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Abstract

The rheology of dense granular flows is investigated through discrete element method (DEM)

simulation of a vane shear cell. From the simulation, profiles of shear stress, shear rate, and

velocity are obtained, which demonstrates that the flow features in the vane shear cell are

equivalent to those in the classic annular Couette cell. A novel correlation for the shear

viscosity is formulated and leads to a new expression for µKT in the kinetic theory analysis.

The µKT formulation is able to qualitatively capture the µ-I relation in the shear cell. A

correlation length is added in the energy dissipation term to account for the effects of the

particle motion correlation. A simplified correlation length model is derived based on DEM

results and is compared with the literature. The modified granular kinetic energy equation

is able to correctly predict the granular temperature profiles in the shear cell.
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1. Introduction

Dense granular flows are widely found in industrial processing equipment such as silos [1,

2], pneumatic conveyors [3], vibrating inclined planes [4] and rotating drums [5]. Difficulties
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are reported in the simulation of granular flows in such devices due to the lack of a universal

rheological model [2, 6]. Rheological behaviors of dry granular flows are often described5

in three flow regimes, which are distinguished as quasi-static (I . 0.001), intermediate

(0.001 . I . 1.0) and collisional (I & 1.0) regimes based on an inertial number parameter

I = γ̇dp/
√
P/ρp with γ̇ being the shear rate, dp particle diameter, ρp particle intrinsic

density, and P the confining pressure [7, 8, 9]. In the quasi-static regime, the particles

move slowly and pack densely especially with the action of gravity, and an enduring contact10

network is often observed. In contrast, the collisional regime is featured by instantaneous and

binary particle collisions, and macroscopically the grains behave like a gas. The solid fraction

is also reduced as a result of increased particle fluctuation energy. The intermediate regime

represents a transition of the particle dynamics and the resultant macroscopic behaviors

between quasi-static and collisional regimes. The particle motion in this regime is typically15

correlated and the particles often have multiply long-lasting contacts in one collision instance

[10, 11]. Strongly sheared flows also features anisotropy in the force network, which results

in anisotropy of the fabric of contacts [12] and the diffusion of fluctuation energy [13].

Macroscopic understanding of the particle dynamics in this regime is far from satisfactory,

making it very challenging to formulate a generalized constitutive model for continuum20

modeling of the intermediate flow regime [14, 15].

Considering that the intermediate regime, as its name suggests, lies in between the quasi-

static regime and the collisional regime, it seems reasonable that the formulated rheology

model for the intermediate regime combines the features of the two regimes, and converges

to the results for the two regimes at lower and upper limits. The quasi-static regime exhibits25

a ratio of shear stress to normal stress that is independent of shear rates [16, 17]. The shear

stress is computable with the Mohr-Coulumb yield criterion. In the collisional regime, the

shear stress depends on inertial properties (such as particle fluctuation energy and strain

rate) and can be well predicted by the kinetic theory of granular gases. The correct formation

of the rheological model for the intermediate regime is essential to describing the granular30

flows in all regimes. G.D.R. MiDi [7] suggested a µ(I) relation, which has successfully

described the rheological behaviors of dense granular flows [7, 8, 18]. Its modified versions
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have been applied to modeling of dense granular flows in several flow configurations [1, 2, 3,

19, 20, 21]. The formulation developed by Jop et al. [19] is written as

µ(I) = µs +
µg − µs
I0/I + 1

(1)

where, µg and I0 are constants to be fitted. The effective friction coefficient µ, defined35

as the ratio of shear stress to normal stress, is a linear summation of a constant term µs

corresponding to the Mohr-Coulumb yield criterion and a second contribution depending on

the inertial number. The scaling law becomes a rate-independent constant term when the

inertial number is very small, whereas the inertial contribution becomes significant when

the inertial number increases.40

Annular shear cells demonstrated µ-I relations deviating from Eq. (1) due to the pres-

ence of strong shear gradients [12, 16, 17, 22, 23], and the inclusion of additional physics is

required to modify the I-dependent rheology. According to the µ(I) law proposed by Jop

et al. [19], no flow is possible in case of µ < µs. However, grain motions were observed at

locations where the effective friction coefficient is under the Mohr-Coulumb yield criterion45

in annular shear cells [16, 23]. Barker and Gray [24] proposed a new µ(I) curve in which µ

goes to 0 with I approaching 0. The new formulation reconciled the observation of particle

motion when µ < µs, but it does not recover another observation of the µ-I relation in

annular shear cells, which show that the µ-I relation is not one-to-one in the intermediate

regime [25]. In the framework of compressible I-dependent rheology [26, 21, 27], new rhe-50

ological relations were built by incorporating two additional parameters: solid fraction and

pressure. Although granular flow physics were well predicted in their flow geometries, the

determinations of the rheological formulations were more out of stability consideration. This

research generates a new µKT formulation, which is a function of solid fraction and inertial

number, by deriving macroscopic rheological relations from discrete element method (DEM)55

simulations of granular flows in a vane shear cell and carrying out kinetic theory analysis.

It is demonstrated that the new µKT formulation is able to satisfactorily recover the µ-I

relation in the presence of shear gradient.
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The correlated motion of adjacent particles in dense granular flows was well reported in

the literature [28, 29, 30, 31, 32] and its non-local effects clearly observed in the presence60

of shear gradient need to be properly accounted for in the development of rheology models.

Several nonlocal rheology models were proposed [33, 34, 17, 22] and good prediction per-

formances of those models were also achieved in the modeling of simple flow configurations.

In particular, Kamrin and Koval [17] has applied the fluidity theory to successfully predict

the µ-I relations and velocity profiles in a two-dimensional (2D) annular cell. However, the65

nature of the order parameters in these theories are not fully revealed in terms of particle

interactions and dynamics in dense granular flows and it also becomes problematic to ex-

tend the theories to dilute granular flows. In contrast, the Boltzmann equation is the root

for describing particle dynamics in granular flows despite the fact that mathematical de-

scription of particle interactions in the dense regime becomes extremely difficult, making it70

very challenging to directly derive relevant models in the kinetic theory from the Boltzmann

equation. Moreover, the microscopic description of the granular fluidity as a function of

solid fraction and granular temperature [25] and the retrieved rheological relation in terms

of the granular temperature across all regimes in chute flows [32] suggest that the granular

temperature and solid fraction are key parameters to reveal rheological behaviors of dense75

granular flows, which leads to our attempt of describing the rheological relations in dense

granular flows with modifications of kinetic theory. In this research, it is demonstrated that

the combination of the shear viscosity correlation generated from DEM data and the modi-

fied kinetic theory is able to predict the nonlocal rheological behaviors in the vane shear cell.

Secondly, the kinetic theory has been successfully applied to construct constitutive relations80

in dilute granular flow systems and extension of the kinetic theory to the dense granular

regime allows for unifying the constitutive description of the granular flows. Extensions

of the kinetic theory to dense granular flows have been achieved by modifying constitutive

relations or coefficients based on DEM simulations of simple shear flows [15, 35, 36, 37]

and a gas-fluidized suspension system [38]. Although previous modifications of the energy85

dissipation term have considered particle correlated motions by introducing a correlation

length [35, 36, 39], to our knowledge, there is limited research in the literature investigating
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whether the kinetic theory is able to predict nonlocal effects inherent in dense granular flows

sheared in an annular shear cell. It is the aim of this research to examine if rheological scal-

ing laws based on the granular temperature can be generated through DEM simulation of a90

vane shear cell and whether the modifications of the kinetic theory is capable of predicting

the nonlocaity.

Understanding various macroscopic behaviors of granular flows benefits from analysis of

the underlying particle dynamics. In this contribution, we carry out simulations of granular

flows in a vane shear cell using DEM approach. From the DEM simulation, local informa-95

tion such as stresses, strains and granular temperature is extracted from particle dynamics

simulations and then is used for rheological model development based on the kinetic theory.

In the following, we first describe the simulated system and the DEM model parameters.

Next, we present the profiles of the shear stress, shear rate, velocity and effective friction

coefficient in the shear cell, which demonstrates the flow similarities between the vane shear100

cell and the classic annular Couette cell. We then present the development and assessment

of the shear viscosity correlation, the energy dissipation rate and the diffusion term based

on DEM simulation results.

2. Methodology

2.1. Vane shear cell105

Three-dimensional (3D) DEM simulations of dense granular flows in a vane shear cell are

carried out in this research and the results are used to derive rheological models. The sim-

ulated system includes a rotating vane and an outer stationary wall, which is shown in Fig.

1. The prototypical apparatus of the modeled shear cell has been used to experimentally

study the rheology of granular and suspension systems [40, 41]. In this configuration, shear110

stress is applied to the dry and frictional granular material in the annular gap through the

same material that is trapped between the blades. In the modeled shear cell, all dimensions

are scaled by particle mean size 〈dp〉. The radius of the blade tip (Ri) is 27.5〈dp〉 and the

outer wall (Ro) is 57.5〈dp〉, generating an annular cell of 30〈dp〉 width. The vane moves
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at a prescribed rotation speed Ω, while the outer wall remains stationary. In all simula-115

tions, the particle mean size 〈dp〉 is 1.0 mm and a polydispersity of ±20 % is adopted to

prevent crystallization [42]. The material of all entities including particles and geometrical

structures adopts glass material with a density of 2400 kg/m3. A packing bed is prepared

before starting DEM simulations. The procedure is as following: a certain height of dense

granular packing is initiated subjecting to gravity at a very slow rotation speed and the bed120

height (H) is truncated to 38〈dp〉 when the flow reaches steady. The design of the system is

aimed to numerically replicate flow characteristics of three dimensional granular flows in the

annular Couette cell and reduce the system size for affordable simulation time. With the

current settings, around 432,000 particles are adopted to construct the granular system. The

simulations were initiated with the same packing bed generated at the beginning and the125

top surface of the granular bed is free to move in all simulations. Pressure is gradually built

up due to the gravity in the vertical direction and serves as confining pressure for packing

particles. In this contribution, all the variable values such as stresses and solid fractions

were extracted above Hmin = 10dp, which avoids the bottom wall effects on the analysis.

130

[ Fig. 1 insert here. ]

2.2. Parameters in numerical experiments by DEM

The adopted DEM simulation method allows for resolving long-lasting particle collision

instances with a well verified spring-dashpot contact model. The Hertz-Mindlin contact

model was used in all simulations. Detailed description of the contact model refers to our135

previous research [43]. The simulation of particle dynamics is affected by parameters in the

contact model including Young’s modulus Y , restitution coefficient e, Poisson ratio ν and

sliding friction coefficient µp. Macroscopically, the granular flow in the shear cell is entirely

describable by parameters characterizing material contact properties and the shear state

imposed by the vane.140

In the Hertz-Mindlin contact model, the normal spring stiffness kn and the tangential

stiffness kt are dynamically determined from the Young’s modulus, Poisson ratio and collision
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deformation. However, the ratio of the tangential stiffness to the normal stiffness remains a

constant, written as kt/kn = 3(1−ν)/(2−ν), after the Poisson ratio is prescribed. Since the

collision deformation is a result of the contact dynamics, the Young’s modulus parameter is145

the only independent variable determining the contact stiffness. To characterize the rigidity

of the packing bed, a stiffness number is defined as κ = C(Pm/Y )1/3 with C equal to 1.69

for the glass material and Pm being a characteristic pressure. The detailed derivation of the

stiffness number is shown in Appendix B. Previous research suggests κ < 0.01 in order to

eliminate influences of the material rigidity on simulation results. With the characteristic150

pressure defined as Pm = 0.6ρpgHm and Hm = 25〈dp〉, the influences of the material rigidity

on simulation results are found insignificant when the Young’s modulus is set to be 2× 107

and the stiffness number is equal to 0.044 as discussed in Appendix B. The Poisson ratio

of the glass material is a constant and the value ν = 0.22 is taken from a previous DEM

research [44]. Regarding the restitution coefficient, it has been reported to have little impact155

on simulation results [16] and a constant value of 0.8 is used in all simulations. A constant

sliding friction coefficient is used with the value of 0.2 and the simulation results match

with previous researches as discussed in later section. Moreover, any long range interaction

between two particles such as the capillary interaction is not considered in this study.

The prescribed shear rate from the vane rotation is measured by a dimensionless shear160

velocity defined as:

Vθ = Ω〈dp〉
√

1/(gHm) (2)

with g being the gravitational acceleration. Vθ is varied from 0.0005 to 0.4 in DEM simu-

lations. As a result, the inertial number at the first layer adjacent to the inner boundary

varies in a range of [0.003, 0.25] and the solid fraction lies in the range of [0.55, 0.64], which

covers the intermediate regime.165

The flow patterns in the shear cell were visually checked within the range of the dimen-

sionless velocity studied here, which can be seen in Appendix A. It is worth noticing that the

dilation of the granular bed is insignificant and the free surface remains flat, which suggests

7



that the granular flow in the studied range is not influenced by vortex flow features observed

in other research [45].170

2.3. Derivation of flow properties

Flow properties are carefully derived from samples collected in DEM simulations, which

contains collision properties of each interactive pair of particles and dynamic properties of

each particle. Starting from the initial packing bed and a prescribed rotational speed of

the vane, the granular flow in the shear cell gradually approaches a steady state at which175

the time-volume averaged flow properties do not vary in time. The justification of the

steady state is performed by monitoring the time evolution of variables such as stresses,

solid fraction and granular temperature. The sampling only starts when the granular flow

is shown to reach steady state.

Analysis of the granular flow in the annular Couette cell suggests that the averaged flow180

properties have no variations in the azimuthal direction due to the axial symmetry of the

system as shown in Fig. 1. The samples are therefore collected in a time series of N and

at location (r, z) within a spatial interval of ∆r = 2〈dp〉 and ∆z = 2〈dp〉. The selected

spatial interval size is identical to the averaging domain size adopted in previous studies

[16, 12], which satisfies the local homogeneity requirement for deriving kinematic properties185

[46]. In addition, an independence verification of the selected interval size is also provided in

Appendix C. An averaged flow property is achieved by doing the time-volume average of the

collected N samples at the prescribed interval centrally located at (r, z), which is generally

written as

〈f(r, z)〉t,V =
1

NV

N∑
i=1

f(r, z), (3)

where V is the interval volume centrally located at (r, z). For example, with f(r, z) being190

the total volume occupied by particles at a time, the time-volume average of the property

generates the averaged solid fraction. If the flow property f is a particle-based variable such
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as particle velocity, the time average operator is written as

〈f(r, z)〉t =
1∑N

i=1

∑Mi

j=1 Vj

N∑
i=1

Mi∑
j=1

Vjf(r, z), (4)

where Mi is the number of particles collected at a sampling time i and Vj the volume of a

particle positioning within the interval. The time-volume average operator of particle-based195

variables is formulated as

〈f(r, z)〉t,V =
1

NV

N∑
i=1

Mi∑
j=1

f(r, z). (5)

The time-volume average is adopted when calculating variables such as stresses due to

particle fluctuation velocity. Similarly, for interaction-based variables such as stresses due

to particle long-lasting contacts, the time-volume average operator is achieved by replacing

Mi with Xi in Eq. (5), where Xi is the number of particle interactions contained in the200

interval volume at a sampling time i. For convenience, the time average operator and the

time-volume average operator are not distinguished from each other. Moreover, the average

bracket is left out in the rest of the paper. Wherever a misunderstanding potentially arises

due to this writing, an explanation of the variable is provided for clarification.

The total stress tensor is calculated as205

σ =
1

NV

N∑
i=1

[ Mi∑
j=1

mv′j ⊗ v′j −
Xi∑
x=1

F x ⊗ lx
]
, (6)

where, m is particle mass, v′i instantaneous particle velocity fluctuation, F x the contact force

in a collision, and lx the branch vector connecting the centers of particles in the collision pair.

The first and second terms represent the dynamic and static contributions, respectively. The

stress σ is decomposed into an isotropic part P and a deviatoric part τ written as:

P = −1

3
trσ, τ = σ + PI (7)
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The strain tensor is calculated as210

S =
1

2
∑N

i=1Xi

N∑
i=1

Xi∑
j=1

(
∇vj +∇Tvj

)
(8)

where, ∇vj is a velocity gradient calculated from the velocities and positions of a pair of

particles, in which one of the particles is particle j and the other one is selected from its

neighbor particles. Xi represents the total number of particle pairs obtained in a sampling

from DEM simulations. The selection of a pair of particles for calculating velocity gradient

is different from the interactive particle pairs used for calculating static stress tensor. When215

two particles that are close to each other or at collision, a strong correlated motion is

observed. In order to eliminate the correlation effect on the calculation of the velocity

gradient, two particles in the interval volume that are at least one particle diameter away

from each other in each direction are considered as a valid pair. Letting ci, (i = r, θ, z)

being the coordinates of a particle center, the selection criterion is formulated as dp <220

|c1i − c2i| < 2dp for particle 1 and 2 to be a valid pair.

The consistency of the local averaged quantities is guaranteed by collecting samples over

a characteristic duration ∆t, which is determined in such a way that the local deformation

meets the condition: γ̇∆t > 10dp. Due to the shearing localization, the deformation is

different at various locations in r. Only the regions within which the consistency condition225

is satisfied are analyzed and are identified as reaching ‘steady state’ [16]. A number of 100

samples striding the same time interval is collected in each numerical experiment for deriving

macroscopic flow properties.

3. Flow properties in vane shear cell

The granular flow in the shear cell is characterized by flow properties such as solid230

fraction, velocity, stress and strain fields. Referring to Eq. (7), the equivalent shear stress

is defined as τ = ||τ || =
√

0.5
∑

i

∑
j τijτij and similarly the equivalent shear rate is written

as γ̇ = 2||D|| =
√

2
∑

i

∑
j DijDij, where tensor D is the deviatoric part of strain tensor S.
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Typical flow features of an annular Couette cell is recovered in the DEM simulation of the

vane shear cell. In Fig. 2, the differences between the stress component τrθ and the equivalent235

shear stress are insignificant, which implies that the other deviatoric stress components are

trivial. A similar observation is found in the comparison of the strain component |Drθ| and

the equivalent shear rate. Therefore, the deviatoric stress tensor and the deviatoric strain

tensor is well algined with each other. In the shear zone, the principal motion of particles is

in the azimuthal direction and the motion in both radial and vertical direction is negligible.240

The continuum governing equations of granular flows in the classic annular Couette shear

cell is obtained after ignoring trivial terms:

− ρpφ
v2θ
r

=
∂σrr
∂r

+
σrr − σθθ

r
(9)

τrθ = τr=Ri

(
Ri

r

)2

(10)

where ρp, φ are intrinsic density of particles and solid fraction, separately.

[ Fig. 2 insert here. ]245

Fig. 3 illustrates the variation of the azimuthal velocity vθ with the radius in the shear

cell. The fitted velocity profiles imply that the azimuthal velocity decays following a Gaus-

sian function instead of an exponential function, which is clearly shown in the semi-log

figure. The predicted velocity profiles are very similar to velocity profiles obtained from

DEM simulations of a two-dimensional (2D) annular Couette cell [16] and experimental250

measurements in a 2D annular shear cell apparatus [23]. The similarities in the velocity

profiles suggest that the flow features in the vane shear cell are analogical to those observed

in annular Couette shear cells. Although it is not directly shown from the fitted equation, a

partial slip boundary is indicated at r = Ri with a slippery coefficient varying from 0.62 to

0.706. Realizing that the gradient of the velocity occurs in r direction, the shear rate γ̇ is255

estimated from γ̇(r) = −r ∂
∂r

(vθ(r)/r) by utilizing the fitted equations for azimuthal velocity
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vθ(r), and is compared with the equivalent shear rate extracted by Eq. (8) in Fig. 2. A

satisfactory agreement is observed from the comparison, validating the approach adopted

for obtaining macro-scale flow properties from DEM simulations.

260

[ Fig. 3 insert here. ]

The shear stress is inversely related to r2 according to Eq. (10). This relation is recov-

ered in the fitted equations for the equivalent shear stress as shown in Fig. 2, which again

validates the Couette analogy of the vane shear cell. In Fig. 4, the normal pressure σrr has

little variance in r direction. After letting ∂σrr/∂r = 0, Eq. (9) predicts σθθ = σrr + ρpφv
2
θ ,265

in which the second term accounts for the dynamic pressure contribution. In the shear zone,

comparison of normal stresses in Fig. 4 implies that σθθ > σrr > σzz.

[ Fig. 4 insert here. ]

4. Failure of the µ(I) law in the shear cell270

The isotropic pressure P , the equivalent shear stress τ and the equivalent shear rate γ̇

are gathered from the simulation data and used to calculate the effective friction coefficient

µ and the inertial number I. Fig. 5 shows the relationship between the two variables and

compares the predicted results with both experimental measurements and simulations from

previous research [47, 7, 48, 49]. A good agreement is observed between the predicted rela-275

tion at the inner wall µw(Iw) and the literature results. With these data, the parameters in

Eq. (1) are estimated: µs = tan(20.1o), µg − µs = 0.4438 and Io = 0.55.

[ Fig. 5 insert here. ]

The shear zone in the vane shear cell is demonstrated in Fig. 1 and characterized by280

the velocity profiles in Fig. 3 to be around 8-12 particle size width. In the shear zone
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away from the inner wall, the relationship between the effective friction coefficient and the

inertial number is well predicted by Eq. (1) with the estimated parameters when the inertial

number is above 0.1 approximately. However, the prediction of µ(I) relation deviates from

the DEM results when the inertial number is below 0.1 in the shear zone. Two sub-regions285

are identified similarly to Koval’s study [16]: inertial region with µ > µs and quasi-static

region with µ < µs. Clearly, the µ(I) law is not able to capture the underlying physics

in the transition from the inertial region to the quasi-static region. The observed particle

motions in the quasi-static zone are incurred by the correlated motion of particles, which

are perceived as the nonlocal effects in previous research [16, 17, 50]. It is also confirmed290

that the relation between the effective friction coefficient and the inertial number is not

monotonic in the shear cell. Therefore, the viscosity written as Pµ(I)/γ̇ cannot be correctly

predicted from the µ(I) law.

5. Scaling laws revealed by DEM simulations

Granular temperature T is defined as295

T =
1

3

(
δV 2

r + δV 2
θ + δV 2

z

)
, (11)

where, δVr, δVθ, and δVz represent velocity fluctuations in radial, azimuthal and vertical

directions. In this section, scaling relations involving the granular temperature and solid

fraction such as T − γ̇ and η − T are obtained from DEM simulations.

5.1. T − γ̇ relation

For simple granular shear flows, the modified kinetic theory predicts that T/(γ̇dp)
2 is a300

function of solid fraction [15]. In the vane shear cell which resembles an annular Couette

cell, the relation of T/(γ̇dp)
2 and φc − φ is shown in Fig. 6, where φc represents a critical

solid fraction and is found to be equal to 0.64 in this research. It is derived from DEM data

that T/(γ̇dp)
2 = c(φc − φ)−3.2 when the solid fraction φ > 0.59. The granular temperature
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T and the shear rate γ̇ have the following relation when the solid fraction φ > 0.59:305

T = M(φ, µp, e)(γ̇dp)
2 (12)

where, M(φ, µp, e) is written to account for influences of the friction coefficient µp and the

restitution coefficient e of the granular material, which are currently not quantified. The

power dependence of T/(γ̇dp)
2 on φc−φ is much smaller than the power of -0.5 reported by

Chialvo and Sundaresan [15] in the DEM simulation of simple granular shear flows. When

φ < 0.59, the dependence on φc − φ starts to disappear, suggesting that T ∼ γ̇2 and is in310

consistent with kinetic theory predictions.

5.2. Shear viscosity

The shear viscosity is defined as

η =
τ

γ̇
=
||τ ||

2||D||
. (13)

where, τ and γ̇ are equivalent shear stress and equivalent shear rate, separately. Kinetic

theory analysis of dense granular flow [51] shows that the viscosity has η ∼ ηoP/(ncd
2
pT

1/2)315

with nc being number density at the random close packing configuration. The dimensionless

coefficient ηo diverges when the packing approaches the close random packing and it is taken

into account with the formulation ηo ∼ (1− n/nc)−b ∼ (1− φ/φc)−b. Dimensional analysis

implies η
√
T/(Pdp) ∼ (1− φ/φc)−b.

The scaled viscosity η
√
T/(Pdp) is plotted against the solid fraction variable 1 − φ/φc320

in Fig. 7 and is compared with the relation obtained from the kinetic theory analysis. The

result indicates that the relation satisfactorily predicts the observations from the DEM simu-

lation at dense packing regions, which are not far from random close packing (φ ∼ φc). How-

ever, the DEM data saturates when the solid friction decreases to 0.9φc approximately and

deviates from the kinetic theory analysis of dense granular flow. The region where the data325

saturates implies a transition from the intermediate regime to the collisional regime. In the

collisonal regime, the kinetic theory of rapid granular flows derives η = ρpdpφ
√
T/πf(φ, e),

14



where the function of the solid fraction has various formulations. One formulation reported

by Gidaspow [52] is written as:

f(φ, e) = 1.016
5π

96

(1 + 4/5(1 + e)φg0)(1 + 8/5φg0)

φ2g0
+

4

5
go(1 + e), (14)

where g0 is a radial distribution function. Ma and Ahmadi [53] proposed g0 = 1 + 4φ(1 +330

2.5φ + 4.5904φ2 + 4.515439φ3)/ (1− (φ/φc)
3)

0.67802
. The shear viscosity predicted by this

constitutive law is found to agree well with DEM derived data when the solid friction is

decreased to 0.9φc.

[ Fig. 7 insert here. ]335

Based on the DEM observations and the kinetic theory analysis, it suggests that the

shear viscosity in the intermediate regime follows

η = η1 + η2 =
aPdp√
T

(1− φ/φc)−b + ρpdpφ
√
T/πf(φ, e), (15)

where η1 characterizes the stress-strain relation in the intermediate granular flow regime,

in which particles often undergo long-lasting contacts, and η2 accounts for the collisional

contribution. The second contribute is insignificant in the dense flow regime, whereas the340

first term contribution becomes very small comparing to the second term as the solid fraction

decreases below 0.9φc. The comparison of the newly formulated constitutive law and DEM

is given in Fig. 8. A satisfactory agreement with DEM is achieved by the constitutive law

proposed in this paper.

[ Fig. 8 insert here. ]345

The proposed correlation, formulated as a function of solid fraction and granular tem-

perature, is able to account for the stress-strain relation in a wide range of inertial number

from 0.003 to 0.2 in current research. The lower limit is close to the quasi-static regime, in

which particle interacts with each other in the nature of long-lasting contacts. The viscosity
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diverges in (1−φ/φc)−1.367 when the solid fraction φ approaches the maximum solid fraction350

as the inertial number decreases towards 0. On the other side, the upper limit is at the

edge of the transition from the intermediate regime to the collisional regime and a combi-

nation of particle enduring and collisional interactions coexists. The relative contribution

of the two terms in Eq. (15) reflects the particle-scale interaction transition as the inertial

number increases. A qualitative assessment of the generality of the scaling law in other flow355

configurations was provided in Appendix D.

It is also encouraging to notice that the constitutive law, which is derived from DEM

observations, is very similar to the constitutive expression for the shear viscosity derived in a

theoretical study by Savage [10]: the first term η1 ∼ dpP/
√
T times a coefficient accounting

for the divergence near the random close packing and a second term η2 ∼ ρpdpφ
√
Tf(φ, e).360

The similarities indicate that the theory developed by Savage correctly generates the con-

stitutive law for the shear viscosity in the intermediate flow regime.

6. Kinetic theory for dense granular flows

The general governing equations for granular flows are written as365

∂φ

∂t
+∇ · (φv) = 0 (16)

ρpφ
(∂v
∂t

+ v · ∇v
)

= ∇ · σ + ρpφg (17)

3

2
ρpφ
(∂T
∂t

+ v · ∇T
)

= −∇ · q + σ : ∇v − χ (18)

where : is the contraction operator of two tensors, q is the heat flux, and χ represents the

energy dissipation. Eqs. (9) and (10) are obtained by simplifying Eq. (17) as discussed in

Section 3. The stress tensor σ is related to the strain tensor S as

σ = −PI + 2ηS + (ηb −
2

3
η)(∇ · v)I, (19)
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with η and ηb are the shear viscosity and the bulk viscosity, separately. The heat flux is

often written following Fourier’s law:370

q = −k∇T, (20)

where k is the thermal conductivity of granular kinetic energy.

Applying Eq. (18) to steady granular flows in the annular Couette cell leads to a sim-

plified granular kinetic energy equation written as

τ γ̇ + k∇2T − χ = 0. (21)

So far, we have obtained the shear viscosity as shown in Eq. (15) from DEM simulations.

Since we have verified that Savage’s theoretical development leads to a similar form of the375

shear viscosity as revealed in our DEM simulations, the determinations of the heat flux q

and χ are following Savage’s research [10]. The thermal conductivity is determined from

k

η
=

2
[
1 + 1

4
π(G−2 + 3G−1 + 9/4)

]
1 + 1

8
π(G−2 + 2G−1 + 1)

, (22)

where G = φg0. The thermal conductivity has been found to be well described up to high

solid fraction by the kinetic theory [54]. Therefore, the calibration of k as shown in Eq. (22)

is used in this research.380

The energy dissipation term is written as

χ =
Dβ2

Ad2p
ηT, (23)

where, A, D and β are constants derived in Savage’s theory. A discussion of the energy

dissipation term and the parameters is provided later in this section.

The Savage’s theory is based on the critical state solid mechanics, predicting that the

ratio of the shear stress to the confining pressure is a constant in homogenous simple shear385

flows. To overcome this limitation, the equation of state is introduced to calculate granular
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pressure independently, which is formulated as [55, 15]

P = ρpH(φ, e)T, (24)

where H(φ, e) is a function of solid fraction φ and restitution coefficient e, having the

following formulation

H(φ, e) = φ
[
1 + 2(1 + e)φg0

]
. (25)

Chialvo and Sundaresan [15] proposed a correction of the radial distribution function g0 in390

the dense regime, written as

gCS0 =
1− φ/2
(1− φ3)

+
α1φ

2

(φc − φ)3/2
. (26)

The assessment of the kinetic theory to capture nonlocal effects in dense granular flows

is presented in the following.

6.1. µ(I) law from the kinetic theory

Substituting Eq. (24) into Eq. (15), the shear viscosity is rewritten as395

η = ρpdpJ(φ, e)T 1/2 (27)

with

J(φ, e) = aH(φ, e) (1− φ/φc)−b +
φf(φ, e)√

π
. (28)

The equivalent shear stress τ can be written as

τ = ρpdpγ̇J(φ, e)
√
T . (29)

An effective friction coefficient µKT can be derived from Eq. (29) and (24), which is

µKT =
J(φ, e)

H(φ, e)

dpγ̇√
T
. (30)
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Substituting Eq. (28) into Eq. (30), we obtain

µKT = a(1− φ/φc)−b
γ̇dp√
T

+
φf(φ, e)√
πH(φ, e)

I. (31)

If γ̇dp/
√
T is proportional to (φc−φ)b, the first term will be a constant, Eq. (31) turns into400

a similar form as proposed by da Cruz et al. [8], which is written as

µda Cruz = µs + α2I. (32)

Fig. 6 reveals that γ̇dp/
√
T = c(φc − φ)1.6 with a power a little bit larger than b (fitted

b=1.367). Eq. (31) is rewritten as

µKT = α3(φc − φ)b2 +
φf(φ, e)√
πH(φ, e)

I. (33)

This equation suggests that the effective friction coefficient does not only depend on the

inertial number I but also is a function of φc − φ in the shear cell, in which strong shear405

stress gradients exist.

Predicted µKT from Eq. (33) are compared with DEM simulation results as shown in

Fig. 9. In Eq. (33), the constitutive coefficient H(φ, e) is calculated from a refitted radial

distribution function gCSM0 which is formulated as

gCSM0 =
1− 1/2φ

(1− φ)3
+

α1φ
2

(φc − φ)3
. (34)

Parameter b2 is equal to 0.233, determined from the slopes in Fig. 6 and 7, and α3 is equal410

to 0.68.

[ Fig. 9 insert here. ]

The µ-I relationship at the inner wall of the vane shear cell is correctly predicted by

replacing the first term α3(φc − φ)b2 in Eq. (33) with µs, recalling that the µ-I relationship

at the inner wall follows the µ(I) law, which reads in Eq. (1) . The correct prediction of415

the µ-I relationship in the annular shear cell evidences that the developed model is able to
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recover the nonlocal effects in the µ-I relation. The proposed shear viscosity correlation is

directly derived from DEM results, which already incorporates the nonlocal effects on the

granular temperature profile. To recover µ-I relation in continuum modeling, the granular

temperature profiles need to be correctly predicted in the first place by the granular kinetic420

energy equation.

The new formulation of the effective friction coefficient µKT in Eq. (33) indicates that

the effective friction coefficient prediction in case of µ < µs as I → 0 is able to be recovered

by introducing the compressibility in the form of (φc − φ)b2 . The formulation fixed the

problem in the classic µ(I) laws expressed in Eq. (1) and Eq. (32) that particle motion is425

not possible in the region of µ < µs. Comparing to nonlocal rheology models in Ref. [17, 22],

the derived formulation is much simpler and the prediction performance is still satisfactory.

The formulation seems to work for more complex granular flows such as bin flows in Ref.

[56], in which µ = 0.647(φc − φ)0.1975 is obtained in the region of µ < µs (corresponding to

I < 0.03 in the reference). The obtained relation in the bin when I → 0 complies with the430

proposed µKT formulation in our research. In addition, the fitted parameters are close to

what is reported in Fig. 9. In the region of µ > µs, both terms in Eq. (33) contributes

to the calculation of the effective friction coefficient and Fig. 9 shows that the formulation

satisfactorily predicts the µ-I relation in this region.

6.2. Granular kinetic energy dissipation in the dense regime435

For simple shear flows in steady state, the granular kinetic energy equation is reduced to

τ γ̇ − χ = 0. (35)

With Eqs. (13), (27) and (23), we obtain

T

(γ̇dp)2
=

A

Dβ2
. (36)

To recover the general form of the energy dissipation term, which is formulated in previous
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research [52, 39, 35] and written as

χ =
ρp
dp
K(φ, e)T 3/2 (37)

with440

K(φ, e) =
12√
π
φ2g0(1− e2), (38)

Dβ2/A should be formulated as

A

Dβ2
=

J(θ, e)

K(θ, e)
. (39)

With Eq. (36), DEM simulation of simple dense granular flows suggests [15]

A

Dβ2
= α4(φc − φ)−1/2. (40)

Here we define a correlation length L as

L =
Adp
Dβ2

= α4(φc − φ)−1/2dp. (41)

Then the energy dissipation term in the dense regime can be written as

χ =
ρp
L
J(θ, e)T 3/2. (42)

Calibration of parameter α4 and L can be achieved by combining Eq. (39) and Eq. (40).445

For simplicity, we calibrate the correlation length with DEM simulation results of simple

shear flows [15]

LDEM

dp
=
(φc − 0.45

φc − φ

)1/2
. (43)

To remain the nonelastic collision effects on the energy dissipation rate, χ can be rewritten

as

χ =
ρp

LDEM
J(θ, e)(1− eeff )T 3/2, (44)
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where eeff = e− 3/2µp exp(−3µp) is proposed by Chialvo and Sundaresan [15].450

The dependency of the correlation length on the solid fraction is predicted by Eq. (43)

and compared with Berzi and Jenkins’s model [57], which is shown in Fig. 10. It is observed

that the simplified length correlation model is capable of correctly predicting the correlation

length in dense granular flows.

455

[ Fig. 10 insert here. ]

6.3. Diffusion of granular temperature

The nonlocal effects are often accounted for by introducing a diffusion term (written in

Laplacian form) in constitutive model developments [50]. The diffusion term in the kinetic

theory is written as k∇2T with k = DTη. In the dense regime where φ ∈ [0.49, 0.636],460

calculation of Eq. (22) indicates that parameter DT is equal to 4 with little variation.

Scaling r by the particle size dp and recalling γ̇ = −r ∂
∂r

(vθ(r)/r), Eq. (21) turns into

(
r̃
∂

∂r̃

(
1

r̃
vθ

))2

+
DT

r̃

∂

∂r̃

(
r̃
∂T

∂r̃

)
− 1

L̃
T = 0, (45)

where, r̃ = r/dp and L̃ = LDEM/dp. The equation is numerically solved with a given

Dirichlet boundary at r = Ri and a Neumann boundary ∂T/∂r|r=Ro = 0. We approximated

the Dirichlet boundary using the adjacent layer value Tr=Ri+dp extracted from the DEM465

simulation.

The predicted granular temperature from the kinetic theory is plotted again the DEM

results in Fig. 11. The correlation length adopted in the kinetic model are found to have the

best fit with L̃ = 0.522 (corresponding to β = 0.352 following Savage’s energy dissipation

equation). The correlation length less than the particle size indicates that the interparticle470

friction results in energy loss increase in the dense regime. The fitted correlation length value

qualitatively matches with the T/(γ̇dp)
2 scaling law reported by Chialvo and Sundaresan

[15].

[ Fig. 11 insert here. ]475
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7. Discussions and conclusion

The granular flows in the vane shear cell is numerically investigated by using DEM ap-

proach. The revealed flow properties such as shear stress and velocity profiles are consistent

with 2D simulation results [16] and experimental measurements [23] in classic annular Cou-

ette cells. Moreover, the predicted µ-I relation near the inner wall boundary overlaps with480

previous research results [47, 7, 48, 49], evidencing the validation of the numerical setup

in this research. Major contributions of this research are formulating a constitutive law for

the shear viscosity from DEM simulations and successfully describing the nonlocal effects

observed in µ-I relation and energy dissipation equation with proposed models. The radial

evolution of granular temperature is also successfully predicted with the modified granular485

kinetic energy equation.

The proposed shear viscosity correlation is composed of two contributions: the first term

accounting for stress-strain behaviors resulting from particle long-lasting contacts in dense

flow regime and the second term taking into account particle collisions. It is interesting

to notice that the shear viscosity correlation derived from DEM simulations is very similar490

to the shear viscosity correlation proposed by Savage [10], which was derived based on

assumptions that the granular media is a compressible, frictional, plastic continuum following

an associate flow rule and the shear rate fluctuation is described by a Gaussian distribution.

A new µKT (I) relation is obtained from kinetic theory analysis, which is written as a function

of φc−φ and the inertial number I. The µKT (I) relation qualitatively describes the nonlocal495

effects exhibited in the shear cell.

The correlated particle motion also affects kinetic energy dissipation in dense granular

flows. A simplified correlation length model is developed from DEM simulation results and

its prediction is in consistent with Berzi and Jenkin’s model [36]. The granular temperature

transport in the shear cell is accounted for by a Laplacian diffusion term. The modified500

granular kinetic energy equation is shown to be capable of predicting granular temperature

profiles in the shear cell.

The influences of the material properties such as friction coefficient and restitution co-
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efficient on the flow properties are not fully explored in current research. Their influences

on the shear viscosity is expected to be accounted for by calibrating the model parameters505

a and b in future works.
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[48] E. Azéma, F. Radjai, Internal structure of inertial granular flows, Physical Review Letters 112 (7)

(2014) 078001.

[49] R. C. Hurley, J. E. Andrade, Friction in inertial granular flows: competition between dilation and

grain-scale dissipation rates, Granular Matter 17 (3) (2015) 287–295.

[50] M. Bouzid, A. Izzet, M. Trulsson, E. Clément, P. Claudin, B. Andreotti, Non-local rheology in dense610

granular flows, The European Physical Journal E 38 (11) (2015) 125.

[51] W. Losert, L. Bocquet, T. Lubensky, J. P. Gollub, Particle dynamics in sheared granular matter,

27



Physical Review Letters 85 (7) (2000) 1428.

[52] D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic

press, 1994.615

[53] D. Ma, G. Ahmadi, An equation of state for dense rigid sphere gases, The Journal of Chemical Physics

84 (6) (1986) 3449–3450.

[54] L. Bocquet, W. Losert, D. Schalk, T. Lubensky, J. Gollub, Granular shear flow dynamics and forces:

Experiment and continuum theory, Physical review E 65 (1) (2001) 011307.
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Figure 1: Geometry of the simulated system.
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Figure 2: Dominance of τrθ and Drθ components in the calculation of the equivalent shear stress τ and the

equivalent shear rate γ̇. Filled symbols are equivalent shear stress and strain, whereas the open symbols

(black) represent τrθ and Drθ components of τ and D tensors. Three lines in (a) are fitted with formula

τ/Pm = A/r2 with A equal to 0.4524R2
i , 0.4928R2

i and 0.5232R2
i from bottom to top. The lines in (b)

are derived from fitted velocity equations. Pm = 0.6ρgHm is the hydrostatic pressure at sampling depth

Hm = 25dp.
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a)

b)

Figure 3: Velocity profiles in the shear cell at depth of Hm = 25dp. The fitting of the dash line:

vθ/Vθ = 8.407 exp(−7.406r̃ − 21.02r̃2) with r̃ = (r − Ri)/Ro − Ri. The fitting of the solid line:

vθ/Vθ = 9.1614 exp(−9.054r̃ − 38.6r̃2).
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Figure 4: Profiles of normal stresses at depth of Hm = 25dp. Pm = 0.6ρgHm is the hydrostatic pressure.
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Figure 5: Relation between the effective friction coefficient and the inertial number. Flow configurations in

the literature are: Savage and Syed (1984): Experimental measurements in an annular shear cell [47]; MiDi

(2004): Experimental measurements on an inclined plane [7]; Azema et al. (2014) and Hurley et al. (2015):

3D simulation of granular flows between two sheared planes [48, 49]. µw and Iw are measured at the inner

boundary. Fitted parameters in Eq. (1) are: µs = tan(20.1o), µg − µs = 0.4438, and Io = 0.55.
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Figure 6: Relation of nondimensional granular temperature and solid fraction. Data is gathered at three

depth levels: H = 20dp (Blue symbols), H = 25dp (Red symbols) and H = 30dp (Green symbols). Line:

T/(γ̇dp)
2 = 1× 10−4(φc − φ)−3.2.
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Figure 7: Scaling of dimensionless viscosity vs solid fraction variable (1− φ/φc). Data is gathered at three

depth levels: H = 20dp (Blue symbols), H = 25dp (Red symbols) and H = 30dp (Green symbols). φC

is the critical solid fraction with the value of 0.64 (close random packing) in this research. The solid line:

η
√
T/(Pd) = a(1− φ/φc)−b with the estimated parameters a = 0.0085 and b = 1.367.
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Figure 8: Viscosity from the constitutive law (solid lines) vs viscosity from DEM (symbols). Comparison is

plotted at depth (a) H = 20dp, (b) H = 25dp and (c) H = 30dp.
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Figure 9: Comparison of predicted effective friction coefficient profiles with DEM simulation results. Markers

represent µ − I relations revealed in DEM simulations of vane shear cell. Dash lines illustrate predictions

from the proposed µKT equation (Eq. 33 in the text) with α3 = 0.68 and b2 = 0.233. The solid line is

predicted with µKT = µs + φf(φ,e)√
πH(φ,e)
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Figure 10: Comparison of correlation length predictions by current model and Berzi and Jenkins (2018).
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Figure 11: Granular temperature profiles in the shear cell. The inset plots the same granular temperature

profiles in semi-log scale. Symbols are extracted at depth H = 25dp from the DEM simulation and the solid

lines are predicted with the kinetic theory of dense granular flows. Parameters in the kinetic theory model:

DT = 4 and L̃ = 0.522.
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Appendix

A. Dilation of granular bed630

The solid volume fraction is an essential variable for describing dense granular flows.

The bed height is a good indicator of the bulk solid fraction. The variation of the granular

bed height with the dimensionless shear velocity in the annular cell is shown in Fig. A.1.

The bed rise is not significant when the dimensionless shear velocity is less than 0.04, above

which the dilation of the bed starts to become noticeable, resembling the fluidization process635

in a fluidized bed. In this research, since the flow characteristics in the intermediate regime

is considered, we limited the dimensionless shear velocity up to Vθ = 0.04.

V =0.0005

V =0.04

V =0.05

V =0.03

Figure A.1: Dilation of the granular bed in the vane shear cell.
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B. Determination of particle bed rigidity

A stiffness number characterizing the compressibility of granular material is defined fol-

lowing Singh et al. [12], which is written as640

κ =

√
Pdp
kn

, (B.1)

where, kn is normal stiffness parameter in the contact model and P is confining pressure.

For Hertz-Mindlin contact model, the dimensionless stiffness number is derived as

κ = C (Pm/Y )1/3 , (B.2)

where, Pm is a characteristic pressure calculated from Pm = 0.6ρpgHm in the modeled shear

cell, C is a constant. The derivation of constant C is carried out by assuming that a pair of

identical particles undergo a constant pressure Pm acting on the cross section at the equator.645

The overlap δ between the two particles can be solved with the following two equations:

Fn = PmπR
2, (B.3)

Fn =
4

3
× Y

2(1− ν2)
×
√
R

2
δ3/2, (B.4)

where R is the radius of sphere particles. By defining kn = 4
3
× Y

2(1−ν2)

√
δ , kn is solved as

kn =

√
2

3

1

(1− ν2)2/3
×
[2
√

2

3
π
]1/3

(PmY
2)1/3R. (B.5)

Substituting kn into Eq. (B.1), we could obtain Eq. (B.2) , in which C is determined by

material Poisson coefficient. For the glass material, the constant is estimated to be 1.69.

The results at two dimensionless stiffness numbers κ = 0.044 and κ = 0.02, which cor-650

respond to Young’s modulus of 2 × 107 and 2 × 108 separately, are compared in Fig. B.1.

The result differences are negligible in terms of equivalent shear stress and strain, which

indicates that the adoption of 2× 107 for Young’s modulus is reasonable, considering both

result accuracy and computational cost.

655
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Figure B.1: Effects of the stiffness number on the equivalent shear stress and shear rate. Two lines in (a)

are fitted with formula τ/Pm = A/r2 with A equal to 0.4524R2
i for the solid line and 0.5232R2

i for the dash

line. The lines in (b) are derived from fitted velocity formulas. Pm = 0.6ρgHm is the hydrostatic pressure

at sampling depth Hm = 25dp.

C. Spatial size interval for sampling

We used a classical averaging approach as used in many studies to derive kinematic

properties from DEM simulation of granular flows [8, 16, 12, 46]. The determination of

the averaging spatial size needs to ensure that the extracted kinematic property fields are

smooth, which is called the local homogeneity assumption in Ref. [46]. Weinhart et al.660

[58] looked into the averaging length scale influences on the macroscopic fields and they

concluded that the length scale w ≈ dp leads to smooth macroscopic fields. The influence of
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the spatial interval on the solid fraction and velocity profiles in the shear cell is investigated

and the comparison of the results obtained at two spatial size is shown in Fig. C.1. While

the results of solid fraction and velocity remains relatively the same between ∆ = 1.2dp and665

∆ = 2.0dp, the solid fraction seems to fluctuate a little bit more at ∆ = 1.2dp at low shear

velocity. For smoothness, ∆ = 2.0dp is adopted in this research.

The adopted spatial interval size of 2dp is also equal to the averaging spatial sizes reported

in previous research [16, 12, 46]. Moreover, the selection of the sampling interval was

validated by the relation matching of derived variables. For example, in the annular Couette670

cell, the equivalent shear rate is related to the azimuthal velocity as γ̇ = −r ∂
∂r

(vθ(r)/r). It is

clearly observed in Fig. 2 (b) that the profiles of the equivalent shear rate obtained from Eq.

(8) match with the shear rate calculated from the azimuthal velocity correlations derived

from DEM data. Therefore, we conclude that the time-volume averaging method with the

spatial interval size of 2dp complies with the local homogeneity assumption.675

D. Generality of the η
√
T/(Pdp) ∼ (1− φ/φc) scaling relation

Fig. D.1 shows a comparison of the obtained results from DEM simulations of the vane

shear cell (markers and the dash line) and three flow configurations (the red solid line)

including planar shear, planar shear with gravity and chute flows reported in Ref. [25].

The red solid line presents the well fitted model in Ref. [25] from the DEM simulations680

of dense granular flows in the three flow configurations mentioned above, realizing that

η
√
T/(Pdp) =

√
T/(gdp) with g being the fluidity parameter. A similar relation trend is

observed between the scaled viscosity η
√
T/(Pdp) and 1− φ/φC as the relation reported in

our vane shear cell. The differences in the slope when φ → φc is believed to result from

the influences of the friction coefficient µDEM and restitution coefficient e parameters. The685

result indicates that Eq. (15) serves as a good correlation for the shear viscosity for dense

granular flows and the influences of the material mechanical properties such as the friction

coefficient and restitution coefficient needs to be taken into account by the parameters a

and b in Eq. (15) in future work.
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Figure C.1: Effects of the spatial sampling interval on the solid fraction and azimuthal velocity. Fitted lines in

(a): φ = 0.647x0.02739 with x = (r−Ri)/(Ro−Ri) for the solid line, φ = 0.6427x0.033 for the dash line. Fitted

lines in (b): vθ/V θ = exp(2.215− 9.054x− 38.6x2) for the solid line, vθ/V θ = exp(2.179− 7.58x− 22.93x2)

for the dash line.
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Figure D.1: Comparison of η
√
T/(Pdp) V.S. (1 − φ/φc) scaling relation in various configurations. The

markers present the obtained results in the vane shear cell at various rotational speeds and the dash line

shows the fitted relation in our study. The solid red line shows the model reported in Ref. [25], which

is fitted from DEM simulations of granular flows in three configurations: planar shear, planar shear with

gravity and chute flows. φc is determined to be 0.63 in Ref. [25].
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