discussed in Section 3.

The 34 UML Papyrus models returned by Step 3 focus on differ-
ent software domains (for instance, aerospace, logistics, gaming,
electronics, service, and robotics).

Step 4. For each UML model we:

– assigned a unique ID;
– collected Name, online link, and number of diagrams for
each UML models;

– The type of the UML diagram type involved (UDI) in each
UML model project;

– The model elements involved in the UML diagrams: classes,
interactions , actions and decisions, states, and use cases.

We finally identified 206 UML diagrams in the different UMLmodels
as reported in Table 1 (column Number). We did not find any of
the following UML diagrams: COMD, CSD and ID. The 206 UML
diagrams present a total of 1722 "model elements" including 898
classes (CD, OD, and CSD), 369 actions and decisions (AD), 341
interactions (SD), 57 use cases (UCD), and 59 states (SMD).

Step 5. As we aim at evaluating how the benchmark allows as-
sessing consistency rules in different Software Development Phases
(SDP) (see Section 5.4), we considered the models related to the five
object-oriented software development phases discussed by Dathan
and Ramnath [6]. We chose this SDP because it is suggested [6]
to be used with the most recent stable version of UML, 2.5. The
models related to these phases are detailed in the following:

– Requirements models (ReqM): describe the boundary and
interaction between the system and users. Those models
include Use Case diagrams (UCD);

– Interaction models (IntM): describe how objects in the system
will interact. These models include Interaction (ID), Commu-
nication (COMD) and Sequence (SD) diagrams;

– Dynamic models (DynM): define how the interaction occur-
rences come together in a definition of the system and are,
therefore, a part of the dynamic model of the system. These
models include State Machines (SMD) and Activity (AD)
diagrams;

– Logical models (LogM): describes the classes and objects that
will make up the system. These models include Class (CD),
Composite Structure (CSD), and Object (OD) diagrams;

– Deployment model: describes the physical architecture and
the deployment of components. These models include De-
ployment diagrams. This phase and UML diagram type are
not considered in this study because out of the scope.

Table 1: UMLDiagramTypes, Software Development Phases
(SDP), and Number of Consistency Rules (see Table 2) that
refer to each Diagram Type.

Diagram Type Acronym Number SDP N Rules

Class CD 82 LogM 19

Use Case UCD 12 ReqM 2

Communication COMD 0 IntM 3

Composite Structure CSD 0 LogM 4

State Machine SMD 12 DynM 4

Sequence SD 27 IntM 11

Object OD 19 LogM 1

Activity AD 54 DynM 3

Interaction ID 0 IntM 1
Total 206 48

The software development phases associated with each model are
also reported in Table 1 (column SDP).

3 CONSISTENCY RULES
In the next two subsections we present: (1) the UML consistency
rules considered in this work (Section 3.1), and (2) how their OCL
encoding was carried out (Section 3.2).

3.1 Collecting the Consistency Rules
We considered 52 of the 116 UML consistency rules recently dis-
cussed by Torre et al. [29], since according to MDSE experts from
academia and the industry, those rules should always be enforced in
UML models [29]. Those rules involve syntactic checks (including
type checks) and semantic checks, as discussed in Torre et al. [29].
Ten out of these 52 OCL rules were obtained from other authors
who presented OCL rules, in particular, rules R112, R55, and R110
were also considered by Reder and Egyed [23], rules R101, R105,
R102, and R106, were also considered by Dragomir and Ober [8],
and rules R84, R74, and R75 were also considered by Briand et
al. [3].

Out of these 52 rules, the 33 that are considered in this work (for
the reason that will be explained in Section 3.2) are presented in
Table 2. The first column contains an identifier that is associated
with each rule. The second column contains a textual description of
the rules. The last column indicates which of the UML diagrams pre-
sented in Table 1 is involved in each rule. Note that 18 consistency
rules involve only one UML diagram, 15 consistency rules involve
two different UML diagrams, and no consistency rule involves more
than two diagrams. Furthermore, in Table 1, we report the number
of the rules considered in this paper that constraint each of the
diagram types. For example, the class diagrams (CD) are involved
in 19 consistency rules.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Damiano Torre, Yvan Labiche, Marcela Genero, Maged Elaasar, and Claudio Menghi

Table 2: List of the 33 UML consistency rules translated in OCL.

ID Rule Description UDI

R9 A transition t′′ (of U′′) that is refined from t (of U) must have s′′ (state sender and receiver of U′′) that is refined from
s (of U) ∈ Source+(t)

SMD

R13 A state machine must be deterministic, that is, in every state, only one transition should fire on a reception of an event. SMD

R24 In a sequence diagram, if an attribute is assigned the return value of a message, then the types have to be compatible SD

R27 The number of occurrences of a link in an object diagram, an instance of an association in a class diagram, must satisfy
the multiplicity constraints specified for the association.

OD, CD

R28 A class name that appears in an activity diagram also appears in the class diagram. AD, CD

R39 If an activity diagram shows scenarios of an operation and that operation appears in a sequence diagram, the different
diagrams should specify the same scenarios: e.g., same sequence of messages/operations/actions, same branching or
repetition conditions.

SD, AD

R40 If an activity diagram shows scenarios of an operation and that operation appears in a sequence diagram, a flow of
interaction between objects in an activity diagram should be a flow of interactions between the same objects in a
sequence diagram.

SD, AD

R46 When one specifies an active class, i.e., one that has a state-based behavior described in a state machine diagram, and
an instance of this active class is used in a communication diagram, the messages sent to this object and emitted by this
object as specified in the communication diagram must comply to the protocol specified in the state machine diagram.

SMD, COMD

R48 When one specifies an active class, i.e., one that has a state-based behavior described in a state machine diagram, and
an instance of this active class is used in a sequence diagram, the messages sent to this object and emitted by this
object as specified in the sequence diagram must comply (e.g., sequence and types of signals, receivers and emitters of
signals) to the protocol specified in the state machine diagram.

SMD, SD

R50 The noun of the use case’s name should equal the name of one class in the class diagram. UCD, CD

R54 Objects involved in a communication diagram should be instances of classes of the class diagram. CD, COMD

R55 In order for objects to exchange messages in a communication diagram, the sending object must have a handle to the
receiving object as specified in the class diagram. In other words, the sender must have visibility to the receiver. A
specific case of this situation is when the sending objectâs class has an association (possibly inherited) to the receiving
objectâs class.

CD, COMD

R74 Liskov substitution principle. CD

R75 A class that realizes an interface must declare all the operations in the interface with the same signatures (including
parameter direction, default values, concurrency, polymorphic property, query characteristic).

CD

R76 An abstract operation can only belong to an abstract class. CD

R77 If an operation appears in a pre or post condition then it must have the property isQuery equal to true. CD

R78 No (public) method of a class violates, as indicated by its pre and post-conditions, the class invariant of that class. CD

R80 No precondition should violate the class invariant. CD

R81 No post-condition should violate the class invariant. CD

R82 A class that contains an abstract operation must be abstract. CD

R84 A class cannot be a part of more than one composition - no composite part may be shared by two composite classes. CD

R85 Each concrete class, i.e., it is not abstract, must implement all the abstract operations of its superclass(es). CD

R98 Each sequence diagram corresponds to a use case, and each use case in the use case diagram is specified by an
interaction diagram.

UCD, SD

UML Consistency Rules:
a Case Study with Open-Source UML Models FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Table 2: List of the 33 UML consistency rules translated in OCL.

ID Rule Description UDI

R101 If an assembly connector exists between two ports, one of the ports (the source) must be a required port, the other
port (the destination) must be a provided port. This rule describes the opposite case of delegation, where both ports at
the end of an assembly connector have conjugate interfaces (one port requires an interface; the other provides the
same interface). What matters is that the two ports must either have the same interface but one of them is marked as
isConjugate, while the other is not, or they should have conjugate interfaces.

CSD

R102 If a connector is typed with an association, the direction of the association must conform to the direction of the
connector as derived from the direction of the ports at its ends (association navigable from class A to class B if the
connector between A and B indicates that A requires services that B provides). Given that the direction of associations
and connectors (however, it is calculated) could be encoded using the order of their ’memberEnd’ and ’end’ collection,
respectively, the rule is basically saying that such direction should be the same in both cases, if a connector is typed by
an association.

CSD

R105 The set of transported interfaces by a link should not be empty. CSD

R106 If several non-typed connectors start from one port, then the sets of interfaces transported by each of these connectors
have to be pair wise disjoint.

CSD

R108 The type of a lifeline (type of the connectable element of the lifeline) in a sequence diagram must not be an interface
nor an abstract class.

SD, CD

R109 In case a message in a sequence diagram is referring to an operation, that operation must not be abstract. SD, CD

R110 If a message in a sequence diagram refers to an operation, through the signature of the message, then that operation
must belong, as per the class diagram, to the class that types the target lifeline of the message.

SD, CD

R112 In order for objects to exchange messages in a sequence diagram, the sending object must have a handle to the receiving
object as specified in the class diagram. In other words, the sender must have visibility to the receiver. A specific case of
this situation is when the sending objectâs class has an association (possibly inherited) to the receiving objectâs class.

SD, CD

R115 Each class in the class diagram must be instantiated in a sequence diagram. SD, CD

R116 No operation can be used in a message of a sequence diagram if this breaks the visibility rules of the class diagram
(public, protected, private).

SD, CD

3.2 Formalizing the Consistency Rules in OCL
We considered the 52 consistency rules and tried to encode them in
OCL. One of the authors analyzed each consistency rule (in their
natural language form) and tried to propose an OCL encoding. Out
of the initial set of 52 consistency rules, the 33 reported in Table 2
were encoded in OCL [27]. The other 19 were not encoded in OCL
for different reasons:

(1) some of these rules can not be easily expressed in OCL (e.g.,
those that have complex algorithms); and

(2) in some cases, the UML standard does not include the neces-
sary information to check the rules. For example, some of
the rules requiring that the name of a use case must include
a verb and a noun (for instance, Validate User) were not
encoded in OCL.

The 33 consistency rules that we encoded in OCL are made avail-
able as an Eclipse Papyrus OCL library in our online appendix [27].

To formalize some of these 33 consistency rules in OCL, we had
to interpret the semantics of some of the words used in the plain
English description, and simplify the rule to be able to encode it in
OCL. For example, rule R115 requiring that each class in the class
diagram must be instantiated in a sequence diagram was encoded
in OCL as follows:

context UML :: InteractionFraдment

inv Rule115 : (sel f − > exists(sel f .name = UML :: Class .name))

Furthermore, some of the rules presented in Table 2 need to be
considered together when the OCL encoding is proposed. For in-
stance, rule R54, that requires objects involved in a communication
diagram to be instances of classes of a class diagram, and rule R115,
that requires each class in the class diagram to be instantiated in a
sequence diagram, are considered together when the OCL encoding
is proposed.

This step finally provided an OCL encoding for each of the 33
consistency rules.

4 CHECKING THE CONSISTENCY RULES
The selected models and the OCL encoding of the considered con-
sistency rules were checked using Eclipse Papyrus. Specifically, for
each model and consistency rule, we performed the four following
steps summarized in Figure 1:

Step A. We imported the model into the Eclipse Papyrus tool
(version 2.0).6

6The installation of the following additional plug-in was required: OCL Classic 2 SDK,
Ecore/UML Parsers, Evaluator, and Edit (version 5.2).

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Damiano Torre, Yvan Labiche, Marcela Genero, Maged Elaasar, and Claudio Menghi

Figure 1: Eclipse Papyrus steps to check OCL rules.

Steps B-C. We loaded the consistency rule. This step added the
OCL rules in our library to the set of UML well-formedness rules
already implemented in Eclipse (based on the UML specification).

Step D. We validated the considered model with respect to the
OCL rules loaded in the workspace. In order to run the OCL consis-
tency rules over the UML models, we used the OCL solver imple-
mented in the Eclipse OCL Classic 2 SDK plugin.

These steps allowed us to assess the proposed benchmark.

5 ASSESSMENT OF THE BENCHMARK
To evaluate the proposed benchmark, we considered the following
research questions:
RQ1: How useful are the UML models of the proposed benchmark

in assessing consistency rules?
We evaluate how the models of the proposed benchmark are useful
in assessing consistency rules. Ideally, we would like to have a
benchmark that includesmodels that satisfy some of the consistency
rules presented in Section 3 and violate others.
RQ2: How useful are the consistency rules of the proposed benchmark

in assessing the consistency of UML models?
We evaluate how the proposed benchmark allows assessing each
consistency rules. Ideally, we would like to have a benchmark that,
for each consistency rule presented in Section 3, contains some
models that satisfy the rule and others that violate it
RQ3: How useful are the different UML diagram types of the proposed

benchmark in assessing consistency rules?
We evaluate how the different UML diagram types of the proposed
benchmark asses the consistency rules. Ideally, we would like to
have a benchmark that, for each diagram type, includes diagrams
that satisfy some of the consistency rules presented in Section 3
and violate others.
RQ4: How useful are the different UMLmodels of the proposed bench-

mark in assessing the satisfaction of consistency rules UML in
different software development phases?

We evaluate how the UMLmodels of the proposed benchmark asses
consistency rules during different software development phases.
Ideally, we would like to have a benchmark that, for each soft-
ware development phase, includes models that satisfy some of the
consistency rules and violate others.

In order to answer these research questions we considered the 33
OCL rules identified in Section 3 and the 34 UMLmodels containing
206 UML diagrams identified in Section 2.

5.1 RQ1 — Assessment of the UML Models
To check how useful the UML models of the proposed benchmark
are in assessing consistency rules, we evaluated how many incon-
sistencies are contained in each of the UML models of the proposed
benchmark. To reach this goal we (1) considered each of the 34
UML models; (2) for each of these models we evaluated the 33 con-
sistency rules; and (3) we recorded the number of inconsistencies
that were found.

Results. Table 3 presents the number of inconsistencies we
found in each of the 34 UML models. The first row of each section
presents a model identifier assigned to each UMLmodel. The second
row presents the number of inconsistencies found in each model.
For example, the UML model 29.1 shows 21 inconsistencies. The
results presented in Table 3 show that:

– 15 of the 34 UML models do not show any inconsistency.
For three of these models (marked with an ∗ in Table 3), the
absence of inconsistencies is not due to the correctness of
the models. Indeed, those models only involve a single AD
(in two models) and a single UCD (in one model), which are
not covered by any of our 33 OCL rules. We do not have
rules that only involve (or check the correctness of them)
either one or the other of these two diagrams. We do have
rules that involve both diagrams (see rules R39, R40, R50,
and R98 in Table 3), but none of them focuses only on UCD
or AD, or checks that the two diagrams are consistent with
one another. They rather relate some elements of AD or
UCD with other diagrams. The remaining 12 UML models
are consistent according to our 33 OCL rules. For instance,
UML model 42 passed all the consistency checks. Those 12
models include 20 UML diagram types: ten CDs, six ODs,
and four SDs.

– 19 of the 34 UML models contain at least one inconsistency.
UML model M14, which is the biggest model of the set of
models we considered,7 triggered 1924 different inconsisten-
cies. With this model, 13 out of 33 OCL rules (39.4%) revealed
at least one inconsistency.

Answering RQ1: Our results show that the UML models of the
proposed benchmark contain a number of inconsistencies that are
sufficient to effectively asses the consistency rules. 15 models do
not reveal any inconsistencies of the considered consistency rules,
and 19 models contain a variable number of inconsistencies which
depends on the models.

7It contains 48 UML diagrams, i.e., 12 SDs, nine CDs, six SMDs, three UCDs, six ADs,
and 12 ODs.

UML Consistency Rules:
a Case Study with Open-Source UML Models FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Table 3: Number of inconsistencies (Inc) detected for each UML model (MID).

MID M1.1 M1.1 M2 M6 M8.2 M9.2 M9.3 M9.4 M9.5 M9.6 M9.7 M12 M 13.1 M13.2 M14 M15* M18

Inc. 46 4 75 12 0 0 2 0 0 0 2 30 68 44 1924 0 10
MID M22 M24∗ M26.1 M26.2 M28.1 M28.2 M29.1 M29.2 M30 M31 M35∗ M36 M37 M38 M39 M40 M42

Inc. 2 0 4 5 0 0 21 24 156 36 0 264 0 0 0 0 0

Table 4: Number of Inconsistency (Inc) for every consistency rule (Rule).

Rule R9 R13 R24 R27 R28 R39 R40 R46* R48 R50 R54* R55* R74 R75 R76 R77 R78

Inc. 0 62 0 0 63 0 298 0 103 62 0 0 0 0 58 0 0
Rule R80 R81 R82 R84 R85 R98 R101 R102 R105 R106 R108 R109 R110 R112 R115 R116

Inc. 0 0 58 0 0 596 1 0 1 0 0 182 139 55 899 154

5.2 RQ2 — Assessment of the Consistency
Rules

To evaluate how useful the consistency rules of the proposed bench-
mark are in assessing the consistency of UML models, we measured
how many inconsistencies of each type of consistency rule are con-
tained in the UML models of the proposed benchmark. To reach
this goal we (1) considered each of the 33 consistency rules; (2) for
each of these consistency rules we considered the 34 UML models;
and (3) recorded the number of inconsistencies that were found.

Results. Table 4 presents the number of inconsistencies we
found for each of the 33 OCL rules. The identifier of the consistency
rule is reported in the “Rule" labeled row, followed by the number
of inconsistencies found in the 34 UML models. For example, we
found a total of 58 inconsistencies across the 34 UML models for
rule R82. The results presented in Table 4 show that:

– 18 out of 33 OCL rules did not find any inconsistency in
the 34 UML models. Among these, three OCL rules do not
find any inconsistencies in the UML models, because they
specifically focus on the COMDs (R46, R54 and R55 in Table
2) and the set of UML models does not include any COMDs.
Those rules are marked with the symbol ∗ in Table 4. Among
the other 15 rules, 12 involved only one UML diagram (eight
CDs, two CSDs, one SDs, and one SMDs). To compare ex-
isting solvers for consistency rules checking among each
other, a benchmark should either include rules that iden-
tify inconsistencies and others that do not. For this reason,
we included those rules in our benchmark even if they did
not find any inconsistency. Furthermore, these rules might
be useful to find inconsistencies in other instances of UML
models.

– 15 out of 33 OCL rules found an inconsistency in at least
one of the 34 UML models. 13 of those 15 OCL rules found
86.7% of the inconsistencies. The OCL rules R98 and R115
detected the highest number of inconsistencies across the
UML models, respectively 596 and 899 inconsistencies. Most
of these inconsistencies were found in the UML model M14
that contains the largest number of diagrams (9 CDs, 12 SDs,

Table 5: Number of Inconsistencies (Inc) for every UML dia-
gram type (UDT).

UDT CD OD SD SMD UCD AD ID CSD

Inc. 1670 0 1830 165 658 361 596 2

and 3 UCDs), which are the diagrams considered by those
two rules.

In total, the 33 OCL rules found 2731 inconsistencies on the con-
sidered 34 UML models.
Answering RQ2: Our results show that the consistency rules of
the proposed benchmark are able to detect 2731 inconsistencies. 18
out of 33 OCL rules did not find any inconsistency in the 34 UML
models, while 15 out of 33 OCL rules found at least one inconsis-
tency. Furthermore, the number of inconsistencies associated with
the different consistency rules is variable. This indicates that the
proposed benchmark contains consistency rules that help to assess
the consistency of UML models up to different degrees.

5.3 RQ3 — Assessment of the Different UML
Diagram Types

To evaluate how useful are the different UML diagram types of the
proposed benchmark in assessing consistency rules, we measured
for each diagram type, how many inconsistencies are contained in
the UML models of the considered type in the proposed benchmark.
To reach this goal, we considered each of the eight UML diagram
types involved in this study, and then evaluated all the 33 consis-
tency rules on them. We recorded the number of inconsistencies
that were found.

For each inconsistency identified, we computed (1) the cumula-
tive number of models that have the right diagram types so that
the OCL rules that involve those diagrams can have a chance to dis-
cover an inconsistency along (2) the cumulative number of models
that contains an inconsistency as specified by the OCL rules.

Results. Table 5 describes the number of times each UML dia-
gram type was found involved in at least one inconsistency accord-
ing to any of the 33 OCL rules. For example, the OCL rules found

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Damiano Torre, Yvan Labiche, Marcela Genero, Maged Elaasar, and Claudio Menghi

Table 6: Number of Inconsistencies (Inc) for every software
development phase (SDP).

SDP ReqM IntM DynM LogM

Inc. 658 2426 526 1672

1670 inconsistencies that involved class diagrams (CD). Note that
the sum of the inconsistencies’ frequencies for each UML diagram
is 5282, which is higher than 2731 (the total number of inconsisten-
cies identified) because the rules that involved two UML diagram
types were counted twice. For instance, rule R98, which describes
some consistency between the UCD and CD, identified a total of 596
inconsistencies, and we, therefore, counted 596 inconsistencies for
both UCD and SD in Table 5. Table 5 shows that CD and SD are the
UML diagrams having the highest number of inconsistencies. This
is not surprising since (1) these are the most frequently used UML
diagram types [7]; and (2) the majority of our OCL rules are related
to CDs and SDs, respectively with 19 (57.6%) and 11 (33.3%) rules
out of 33 OCL rules, and the 31 UMLmodels contained 82 CDs (with
898 classes) and 27 SDs (with 341 interactions) out of 206 total UML
diagrams. The 54 ADs (with a total of 369 actions and decisions),
which is the second UML diagram most involved in the 34 UML
models after the CDs, triggered only 361 inconsistencies. The three
rules that involved ADs were triggered 7 out of 10 possible times.
Answering RQ3: Our results show that the UML diagram types
of the proposed benchmark contain a variable number of incon-
sistencies. With the exception of Object diagrams and Composite
Structure diagrams, which respectively contain no inconsistency
and a really low number of inconsistencies, the other UML diagram
types are useful for assessing consistency rules.

5.4 RQ4 — Assessment of the Different
Software Development Phases

To evaluate how useful are the different UML models of the pro-
posed benchmark in assessing the satisfaction of consistency rules
in different software development phases, we considered each of the
four development phases presented in Section 2. We considered all
the UML diagram types that are generated during each software de-
velopment phase, and we evaluated all the 33 consistency rules for
each of these diagrams. We recorded the number of inconsistencies
that were found.

Results. Table 6 presents the number of inconsistencies we
found in each of the four software development phases. The first
row of Table 6 presents the code assigned to each development
phase. The second row presents the number of inconsistencies
found in each phase. For example, the Interaction Model phase
(IntM in Table 6) shows 2426 inconsistencies, which is obtained
from summing up the number of inconsistencies triggered by SD
(1830) and ID (596). As mentioned for RQ3, the sum of the incon-
sistencies frequencies for each software engineering phase is 5282,
which is higher than 2731 because the rules that involved two UML
diagrams were counted twice. The results in Table 6, show that
Interaction models (IntM) have the highest number of inconsisten-
cies (2426 out of 2731 ≈ 88.8%), followed by Logical models (LogM
— 1672 out of 2731 ≈ 61.2%), Requirements model (ReqM — 658

inconsistencies out of 2731 ≈ 24.1%), and Dynamic models (DynM
— 526 out of 2731 ≈ 19.3%).
Answering RQ4: Our results show that the UML models of the
proposed benchmark contain models that show examples of in-
consistencies in different software development phases. As such,
they are useful for assessing the satisfaction of consistency rules in
different software development phases.

6 THREATS TO VALIDITY
We discuss the threats to validity that affect our evaluation of as-
sessing the benchmark capability of assessing consistency rules
(RQ1), UML models (RQ2), UML diagram types (RQ3), and software
development phases (RQ4).

Construct Validity. It concerns the degree to which a test mea-
sures what it claims, or purports, to be measuring. In our study, this
is related to the ability to encode the 33 consistency rules presented
in Table 2 as OCL rules. The encoding of the UML consistency
rules in OCL was performed by the first author and tested on var-
ious simple UML diagrams to evaluate that they check the right
properties of the UML diagrams, i.e., classes, attributes, connectors,
relationships, names, etc.

Internal Validity. It concerns the extent to which a piece of
evidence supports a claim about cause and effect. The collection
process of inconsistencies rules and the UML models is a threat
to internal validity. However, the considered models come from a
variety of domains, and the inconsistency rules were previously
evaluated with academic researchers and industrial developers [29].

External Validity. It concerns the extent to which it is possible
to generalize the findings. We can not guarantee that our findings
are generalizable to other UML models. The number of inconsisten-
cies that are present in each model depends on the experience of
the developer, the intention of the model, the rigor of the project,
etc. So, we can not guarantee that other UML models and incon-
sistency rules will provide results that are compliant with the one
mentioned in RQ1, RQ2, RQ3, and RQ4.

Reliability Validity. It concerns the extent to which the results
can be reproduced when the research is repeated under the same
conditions. The results of RQ1, RQ2, RQ3, and RQ4 presented in this
paper are related to the 33 models and 31 UML models considered
in this study. There is no guarantee these results will generalize to
other models. However, the open-source UML models that were col-
lected were developed in different software domains (i.e., aerospace,
logistics, gaming, electronics, service, robotics, etc.). As such, they
are representative of different domains.

7 DISCUSSION
In this section, we discuss the results of this case study.

7.1 Combining RQ1, RQ2, and RQ3.
In this section, we try to critically analyze and combine the results
of RQ1, RQ2 and RQ3. To reach this goal, Table 7 aggregates the
results presented in Tables 3 and 4. The column “TD" reports the
different diagram types. We decided to aggregate CSD with CD
and ID with SD as they contain similar UML elements. The column
“Rules" reports the total number of OCL rules that involve each

UML Consistency Rules:
a Case Study with Open-Source UML Models FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Table 7: Analysis of the results according to RQ1-RQ3.

TD Rules Matches Inc TI IM TTI

CD/CSD 23 247 53 1672 21% 31

AD 3 10 7 361 70% 51

SD/ID 12 51 24 2426 47% 101

OD 1 1 0 0 0% -

SMD 4 8 5 165 62% 33

UCD 2 4 4 658 100% 164

diagram type: for instance, 12 rules involve SDs, three rules involve
ADs. The column “Matches" reports the number of times an OCL
rule was analyzed on that specific diagram type. For instance, the
value of CD and SD is incremented every time the rule R109 is
analyzed, as it involves both CD and SD (see Table 2). The column
“Inc" contains the number of times at least one inconsistency was
detected by the considered OCL rules. For instance, the value of
both CD and SD is incremented when rule R115 is analyzed on M30,
as 91 inconsistencies were detected, and M3 involves CD and SD.
The column “TI" (Total Inconsistencies) contains the total number
of inconsistencies discovered by the OCL rules for each type of
diagram.

Table 7 shows that while the models of the proposed benchmark
contain a considerable number of inconsistencies, these are not
equally distributed across different models. As follows, we com-
puted the number of times inconsistencies were detected for any
given rule concerning the number of matches:

IM =
Inc

Matches
∗ 100

We report the results in in Table 7 (Column IM). IM gives an in-
dication about which models are more suitable for being used in
the analysis of solvers. For some UML diagram types (e.g., CD/CSD
21%) is lower than for other types of models (e.g., SD/ID 47%). If
the goal is to analyze the capabilities of two solvers in detecting
inconsistencies, it is better to consider models with a high num-
ber of inconsistencies and compare the inconsistencies detected by
the two solvers. Furthermore, the average number of inconsisten-
cies detected for every model for the rules that found at least one
inconsistency as

TT I =
T I

Inc

and report it in Table 7 (Column TTI). TTI gives an indication
about which rules are more suitable for begin used in the analysis of
solvers. For some UML diagram types (e.g., CD/CSD 31), the number
of inconsistencies founded for each rule is lower than for other types
of models (e.g., SD/ID 101). If the goal is to analyze the capabilities
of two solvers in detecting inconsistencies, it is better to consider
models that allow detecting for each consistency rule a high number
of inconsistencies and then compare the inconsistencies detected
by the solvers.

Table 8: Summary of related work.

Authors Year Case
Study

#OCL
Rules

Models

Reder and Egyed [23] 2013 Yes 20 29

Gogolla et al. [12] 2015 Yes 10 18

Czarnecki and Pietroszek [5] 2006 Yes 1 1

Liu et al. [16] 2002 No 1 none

Sapna and Mohanty [9] 2007 No 1 none

7.2 UML Consistency Rules Most Triggered
The results presented in Section 5 show that most of the inconsis-
tencies identified by the OCL rules involve rules that focus on two
UML diagrams, i.e., CDs and SDs. Seven of the 15 OCL rules that
found inconsistencies (rules R40, R48, R98, R109, R110, R115, and
R116), found more than 100 inconsistencies each (see Table 4). All
of these rules involve two diagrams, and one of those two diagrams
is always the sequence diagram. This indicates that our benchmark
is representative of real development. Indeed, in practical cases,
for UML designers, it is usually easier to keep consistency within
a single UML diagram rather than keeping consistency between
different UML diagram types.

7.3 Limitations of the Benchmark
We validated a limited number of inconsistencies and UML models.
Those models might not be representative of various domains. In
addition, the sampling of UML models only considered Eclipse
Papyrus models. Our collection strategy could have incurred a
possible selection bias (for example, a high probability of similar
UML models). Finally, in the open-source UML models, we might
not be representative of industrial models.

We nevertheless believe that, given the extent of the models
we used, and the extent of the inconsistencies we revealed, the
results of this study are still meaningful and valuable. This is a
preliminary step that we believe that can stimulate the development
of a benchmark of UML models and OCL consistency rules that can
be used as a reference benchmark by the research community. As
such, our benchmark is open to extensions, i.e., new UML models
and OCL encoding of consistency rules can be proposed by the
community and added to the benchmark.

8 RELATEDWORK
In this section, we present related work that (1) consider OCL rules
as an instrument to check consistency between UML diagrams, and
(2) Benchmarks that consider OCL rules.

8.1 Checking UML Consistency with OCL
Rules

Those works are reported in Table 8, where we report the authors
and reference of the study, the year of the publication, whether the
paper involves any case study, the number of OCL rules discussed
in the paper, and finally the number of models involved.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Damiano Torre, Yvan Labiche, Marcela Genero, Maged Elaasar, and Claudio Menghi

Reder and Egyed [23] presented an approach for identifying how
design rules cause a given inconsistency and what model elements
are involved. They demonstrated their approach on 29 UML models
and 20 OCL rules. Three of these 20 rules were considered in our
work as well (see section 3.1.1 for details); The rest (17) of the rules
were collected in our previous work [30] as UML consistency rules,
but the MDSE experts of our survey [29] did not consider they
should be enforced in every UML model. For this reason, those 17
rules were not included in this work.

Gogolla et al. [12] report on a middle-sized case study, in which
the consistency of a UML class model is checked. The class model
restrictions are expressed by UML multiplicity constraints and
explicit, non-trivial OCL rules. Their approach (i.e., satisfiability
analysis) automatically searches for a valid system state that is an
instance of the class model. Failure to find a valid state that satisfies
the OCL rules is an indication of inconsistency.

Czarnecki and Pietroszek [5] use OCL to define well-formedness
rules for the verification of feature-based model templates that
are analyzed by an Unrestricted satisfiability (SAT) solver. Their
approach allows OCL constraints to be written against the meta-
model of the target notation for the template instances. Then these
constraints can be evaluated against a template using a template
interpretation for OCL. They presented a tool prototype that was
tested on a business model for an e-commerce platform.

Liu et al. [16] describe a rule-based solution to detect software
design inconsistency problem. They characterized classes of incon-
sistency that occur in software design. They defined a production
system language and rules specific to software design modeled in
UML. Using this approach, they detect inconsistencies, notify the
users, recommend resolutions, and automatically fix the inconsis-
tency during the design process.

Sapna and Mohanty [9] deal with structural inconsistencies be-
tween use case, activity, collaboration, state machines, and class
diagrams by using OCL rules converted to SQL triggers applicable
across tables that store the UML diagrams.

This paper complements these works in several ways. It proposes
a broader set of consistency rules identified and validated by MDSE
experts and evaluates these rules on a more extensive set of models.
Moreover, the objective of this case study is to collect and analyze
UML models and consistency rules proposed in the literature and
at promote the development of a reference benchmark that can be
reused by the research community.

8.2 Benchmarks Using OCL Rules
Benchmarks that consider OCL rules have been proposed in the
literature [11, 13, 15]. Differently from these benchmarks, in this
work, the OCL rules were obtained from consistency rules that were
(1) systematically collected from the literature, and (2) evaluated
by MDSE experts. Furthermore, the UML models were collected
by considering existing open-source UML repositories. As such,
we believe that the proposed benchmark is likely to be more rep-
resentative of real case scenarios. An in-depth comparison and
integration of our benchmark with existing benchmarks proposed
in the literature will be performed as future work.

9 CONCLUSION
This work presents the results of a case study that involved a set
of 33 consistency rules and 34 UML models. We proposed an OCL
formalization of 33 consistency rules and validated them on the
34 UML models. We were able to identify 2731 inconsistencies
among the 206 UML diagrams included in the 34 UML models.
The formalization of the consistency rules and the UML model are
released in the form of a benchmark that can be reused by the
research community, e.g., to validate new FM-based solvers.

We have evaluated the proposed benchmark by assessing how
the considered UML models, consistency rules, and model types
contained in the benchmark help in assessing the consistency of
UML models (RQ1, RQ2, and RQ3). Furthermore, we checked if the
benchmark allows assessing inconsistencies that occur in different
software development phases (RQ4). Our results show that

(1) the UML models contained in the benchmark are sufficiently
diverse to represent conditions that occur during real devel-
opment as they contain a variable number of inconsistencies;

(2) the consistencies rules contained in the benchmark are suf-
ficiently diverse to represent conditions that occur during
real development as they can detect a variable number of
inconsistencies;

(3) all the considered UML diagram types, excluding object di-
agrams and composite structure diagrams, contain at least
one inconsistency;

(4) the diagrams contained in the UML models of the proposed
benchmark allow identifying a considerable number of in-
consistencies for each software development phase.

We believe that the present work will contribute to the creation
of a common reference benchmark that can allow assessing consis-
tency rules on UML models. The benefits of the presence of such
a benchmark will be multiple. First, it will provide a library of
template OCL formulae associated with existing consistency rules
proposed in the literature. Those formulae can be reused within the
research community. Second, it provides a reference benchmark
that developers can reuse for evaluating existing/new OCL solvers.
As such, our benchmark is open to extensions. As new UML models
and OCL encoding of consistency rules are used/proposed by the
research community, they can be added to the proposed benchmark.

As future work, we plan to consolidate the list of OCL rules
we have specified in this paper. We intend to encode in OCL the
reminding 63 UML consistency rules that we collected in Torre et
al. [30] and evaluate and compare existing OCL solvers. We will also
try to collect and analyze other UML models that are not designed
using Eclipse Papyrus.

ACKNOWLEDGMENTS
Discovery grant of the Natural Sciences and Engineering Research
Council of Canada, the GEMA project (“Consejería de Educación,
Cultura y Deporte de la Dirección General de Universidades, In-
vestigación e Innovación de la JCCM”, SBPLY/17/180501/000293),
the ECLIPSE project (“Ministerio de Ciencia, Innovación y Uni-
versidades, y FEDER”, RTI2018-094283-B-C31), and the European
Research Council under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No 694277).

UML Consistency Rules:
a Case Study with Open-Source UML Models FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

REFERENCES
[1] Jim Arlow and Ila Neustadt. 2005. UML 2.0 and the Unified Process: Practical

Object-Oriented Analysis and Design (2nd Edition). Addison-Wesley Professional.
[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-Driven Software

Engineering in Practice, Second Edition. Morgan & Claypool Publishers.
[3] Lionel C. Briand, Yvan Labiche, and Leeshawn O’Sullivan. 2003. Impact Analysis

and Change Management of UML Models. In 19th International Conference on
Software Maintenance (ICSM 2003), The Architecture of Existing Systems, 22-26
September 2003, Amsterdam, The Netherlands. 256–265.

[4] Jordi Cabot, Robert Clarisó, and Daniel Riera. 2009. Verifying UML/OCL
Operation Contracts. In Integrated Formal Methods, 7th International Confer-
ence, IFM 2009, Düsseldorf, Germany, February 16-19, 2009. Proceedings. 40–55.
https://doi.org/10.1007/978-3-642-00255-7_4

[5] Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying feature-based
model templates against well-formedness OCL constraints. In Generative Pro-
gramming and Component Engineering, 5th International Conference, GPCE 2006,
Portland, Oregon, USA, October 22-26, 2006, Proceedings. 211–220.

[6] Brahma Dathan and Sarnath Ramnath. 2015. Object-Oriented Analysis, Design
and Implementation - An Integrated Approach, Second Edition. Springer.

[7] Brian Dobing and Jeffrey Parsons. 2006. How UML is used. Commun. ACM 49, 5
(2006), 109–113.

[8] Iulia Dragomir and Iulian Ober. 2010. Well-formedness and typing rules for
UML Composite Structures. CoRR abs/1010.6155 (2010). arXiv:1010.6155 http:
//arxiv.org/abs/1010.6155

[9] Sapna P. G. and Hrushikesha Mohanty. 2007. Ensuring Consistency in Rela-
tional Repository of UML Models. In 10th International Conference on Information
Technology, ICIT 2007, Roukela, India, 17-20 December 2007. 217–222.

[10] Marcela Genero, Ana M. Fernández-Sáez, H. James Nelson, Geert Poels, and
Mario Piattini. 2011. Research Review: A Systematic Literature Review on the
Quality of UML Models. J. Database Manag. 22, 3 (2011), 46–70.

[11] Martin Gogolla, Fabian Büttner, and Jordi Cabot. 2013. Initiating a Benchmark
for UML and OCL Analysis Tools. In Tests and Proofs TAP. Springer, 115–132.

[12] Martin Gogolla, Lars Hamann, FrankHilken, andMatthias Sedlmeier. 2015. Check-
ing UML and OCL Model Consistency: An Experience Report on a Middle-Sized
Case Study. In Tests and Proofs - 9th International Conference, TAP 2015, Held as
Part of STAF 2015, L’Aquila, Italy, July 22-24, 2015. Proceedings. 129–136.

[13] Martin Gogolla, Mirco Kuhlmann, and Fabian Büttner. 2008. A Benchmark
for OCL Engine Accuracy, Determinateness, and Efficiency. In Model Driven
Engineering Languages and Systems (MoDELS). Springer.

[14] Regina Hebig, Truong Ho-Quang, Michel R. V. Chaudron, Gregorio Robles, and
Miguel Angel Fernández. 2016. The quest for open source projects that use UML:
mining GitHub. In Proceedings of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems, Saint-Malo, France, October 2-7,
2016. 173–183. http://dl.acm.org/citation.cfm?id=2976778

[15] Mirco Kuhlmann, Lars Hamann, Martin Gogolla, and Fabian Büttner. 2012. A
benchmark for OCL engine accuracy, determinateness, and efficiency. Software
and Systems Modeling 11, 2 (2012), 165–182. https://doi.org/10.1007/s10270-010-
0174-8

[16] WenQian Liu, Steve Easterbrook, and John Mylopoulos. 2002. Rule-Based Detec-
tion of Inconsistency in UML Models. InWorkshop on Consistency Problems in
UML-Based Software Development.

[17] Jishnu Mukerji and Joaquin Miller. 2003. MDA Guide V1.0.1, Overview and guide
to OMG’s architecture. Object Management Group (2003). http://www.omg.org/
mda/

[18] OMG. 2015. OMG Unified Modeling LanguageTM - Superstructure Version 2.5.
Object Management Group (2015). http://www.omg.org

[19] OMG. 2016. Object Management Group - Object Constraint Language (OCL).
Object Management Group (2016). http://www.omg.org/spec/OCL

[20] Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, and Lionel C. Briand.
2013. Supporting the verification of compliance to safety standards via model-
driven engineering: Approach, tool-support and empirical validation. Information
and Software Technology 55, 5 (2013), 836–864.

[21] Tom Pender. 2003. UML Bible. John Wiley & Sons, Inc.
[22] Hongyang Qu and Sandor M. Veres. 2016. Verification of logical consistency in

robotic reasoning. Robotics and Autonomous Systems 83 (2016), 44–56. https:
//doi.org/10.1016/j.robot.2016.06.005

[23] Alexander Reder and Alexander Egyed. 2013. Determining the Cause of a Design
Model Inconsistency. IEEE Trans. Software Eng. 39, 11 (2013), 1531–1548.

[24] Ed Seidewitz. 2019. At the 22nd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MODELS 2019, Munich,
Germany, September 15-20, 2019. https://twitter.com/MFamelis/status/
1174663155798224897?s=20

[25] Dave A. Thomas. 2004. MDA: Revenge of the Modelers or UML Utopia? IEEE
Software 21, 3 (2004), 15–17.

[26] Damiano Torre. 2014. On collecting and validating UML consistency rules: a
research proposal. In 18th International Conference on Evaluation and Assessment
in Software Engineering, EASE ’14, London, England, United Kingdom, May 13-14,

2014. 57:1–57:4.
[27] Damiano Torre. 2018. Benchmark Material. https://github.com/yvanlabiche/

UML-model-consistency
[28] Damiano Torre, Yvan Labiche, and Marcela Genero. 2014. UML consistency rules:

a systematic mapping study. In 18th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’14, London, England, United Kingdom,
May 13-14, 2014. 6:1–6:10.

[29] Damiano Torre, Yvan Labiche, Marcela Genero, and Maged Elaasar. 2018. How
consistency is handled inModel Driven Software Engineering: a survey of experts
in academia and industry. In Technical Report, Carleton University.

[30] Damiano Torre, Yvan Labiche, Marcela Genero, and Maged Elaasar. 2018. A
systematic identification of consistency rules for UML diagrams. Journal of
Systems and Software 144 (2018), 121–142.

[31] Damiano Torre, Ghanem Soltana, Mehrdad Sabetzadeh, Lionel C. Briand, Yuri
Auffinger, and Peter Goes. 2019. Using Models to Enable Compliance Check-
ing Against the GDPR: An Experience Report. In 22nd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS 2019,
Munich, Germany, September 15-20, 2019. 1–11.

https://doi.org/10.1007/978-3-642-00255-7_4
http://arxiv.org/abs/1010.6155
http://arxiv.org/abs/1010.6155
http://arxiv.org/abs/1010.6155
http://dl.acm.org/citation.cfm?id=2976778
https://doi.org/10.1007/s10270-010-0174-8
https://doi.org/10.1007/s10270-010-0174-8
http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.omg.org
http://www.omg.org/spec/OCL
https://doi.org/10.1016/j.robot.2016.06.005
https://doi.org/10.1016/j.robot.2016.06.005
https://twitter.com/MFamelis/status/1174663155798224897?s=20
https://twitter.com/MFamelis/status/1174663155798224897?s=20
https://github.com/yvanlabiche/UML-model-consistency
https://github.com/yvanlabiche/UML-model-consistency

	Abstract
	1 INTRODUCTION
	2 UML MODELS
	3 CONSISTENCY RULES
	3.1 Collecting the Consistency Rules
	3.2 Formalizing the Consistency Rules in OCL

	4 CHECKING THE CONSISTENCY RULES
	5 ASSESSMENT OF THE BENCHMARK
	5.1 RQ1 — Assessment of the UML Models
	5.2 RQ2 — Assessment of the Consistency Rules
	5.3 RQ3 — Assessment of the Different UML Diagram Types
	5.4 RQ4 — Assessment of the Different Software Development Phases

	6 THREATS TO VALIDITY
	7 Discussion
	7.1 Combining RQ1, RQ2, and RQ3.
	7.2 UML Consistency Rules Most Triggered
	7.3 Limitations of the Benchmark

	8 Related Work
	8.1 Checking UML Consistency with OCL Rules
	8.2 Benchmarks Using OCL Rules

	9 Conclusion
	Acknowledgments
	References

