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Abstract. We prove a transient fluctuation theorem for the currents for
continuous-time Markov jump processes with stationary rates, generalizing an
asymptotic result by Andrieux and Gaspard (2007 J. Stat. Phys. 127 107) to
finite times. The result is based on a graph-theoretical decomposition in cycle
currents and an additional set of tidal currents that characterize the transient
relaxation regime. The tidal term can then be removed by a preferred choice of
a suitable initial equilibrium ensemble, a result that provides the general theory
for the fluctuation theorem without ensemble quantities recently addressed in
Bulnes-Cuetara et al (2014 Phys. Rev. E 89 052119). As an example we study
the reaction network of a simple stochastic chemical engine, and finally we digress
on general properties of fluctuation relations for more complex chemical reaction
networks.
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1. Introduction

Fluctuation theorems (FT’s in the following) have dominated the last twenty years
of research in nonequilibrium statistical mechanics. Proceeding from the landmark
formulation by Bochkov and Kuzovlev [1], a host of variations on the theme have been
elaborated depending on the theoretical setup, the observables of interest and the time
specifics. This paper inscribes in the line of inquiry of FT’s for stochastic dynamics [2–4],
with special regard to the observables related to the cycle decomposition of Markov
processes [5].

The relevance of cycle currents and their conjugate affinities to nonequilibrium
thermodynamics was investigated by Hill and Schnakenberg [6,7]. The intuitive picture is
that a cycling process performed by a system is capable of transducing and transforming
energy across the environment. As an example, the Otto cycle in the stationary
performance of a car engine transforms the fuel’s chemical energy into the vehicle’s kinetic
energy. Hence, a full characterization of the cycle structure of the system allows for the
characterization of the thermodynamic behavior of nonequilibrium steady distributions,
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e.g. as regards their insurgence from a minimum entropy production principle [8]. In
this setting, Andrieux and Gaspard have derived an asymptotic FT for the now-called
Schnakenberg cycle currents [9] and applied it to chemical reactions [10]. Further insights
on FT’s and large deviations for cycle currents can be found in [11–13].

Under the assumption of local detailed balance [14] for quantum systems coupled with
several heat and particle reservoirs, upon which cycle currents acquire a simple physical
interpretation, recently Bulnes-Cuetara et al [15] have shown that a fluctuation relation
for the currents also holds at finite times, provided that the processes are sampled from
one specific initial equilibrium ensemble. We also refer to [16] for some earlier results, [17]
for an analysis of heat versus work FT’s, [18] for further elaboration and [19] for the
derivation of a similar result in a deterministic setting.

In this paper we provide the general theory underlying transient FT’s for time-
homogeneous Markov jump processes. In particular, we generalize the result of Andrieux
and Gaspard by including in the description certain tidal currents that complement the
cycle currents. The result is based on an algebraic graph-theoretical analysis investigated
by one of the authors in [20]. We can then generalize the initial-ensemble result, extending
it to time-homogeneous Markov processes on graphs without the requirement of local
detailed balance. As an example, we analyze a simple chemical reaction network.

The paper is structured as follows. In section 2 we anticipate the forms taken by the
various fluctuation relations. In section 3 we initialize the example of a chemical reaction
network. In section 4 we provide preliminary results from graph theory and in section 5
we give the general results from direct manipulations of the probability density of Markov
jump processes, while for completeness in appendix the same results are derived in the
Feynman–Kac formalism for the moment generating function. In section 6 we look back
at the example under a new light, before coming to conclusions.

2. A recap on fluctuation relations

Before moving to the full treatment, it is useful to make the statements in the introduction
slightly more precise. The simplest fluctuation relation takes the form

P (Σt)
P (−Σt)

� eΣt . (1)

Here, Σt is the value taken by a stochastic variable Σ(t) called the reservoir entropy
production of a process (sometimes denoted ∆rS, −∆eS etc), which accounts for the flux
of entropy towards the environment. In our setting, the entropy production is a stochastic
process with probability Prob{Σ(t) ∈ [Σt, Σt + dΣt]} = P (Σt)dΣt and � denotes the long
time limit (in the following we will not distinguish between probabilities an probability
densities). Then equation (1) states that at sufficiently large times the probability of
measuring a positive entropy production is exponentially favored with respect to the
probability of measuring a negative entropy production. Since the entropy production is
odd under time reversal, the fluctuation relation provides a formulation of the second law
of thermodynamics and a characterization of the arrow of time.
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To the entropy production of a system several mechanisms may contribute. Then, the
fluctuation relation can be specialized as follows

P (J t)
P (−J t)

� eF ·J t , (2)

where J t are the values taken by some physical observables that (almost surely) grow
linearly in time, e.g. time-integrated heat fluxes, charge or matter currents, or any
thermodynamic flux. The quantities F are non-fluctuating intensive variables conjugate to
the J t. If one adopts an abstract characterization of thermodynamic processes as generic
Markov processes on a discrete state space, then J t count the net number of times the
process has performed certain elementary cyclic paths.

Asymptotic relations can be extended to finite times by conditioning both the forward
and the backward processes to some fixed initial state [21],

P (J t|x0)
P (−J t|xt)

= eF ·J t+Φ(x0)−Φ(xt) (3)

where Φ is a suitable state function. Unfortunately, from an experimental viewpoint
conditioning a process to one exact initial state is problematic. However, notice that
if one could sample both the forward and the backward processes with probability e−Φ/Z
(Z the normalization factor) one obtains an exact FT for the currents valid at all times

P (J t)
P (−J t)

= eF ·J t , (4)

where we marginalized out x0, xt. Yet, again, preparing the system in a given ensemble
e−Φ/Z might also be awkward, unless it is of a very special kind. Indeed, for certain classes
of systems it has been found that this ensemble is the equilibrium ensemble of the system
where all forces producing cycle currents are momentarily disconnected. Physically, this
corresponds to the situation where first one prepares the system by letting it relax to
equilibrium and then all of a sudden turns on the external forces.

3. Example: network of chemical reactions

In this section we consider a simple reaction network. We derive a meaningful expression
for the total entropy produced after an arbitrary sequence of reactions, writing it in terms
of macroscopic physical currents of certain external species called chemostats and in terms
of an equilibrium initial ensemble. The reader eager to learn the full theory might want
to skip this section. For sake of simplicity we set kBT = 1.

Let X1 and X2 be two chemical species of observational interest that partake to three
reversible chemical reactions, one that produces or consumes X1, one that produces or
consumes X2 and one that converts X1 into X2 and vice versa:

Y1
+1
��

−1
X1

X2
+2
��

−2
Y2 (5)

X1 + Y3
+3
��

−3
X2 + Y4.
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Here Y1, . . . , Y4 are (assemblies of) chemostats, that is, substrate species that are
independently administered by the environment and whose concentrations do not vary
in time. A complete treatment of the thermodynamics of chemostatted networks has been
provided by the authors in [22]. This reaction scheme is a simple model of a molecular
engine, where reactions 1 and 2 provide the working substances X1 and X2 and reaction
3 performs chemical work by transforming molecules of Y3 into molecules of Y4, while
completing a thermodynamic cycle within the system. The observable of interest is the
rate J3 at which this latter reaction proceeds. The reaction network can be represented by
a graph whose edges are the complexes of the species of observational interest, as follows

(6)

Under several assumptions (Boltzmann’s Stosszahlansatz, well-stirred solution etc),
the number of variable molecules undergoes a continuous-time Markov jump process
satisfying the random-time change equation

X(t) = X(0) +
±3�

r=±1

Jr(t) νr, (7)

where we collected the two variable species in a vector X and νr is the vector of
stoichiometric coefficients of the r-th reaction,

ν±1 = ±
�

+1
0

�
, ν±2 = ±

�
0
–1

�
, ν±3 = ±

�
–1
+1

�
. (8)

Each time a reaction proceeds the populations increase by an amount νr. Hence, the state
space where this random process takes place is the lattice (that we call the chemical lattice)
generated by the three vectors ν+1, ν+2, ν+3, limited to the sector of positive populations,
as depicted in figure 2(a). Notice that the generating vectors are not independent, as

ν+1 + ν+2 + ν+3 = 0. (9)

The quantity Jr(t), counting the number of times reaction r occurs up to time t, is
distributed with a unit-rate Poisson distribution [23] according to

Jr(t) ∼ Pois
�� t

0
wX(s)+νr,X(s) ds

�
. (10)

The {wX+νr,X}X’s are the rates at which reaction r proceeds. By the law of mass-action
these rates are proportional to the products of the abundances of the reactants,

wX+ν1,X = Y1, wX+ν2,X = X2, wX+ν3,X = Y3X1,
wX−ν1,X = X1, wX−ν2,X = Y2, wX−ν3,X = Y4X2,

(11)

where for sake of simplicity we set all proportionality constants to unity.
In the following we will drop all explicit time dependencies. We define the currents as

the stochastic variables that count the net number of transitions between site X and a
neighboring site,

jX+νr,X := # (transitions from X to X + νr) − # (transitions from X + νr to X) . (12)

doi:10.1088/1742-5468/2014/10/P10033 5
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Notice that
�

X jX+νr,X = Jr. Each transition decreases the Gibbs free energy of the
system by an amount

fX+νr,X := ln
wX+νr,X

wX,X+νr

, (13)

i.e. fX+ν1,X = ln Y1/(X1 + 1), fX+ν2,X = ln X2/Y2, fX+ν3,X = ln(Y3X1)/(Y4(X2 + 1)).
Notice that both the currents and the Gibbs free energy differences are antisymmetric by
inversion of the orientation of the transition,

jX,X+νr = − jX+νr,X (14a)

fX,X+νr = − fX+νr,X. (14b)
A crucial observation is that the Gibbs free energy differences satisfy Kirchoff’s Loop
Law (KLL)

fX,X−ν2 + fX−ν2,X+ν3 + fX+ν3,X = ln
Y1Y3

Y2Y4
=: F (15)

where the affinity F is the total Gibbs free energy decrease around a cyclic process that
starts at X and moves by amount ν3, then ν1, then ν2 to return to X by virtue of
equation (9). Quite importantly, it is peculiar to chemical networks with mass-action law
that the affinity does not depend on the state X where the cycle is based, which will allow
a significant simplification.

Finally we introduce the total entropy production

Σ :=
�

X

�

r>0

jX+νr,X fX+νr,X. (16)

Notice that we restricted the sum to the positive verse of the reactions to avoid double-
counting. This expression simplifies in view of KLL,

Σ =
�

X

�
jX+ν3,X (F − fX,X−ν2 − fX−ν2,X+ν3) +

�

r=1,2

jX+νr,X fX+νr,X

�

= FJ3 +
�

X

[(jX+ν1,X + jX−ν3,X) fX+ν1,X + (jX−ν2,X + jX+ν3,X) fX−ν2,X]

= FJ3 +
�

X1

JX1 ln
Y1

X1 + 1
+

�

X2

JX2 ln
Y2

X2 + 1
(17)

where we introduced
JX1 :=

�

X2

(jX+ν1,X + jX−ν3,X) (18a)

JX2 :=
�

X1

(jX−ν2,X + jX+ν3,X) (18b)

respectively with the meaning of total increase of species 1 at fixed X2 and total increase of
species 2 at fixed X1. We now introduce the second crucial ingredient, namely Kirchhoff’s
Current Law (KCL). Since the trajectory is continuous, the total current out of a given
state visited by the trajectory must be zero, but for states X0 = X(0) and Xt = X(t) that
are respectively a source and a sink of a unit current. KCL can then be employed to obtain

JX1 = θ[X1(0),+∞)(X1) − θ[X1(t),+∞)(X1) (19a)

JX2 = θ[X2(0),+∞)(X2) − θ[X2(t),+∞)(X2) (19b)

doi:10.1088/1742-5468/2014/10/P10033 6
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Figure 1. (a) The chemical lattice for the chemical reaction network equation (5).
Horizontal edges correspond to reaction 1, vertical edges correspond to reaction
2 and diagonal edges correspond to reaction 3. (b) A path. The shaded horizontal
region corresponds to JX2 = +1, the shaded vertical region corresponds to
JX1 = +1, white regions correspond to vanishing currents.

where θ is the Heaviside step function on a discrete set1 (see figure 1(b) for clarification).
Employing KCL we obtain for the entropy production

Σ = FJ3 + ln
Xt�

X=X0+1

Y1

X1

Y2

X2
. (20)

To give an interpretation of the latter term, we resort to the chemical master equation
that rules the evolution of the probability of being at X at time t

d
dt

Pt(X) =
�

X,r

�
wX,X+νrPt(X + νr) − wX+νr,XPt(X)

�
=: L(Y)Pt(X) (21)

where on the right-hand side we introduced the generator L(Y), which of course depends
on the chemostats’ concentrations. The claim in section 2 is that the second term in
equation (20) should be obtained as the equilibrium distribution of the system where the
third reaction is inhibited, which is achieved by setting Y3 = Y4 = 0. We then look for
the solution of

L(Y1, Y2, 0, 0)P eq = 0, (22)

which is easily seen to be a Poissonian

P eq(X) = e−Y1−Y2
YX1

1

X1!
YX2

2

X2!
(23)

satisfying detailed balance

wX+νr,XP eq(X) = wX,X+νrP
eq(X + νr). (24)

Finally, we obtain the desired result

Σ = J3F + ln
P eq(Xt)
P eq(X0)

. (25)

1 Defined as θA(b) =
�

a∈A δa,b, for A ⊆ Z, δ the Kroenecker delta.

doi:10.1088/1742-5468/2014/10/P10033 7
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Fluctuation theorems for the chemical master equation in the form of equations (1)–(4)
can be derived by standard techniques, hence supporting the result that exact FT’s for the
currents hold when the initial state is sampled from the equilibrium ensemble obtained
by disconnecting the mechanisms that drive the system to nonequilibrium. In the next
sections we will provide the full theory and in section 3 we come back to this example
to discuss how the general theory allows to extend these observations to more general
chemical networks.

4. Tools: cycle and cocycles in network thermodynamics

We will be involved with continuous-time Markov jump process on a finite state space. The
state space of the system can be viewed as an oriented graph, the trajectory followed by
the jump process as a sequence of oriented edges connecting vertices. All thermodynamic
observables associated to the trajectory (current, free energy increase etc) are weights
assigned to every edge of the graph, antisymmetric by inversion of the orientation of the
edge. In this section we briefly refresh the ensuing algebraic graph-theoretical picture; a
broader treatment can be found in [20].

4.1. Cycle/cocycle decomposition of a graph

The state space of the system is a connected oriented graph G = (X, E) (without loops,
allowing multiple edges) with oriented edges e ∈ E connecting distinct vertices x ∈ X.
Let |E| be the number of edges and |X| that of vertices. The orientation is arbitrary, by
−e we represent the inverse orientation of an edge. The graph is completely characterized
by the |E| × |X| matrix ∂ prescribing the incidence relations between edges and vertices:

∂x,e =





+1, if e−→ x

−1, if e←− x
0, otherwise

. (26)

We will make constant reference to the following example:

∂ =




−1 0 0 +1 0
+1 −1 0 0 +1
0 +1 −1 0 0
0 0 +1 −1 −1


 . (27)

Real combinations of edges are denoted by a vector in Dirac notation | · � ∈ RE. We also
introduce the transpose vector � · | and the scalar product � · | · �.

Cycles are, as intuitive, successions of oriented edges (a tail for each tip, at every
vertex). Cycles are algebraically characterized as integer right null vectors of the incidence
matrix,

∂ | c � = 0. (28)

Therefore they form a vector space. A preferred basis of cycles can be constructed by
a standard procedure that was employed by Schnakenberg for the analysis of network

doi:10.1088/1742-5468/2014/10/P10033 8
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thermodynamics [7]. We briefly refresh it. A spanning tree T is a maximal set of
(unoriented) edges that contains no cycles. We choose one such arbitrary spanning tree,

(29)
The choice of a spanning tree is arbitrary from a mathematical point, while physically it
corresponds to the choice of a different set of relevant observables. An important property
of spanning trees is that there exists a unique oriented path γxx� connecting any vertex x�

to any other vertex x of the graph belonging to the spanning tree.
Edges eα not belonging to the spanning tree are called the chords (dotted, above).

Their number is given by Euler’s formula |C| = |E| − |X| + 1. Adding chord eα to the
spanning tree identifies a unique cycle cα with orientation along the verse of the chord:

(30)
It can be proven that the set of cycles so generated is a basis for the null space of the
incidence matrix [24].

Orthogonal to the set of cycles is the set of cocycles (or cuts), generated by the
corresponding cochords. A cochord is an edge e∗

µ belonging to the spanning tree. Their
number is |E|− |C| = |V |− 1. Removing cochord e∗

µ from a spanning tree disconnects the
graph into two basins. The set of edges that connect one basin to the other, oriented in
the verse of the generating cochord, is a cocycle:

(31)
In this example, vertices in the source basins are disks, in the target basins are circles,
edges of the spanning tree that connect them are dotted.

We can now give a vector representation of chords, cycles, corchords and cocycles as
linear combinations of edges of the graph. We denote them respectively | eα �, | cα �, | e∗

µ �,
| c∗

µ �. In our example, we have

| c∗
1 � =




+1
0
0

−1
0




, | c∗
2 � =




0
+1
0

−1
−1




, | c∗
3 � =




0
0

+1
−1
−1




,

| c4 � =




+1
+1
+1
+1
0




, | c5 � =




0
+1
+1
0

+1




. (32)

A crucial result proven in [20] is that the identity over the edge space can be
decomposed as

I =
�

α

| cα �� eα | +
�

µ

| e∗
µ �� c∗

µ |. (33)

doi:10.1088/1742-5468/2014/10/P10033 9
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where | · �� · | denotes the outer product of two vectors, yielding an |E| × |E| matrix.
We will repeatedly employ this identity in the following sections. As a side comment,
Π :=

�
α | cα �� eα | and Π∗ :=

�
µ | e∗

µ �� c∗
µ | are oblique complementary projectors,

Π2 = Π, Π∗2 = Π∗, ΠΠ∗ = Π∗Π = 0, which gives rise to an elegant formulation of
network thermodynamics based on projectors.

4.2. Tidal and cycle currents and their dual variables

In network thermodynamics one assigns two observables to each oriented edge, the current
je and its conjugate force fe. They are required to be antisymmetric by edge inversion,
j−e = −je, f−e = −fe. We collect their values in two vectors | j � and | f �. The entropy
production is the bilinear form

Σ := � j | f � =
�

e

feje. (34)

We immediately apply the identity decomposition equation (33) to the currents to obtain
| j � =

�

α

| cα �� eα | j � +
�

µ

| e∗
µ �� c∗

µ | j �. (35)

=:
�

α

Jα| cα � +
�

µ

Jµ| e∗
µ �. (36)

The second line defines the cycle currents Jα and the tidal currents Jµ. The former are well-
known from Schnakenberg’s analysis. They quantify the cycling of a process. The latter
give the total flux from a set of source vertices to a set of target vertices, as visualized in
equation (31). This decomposition is somewhat analogous to the Helmholtz decomposition
of a vector field into a curl and a gradient (modulo a harmonic term).

Now, plugging equation (35) into the entropy production we obtain
Σ =

�

α

Jα� f | cα � +
�

µ

Jµ� f | e∗
µ � (37)

=
�

α

JαFα +
�

µ

JµFµ (38)

where we introduced the affinities Fα as observables conjugate to the cycle currents and
the potential drops Fµ as observables conjugate to the tidal currents.

5. Results: fluctuation theorems for the currents

5.1. Transient FT for joint tidal and cycle currents

We consider a continuous-time Markov jump process (x , τ ), starting at state x0 and
performing n transitions in time t to state xt. The rate of a jump from state x to x� is
wx�x. The process visits state xi for an interval τi before jumping to state xi+1, up to time
t = τ0 + . . . + τn. The joint probability density of the n states visited by the trajectory is
given by

Pn,t(x , τ ) = δ
�
t −

n�

i=0

τi

�
e−wxnτn

n−1�

i=0

wxi+1,xi
e−wxiτi , (39)

doi:10.1088/1742-5468/2014/10/P10033 10
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where δ(·) is the Dirac delta and wx =
�

x� wx�x. The marginal probability density for the
states is given by

Pn,t(x ) =
�

. . .

� ∞

0
dτ Pn,t(x , τ ) = Qn,t(x )

n−1�

i=0

wxi+1,xi
(40)

where

Qn,t(x ) :=
�

. . .

� ∞

0
dτ δ

�
t −

n�

i=0

τi

� n�

i=0

e−wxnτn . (41)

The actual dependence on t is difficult to compute and not relevant for what follows.
We define the time-reversed process as that process (x †, τ †) where the succession of

states and time intervals are inverted, x†
i = xn−i and τ †

i = τn−i. Notice that for the
time-reversed process we have

Qn,t(x ) = Qn,t(x †). (42)

As a consequence, the following fluctuation relation between forward and backward
successions of states holds

Pn,t(x ) = Pn,t(x †)
�

i

wxi+1,xi

wxi,xi+1

. (43)

The above expression can be further marginalized. We define the (time-integrated)
edge current along x ← x� as a stochastic variable counting the net number of transitions
from x� to x,

jxx�(x ) :=
�

i

�
δxi+1,x δxi,x� − δxi+1,x� δxi,x

�
. (44)

It satisfies the antisymmetry relations jx�x(x ) = −jxx�(x ) and jxx�(x ) = −jxx�(x †).
Equation (43) can then be written in terms of the currents as follows

Pn,t(x ) = e� f | j(x ) � Pn,t(x †) (45)

where the entries of | f � are the thermodynamic forces fxx� := ln(wxx�/wx�x). We can
then finally marginalize for the currents taking values | j �. It must be here noted that the
expressions of the current and of the probability measure are conditioned to a fixed total
number of transitions n. Although, experimentally one usually has access to the total
number of transitions between two states irrespective of the total number of transitions
that the trajectory performs. The probability of observational values of the currents | j �
up to time t is given by

Pt(| j �) =
∞�

n=1

Pn,t(| j �)Pt(n) (46)

where Pt(n) is the probability that a total number of transitions n occurs in time t. Since
the time-reversed process performs the same number of jumps, we do not need to compute
it and we obtain

Pt(| j �) = e� f | j �Pt(−| j �). (47)

We can now apply the cycle/cocycle decomposition exposed in section 4. To do this, we
should first identify a spanning tree of the graph such that the chord currents are currents

doi:10.1088/1742-5468/2014/10/P10033 11
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of physical relevance to the specific model at hand. We can then define stochastic cycle
and tidal currents

Jα(x ) := � eα | j(x ) � (48a)

Jµ(x ) := � cµ | j(x ) �. (48b)
The first counts the number of times the α-th cycle is enclosed, the second counts the
number of times the process jumps from the source to the target basin of the µ-th cut.
Since cycle and tidal currents are one-to-one to the edge currents, by a simple coordinate
transformation (which can be proven, but here is irrelevant, to have unit Jacobian) we
can move to the probability of the former, which by equation (38) obeys the joint FT

Pt(J ,J ∗)
Pt(−J , −J ∗)

= exp

��

α

FαJα +
�

µ

FµJµ

�
, (49)

where we collected the cycle and cocycle currents into J = {Jα}α and J ∗ = {Jµ}µ. This
equation generalizes the result of Andrieux and Gaspard to finite times. An important
observation is that we do not need to condition this FT to an initial and a final state,
since conditioning is implicit. In fact, knowledge of the tidal currents implies knowledge
of the initial and final states.

5.2. Asymptotic FT for the cycle currents

We now focus on the tidal term. An important fact is that a Markov jump process on
a graph is continuous, i.e. it can be drawn without lifting the pencil. As an important
implication, tidal currents can only take values in {−1, 0, 1}, while cycle currents take
values in Z. Intuitively, while a process can wind arbitrarily many times around a cycle
in a preferential direction, the only way to increase a tidal current is to move from the
source to the target basin of the cocycle, after which by continuity only the inverse can
occur, restoring the tidal current to its initial value. In fact, orienting all edges of the
graph in such a way that the initial state x0 is in the source basin of all cocycles, then
tidal currents can only take values in {0, 1}.

Let � ∂x | be the rows of the incidence matrix. Then by continuity of the trajectory
� ∂x | j(x ) � = δx,xt − δx,x0 . (50)

This also shows that knowledge of the complete set of currents retains the infomation
about the initial and final states, that is, de facto the FT equation (49) is conditioned
to its boundary states. Since by definition the kernel of ∂ is the cycle space, then the
row space of the incidence matrix spans the cocycle space. Then there exists a linear
transformation M such that � cµ | =

�
x Mµ,x� ∂x |, given by

Mµ,x =
�

−1/2, x ∈ source cµ

+1/2, x ∈ target cµ. (51)

The ±1/2 terms are given by the fact that the rows of the incidence matrix are not linearly
independent, and therefore one has to adjust a double counting. Then

Jµ(x ) =
�

x

Mµ,x� ∂x | j(x ) � = Mµ,xt − Mµ,x0 , (52)

which is 0 if both x0 and xt are in the target or in the source, +1 if x0 is in the source
and xt in the target and −1 vice versa.
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It follows from this discussion that tidal currents are bounded, while cycle currents
typically increase with time according to

Jα(x ) � t α(x ), (53)
where α is the current per time and when referred to a stochastic variable � means
asymptotically, almost surely. Then in the long time limit the asymptotic FT of Andrieux
and Gaspard is obtained

lim
t→+∞

1
t

ln
Pt(t )

Pt(−t )
�

�

α

Fα α. (54)

Unless a restoring force intervenes (e.g. periodic driving, time-dependent protocols
etc), tidal forces are doomed to disappear. Indeed, their effect is so weak that they do not
affect any statistical property of the currents [11].

5.3. Unconditional transient FT for the cycle currents (without ensembles)

Let us define a function over the vertices
Φx := −

�

µ

FµMµ,x. (55)

After equation (52) we obtain�

µ

FµJµ(x ) = Φx0 − Φxt , (56)

which means that the tidal contribution is a state function. An intuitive way to picture
this is the following. Suppose the trajectory moves from state x0 to xt along the spanning
tree. Then the tidal term is increased by the potential drops within the tree and the cycle
term is untouched. Now, instead, suppose that x0 and xt are connected by a chord and
that the trajectory travels along that chord. Then, one will account one full cycle and
consequently will have to subtract terms from the tidal accounting. As far as the cocycle
term is concerned, the result of these two operations is the same, that is, the tidal term
only cares about where the trajectory is and not how it got there, because every time a
cycle is enclosed that contribution is thrown in the cycle term.

Then, we can express the joint FT in terms of the cycle currents, conditioned to the
boundary states:

Pt(J |x0)
Pt(−J |xt)

= exp

��

α

FαJα + Φx0 − Φxt

�
. (57)

Now suppose the initial state x0 is sampled with probability P0(x0) and that the initial
state of the time-reversed processes is sampled with probability Pt(xt). The choice

P0(x) = Pt(x) = Z−1e−Φx (58)
clearly de-conditions the above expression with respect to the boundary states, which can
then be marginalized yielding the finite time FT for the cycle currents, with given initial
ensemble

Pt(J )
Pt(−J )

= exp
�

α

FαJα. (59)

Finally, let us give a clear interpretation of the special distribution from which
boundary states must be sampled to attain an exact finite-time FT. By definition Fµ
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is the potential drop across the generating cochord, which belongs to the spanning tree.
Fixing a reference state x̄, let | γxx̄ � be the vector representative of the unique oriented
path in the spanning tree that connects x̄ to x. Then one has

Φx = � γxx̄ | f �. (60)

It is then well known that the ensemble Z−1e−Φx is the equilibrium steady distribution
of the network where the chords are completely removed. Changing reference state x̄
amounts to shifting the potential Φ by a constant ground value.

Let us recapitulate this important message. Consider a continuous-time Markov jump
process on a graph. Choose a spanning tree of the graph. The criterium is that the
currents flowing across the chords (i.e. edges not belonging to the spanning tree) should
be of particular physical relevance. Then, such cycle currents satisfy an exact transient
fluctuation relation if the processes are sampled from the equilibrium ensemble reached
by the Markov process with all rates along chords set to zero.

Finally, as is well-known equilibrium ensembles can be obtained by a maximum
entropy procedure [25] with suitable constraints that incorporate the information available
about the system before the experiment is conducted, which is used to build up a prior
probability (on the role of priors in nonequilibrium statistical mechanics at a foundational
level, see [26,27] by one of the authors). Then, it is interesting to note that the ensemble
that needs to be prepared for an observation of the FT at all times is precisely the
maximum entropy ensemble (the distribution of lowest information) with respect to the
experimental apparatus that is going to measure the currents. The initial ensemble is
dictated uniquely by the topology of the graph, expressed by equation (51), and by the
potential equation (55) whose average plays the role of the maximum entropy constraint
according to the theory pioneered by Jaynes [25].

6. Example: network of chemical reactions revisited

The graph-theoretical method exposed in sections 4 and 5 can be fruitfully applied to
the chemical network analyzed in section 3, conjecturing that all results can be extended
to the infinite case in some mathematically rigorous way. The chemical lattice admits
an infinite number of spanning trees, most of which have no regularity. We choose the
comb depicted in figure 2(a), consisting of the edges along the X1 axis and of all the
vertical edges. With reference to figure 2(b), there are two kinds of cycles: Cycles of kind
c0 generated by chords X → X + ν1 have null affinity; Cycles of kind c3 generated by
chords X → X + ν3 have affinity F = ln Y1Y3

Y2Y4
. Hence the cycle term reads

�

α

FαJα = F
�

X

jX+ν3,X = FJ3 (61)

yielding the first term in equation (20).
There are two types of cocycles. Horizontal cochords (X1, 0) → (X1 + 1, 0) carrying

potential drop ln Y1/(X1 + 1) generate cocycles of type c∗
1 in figure 2(c) with current JX1 .

As regards the vertical set of cochords of type X → X + ν2, notice that all those that
are based at the same X2 carry the same potential drop ln X2/Y2. Then a resummation
occurs, as depicted in figure 2(d) and one obtains an effective cocyle carrying current JX2 .

doi:10.1088/1742-5468/2014/10/P10033 14



J. S
tat. M

ech. (2014) P
10033

Transient fluctuation theorems for the currents and initial equilibrium ensembles

Figure 2. (a) An infinite spanning tree. (b) Two cycles; the generating chords
are dashed. (c) Two cocycles; the generating cochords are dashed. Cocycle c∗

2 is
generated by a vertical cochord, cocycle c∗

1 is generated by a horizontal cochord.
(d) Linear combination of cocycles of type c∗

2 at given X2.

We then obtain�

µ

F ∗
µJ∗

µ =
�

X1

JX1 ln
Y1

X1 + 1
+

�

X2

JX2 ln
Y2

X2 + 1
(62)

which is the second term in equation (17).
Finally, the initial equilibrium ensemble that makes the finite-time FT for the currents

hold is the steady distribution of a Markov process occurring on the comb, which is
obtained by eliminating reaction 3 from the reaction scheme. It is interesting to note that,
due to the fact that the affinities of type 0 in figure 2 all vanish, any spanning tree that only
consists of reaction steps of kind 1 and 2 will give rise to the same initial ensemble. Hence,
while in principle the choice of spanning tree affects the FT, chemical networks enjoy
certain regularity properties that boil down the great generality of Schnakenberg’s analysis
to actual physical currents. In the specific case of chemical networks, this possibility is
granted by the mass-action law and by the fact that the topology of the chemical lattice in
figure 2(a) is simply obtained by shifting and reproducing the chemical reaction network
in equation (6). While we postpone a full discussion of chemical networks to a future
publication, it is interesting to note that not all chemical reaction schemes allow for such
great simplification depending on certain topological properties related to the concept of
deficiency of the network [28].

7. Conclusions

In this paper we collected several results about finite-time FT’s for the currents for
stationary Markov jump processes on a finite state space, giving a unified framework
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based on certain algebraic graph-theoretical techniques that allow to decompose any
thermodynamic observable in terms of cycle and cocycle observables, by virtue of the
fundamental identity equation (33). In particular, we generalized the result of Andrieux
and Gaspard [9] for the so-called Schnakeberg currents to finite times, both by direct
manipulation of the probability density function of Markov jump trajectories and by the
generating function approach exposed in appendix.

One major limitation of our results that calls for further generalization is the
requirement that transition rates are time-independent. Indeed, the FT without ensemble
quantities discussed by Bulnes-Cuetara et al [15] was formulated for time-dependent
protocols. We mention, without further discussion, that a full generalization of their
result to arbitrary Markov processes on finite state spaces in terms of cycles and
cocycles is significantly more complicated. The resulting expressions defy a clear physical
interpretation. Partial results can be obtained under more restrictive assumptions, e.g.
that the affinities are constant in time. Furthermore, as regards linear chemical networks
we point out that there exists a finite-time FT with the initial state sampled from the
steady nonequilibrium ensemble, with a time-dependent effective affinity [30]. We leave
these issues and the treatment of general chemical reaction networks to future inquiry.
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Appendix. Generating function approach

As an addendum, we will prove the ‘initial ensemble’ FT exposed in section 5.3 by
the commonly employed method of the generating function, generalizing the treatment
explored by Bulnes-Cuetara in [29] and by Andrieux et al in [16].

Let λ = (λα)α be a set of counting fields defined on the chords of the graph and
1 = (1, . . . , 1) the unit vector of length |V |. It is well-known [9] that the moment generating
function for the cycle currents is given by

Z(λ, t) =
�

x

Px(λ, t) = 1 · P (λ, t), (A.1)

where P (λ, t) evolves by the Feynman–Kac type of equation
d
dt

P (λ, t) = L(λ)P (λ, t). (A.2)

Here, L(λ) is the tilted generator with entries

Lxx�(λ) =





−wx, if x = x�

wxx�eλα , if x �= x�, x ← x� = eα

wxx�e−λα , if x �= x�, x → x� = eα

wxx� otherwise

(A.3)
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and the initial condition is given by

P (λ, 0) = P (0, 0), (A.4)

where P (0, 0) is the initial probability density over states. It is important that P (λ, 0)
does not depend on λ. Physically, this reflects the fact that the preparation of the system
cannot depend on the output of the counting experiment.

The tilted generator obeys a crucial time-reversal symmetry relation. Let us consider
the generator L(F − λ)T with entries

[L(F − λ)T ]xx� =





−wx, if x = x�

wx�xeFα−λα , if x� �= x, x� ← x = eα

wx�xeλα−Fα , if x� �= x, x� → x = eα

wx�x otherwise.

(A.5)

By definition, the α-th affinity is the circulation of the force around a cycle comprising
chord eα = x ← x� and the unique path γx�x that is internal to the spanning tree T and
that goes from state x to state x�. Then,

Fα = ln
wxx�

wx�x
+ � γx�x | f � = ln

wxx�

wx�x
+ Φx� − Φx, x ← x� = eα. (A.6)

Moreover, notice that for all edges internal to the spanning tree

Φx� − Φx = ln
wx�x

wxx�
, x ← x� ∈ T . (A.7)

We then obtain

[L(F − λ)T ]xx� =





−wx, if x = x�

wx�xeΦx�−Φx−λα , if x� �= x, x� ← x = eα

wx�xeΦx�−Φx+λα , if x� �= x, x� → x = eα

wxx�eΦx�−Φx otherwise

(A.8)

yielding the symmetry relation

L(F − λ)T = ΘL(λ)Θ−1, (A.9)

where Θ = diag
�
e−Φx/Z

�
x
, Z =

�
x e−Φx being the normalization factor.

Finally, we can go back to the moment generating function. Integrating equation (A.2),
in view of equation (A.1), we obtain

Z(λ, t) = 1 · etL(λ)P (0, 0) = 1 · Θ−1etL(F−λ)T

ΘP (0, 0). (A.10)

Let us also consider

Z(F − λ, t) = 1 · etL(F−λ)P (0, 0). (A.11)

In general, the two are not related unless

P (0, 0) = Θ−11, (A.12)

in which case

Z(λ, t) = Z(F − λ, t). (A.13)

Equation (A.12) is nothing but the requirement that the initial state is the equilibrium
state described in section 5.3, equation (A.13) is well-known to imply the fluctuation
relation when moving from the generating function picture to the probability density
picture.

doi:10.1088/1742-5468/2014/10/P10033 17



J. S
tat. M

ech. (2014) P
10033

Transient fluctuation theorems for the currents and initial equilibrium ensembles

References

[1] Bochkov G N and Kuzovlev Y E 1981 Nonlinear fluctuation-dissipation relations and stochastic models in
nonequilibrium thermodynamics: I. Generalized fluctuation-dissipation theorem Physica A 106 443

Bochkov G N and Kuzovlev Y E 1981 Nonlinear fluctuation-dissipation relations and stochastic models in
nonequilibrium thermodynamics: II. Kinetic potential and variational principles for nonlinear irreversible
processes Physica A 106 480

[2] Kurchan J 1998 Fluctuation theorem for stochastic dynamics J. Phys. A: Math. Gen. 31 3719
[3] Maes C 1999 The fluctuation theorem as a Gibbs property J. Stat. Phys. 95 367
[4] Lebowitz J L and Spohn H 1999 A Gallavotti-Cohen-type symmetry in the large deviation functional for

stochastic dynamics J. Stat. Phys. 95 333
[5] Kalpazidou S 1995 Cycle Representations of Markov Processes (Berlin: Springer)
[6] Hill T L 2005 Free Energy Transduction and Biochemical Cycle Kinetics (New York: Dover)
[7] Schnakenberg J 1976 Network theory of microscopic and macroscopic behavior of master equation systems

Rev. Mod. Phys. 48 571
[8] Polettini M 2011 Macroscopic constraints for the minimum entropy production principle Phys. Rev. E 84

051117
[9] Andrieux D and Gaspard P 2007 Fluctuation theorem for currents and Schnakenberg network theory J. Stat.

Phys. 127 107
[10] Andrieux D and Gaspard P 2004 Fluctuation theorem and Onsager reciprocity relations J. Chem. Phys. 121

6167
[11] Wachtel A, Vollmer J and Altaner B 2014 Determining the statistics of fluctuating currents: general

Markovian dynamics and its application to motor proteins (arXiv:1407.2065)
[12] Faggionato A and Di Pietro D 2011 Gallavotti–Cohen-type symmetry related to cycle decompositions for

Markov chains and biochemical applications J. Stat. Phys 143 11
[13] Bertini L, Faggionato A and Gabrielli D 2014 Flows, currents and cycles for Markov Chains: large deviation

asymptotics (arXiv:1408.5477)
[14] Van den Broeck C and Esposito M 2010 Three faces of the second law. I. Master equation formulation Phys.

Rev. E 82 011143
[15] Bulnes-Cuetara G, Esposito M and Imparato A 2014 Exact fluctuation theorem without ensemble quantities

Phys. Rev. E 89 052119
[16] Andrieux D, Gaspard P, Monnai T and Tasaki S 2009 The fluctuation theorem for currents in open quantum

systems New J. Phys. 11 043014
[17] Kim K, Kwon C and Park H 2014 Heat fluctuations and initial ensembles Phys. Rev. E 90 032117
[18] Fogedby H C and Imparato A 2014 Heat fluctuations and fluctuation theorems in the case of multiple

reservoirs (arXiv:1408.0537)
[19] Campisi M, Hänggi P and Talkner P 2011 Colloquium: quantum fluctuation relations: foundations and

applications Rev. Mod. Phys. 83 771
[20] Polettini M 2014 Cycle/cocycle oblique projections on oriented graphs (arXiv:1405.0899)
[21] Seifert U 2008 Stochastic thermodynamics: principles and perspectives Eur. Phys. J. B 64 423
[22] Polettini M and Esposito M 2014 Irreversible thermodynamics of open chemical networks I: emergent cycles

and broken conservation laws J. Chem. Phys. 141 024117
[23] Ethier S N and Kurtz T G 1986 Markov Processes: Characterization and Convergence (New York: Wiley)
[24] Nakanishi N 1971 Graph Theory and Feynman Integrals (New York: Gordon and Breach)
[25] Jaynes E T 1957 Information theory and statistical mechanics Phys. Rev. 106 620
[26] Polettini M 2013 Of dice and men. Subjective priors, gauge invariance and nonequilibrium thermodynamics

Proc. 12th Joint European Thermodynamics Conf. (Brescia, Italy, 1–5 July 2013)
[27] Polettini M 2012 Nonequilibrium thermodynamics as a gauge theory Eur. Phys. Lett. 97 30003
[28] Feinberg M 1987 Chemical reaction network structure and the stability of complex isothermal reactors—I.

The deficiency zero and deficiency one theorems Chem. Eng. Sci. 42 2229
[29] Bulnes-Cuetara G 2013 Fluctuation theorem for quantum electron transport in mesoscopic circuits

(arXiv:1310.0620)
[30] Andrieux D and Gaspard P 2008 Temporal disorder and fluctuation theorem in chemical reactions Phys.

Rev. E 77 031137

doi:10.1088/1742-5468/2014/10/P10033 18


