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ABSTRACT

Coilable structures are thin-shell structures that can be coiled around a hub by
flattening their cross-section. They are attractive for multiple space applications as
they allow efficient packaging and deployment of large planar structures. Reducing
the shell thickness enables smaller coiling radius and more efficient packaging.

This thesis investigates TRAC structures, a type of coilable structure, made of ultra-
thin composite materials. A design using a laminate made of glass fiber plainweave
fabric and carbon fiber unidirectional tape is proposed, leading to a shell thickness of
80 µm. An in-autoclave, two-cure manufacturing process is presented, and a shape
measurement method is used to mitigate post-cure shape changes due to residual
stresses.

A study of the structure behavior in its deployed configuration is performed. First,
the behavior when subjected to pure bending is investigated experimentally for
structures with a length of 575 mm. Two regimes are observed, with a pre-buckling
phase transitioning to a stable post-buckling phase after an initial buckling event.
The ultimate buckling moment following the stable post-buckling regime can be as
high as four times the initial buckling moment. A finite element model is developed
and is able to reproduce all the features observed experimentally, except the ultimate
buckling. This simulation model is used to study the effect of varying the structure
length from 300 mm to 5000 mm on the initial buckling moment. Results show that
nonlinearities in the pre-buckling deformations of the flanges under compression
lead to a constant wavelength lateral-torsional buckling mode for which the critical
moment is mostly constant across the range of length. The torsional behavior of
the TRAC structure is also investigated. Good agreement is obtained between
experiments and numerical simulations, and initial twist in the structure is shown
to have little effect on the overall behavior due to the small torsional stiffness in the
undeformed configuration.

An analytical method to predict the buckling load of a TRAC structure under pure
bending is presented. It is achieved by considering only one flange of the structure
and solving the problem of a cylindrical shell panel with a longitudinal free edge
under non-uniform axial compression. Partially uncoupled stability equations for a
balanced laminate are derived and are used in conjunction with the Rayleigh-Ritz
method to approximate the buckling load. This method overestimates the buckling
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load by 44% in the case of a 500 mmTRAC structuremadewith ultra-thin composite
materials.

A study of the coiling behavior is also presented. High localized curvature in the
transition region between the coiled and deployed regions is observed in experiments,
leading to material failure for a structure made only of carbon fiber unidirectional
tape. A numerical framework is developed and reproduces the localized curvature
observed in experiments, predicting stress concentration at this location. The study
shows that changing the laminate to a a single ply of carbon fiber unidirectional tape
sandwiched between plies of glass fiber plainweave fabrics reduces significantly the
maximum stress in the transition region, to the extent that the highest stress is now
in the fully coiled region and can be accurately predicted using simple equations
based on the change of curvatures due to the coiling process.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Deployable structures have been used extensively inmany spacecraft architectures as
they allow efficient packaging of large systems that could not otherwise comply with
tight volume requirements of current launch vehicles. One type of such structures is
a coilable structure, for which the cross-section can be elastically flattened such that
the structure can be rolled around a hub for packaging. These thin-shell structures
can often be passively deployed using the stored strain energy, making themattractive
for some applications.

One of the main uses of coilable structures is to deploy and support large aperture
systems such as antennas (Leipold, Runge, and Sickinger, 2005), photovoltaic sur-
faces (Campbell et al., 2006), and solar sails (Banik and Ardelean, 2010; Leipold
et al., 2003). For such systems, the coilable structures are used as booms that
support a large membrane-like structure encompassing the desired functionalities,
improving packaging efficiency.

Coilable booms have been used inmultiple spacecraft designs. Figure 1.1a shows the
spacecraft NanoSail-D, a NASA solar sail mission that was launched in November
2010 and deployed in January 2011 (Johnson et al., 2011; Whorton et al., 2008).
The four triangular sections of the sail, made of a 2 µm thick polymer film coated
with aluminum on one side, were deployed using four coilable booms along the
diagonals. Figure 1.1b shows the Roll-Out Solar Array, a demonstration mission of
a deployable solar array (Chamberlain, Kiefer, and Banik, 2018; Hoang et al., 2016;
Spence et al., 2018). It was deployed from the International Space Station in June
2017 using two longitudinal coilable booms.

Multiple concepts for coilable booms have been developed. One simple example is
a regular tape spring, but other designs offer better mechanical performance such
as the Collapsible Tube Mast (CTM) (Aguirre-Martinez et al., 1986; Herbeck et al.,
2001), the SHEARLESS boom (Fernandez, 2017, 2018), and the Storable Tubular
ExtendibleMember (STEM) (Rimrott, 1965). Figure 1.2 compares the cross-section
of various coilable booms.
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(a) NanoSail-D (Credit photo: NASA/MSFC/D-
Higginbotham, 2012).

(b) Roll-Out Solar Array (NASA,
2019).

Figure 1.1: Example of spacecraft missions using coilable booms.

Figure 1.2: Comparison of the CTM, SHEARLESS and TRAC cross-sections
(Credit: NASA, Fernandez, 2017).

A recent concept for coilable booms is the Triangular Rollable And Collapsible
(TRAC) boom (Murphey and Banik, 2011). It was developed by the Air Force
Research Laboratory and was shown to exhibit high bending stiffness-to-packaged
height ratio when compared to the CTM and the STEM booms (Roybal, Banik,
and Murphey, 2007). The TRAC cross-section consists of two circular arcs (tape
springs) attached along one edge, forming two curved flanges and a flat web, as
shown in Figure 1.3. This type of boom has already flown on three different
solar sails demonstrations: NASA’s NanoSail-D (Johnson et al., 2011; Whorton
et al., 2008), and the Planetary Society’s LightSail-1 (Biddy and Svitek, 2012) and
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Figure 1.3: TRAC boom partially coiled around a cylindrical hub with the web and
flange regions marked (modified from Murphey and Banik, (2011)).

LightSail-2 (Betts et al., 2017). In all three cases, the boomsweremade from ametal
alloy. More recently, research has shown that metallic TRAC booms are sensitive
to thermal gradients, causing large tip deflections when one flange is facing the
sun in space, while the other flange remains in the shadow (Stohlman and Loper,
2016). Therefore, TRAC booms made of high-strain composites have been studied
extensively in recent years.

While the TRAC cross-section was used exclusively in boom architectures in the
past, other applications can benefit from the features of this cross-section while
using it as different types of structural elements. The more general term TRAC
structure will therefore be used to include all possible applications of structural
elements using the TRAC cross-section.

A recent system-level study for a space solar power satellite architecture has shown
the need for long coilable structural elements (longerons) with the TRAC cross-
section (up to 60 m) with small required bending stiffness (around 6 N m2) (Arya,
Lee, and Pellegrino, 2016). In such architecture, the longerons are mainly loaded
in bending. Furthermore, this study showed that the packaging efficiency of such
structure increases significantly by reducing the thickness of the flanges of the
TRAC structural elements. Ultra-thin coilable structures are also attractive for
small satellites, as they can be coiled around small hubs, reducing the volume
requirements.

A key feature of a TRAC structure is its thin-walled open cross-section, leading to a
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complex, nonlinear behavior both in the deployed configuration and during coiling
(Murphey, Turse, and Adams, 2017). Inner flange buckling is observed during
coiling, leading to high localized strains and potentially material failure (Cox and
Medina, 2018, 2019; Murphey, Turse, and Adams, 2017). Buckling when subjected
to pure bending is localized and can lead to a stable post-buckling regime (Banik
and Murphey, 2010). Reducing the thickness amplifies these challenges.

1.2 Research Goals, Methodology and Outline
The overall objectives of the research presented in this thesis are to implement and
enable the use of ultra-thin ply composites in coilable structures, studying the specific
case of the TRAC cross-section. These can be divided in 4 goals. 1) Develop a
manufacturing process to fabricate coilable structures using the thinnest composites
available. 2) Study the behavior in the deployed configuration when subjected to
typical loading conditions such as pure bending and torsion. 3) Predict the buckling
load under pure bending. 4) Understand and reduce stress concentrations observed
during the coiling process.

One challenge of studying structures made of ultra-thin composites is that the mate-
rial properties and structural performance are closely related to the manufacturing
processes of both the structure itself and the thin-ply composite materials. The
desire to push the limit of current technologies, aiming to use the thinnest material
available, drives the methodology used in the current research.

As it will become evident throughout the thesis, many types of local effects are
observed during experiments, and are very sensitive to both the actual shape of the
prototypes and the material properties. Therefore, the first part of this thesis focuses
on the manufacturing process for the coilable structures, the characterization of
the as-built prototypes, and the determination of their material properties. Then,
in subsequent chapters, both the deployed and coiling behavior are first studied
experimentally to better understand the particularities due to the use of ultra-thin
materials, and then studied using numerical simulations to analyze thoroughly the
behavior.

This thesis is organized as follows. Chapter 2 details the design of the coilable
structure prototypes, based on stiffness requirements. Thin-ply composite materials
are introduced and their mechanical properties are measured. The TRAC structure
manufacturing process is presented, and the method to characterize the post-cure
shape of the prototypes is introduced.
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The behavior of the coilable structure in its deployed configuration is studied in
Chapter 3. Using both experimental and numerical methods, buckling when sub-
jected to pure bending is analyzed. It is observed that an initial buckling event
is followed by a stable post-buckling regime before reaching ultimate buckling.
The effect of varying the structure length from 300 mm to 5000 mm on the initial
buckling load is also investigated. Finally, the torsional behavior is also studied.

An analytical model to predict the initial buckling load of coilable structures is
presented in Chapter 4. The buckling of a TRAC structure under pure bending
is analyzed by considering a curved panel simply supported on three sides and
free along one longitudinal edge, loaded with non-uniform axial compression. The
Rayleigh-Ritz method is used with the second variation of the total potential energy
to estimate the buckling load. A structure made from isotropic materials is first
studied, and then the model is extended to a structure made from orthotropic ma-
terials. A comparison of the predicted buckling load from this model is also made
with results from numerical simulations.

The behavior of the coilable structure during coiling is investigated in Chapter 5.
Preliminary coiling experiments of ultra-thin composite coilable structures made
from the first laminate that was considered are first performed, showing material
failure in the inner flange. A numerical simulation framework is developed to better
understand the stress distribution in the transition region between the fully deployed
and fully coiled regions. To reduce the high localized curvature observed from
numerical results, a new laminate is proposed, for which no stress concentrations
are observed in the transition region.

Finally, Chapter 6 concludes this thesis by summarizing the main results and the
principal contributions. Areas of future research are also presented.
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C h a p t e r 2

TEST PROTOTYPES DESIGN,
MANUFACTURING AND
CHARACTERIZATION

This chapter describes the design process that led to the prototypes that were studied
throughout this research. An overview of thin-ply composites is first presented,
highlighting how they differ from typical composites and what are their advantages.
Second, a TRAC cross-section is chosen based on stiffness requirements derived
from a system-level study for a space solar power satellite architecture while utilizing
the thinnest composite materials available. Third, the mechanical properties of the
materials used in the design are characterized, both at the ply level and at the laminate
level. Then, themanufacturing process for theTRACstructures is presented. Finally,
a method to measure the shape of TRAC structure post-cure is introduced.

Parts of section 2.5 were modified from the following publication:

Leclerc, Christophe and Pellegrino, Sergio (2017). “Ultra-Thin Composite Deploy-
ableBooms”. In: IASSAnnual Symposium“Interfaces: Architecture. Engineering.
Science”. Hamburg, Germany.

2.1 Thin-Ply Composite
Thin-ply composites, usually defined as having a ply thickness of less than 100 µm,
have been made available in recent years due to advancements in manufacturing
technologies such as the tow-spreading process (Sihn et al., 2007). The advantages of
using thin-plymaterials have been studied bymany authors, demonstrating improved
mechanical properties when compared to traditional, thick-ply composite materials
(Amacher et al., 2014; Sihn et al., 2007). In particular, it was observed that some
failure modes such as delamination and transverse cracking are mostly suppressed in
thin-ply laminated composites, delaying the onset of damage, increasing the ultimate
strength and significantly reducing the performance loss after fatigue loading cycles.
Furthermore, thin-ply composites expand the design space of laminates by increasing
the number of plies, allowing more flexibility in tailoring the mechanical properties
through ply orientation, while keeping the overall laminate thickness low.
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Two types of thin-ply composites are of interest in the current research: unidirec-
tional carbon fiber tape and glass fiber plainweave. The thinnest available carbon
fiber tape is currently manufactured by North Thin Ply Technology using a tow-
spreading process. The fiber areal density of this material can be as low as 17 g m−2,
corresponding to a thickness of about 18 µm. For the glass fiber plainweave, JPS
Composites manufactures a wide range of fabrics, with fiber areal density as low as
11 g m−2.

For coilable structures with the TRAC cross-section, thin-ply composites are very
attractive as they can significantly reduce the flange thickness, therefore decreasing
themaximum strains in thematerial during flattening of the cross-section and coiling
around the hub. This in turn helps improve the packaging efficiency and reduce the
minimum coiling radius.

2.2 Design of Prototypes
Multiple iterations of ultra-thin composite TRAC structure were studied during the
present research. These iterations were driven by improvement in manufacturing
techniques, availability of new materials and better understanding of the mechanics
of TRAC structure. Only the two most important design iterations are presented
in this section. The first prototypes were designed initially to comply with the
requirements detailed in Section 2.2.1 while using the thinnest material available.
This design process is presented here in detail. Then, a study of the coiling behavior,
detailed in Chapter 5, showed that the initial design led to high stress concentrations
during coiling. An improved laminate mitigating this issue was developed, and is
detailed at the end of this section.

2.2.1 Design Requirements
Initial research on ultra-thin composites TRAC structure was achieved in the context
of the Space Solar Power Project, an ongoing effort at the California Institute of
Technology to develop key technologies enabling space-based solar power collection
and distribution. The initial structural concept was developed by Arya, Lee, and
Pellegrino, (2016). It consists of strips of various lengths that are stiff in bending due
to the use of two continuous longerons with TRAC cross-section along the edges of
each strip, as shown in Figure 2.1. This study found that a strip bending stiffness of
11 N m2 was optimal in term of specific power. It corresponds to TRAC structures
with a bending stiffness of 5.5 N m2, roughly one order of magnitude less than the
TRAC booms previously studied by other researchers (Banik and Murphey, 2010;



8

Roybal, Banik, and Murphey, 2007). This demonstrates the need for new designs
of ultra-thin composite TRAC structures.

IV. Structural Architecture

This section discusses the overall structural architecture for a single spacecraft and describes the structural
members that hold the tiles. A simple numerical model is used to arrive at preliminary structural parameters
for the various spacecraft structural components.

Figure 4: A short segment of a single strip. The longeron has a cross-section similar to a TRAC boom. For
clarity, some of the tiles have been omitted.

The tiles are arranged together in strips. All strips have the same width, but may have different lengths.
Figure 4 shows a segment of a strip. Two longerons run the entire length of the strip and support its edges.
In Figure 4, battens connect the tiles to the longerons.

Figure 5: Spacecraft structural architecture.

The strips are arranged in concentric squares, as shown in Figure 5. They are connected at either end
to diagonal cords. At one end, the diagonal cords are attached to a central hub, and at the other end, the
diagonal cords are connected to tips of deployable booms (e.g. the Northrop Grumman AstroMast16 or the
ATK coilable booms17). The booms, clamped to the hub at the center, are located along the diagonals
of the squares. These booms provide the motive action during deployment. Each strip is connected to
its neighboring strips using ligaments, which allow for the transmission of tension between strips. These
ligaments implement the slipping folds crucial to the packaging scheme described in Section V.

6 of 18

American Institute of Aeronautics and Astronautics

Figure 2.1: Strip architecture for the Space Solar Power Project. It consists of
two TRAC longerons connected by battens supporting multiple tiles, which are the
functional elements. The TRAC longerons are aligned such that the web is within
the plane of the strip, allowing it to be coiled around a hub. (Credit: Arya, Lee, and
Pellegrino, 2016)

Therefore, the two driving requirements for the design of prototype structures are:
1) a bending stiffness of about 5.5 N m2 when loaded with one flange in compression
and one flange in tension, and 2) the smallest possible flange thickness to improve
packaging efficiency.

2.2.2 Bending Stiffness of TRAC Structures
To design a TRAC structure complying with these requirements, analytical estimates
of the bending stiffness were derived. While only the bending stiffness around the
Y axis, defined in Figure 2.2, was of particular interest for the strip architecture,
estimates for the bending stiffness around both axes are derived. Figure 2.2 shows
the TRAC cross-section. The main parameters are the web width w and the flange
radius r , opening angle θ f , and thickness t. A bond line thickness tb is included
so the total web thickness is 2t + tb. The Y axis is parallel to the web, while the X

axis is perpendicular. The origin of the coordinate system is at the base of the web,
where the flanges are attached. Z is in the longitudinal direction. The location of
the centroid of the cross-section is marked as (Xc,Yc). For the nominal geometry,
the cross-section is symmetric about the Y axis and therefore Xc = 0.
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w

t

r

𝜃𝑓

Y

X

*

(Xc, Yc)

2t+tb

Figure 2.2: TRAC cross-section, defined by: web width w, flange radius r , opening
angle θ f and thickness t, and bonding line thickness tb. The centroid, shown as a
star, is located at (XC,YC).

The main assumptions used to estimate the bending stiffness are:

1. The structure is made of two halves bonded together along the web and they
are assumed to be uniform and equal thickness shells.

2. When loaded with pure bending, the longitudinal axis of the structure deforms
to a circular arc with constant curvature radius ρ.

3. The cross-section does not deform.

The first step is to find the location of the centroid. Due to symmetry, Xc = 0, andYc

of the cross-section is the same as Yc for one of the halves, as it has the same value
for each half. The web (1) and flange (2) regions can be considered separately. For
the web, Yc1 = w/2. For the flange, Figure 2.3 shows the location of the centroid
in a rotated coordinate system, where the X′ axis is the bisector of θ f . X′c can be
found by solving ∫ θ f /2

−θ f /2

(
X′ − X′c

)
rdθ = 0 −→ X′c =

r sin
(
θ f /2

)
θ f /2

(2.1)

Then, the centroid of the TRAC section is computed as

Yc =
l1Yc1 + l2Yc2

l1 + l2
=

w2/2 − 2r2 sin2 (
θ f /2

)
w + rθ f

(2.2)

where l1 and l2 are the arclengths of the web and flange regions, respectively, and
Yc1 and Yc2 are their respective centroids. They are expressed as

l1 = w l2 = rθ f Yc1 =
w

2
Yc2 = − sin

(
θ f /2

)
X′c (2.3)
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r

𝜃𝑓/2
X’*

Xc’

Figure 2.3: Centroid location of one flange in a rotated coordinate system where the
X′ axis is the bisector of θ f .

For the bending stiffness around the Y axis,

MY =

∫
s

XNZ ds (2.4)

where NZ is the axial stress resultant in the shell, and the integral is along the
arclength of both halves of the section. Using the classical lamination theory (CLT),
described in more detail in Section 2.3, the constitutive relation is

NZ =

(
A11 −

A2
12

A22

)
εZ with εZ =

X
ρ

(2.5)

Substituting these equations in equation 2.4, the result is

MY =
1
ρ

(
A11 −

A2
12

A22

) ∫
s

X2ds =
(EI)Y
ρ

(2.6)

where (EI)Y represents the bending stiffness around the Y axis. While this cal-
culation does not directly include the second moment of area, this notation for the
bending stiffness is preferred as it is often used in literature. Furthermore, an approx-
imation of IY can be obtained by simply multiplying the integral

∫
s X2ds in equation

2.6 by the flange thickness t. Finally, solving the integral along the arclength, one
can obtain

(EI)Y = 2

(
A11 −

A2
12

A22

)
(
wt̄2 +

r2

2
sin θ f

(
r cos θ f − 4 (r + t̄)

)
+

3rθ f

2

(
r2 +

4
3

rt̄ +
2
3

t̄2
)) (2.7)

where t̄ = (t + tb)/2. A similar derivation for (EI)X yields

MX =
1
ρ

(
A11 −

A2
12

A22

) ∫
s
(Y − YC)2 ds =

(EI)X
ρ

(2.8)
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(EI)X =
(
A11 −

A2
12

A22

) (
2w

(
w2

3
+ Y2

C − wYC

))
+ r

(
A11 −

A2
12

A22

) (
r2θ f + 2Y2

C θ f − 4YCr cos θ f + 4Ycr − r2 cos θ f sin θ f

)
(2.9)

2.2.3 Cross-Section Design
These equations for the bending stiffness can be used to design a TRAC structure
following the requirements derived in Section 2.2.1. The first step is to select the
thinnest laminate possible. Using materials from North Thin Ply Technology, the
first laminate that was studied uses the stacking sequence [0/90]S, where each layer
is a 18 µm thick unidirectional carbon fiber tape with an epoxy resin, as described
in Section 2.3. Using the corresponding material properties yields(

A11 −
A2

12
A22

)
= 4.8 × 106 N m−1 (2.10)

To simplify the design, the flange opening angle was set at 90°, the web width at
8 mm, and it was assumed that tb = 0. Solving equation 2.7 for the flange radius, the
result is r = 11.7 mm. To simplify manufacturing, the radius was increased to the
standard dimension 12.7 mm (0.5 inch). Table 2.1 summarizes the first prototype
design.

Table 2.1: Cross-section geometry and bending stiffness estimates for the first TRAC
prototype with a [0/90]S carbon fiber/epoxy laminate.

r [mm] θ f [°] w [mm] (EI)X [N m2] (EI)Y [N m2]
12.7 90 8 11.2 7.1

While this initial design was obtained using the [0/90]S laminate, later work on
coiling (presented in detail in Chapter 5) showed that a different laminate, a hybrid
of glass fiber plainweave fabric and unidirectional plies of carbon fiber, performed
better during coiling. This type of laminate, also referred as FlexLam, was initially
proposed by Pollard and Murphey, (2006). A second prototype was therefore
designed using this type of laminate. To achieve the desired bending stiffness, the
new laminate selected is [±45GFPW/0CF/±45GFPW ], where GFPW denotes a ply
made with the glass fiber fabric, and CF denotes a unidirectional carbon fiber ply.
To achieve similar bending stiffnesses with the same cross-section, the single ply of
carbon fiber is thicker, around 30 µm.
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2.3 Material Characterization
To predict the performance of the manufactured TRAC structures, accurate values of
thematerial properties are required. In this section, only the [±45GFPW/0CF/±45GFPW ]
laminate will be studied. The glass fiber plainweave prepreg is composed of a JPS
E-glass fabric (style 1067, 31 g m−2) and Patz PMT-F4 epoxy resin. The unidirec-
tional carbon fiber prepreg tape is manufactured by North Thin Ply Technology from
Torayca T800 carbon fibers and the epoxy resin system is ThinPreg 120 EPHTg-402.

For the glass fiber plain weave, the mechanical properties were measured on 4-
ply flat laminates. E1 and ν12 were measured by performing tension tests on three
samples. As the glass fabric has the same fiber count in the warp and weft directions,
it was assumed that E1 = E2, where the 1 and 2 directions are aligned with the fibers.
Figure 2.4 shows a sketch of the experimental setup.

w

d1

L

LGrip

d2
Reflective tapes

F

F

Sample grip

Sample grip

Figure 2.4: Tension test setup.

The tensile force F was measured with a 50 kN Instron load cell, while the axial
and transverse strains were measured using two laser extensometers (LE-01 and
LE-05 from Electronics Instrument Research). Reflective tape strips for these
measurements were attached on the samples. Sandpaper pieces were bonded on
the sample at both ends to increase friction and prevent slippage.

The sample dimensionswerew = 40 mm, t = 100 µm, L =165 mm and LGrip = 38 mm.
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The axial stress and the axial and transverse strains were obtained from

σ1 =
F
wt

ε1 =
d1 − d0

1

d0
1

ε2 =
d2 − d0

2

d0
2

(2.11)

where d0
1 and d0

2 are the initial values of d1 and d2, respectively. The stiffness and
the Poisson’s ratio were then obtained from

E1 =
σ1

ε1
ν12 =

−ε2

ε1
(2.12)

The shearmodulus,G12, wasmeasured by performing a 3-rail shear test, as described
in ASTM D4255 (ASTM, 2015). Figure 2.5 shows a sketch of the test setup. A
rectangular sample is clamped at both ends by rails that are fixed, while a third rail
is attached in the middle of the sample. A vertical force is applied to the middle
rail, creating two shear regions, one on each side.

F

d

w

b

Composite Sample

F/2F/2

Figure 2.5: Three-rails shear test setup.

Three 151 x 138 mm samples were tested, with dimensions based on the fixture used
(WyomingTest Fixtures CU-3R-6). The distance between the rails was b = 25.4 mm.
The vertical force F was measured with a 50 kN Instron load cell, and the shear
displacement d was measured with a laser extensometer. The corresponding shear
force for each region was F/2. The shear stress, shear strain and shear modulus
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were obtained from

τ12 =
F/2
wt

γ12 = arctan
(

d
b

)
G12 =

τ12

γ12
(2.13)

The properties for the unidirectional carbon fiber prepregs were previouslymeasured
by Ning and Pellegrino, (2017). Table 2.2 summarizes the elastic properties of both
materials.

Table 2.2: Elastic properties of carbon fiber and glass fiber plain weave prepregs.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 t [µm]
CF 128 6.5 7.6 0.35 30

GFPW 23.8 23.8 3.3 0.17 25

To predict the elastic behavior of the laminates, the classical lamination theory
(CLT) described in Daniel and Ishai, (2005) was used,

[
N

M

]
=

[
A B

B D

] [
ε0

κ

]
(2.14)

where N and M are the forces and moments per unit length, ε0 and κ are the
mid-plane strains and curvatures, A is the in-plane stiffness matrix, B is the in-
plane/bending coupling matrix, and D is the bending stiffness matrix. The stiffness
matrices are obtained from

A =
n∑

k=1
Q̄k (zk − zk−1) (2.15)

B =
1
2

n∑
k=1

Q̄k

(
z2

k − z2
k−1

)
(2.16)

D =
1
3

n∑
k=1

Q̄k

(
z3

k − z3
k−1

)
(2.17)

Q̄k = T
−1


E1

1−ν12ν21

ν12E2
1−ν12ν21

0
ν12E2

1−ν12ν21

E2
1−ν12ν21

0
0 0 G12


(
T−1

)T
(2.18)
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whereT is a rotation matrix that accounts for ply orientation, and zk and zk−1 are the
distances between the mid-plane of the laminate and the upper and lower surfaces
of the k-th ply, respectively, as shown in Figure 2.6. For symmetric laminates, such
as these used in this study, B = 0. Using the properties from Table 2.2, both the A

and D matrices were evaluated for the flange laminate.

z

z=0

zkzk-1

t
Mid-plane

kth ply

Figure 2.6: Definition of the ply coordinate system in a laminate.

To validate these stiffness matrices, tension and bending experiments were per-
formed on flat samples of the laminate in both the longitudinal and transverse
directions. As the web laminate is composed of twice the flange laminate plus a
bonding ply, only the mechanical properties of the flange laminate were validated
using this method.

The tension test was similar to the test performed on the glass fiber plainweave,
shown in Figure 2.4. The sample dimensions were w = 25 mm, t = 80 µm and
L = 245 mm. Three samples were tested for each direction (x and y, where x is
aligned with the 0° direction). From equation 2.14:

ε0 = aN (2.19)

where a is the inverse of A. The components a11 and a22 of the a matrix can be
obtained experimentally from

Nx =
F
w

εx = a11Nx (2.20)

Ny =
F
w

εy = a22Ny (2.21)
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The A matrix can then be obtained by computing the inverse of the a matrix.

A four-point bending test was also performed. Figure 2.7 shows the bending setup.
Three samples were tested for each direction. The distance between the outer
supports was 35.6 mm, and the width of the samples was w = 20 mm.

d

b

b/2

F/2F/2

F
Composite Sample

δ

d0

Figure 2.7: Four-point bending test setup.

From CLT, the constitutive equations are

Mx = D11κx My = D22κy (2.22)

The moment stress resultants (moment per unit width) were obtained from

Mx = My =
Fb
8w

(2.23)

The deflection at the center of the sample δ can be related to the curvature by
considering a clamped beam of length b/4 under a bending moment Fb/8. Then,
for the longitudinal bending

δ =
Mx(b/4)2

2D11
=
κx(b/4)2

2
−→ κx =

32δ
b2 (2.24)

where

δ = d − d0 (2.25)

with d0 representing the initial value of d. Similar equations are obtained for a
laminate loaded in the transverse direction y.

From the results of these experiments, it was observed that the CLT overestimate
a11 by 13% and underestimates a22 by 15%. Therefore, these two elements of the
a matrix were corrected accordingly and the A matrix was computed. It was also
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observed that the CLT underestimates D11 and D22 by 8% and 6% respectively.
Hence, the complete D matrix obtained from CLT was scaled up to correct the
average error of 7%, as suggested in Sakovsky and Pellegrino, (2019). In summary,
the flange laminate stiffness matrices are:

A =


5432 619 0
619 942 0
0 0 737

 N/mm (2.26)

D =


1.076 0.482 0
0.482 0.781 0

0 0 0.459

 Nmm (2.27)

For the web laminate, CLTwas used to estimate the A andDmatrices. Scaling of the
a matrix was done in the same way as described for the flange laminate, decreasing
a11 by 13% and increasing a22 by 15%. The D matrix was left unchanged. The
corresponding stiffness matrices for the web are therefore:

Aweb =


11369 1512 0
1512 2269 0

0 0 1727

 N/mm (2.28)

Dweb =


28.20 4.32 0
4.32 7.44 0

0 0 4.93

 Nmm (2.29)

2.4 Coilable Structure Prototype Fabrication
Manufacturing was done in an autoclave using a two-cure process, where the flanges
were first cured separately, then bonded together during a second cure cycle. The
main steps are illustrated in Figure 2.8. First, the laminate is draped over two
U-shape aluminum molds (Fig. 2.8a) to form the two flanges. Both parts are
vacuum bagged together and autoclave cured. Then, a single ply of glass fiber
plain weave, oriented at ±45° to the axis of the molds, is used to bond together the
two flanges (Fig. 2.8b). This creates a 7-ply web region with stacking sequence
[±45GFPW/0CF/±453,GFPW/0CF/±45GFPW ]. The two molds are clamped together
using a series of bolts in order to apply adequate consolidation pressure on the web
region (Fig. 2.8c). As all the bolts are situated below the laminate, shims are added
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Figure 2.8: TRAC structure manufacturing process. Configuration for first cure,
with two U-shape shells shown in green (a), addition of bonding ply, shown in blue
(b), configuration for second cure (c), cured part (d), and final structure (e).

at the base of the mold to ensure the pressure is evenly distributed over the web
region. A second autoclave cure is then performed to cure the bonding ply. Finally,
the part is removed from the molds (Fig. 2.8d) and the excess material is cut to
obtain the final part (Fig. 2.8e).

The mold geometry and final cutting step were designed to yield the nominal
geometric parameters for the TRAC structure: r = 12.7 mm, θ f = 90° and w =

8 mm. However, due to cure-related residual stresses, the actual shape of the
resulting prototypes differs significantly. Section 2.5 describes how an accurate
measurement of the shape is obtained. For the current study, shape variations are
not a concern, but one could use a post-cure cycle to partially release residual
stresses. Samples with length up to 1.6 m were manufactured using this method.

2.5 TRAC Structure Characterization
Asmentioned in Section 2.4, the shape of the TRAC structures changes after removal
from the mold. Accurate measurements of the actual shape of each sample were
done using a Faro Arm (Edge 14000) with a 3D laser scanner attachment (ScanArm
HD).

For this measurement, the samples are supported at each end to remove any global
twist. A point cloud was generated using the CAM2Measure 10 software. AMatlab
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script was created to extract, from the point cloud thus obtained, the cross-section
geometry (flange radius and opening angle) at multiple (10) locations along the
length of a TRAC structure. The data processing is done in four steps:

1. The data points are split into two regions, one for each flange (including
the web region). Because the 3D scanner measures the surface, the web
region is represented by two similar surfaces offset by the web thickness,
thus allowing the whole structure to be represented by two surfaces having a
constant thickness.

2. For each flange, the best fit circle is computed, and the flange radius r and
opening angle θ f are extracted.

3. A known function is fitted to each flange. To ensure the functions are well-
defined, each flange is rotated 45° (−45° for the left flange, 45° for the right
flange). The full cross-section is then discretized in small length segments
(∼ 20000) and the flanges are rotated back to their initial orientation.

4. The centroid location, the second moments of area, the orientation of the
principal axes and the twist and camber along the length of the sample are
computed using numerical integration. The camber is defined as the distance
between the centroid of the cross-section at each location and a straight line
connecting the centroids at each end.

For the third step, a 6th order Fourier series, defined as:

y = a0 +

6∑
n=1

(
an cos

(
2πnx

P

)
+ bn sin

(
2πnx

P

))
(2.30)

was found to accurately reproduce the shape of each flange. In this equation, P is
defined as (max(x) −min(x)).

Figure 2.9 shows an example result, obtained for the sample 1 in Chapter 3. Figure
2.9a shows the experimental data for all ten profiles along the length of a 600 mm
long sample, superimposed on a single plot. Figure 2.9b shows a single profile,
located at Z = 460 mm. The circle fits for both flanges are plotted on top of the
experimental data, and the linear fit for the web is also shown. Figure 2.9c shows
the Fourier series superimposed over the experimental data, and Figure 2.9d shows
only the Fourier series fit, with the centroid marked as a red cross. In Figure 2.9d,
the section has been translated such that the centroid is located at (0,0).
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Figure 2.9: Example of the data obtained from the shape post-processing (sample
1 from Chapter 3). (a) Ten cross-sections along the full length of the structure,
superimposed. (b) Cross-section at Z = 460 mm, with experimental data (red and
blue), flange circle fits (yellow and purple), and linear fit for the web (green). The
horizontal line marks the start of the web. (c) Cross-section at Z = 460 mm,
with experimental data (red and blue) and Fourier series fit (yellow and purple).
(d) Analytical function and centroid location (red cross) of the cross-section at
Z = 460 mm.

The camber and twist along the length of the structure are shown in Figure 2.10.
The twist is computed as the rotation of the web region. For this specific sample,
the maximum camber is −0.8 mm, while the maximum twist is −10°.
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Figure 2.10: Example of camber (in blue) and twist (in red) along the length of a
TRAC structure (sample 1 from Chapter 3).
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C h a p t e r 3

NONLINEAR BEHAVIOR IN THE
DEPLOYED CONFIGURATION

3.1 Introduction
The behavior of ultra-thin TRAC structures in their deployed configuration is investi-
gated in this chapter. During operation, the loads applied on these coilable structures
and their boundary conditions depend on the structural architecture. While in most
cases the loading conditions will be a combination of multiple type of loads, the
present research focuses independently on two typical loading conditions: pure
bending and torsion.

In previous research on the bending behavior of TRAC booms, localized buckling
was observed to be the main structural failure mode for a deployed boom loaded
under pure moment (Murphey, Turse, and Adams, 2017). Banik and Murphey,
(2010) showed that nonlinear finite element analysis can accurately predict the
behavior under bending for booms that are relatively thick (t ≈ 1 mm). Bessa and
Pellegrino, (2017) studied numerically the behavior of ultra-thin (t < 100 µm) TRAC
booms under pure bending and showed how to optimize the cross-section to reduce
the effect of shape imperfections on the ultimate buckling load. In both of these
previous studies, rather short booms were considered (0.6 m and 0.5 m respectively).
Murphey, Turse, and Adams, (2017) also studied the torsional behavior of TRAC
booms, showing that the response is highly nonlinear and depends on the boundary
conditions.

The current chapter contains three sections following this introduction. First, the
bending behavior is studied both experimentally and numerically. The effect of
varying the length up to 5 m is also investigated. Then, the torsional behavior is
studied, again through a combination of both experiments and numerical simula-
tions. Finally, a conclusion summarizes and discusses the main findings.

3.2 TRAC Structure Behavior under Pure Bending
Buckling of thin-shell structures is sensitive to both material properties and geomet-
rical imperfections. Therefore, buckling of TRAC structures under pure bending
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was first studied experimentally. Then, a simulation model was developed to pre-
dict the bending behavior, and validated by comparing with experimental results.
Finally, the numerical model was used to predict the buckling moment of structures
with lengths varying from 0.3 to 5 m.

3.2.1 Experiments
Experimental Setup

The experimental test setup used for the bending experiments is shown in Figure
3.1. The samples were potted at each end with epoxy in acrylic plates with laser-cut
thin slits following the cross-section of each specific test sample. This ensured that
the cross-section of the thin-shell was not distorted near the ends prior to testing,
and aligned the centroid of the cross-section with the rotation axis of the testing
machine.

The rotation at each end was independently controlled by a worm drive. A calibrated
camera (8MP camera of an iPhone 6, calibrated with theMatlab Camera Calibrator)
installed above the setup tracked four targets installed on two rigid rods, to magnify
the rotation at each end. The rotations were measured from images using a Matlab
script. The sample was mounted on hollow shafts instrumented with strain gauges
to measure the moment at both ends using a Vishay P3 strain amplifier. The
longitudinal translation of one end was not constrained, allowing the sample to
shorten due to large bending deformations.

Figure 3.1: Bending experimental setup. The sliding end is mounted on a rail to
allow longitudinal translation.

To performa bending test, the end rotationswere increased in small steps, keeping the
moments equal in order to ensure a puremoment loading. Once the ultimate buckling
has been reached, the measured moments dropped significantly, and were usually
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different at the two ends, meaning that the sample had buckled asymmetrically and
was not loaded under pure bending anymore.

Each sample was tested in bending around both axes, X andY . In the case of bending
around X , the TRAC cross-section is not symmetric. Positive moments cause the
web to be in compression, while negativemoments cause it to be in tension. Bending
around Y is nominally symmetric.

Experimental results

Three different samples were tested. They were cut such that their free length
between the end plates was 575 mm. The measurement procedure described in
Section 2.5 was used to extract the geometry of each sample. Table 3.1 summarizes
the dimensions of each sample.

Table 3.1: Average measured cross-section geometry for each experimental sample.

r [mm] θ f [°] w [mm] YC [mm]
Sample 1 (V4-3A-1) 11.8 91.3 8 -4.1
Sample 2 (V4-3A-2) 11.9 88.5 8 -4.2
Sample 3 (V4-4A-2) 11.5 95.7 8 -4.1

The three samples behaved consistently. Therefore, only the results for the first
sample are presented herein. Bending tests were performed three times in each of
the four directions (±X , ±Y ) up to ultimate buckling. In all cases, two regimes were
observed. The first regime is a linear pre-buckling phase until the first buckling
event. This first buckling load is also referred as the critical moment. The second
regime, following the initial buckling event, is a stable post-buckling phase until the
ultimate buckling occurred. A loading-unloading test was also performed for each
axis of bending, without reaching ultimate buckling.

The experimental results are shown in Figures 3.2 and 3.3. These plots show the
measured moment as a function of the total rotation angle. The experiment was
repeated three times, and overall, the behavior under pure bending is repeatable.
Not only the responses are mostly indistinguishable, with an average variation of the
angle for a given moment of 0.04°, but more importantly the same buckling events
(as described in the next paragraphs) were observed at the same loads and locations.

For X bending, the overall deviation in the ultimate buckling moment was 5%.
Furthermore, the behavior was consistent between loading and unloading. Devi-
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ation between loading and unloading was only observed when a negative moment
was applied, close to the ultimate buckling. For Y bending, the deviation in ul-
timate buckling loads was 10%. In the case of a negative moment, tests 2 and 3
captured some unstable behavior at rotations larger than 3°, while test 1 directly
underwent ultimate buckling. Very little difference was observed between loading
and unloading.
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Figure 3.2: Experimental moment rotation results for sample 1 under X bending.

Figure 3.4 shows photos of the buckling modes observed in the experiments on a
sample subjected to bending around the X axis. When the structure is loaded by a
positivemoment, the web is under compression. Beyond the critical moment (about
0.1 Nm), the web starts to buckle globally in a wave pattern, with a wavelength of 1/4
of the total length. This reduces the effective stiffness of the structure and a softening
of about 45% can be observed in the moment-angle plot. Subsequently increasing
the moment increases the amplitude of the web waviness, until the deformation
localizes (always at the same location, 90 mm from the fixed end) and ultimate
buckling occurs. The maximum moment for this load case is 0.43 N m. Overall,
two regimes were observed: pre-buckling, followed by a first buckling event, and
stable post-buckling, followed by ultimate buckling.

The behavior of the structure loaded by a negative X moment has the same two
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Figure 3.3: Experimental moment rotation results for sample 1 under Y bending.

regimes, but is different otherwise as in this case the flanges are under compression.
At a critical moment of about −0.21 N m, a small localized buckle appears on one
flange, quickly followed by another on the other flange. These buckles lead to a
softening of about 40%, as shown in Figure 3.4. At a load of −0.4 N m, the buckle
on one flange moves longitudinally 20 mm toward the closest end of the structure.
However, this displacement occurs at a different load (about −0.35 N m) during
unloading, explaining the difference between loading and unloading observed in
Figure 3.2. Ultimate buckling occurs when a torsional instability forces one buckle
to flatten transversally and form a kink at the junction of the flange with the web.
The maximum moment for this load case is −0.5 N m.

Figure 3.5 shows the buckling modes observed in the experiments when the TRAC
structure is loaded by a moment around the Y axis. As the behavior is nominally
symmetric, only the behavior under positive moments will be discussed. Since the
inner flange is under compression, the buckling modes are similar to the −X case.
First, there is a mostly linear pre-buckling regime. Then, at critical moment of about
0.1 N m, a small localized buckle appears in the compression flange, which reduces
the effective stiffness of the structure by about 60%. In the stable post-buckling
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Figure 3.4: Buckling modes for X bending under positive and negative moments.

regime, the buckle slowly increases in amplitude until the flange flattens and forms a
kink at the root of the web. Ultimate buckling occurs at a load of 0.23 N m, 180 mm
from the sliding end of the sample. Comparing Figures 3.4 and 3.5, the ultimate
buckling mode for moments around Y appears identical to the ultimate buckling
mode for negative moments around X .

In summary, initial buckling of ultra-thin TRAC structures under pure bending
loading occurs when small localized buckles appear, reducing the effective bending
stiffness. This is followed by a stable post-buckling regime, where the structure is
able to withstand moments as high as four times the initial buckling moments. In
both of these regimes there is almost no difference between loading and unloading
behavior.

3.2.2 Finite Element Simulations
A finite element model, shown in Figure 3.6, was built in Abaqus/Standard 2018
to predict and better understand the behavior of ultra-thin TRAC structures when
subjected to pure bending. The structure is modeled using 4-node shell elements
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Figure 3.5: Buckling modes for Y bending under positive moments.

with reduced integration (S4R). A uniform mesh is used with element size of 2 mm,
corresponding to 20 elements across each flange and 4 elements across the web.
The material properties are defined in the form of a general stiffness matrix based
on the properties given in Section 2.3.

End 2: Loaded

End 1: Clamped

MY

MX

Degrees of Freedom at End 2

TX TY TZ RX RY RZ

X Bending Free 0 Free Free 0 0

Y Bending 0 Free Free 0 Free 0

Y

Z X

Figure 3.6: Finite element model for TRAC structure bending, with boundary
conditions (T = translation, R = rotation) and applied moments.

At both ends of the structure, all the nodes forming the cross-section are coupled to a
reference point using a kinematic coupling, effectively creating a rigid cross-section,
matching the experimental setup. All six degrees of freedom of the reference point
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at end 1 are restricted, making it effectively clamped. At the other end, a pure
moment load is applied at the reference point. In the case of a moment around the
X axis, the translational degrees of freedom along Y and Z as well as the rotational
degree of freedom around X are kept free, while the other three degrees of freedom
are fixed. In the case of moments around the Y axis, the same boundary conditions
are used, only inverting X and Y .

While these boundary conditions do notmatch kinematically the experimental setup,
in both cases the resulting loading condition on the structure is a pure moment,
making them statically equivalent. Furthermore, a comparison was made between
the model described above and a different model that matches exactly the boundary
conditions of the experiments, and it was observed that they both predict the same
buckling load. For this reason, the simpler model, where the applied moment and
the resulting rotation are extracted at a single point, was preferred.

The analysis procedure consists of 4 steps and is similar to the procedure presented
in Bessa and Pellegrino, (2017):

1. A preliminary buckling prediction (eigenvalue) is performed starting from the
undeformed configuration (linear buckling prediction).

2. An implicit, nonlinear static analysis is then performed, starting from the
undeformed configuration until buckling occurs, at which point convergence
is not attained. This buckling load can be lower or higher than the previous,
linear prediction. The goal of this step is to compute the deformed geometry
just before buckling.

3. A new linear buckling prediction is performed in the deformed configuration,
using the results from the previous step. An iterative process is used to
find the last increment at which the buckling prediction could be obtained,
as the nonlinear analysis can sometimes converge for a few increments in
the post-buckling regime. Combining the applied load to reach this deformed
configuration and the newpredicted buckling load gives the nonlinear buckling
prediction.

4. Simulation of the post-buckling regime is performed using an arc-length
method (modified Riks method (Crisfield, 1981)), where a geometric imper-
fection based on the first buckling mode found in step 3 is introduced in the
initial geometry. For this study, an amplitude of 20% of the flange thickness
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(16 µm) was sufficient to trigger the post-buckling regime without changing
the pre-buckling behavior.

Similarly to the experiments, three loading conditions were studied numerically.
Figure 3.7 shows, for a structure with the nominal cross-section and a length of
500 mm, the different buckling modes obtained for the linear and nonlinear buckling
predictions, as well as the post-buckling shape, for each loading condition. The
following can be observed. First, when a positive moment around X is applied (web
under compression), both the linear (fig. 3.7a) and nonlinear (fig. 3.7b) buckling
involve a global wave pattern in the web and are in close agreement. In the post-
buckling regime (fig. 3.7c), a localization of the deformation is observed.

Second, when a negative moment around X is applied (flanges under compression),
linear buckling (fig. 3.7d) predicts a global wave pattern on both flanges. The
nonlinear analysis (fig. 3.7e) predicts localized buckling close to both ends, and the
post-buckling shape (fig. 3.7f) displays two kinks on each flange, also close to both
ends.

Finally, in the case of a moment applied around Y , the linear prediction (fig. 3.7g)
is a global wave pattern on the flange loaded in compression. For the nonlinear
buckling (fig. 3.7h), the deformation is localized in the middle of the structure. In
the post-buckling regime (fig. 3.7i), a kink forms in the middle.

3.2.3 Comparison with Experiments
To validate the numerical model presented in the previous section, simulations of
the samples tested experimentally were done. The cross-section in the model was
adjusted to match each sample using the measured dimensions in Table 3.1. For
all three samples, a similar agreement between experiments and their respective
simulation was observed, so only results for sample TRAC V4-3A-1 are presented
in this paper.

Figures 3.8 and 3.9 show moment-angle plots comparing experimental results and
simulations for bending around X andY , respectively. In both cases, the pre-buckling
stiffness is well predicted by the simulations. For negative moment around X (web
in tension), the simulations did not converge in the post-buckling regime. However,
the initial buckling load from the simulation (−0.25 N m) matches relatively well
with the first appearance of small localized buckles in the experiments (−0.21 N m).
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+X moment (web in compression)

-X moment (web in tension)
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Figure 3.7: Buckling modes from finite element simulations. +X moment: linear
buckling (a), nonlinear buckling (b), post-buckling (c). −X moment: linear buckling
(d), nonlinear buckling (e), post-buckling (f). Y moment: linear buckling (g),
nonlinear buckling (h), post-buckling (i).

In the case of a positive bending moment around X (web is compression), the stable
post-buckling regime is well captured in the simulation. The softening observed
in the experiments, due to the web undergoing global buckling, is also seen in the
numerical results. Furthermore, the ultimate buckling from the simulation (0.5 N m)
is fairly close to the experimental value (0.43 N m). The main difference between
these two results is that, while the simulation shows a clear transition from the pre-
buckling regime to the post-buckling regime, this transition is more gradual in the
experiments. This can be seen in Figure 3.8, where the numerical results display a
localized change of slope, while the experimental results show a smooth transition.

In the case of a bending moment around theY axis, the simulation predicts well both
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Figure 3.8: Comparison of simulation and experiment for sample 1 under X bending.

the pre-buckling and stable post-buckling stiffnesses. A key aspect of the numerical
results is a sudden drop in both moment and rotation following the initial buckling,
before transitioning to a stable post-buckling regime. This unstable region is not seen
in the experiments, but the buckling load from the simulation (0.1 N m) matches very
well with the observed appearance of a small localized buckle during the experiment
(0.11 N m). Due to multiple bifurcations encountered during the simulation of the
post-buckling behavior, the current numerical results do not predict the ultimate
buckling load as convergence is challenging to obtain at each of these bifurcations.
The end of the simulation curve marks the point where convergence was no longer
obtained. A different numerical technique, such as the generalized path-following,
would be necessary to fully capture the complete post-buckling regime (Eriksson,
1998; Groh, Avitabile, and Pirrera, 2018).

3.2.4 Effect of Length on Buckling Load
Due to the wide range of applications of TRAC structures, the same cross-section
could be used for a large range of lengths. Therefore, an understanding of how the
initial buckling load of these structures varies with their length is important. Hence,
the simulation framework presented in Section 3.2.2 can be used to investigate this
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Figure 3.9: Comparison of simulation and experiment for sample 1 underY bending.

behavior.

For this study, the buckling loads of structures with the nominal cross-section in
Table 3.1 and lengths varying from 0.3 m to 5 mwas obtained numerically. Both the
linear (step 1 in Section 3.2.2) and the nonlinear predictions (step 3) were obtained.
Figure 3.10 shows the buckling moment as a function of the structure length for
each loading condition.

The first loading case is a negative moment applied around the X axis, compressing
both flanges. The plot of the buckling moment (both linear and nonlinear) as a
function of length is shown in Figure 3.10a. For the linear prediction, two regimes
are observed. For a length smaller than 700 mm, the buckling mode is a global wave
pattern on both flanges (Figure 3.11a.1), with a uniform wavelength of about 52
mm. For this length range, the buckling load is constant with length. Increasing the
length beyond 700 mm leads to a different, lateral-torsional buckling mode (Figure
3.11a.2). In this case, the buckling load decreases with length. Lateral-torsional
buckling is often observed in thin-walled open cross-section beams (Bazant and
Cedolin, 2010). The nonlinear results show three regimes. First, for lengths up to
1000 mm, the buckling mode is localized close to both ends (Figure 3.11b.1). At
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Figure 3.10: Critical moment as a function of structure length, both linear and
nonlinear predictions, for −X bending (a), +X bending (b), and Y bending (c).
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Figure 3.11: Buckling modes from simulation for −X bending. Linear buckling,
lengths of 500 mm (a.1) and 1250 mm (a.2). Nonlinear buckling, lengths of 500
mm (b.1), 2000 mm (b.2) and 5000 mm (b.3).

the opposite end of the spectrum, for a length of 5000 mm, buckling occurs with a
lateral-torsional mode, but with a shorter wavelength (Figure 3.11b.3) than in the
linear prediction. Finally, for lengths between 1000 mm and 5000 mm, the buckling
mode is a combination of the two mentioned previously, as seen in Figure 3.11b.2.
In this regime, the buckling moment is mostly constant, decreasing only by 3%
when the length is increased from 1000 mm to 4000 mm.

The second loading case is when a positive moment is applied around the X axis,
compressing the web. The plot of the buckling load as a function of length is
shown in Figure 3.10b. For this loading condition, the linear and nonlinear buckling
predictions practically coincide for the full range of lengths. Two regimes are
observed. First, for lengths varying from 300 mm to 2000 mm, the buckling load
is constant. The buckling mode (Figure 3.12a) is a global wave pattern with a
wavelength of about 77 mm (13 half-wavelengths for a 500 mm structure), and this
wavelength remains constant when the length is increased. The second regime,
for lengths above 2000 mm, is once again a lateral-torsional mode (Figure 3.12b).
However, in contrastwithwhatwas observed for a negative X moment, both the linear
and nonlinear results predict a single wave, with the buckling moment decreasing
with length.

The last loading case is a moment applied around theY axis. The plot of the buckling



36

a) b)

Figure 3.12: Bucklingmodes from simulation for+X bending. Linear and nonlinear
buckling, lengths of 500 mm (a) and 3000 mm (b).

load as a function of length is shown in Figure 3.10c. Similarly to the other two
cases, the linear prediction consists of two regimes. The critical moment is constant
for lengths ranging from 300 mm to 800 mm, where the buckling mode is a wave
pattern in the inner flange (Figure 3.13a.1), with a uniform wavelength, constant
with load, of 45 mm. Lateral-torsional buckling is observed for lengths above 800
mm (Figure 3.13a.2), and the critical moment decreases with length. The nonlinear
buckling response is also similar to what was observed for the negative moment
around X , with three regimes. First, for lengths varying from 300 mm to 1000 mm,
the buckling mode is localized in the middle of the flange (Figure 3.13b.1) and the
buckling load is relatively constant. For lengths above 2000 mm, the buckling mode
is once again lateral-torsional with shorter wavelength (3 full waves at a length of
3000 mm, Figure 3.13b.2). In the range 1000-2000 mm, both modes are competing.
The result is that the nonlinear simulation predicts a mostly constant critical moment
over the full range of lengths, with the load decreasing by only 10% when the length
increases from 1000 mm to 5000 mm.

While the linear buckling simulation (and also the nonlinear simulation in the
case of a positive X moment) predicts a typical buckling behavior for a thin-shell
structure, with first a region of constant load followed by a region where the load
decreases with length, the nonlinear results for ultra-thin TRAC structures are more
interesting. The main feature is that for both negative X moments and Y moments,
the critical buckling load is almost constant with length. This phenomenon can
be explained by nonlinear deformations during the pre-buckling phase. Bending
aroundY will be used as an example. As shown in Figure 3.9, the first buckling event
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Figure 3.13: Buckling modes from simulation for Y bending. Linear buckling,
lengths of 500 mm (a.1) and 1000 mm (a.2). Nonlinear buckling, lengths of 500
mm (b.1) and 3000 mm (b.2).

follows a seemingly linear phase. However, while the global structural behavior is
linear in this region, nonlinear deformations occur locally in the structure. Figure
3.14 illustrates the deformation (magnified by a factor of 4) of a 3000 mm long
TRAC structure loaded around Y . The critical moment for this case is 117 N mm.
At a load of 23 N mm, the inner flange has deflected down along the full length.
This deformation pattern remains mostly unchanged for larger loads. For example,
when a load of 90 N mm is reached, there is some torsional deformation, where
the inner flange moves down close to the ends, but not in the middle. Finally,
when the load approaches the buckling load, the torsional deformation decreases
in wavelength, as shown in Figure 3.14 for an applied moment of 115 N mm. This
nonlinear torsional deformation prior to buckling constrains the buckling mode to
a higher order lateral-torsional mode, leading to a mostly constant critical moment,
regardless of the length.

3.3 TRAC Structure Behavior under Torsion
Due to its thin-shell open cross-section, the TRAC structure has a very low torsional
stiffness and can undergo large torsional deformation. Therefore, it is important to
characterize the response of a structure when it is subjected to a torque, as could be
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M = 23 N mm M = 90 N mm M = 115 N mm

Figure 3.14: Nonlinear deformation in the pre-buckling regime during Y bending
of a 3000 mm long structure. The color contour represents the displacement in the
Y axis, where blue is negative (down) and red is positive (up). Displacements have
been amplified by a factor of 4.

the case for example when loaded with an eccentric transverse force. In this section,
the torsional behavior is first studied experimentally and numerically. Then, the
results are compared and discussed.

3.3.1 Experimental Setup
An experimental setup to study the torsional behavior of thin-shell structures is
shown in Figure 3.15. The rotation was driven using a gearbox with a 60:1 reduction
ratio (Ondrive P30-60) and the twist angle wasmeasured using a turns-counting dial,
resulting in a resolution of 0.06°. At the other end, the structure was rigidly attached
to a 6-axis load cell (ATI Nano 17 force/torque sensor). All force and moments
components were measured during the installation of the sample to prevent any
initial loads. Shims were added as needed to ensure all forces and moments were
zero prior to the start of the experiment. The end of the structure attached to the
load cell was mounted on a longitudinal low friction guide rail to allow the structure
to shorten axially during the tests.

The same samples used for bending stiffness were studied with this setup, as the
acrylic plates for each sample were designed such that the centroid location YC of
the cross-section at each end was aligned with the rotation axis of the experimental
setup. Only one sample, Sample 1 from Table 3.1, was tested to investigate the
torsional behavior.
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Figure 3.15: Torsion experimental setup.

3.3.2 Finite Element Simulations
A finite element model, shown in Figure 3.16, was built in Abaqus/Standard 2018
to predict the torsional behavior of TRAC structures. The structure is modeled
using 4-node shell elements with reduced integration (S4R). A uniform mesh is
used with element size of 2 mm, corresponding to 20 elements across each flange
and 4 elements across the web. The material properties are defined in the form of a
general stiffness matrix based on the properties given in Section 2.3.

End 2: Loaded

End 1: Clamped

MZ

Degrees of Freedom at End 2

TX TY TZ RX RY RZ

0 0 Free 0 0 Free

Y

Z X

Figure 3.16: Finite element model for TRAC structure torsion, with boundary
conditions (T = translation, R = rotation) and applied moments.

One end of the structure (end 1) is fully clamped along the full cross-section to
reproduce the clamped boundary condition from the experiment. At the other end
(end 2), all the nodes forming the cross-section are coupled to a reference point
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using a kinematic coupling, effectively creating a rigid cross-section. This reference
point is located at the centroid position defined by YC . A torque MZ is applied
at end 2. The boundary conditions at end 2 mirror the experimental setup, where
only the axial displacement and rotation (TZ and RZ ) are free. The simulation is
performed using a nonlinear static step with an arc-length method (Riks). A rotation
around the Z axis is imposed on the reference point at end 2, while the reaction
torque is extracted. The geometry of the structure is adjusted to match the measured
geometry.

3.3.3 Results
The torque-twist plots from both the experiment and the numerical simulation, over
a range of twist angle from −120° to 120° (equivalent to a twist varying from
−3.64 rad m−1 to 3.64 rad m−1), are shown in Figure 3.17a. The structure is able
to undergo larger deformation, but the experiment was restricted to this range in
order to prevent any damage. Figure 3.17b shows the torsional tangent stiffness,
computed by numerical differentiation using a central difference algorithm, for both
the experiment and the simulation.

These figures show that there is very good agreement between experiment and
simulation. The maximum error is 2.15 N mm at a twist of −3.64 rad m−1, which
corresponds to an error of 9%. For a positive twist, the error at 3.64 rad m−1 is only
0.2 N mm, less than 1% error. The root mean square of the error over the full range
is 0.7 N mm.

These figures also show that the relation between the torque and the twist is non-
linear, due to warping as the ends are clamped. From Figure 3.17b, it can be seen
that the torsional stiffness is a quadratic function of the twist.

Due to the manufacturing process, TRAC structure samples usually exhibit some
residual twist post cure. This can be observed in Figure 3.17b, where the minimum
torsional stiffness from experiment is located at a twist of 0.27 rad m−1, correspond-
ing to a twist angle of 9°. Correcting for that initial twist could decrease the error
observed. This initial twist in the sample also explains why the behavior is not
symmetric around a twist of 0.

Finally, the numerical simulations overestimates the initial torsional stiffness when
compared with experiments. The minimum torsional stiffness from the simulations
is 0.217 N m2, more than twice theminimum torsional stiffness from the experiments
(0.085 N m2).
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(a) Torque as a function of the twist.
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(b) Torsional stiffness as a function of the twist.

Figure 3.17: Comparison of experiment with simulation for TRAC structures under
torsion.
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Overall, the numerical model developed to study the torsion of ultra-thin TRAC
structures was able to accurately predict the behavior observed in experiments, with
the maximum error less than 10%.

3.4 Discussion
An investigation of the nonlinear deployed behavior of composite TRAC structures
was presented in this chapter. Bending of the structures was investigated exper-
imentally, by applying a pure moment around both axes of the cross-section. In
both cases, a linear pre-buckling regime was observed, followed by further buckling
events transitioning to a stable post-buckling regime. Ultimate buckling occurred
at loads up to four times higher than the initial observed buckling. For loading
cases where the flanges are in compression (−X and Y bending), the first event
corresponds to the formation of a localized buckle, which decreases the structural
bending stiffness. Ultimate buckling occurs when one flange partially flattens at the
location where the first buckle had formed, forming a kink at the intersection of the
flange with the web. For −X bending, the web is under compression and the initial
buckling mode is a global wave pattern of the web. This wave pattern appeared very
early in the test (0.1 N m), and led to a gradual decrease of the bending stiffness.
Ultimate buckling occurred when the deformation localized.

A numerical simulation framework using the Abaqus finite-element software was
presented to predict the behavior of TRAC structures subjected to pure bending.
The same three loading conditions were studied: negative moment around X (web
in tension), positive moment around X (web in compression) and moment around
Y . In all cases, the simulation results matched well with experimental results. The
stable post-buckling regime was accurately predicted for +X and Y bending using
the modified Riks method, but not for −X bending. While simulations predicted
well the pre- and post-buckling stiffness, the perfect geometry of the model was not
able to capture the gradual softening observed in the experiments.

The effect of varying the length, from 300 mm to 5000 mm, on the buckling load
was also studied numerically. When the flanges are loaded in compression (−X

and Y moments), nonlinearities during the pre-buckling phase needed to be taken
into account. They lead to a mostly similar buckling mode for most of the length
range. Hence, the −X buckling load only decreased by 3% when increasing the
length from 1000 mm to 4000 mm, and the Y buckling load only decreased by 10%
when increasing the length from 1000 mm to 5000 mm. This behavior could be a
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useful feature for the design of large structures. However, the buckling load for −X

bending at a length of 5000 mm was shown to decrease significantly, hinting at a
change in behavior for longer structures. This will need to be investigated further.
When the web is loaded under compression (+X bending), both linear and nonlinear
predictions agree. After a regime with constant buckling moment, the critical load
decreases with length, dropping by 60% from 2000 mm to 5000 mm.

The torsional behavior of TRAC structures was also investigated. Experiments
showed that very large torsional deformation can be obtained without any buckling.
A numerical model was developed and good agreement was obtained when com-
pared with experimental results. The behavior was shown to be somewhat sensitive
to the initial twist of the structure. However, due to the low torsional stiffness at low
twist angle, even an initial twist of 16°/m did not affect much the results. It was also
observed that the torsional stiffness increases quadratically with twist.
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C h a p t e r 4

ANALYTICAL BUCKLING
PREDICTION OF ORTHOTROPIC
CYLINDRICAL SHELL PANELS

WITH A FREE EDGE

This chapter presents a method to predict linear buckling of a TRAC structure loaded
with pure moment around theY axis. Under this loading condition, it is assumed that
the web has little effect, being located on the structure’s neutral axis. Therefore, as
buckling occurs in the inner flange, the buckling load can be predicted by studying
a simpler structure, representing the isolated inner flange, consisting of an open
cylindrical shell panel with a free edge loaded under a non-uniform compression.

First, a literature review of buckling of axially compressed cylindrical shells is
presented. Second, the analytical model, using the Donnell linear shallow shell
equations and the Rayleigh-Ritz method is introduced. Third, a simple problem, a
simply-supported cylindrical shell panel under uniform axial compression, is solved
to validate themethod. Fourth, buckling of an isotropic TRAC structure is estimated.
Then, the equations are extended to orthotropic structures and the buckling load of
a composite TRAC structure is estimated. Finally, a discussion closes this chapter.

4.1 Background: Elastic Buckling of Thin-Walled Cylindrical Shells
Cylindrical shells have been used extensively as structural elements. To improve
the mass efficiency of such structures, shells are designed to be very thin when
compared to other dimensions, such as radius and length. This can lead to stability
issues, and the design of cylindrical shells needs to involve buckling considerations.

Classical buckling of cylindrical shells has been studied by many authors in the past.
A simple form of the equilibrium and stability equations for a cylindrical shell was
derived by Donnell, (1933, 1934), based on the Kirchhoff-Love shell theory (Love,
1892). The principal assumptions of this theory are:

1. The thickness of the shell is small compared to the radius, such that t/r � 1.
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For example, Novozhilov proposed t/r ≤ 20 to keep the error below 5%
(Novozhilov, 1959);

2. Strains are small, so higher-order terms can be neglected when compared to
first-order terms;

3. The transverse normal stress σz is negligible;

4. The normals to the undeformed mid-surface of the shell remain straight and
normal to the deformed mid-surface, and there is no transverse extension.

This reduces the three-dimensional problem to a two-dimensional problem, where
the shell behavior is described only by the mid-surface strains and curvature. Fur-
thermore, as a consequence of the fourth assumption, the transverse shear strains
are zero (γxz = γφz = 0). As a result, the displacements at any point in the shell can
be obtained from

ū(x, φ, z) = u(x, φ) − z
∂w(x, φ)
∂x

(4.1a)

v̄(x, φ, z) = v(x, φ) − z
r
∂w(x, φ)
∂φ

(4.1b)

w̄(x, φ, z) = w(x, φ) (4.1c)

where (x, φ, z) are the axial, transverse and normal directions, (ū, v̄, w̄) are the
displacements in the axial, transverse and normal directions, and (u, v,w) are the
mid-plane value of the displacements.

Donnell’s equations (presented in Section 4.2) were initially derived for shallow
and quasi-shallow shells, i.e. shells that are relatively flat or for which the buckling
half-wavelength is small when compared to the shell curvature (Bazant and Cedolin,
2010). Due to this assumption and the four previous ones, these equations can be
exactly solved for some specific cases. For this reason, they are often used to study
the stability of cylindrical shells. For example, Batdorf, (1947) used these equations
to find the buckling load of a closed cylinder under axial compression, and Seide and
Weingarten, (1961) studied the buckling of a closed cylinder under pure bending.

The stability of orthotropic cylindrical shells was studied by many authors; for
example Becker and Gerard, (1962), Dong, Pister, and Taylor, (1962), Hess, (1961),
and J. Peterson, Seide, and Weingarten, (1968). A comparison of different shell
theories in terms of the accuracy of the buckling prediction for laminated composite
panels was performed by Jaunky and Knight, (1999), showing that the Donnell shell
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theory overestimates the axial compressive buckling load. In Brush and Almroth,
(1975), the linear stability equations for orthotropic cylindrical shells are derived
and compared with Donnell’s equations. Onoda, (1985) used the Donnell equations,
extended to account for material orthotropy, coupled with the Rayleigh-Ritz method
to estimate the axial compressive buckling load of laminated cylindrical shells, and
to optimize the laminate configuration.

All of the studies presented above were for either circular cylinders, or cylindrical
panels with simply supported boundary conditions. For the problem of interest in
this chapter, the open shell has a free edge. The buckling of isotropic cylindrical
shells with two longitudinal free edges subjected to uniform compressive load was
studied by Chu and Krishnamoorthy, (1967), Turula and Chu, (1970) and T. Yang
and Guralnick, (1976). A solution for the buckling of a cylindrical panel with two
longitudinal free edges loaded with both a compressive load and an end moment
was proposed by Krishnamoorthy and Narang, (1977). The buckling of a cylindrical
panel under uniform axial compression with one longitudinal free edge and three
simply supported edges was also studied by Magnucki and Maćkiewicz, (2006),
Szyc, Laszczyk, andMagnucki, (2006) andWilde, Zawodny, andMagnucki, (2007).

While extensivework has been done on the buckling of cylindrical shells, the specific
case of interest in this chapter, consisting of a cylindrical orthotropic panel with one
longitudinal free edge and loaded with a non-uniform axial compression has not
been previously studied.

4.2 Method Description
4.2.1 Problem Statement
Figure 4.1 illustrates the buckling problem of interest. A TRAC structure of length
L with flange radius r , opening angle θ f and thickness t, is loaded with moments
My around the Y axis at each end. It is assumed that the boundary conditions at
each end are simply supported (SS). As shown in Chapter 3, for a short structure
(L ≤ 800 mm) the buckling mode when loaded with a moment around the Y axis
is localized in the inner flange. Therefore, for this type of buckling the simpler
problem shown in Figure 4.2 can be considered. It consists of a cylindrical panel
with the same dimensions (L, r , θ f and t) loaded with a non-constant axial force
resultant Nx which is a function of φ. Here, a cylindrical coordinate system is
chosen, where x and φ are the axial and tangential directions, respectively. This
shell is simply supported at both ends and along one longitudinal edge, while the
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other longitudinal edge is free. The solution of this simplified problem will be
compared to the buckling of a complete TRAC structure later in this chapter.

θf

r

L

MY

MY

t

Y

Z

X

Figure 4.1: A TRAC structure of length L with flange radius r , opening angle θ f
and thickness t, is loaded under a pure moment MY around the Y axis of the global
coordinate system.

φ
x

Nx (φ)

Nx (φ)

Figure 4.2: Simplified model of the TRAC structure inner flange loaded by a pure
moment. x and φ are the axial and tangential directions of the shell in a cylindrical
coordinate system. The shell is simply supported (SS) on three side, and free along
one edge. A compressive force per unit length Nx , function of φ, is applied at each
end.

In order to define Nx(φ), the pre-buckling equilibrium of the whole structure is
studied. It is assumed that plane cross-sections remain plane and undeformed, and
that the material is linear-elastic. Using the global coordinate system X , Y and Z ,
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the moment equilibrium around Y in a cross-section is given by

MY =

∬
XσZ dXdY (4.2)

The longitudinal stress σZ is a linear function of X , and can be written as

σZ (X) = σ0
Z X (4.3)

where σ0
Z is a constant. The moment equilibrium can then be written as

MY =

∬
X2σ0

Z dXdY = σ0
Z IY =

σZ (X)IY
X

(4.4)

where IY is the second moment of area of the cross-section around the Y axis.
It is important to note that going from the global coordinate system to the shell
coordinate system implies σZ = σx . The force resultant Nx can be obtained from

Nx =

∫ t/2

−t/2
σxdz (4.5)

Combining Equation 4.5 with Equation 4.4 and assuming that due to the thinness
of the shell, σx is constant across the wall thickness, the following relation is found

Nx =
tMY X

IY
(4.6)

Finally, the X coordinate can be expressed as a function of φ in the cylindrical
coordinate system. Defining φ = 0 at the longitudinal, simply supported edge,
where the web would begin, then the relation becomes

Nx =
tMYr (1 − cos φ)

IY
= N0

x (1 − cos φ) (4.7)

where N0
x is a constant. Therefore, Equation 4.7 defines the load to apply in the

buckling problem shown in Figure 4.2.

4.2.2 Donnell’s Stability Equations
Figure 4.3 shows a cylindrical shell element and defines the force stress resultants
(Nx , Nφ, Nxφ, Nφx , Qx and Qφ) and the moment stress resultants (Mx , Mφ, Mxφ and
Mφx). These resultants are defined as a force or moment per unit length, and can be
obtained by integrating the stresses across the thickness.



49

x

φ

z

Nφ

Nφx

Nxφ
Nx

Mx
Mxφ

Mφx
Mφ

Qφ

Qx

p(x,φ)

Figure 4.3: Force and moment resultants acting on a cylindrical shell element,
expressed in the cylindrical coordinate system x, φ, z.

Donnell’s equilibrium equations for isotropicmaterial can bewritten in the following
form (Brush and Almroth, 1975)

rNx,x + Nxφ,φ = 0 (4.8a)

rNxφ,x + Nφ,φ = 0 (4.8b)

D∇4w +
1
r

Nφ −
(
Nxw,xx +

2
r

Nxφw,xφ +
1
r2 Nφw,φφ

)
= p(x, φ) (4.8c)

where p is the normal pressure and

∇4w ≡ w,xxxx +
2
r2w,xxφφ +

1
r4w,φφφφ (4.9)

Subscripts following a comma denote a partial derivative with respect to those
variables. The constitutive equations for isotropic shells are

Nx = C
(
εx + νεφ

)
Nφ = C

(
εφ + νεx

)
Nxφ = C

1 − ν
2

γxφ

Mx = D
(
κx + νκφ

)
Mφ = D

(
κφ + νκx

)
Mxφ = D (1 − ν) κxφ

(4.10)

where C and D are the extensional and bending stiffness, respectively, and are
defined as

C ≡ Et
1 − ν2 D ≡ Et3

12
(
1 − ν2) (4.11)
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The kinematic relations are (from Donnell, 1933)

εx = u,x +
1
2
β2

x

εφ =
v,φ + w

r
+

1
2
β2
φ

γxφ =
(u,φ

r
+ v,x

)
+ βxβφ

κx = βx,x = −w,xx

κφ =
βφ,φ

r
= −

w,φφ

r2

κxφ =
1
2

(
βx,φ

r
+ βφ,x

) βx = −w,x

βφ = −
w,φ

r

(4.12)

where u, v and w are the displacement in the x, φ and z directions respectively. βx

and βφ are the mid-plane rotations in the x and φ directions, respectively.

To derive Donnell’s stability equations, Brush and Almroth, (1975) introduced a
small displacement increment starting from an initial equilibrium configuration.
Hence, the displacements can be expressed as

u = u0 + u1 v = v0 + v1 w = w0 + w1 (4.13)

Introducing these displacements in the equilibrium equation, Brush and Almroth,
(1975) showed that the following uncoupled Donnell stability equations can be
obtained:

∇4u1 = −
ν

r
w1,xxx +

1
r3w1,xφφ

(4.14a)

∇4v1 = −
2 + ν

r2 w1,xxφ −
1
r4w1,φφφ

(4.14b)

D∇8w1 +
1 − ν2

r2 Cw1,xxxx − ∇4
(
Nx0w1,xx +

2
r

Nxφ0w1,xφ +
1
r2 Nφ0w1,φφ

)
= 0

(4.14c)

which are linear with respect to (u1, v1,w1) and where ∇8w1 ≡ ∇4(∇4w1). The stress
resultants are defined as

Nx0 = C
(
εx0 + νεφ0

)
Nφ0 = C

(
εφ0 + νεx0

)
Nxφ0 = C

1 − ν
2

γxφ0

εx0 = u0,x +
1
2
w2

0,x

εφ0 =
v0,φ + w0

r
+

1
2

w2
0,φ

r2

γxφ0 =
(u0,φ

r
+ v0,x

)
+
w0,xw0,φ

r

(4.15)
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Here, the displacements increments u1, v1 and w1 define the buckling mode, while
the initial displacements u0, v0 and w0 define the pre-buckling solution. Equations
4.14 can be solved directly for simple loads and boundary conditions, as shown in
Section 4.3.

4.2.3 Rayleigh-Ritz Method
For complex loads and boundary conditions, Equation 4.14c cannot be solved di-
rectly. An approximate solution can be obtained using the Rayleigh-Ritz method,
for example described in Varadan and Bhaskar, (1999). This method was used by
many workers to solve shell buckling problems. Almroth, (1962) used this approach
for a cylindrical shell with non-uniform external pressure, and Ansari, Sahmani,
and Rouhi, (2011) studied buckling of carbon nanotubes under axial loading with
various boundary conditions.

For a system under load, a state of stable equilibrium corresponds to a minimum of
the total potential energy, Π. Therefore, the minimum buckling load represents the
load at which the total potential energy is stationary, i.e. both the first and second
variation of the total potential energy are zero.

The Rayleigh-Ritz method for estimating buckling loads consists in assuming a dis-
placement field that satisfies both compatibility and kinematic boundary conditions.
It does not need to satisfy natural boundary conditions. Then, the total potential
energy can be calculated and the buckling load found by solving for the loads when
the second variation is equal to zero. This method gives an upper bound to the
buckling load. To improve the estimate, the displacement field can be assumed to
be a linear combination of multiple functions.

Brush and Almroth, (1975) derived the equation for the second variation of the total
potential energy of a shallow cylindrical shell. Their expression will be used in this
chapter for buckling of isotropic shells

1
2
δ2
Π =

rC
2

∬ (
ε2

x1 + ε
2
φ1 + 2νεx1εφ1 +

1 − ν
2

γ2
xφ1

)
dxdφ

+
r
2

∬ (
Nx0w

2
1,x + Nφ0

w2
1,φ

r2 + 2Nxφ0w1,x
w1,φ

r

)
dxdφ

+
rD
2

∬ (
w2

1,xx +
w2

1,φφ

r4 + 2νw1,xx
w1,φφ

r2 + 2 (1 − ν)
w2

1,xφ

r2

)
dxdφ

(4.16)
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where the strains (neglecting pre-buckling rotations w0,x and w0,φ) can be expressed
as

εx1 = u1,x εφ1 =
v1,φ + w1

r
γxφ1 =

u1,φ

r
+ v1,x (4.17)

4.3 Simply Supported Isotropic Tape-Spring Under Uniform Compression
The first problem that will be studied is shown in Figure 4.4. A cylindrical shell
of length L with radius r and opening angle θ f is loaded under constant axial
compression Nx , where Nx is a force per unit length. The shell is simply supported
on all sides and is made of an isotropic material with thickness t, Young’s modulus
E , and Poisson’s ratio ν. As shown for example by Timoshenko and Gere, (1961),
this problem can be solved using the same method as for a cylindrical tube.

φ
x

Nx

Nx

θf

r

L

Figure 4.4: Cylindrical shell of length L with radius r and opening angle θ f loaded
under uniform axial compression with all four sides simply supported (SS).

The pre-buckling equilibrium configuration can be found using the linear membrane
equations (Brush and Almroth, 1975) as there is no out-of-plane deformation in the
pre-buckling state (w(x, φ) = 0)

rNx0,x + Nxφ0,φ = 0 rNxφ0,x + Nφ0,φ = 0 Nφ0 = pr (4.18)

Both partial derivatives of Nxφ0 are zero as there is no pressure and Nx0 is constant.
Therefore, Nxφ0 is also a constant, and must be zero as its value is zero at the
boundaries. As a result, Equation 4.14c can be solved exactly. One can observe that
only even derivatives are present in this equation. The simply supported boundary
conditions mean that at the boundary the out-of-plane displacement and the applied
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moment are zero, which can be expressed as

w = w,xx = 0 at x = 0, L

w = w,φφ = 0 at φ = 0, θ
(4.19)

Hence, the solution is of the form

w1(x, φ) = A0 sin
mπx

L
sin

nπφ
θ

(4.20)

The critical buckling load can be found by substituting this expression into Equation
4.14c, and solving for Nx . The critical buckling load is then found by minimizing
Nx with respect to n and m. For the shell described in Table 4.1, the minimum
buckling load is Nx = −33.23 N mm−1, with n = 1 and m = 253.

Table 4.1: Dimensions and material properties for isotropic cylindrical shell.

r [mm] θ f L [mm] t [mm] E [GPa] ν

12.7 90° 500 0.1 69 0.33

A solution can also be obtained using the Rayleigh-Ritz method. Assuming w1(x, φ)
to be given by Equation 4.20, Equations 4.14a-b can be solved to find u1(x, φ) and
v1(x, φ). Because the assumed function is the exact solution, it is expected that
solving using the energy equation (Equation 4.16) will yield the same result. The
following expressions are obtained:

u1(x, φ) = B0 cos m̄x sin n̄φ (4.21a)

v1(x, φ) = C0 sin m̄x cos n̄φ (4.21b)

where

m̄ = mπ/L n̄ = nπ/θ (4.22)

and

B0 =
A0m̄r

(
m̄2νr2 − n̄2)(

r2m̄2 + n̄2)2

C0 =
A0n̄

(
m̄2r2 (2 + ν) + n̄2)(
r2m̄2 + n̄2)2

(4.23)
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The critical buckling load can then be obtained by substituting Equations 4.20 and
4.21 into Equation 4.16 to obtain the second variation of the total potential energy.
The resulting expression is set equal to zero, and solved for Nx0. For the shell
described in Table 4.1, the buckling is found to be Nx = −33.23 N mm−1, once
again with n = 1 and m = 253. Therefore, the Rayleigh-Ritz method gave the same
result as the exact solution, as expected. The corresponding mode shape is shown
in Figure 4.5.

Figure 4.5: Analytical buckling mode for an isotropic cylindrical shell loaded under
uniform axial compression and simply supported on all sides, with L = 500 mm,
r = 12.7 mm, θ f = 90° and t = 0.1 mm. The associated buckling load is
Nx = −33.23 N mm−1.

For a further validation of these results, the buckling load for this specific case was
also obtained using the finite element software Abaqus Standard 2018. A model
was created using the properties from Table 4.1. The structure was modeled using
quadrilateral shell elements with reduced integration (S4R). To capture the small
wavelength buckling predicted (253 half-waves along the length, equal to a half-
wavelength of ≈ 2 mm), the mesh size was chosen as 0.5 mm, corresponding to
1000 elements along the length and 40 elements along the transverse direction. All
edges are simply supported, and the shell is loaded symmetrically with a uniformly
distributed edge compressive load at each end. The buckling load was calculated
using a linear perturbation step with the Eigensolver Subspace. The buckling mode
obtained from the simulation can be seen in Figure 4.6, and the associated buckling
load was found to be Nx = −33.22 N mm−1.

As predicted from the analytical model, the buckling mode has a very short wave-
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Figure 4.6: Buckling mode obtained from finite element for an isotropic cylindrical
shell loaded under uniform axial compression and simply supported on all sides,
with L = 500 mm, r = 12.7 mm, θ f = 90° and t = 0.1 mm. The associated buckling
load is Nx = −33.22 N mm−1.

length in the axial direction, and only one half-wave in the transverse direction.
However, the buckling mode obtained from the finite element simulation also has a
longer wavelength component in the axial direction, as shown in Figure 4.6. Despite
this small discrepancy, the difference between the two predicted buckling loads is
negligible.

Using this simple test case, the Rayleigh-Ritz method was validated both by com-
paring with the direct analytical solution and a finite element simulation. It is
important to note, however, that for this specific problem, the assumption behind
the shallow shell theory, which is that the wavelength of the buckling mode is small
when compared to the shell radius of curvature, was valid.

4.4 Cylindrical Panel with Free Edge Under Non-Uniform Compression
For the simplified version of the TRAC structure buckling described in Section 4.2.1
and shown in Figure 4.2, the stability equation 4.14c cannot be solved directly as
it was done for the simply supported shell in the previous section. Therefore, the
Rayleigh-Ritz method will be used directly.

In this case, the displacement field is not known. The accuracy of the Rayleigh-
Ritz method directly depends on how close the assumed shape function is to the
real displacement field. Therefore, the initial guess is important. To comply with
the Rayleigh-Ritz method requirements, the shape functions need to satisfy the
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kinematic boundary conditions, which for this problem are

w = 0 at x = 0, L

w = 0 at φ = 0
(4.24)

Furthermore, while it is not necessary, the natural boundary conditions on the three
simply supported edges can easily be satisfied. These boundary conditions are
expressed as

w,xx = 0 at x = 0, L

w,φφ = 0 at φ = 0
(4.25)

The w displacement field is assumed to be of the following form

w1(x, φ) = fx(x) fφ(φ) (4.26)

To satisfy the boundary conditions at x = 0, L, fx(x) is assumed to be

fx(x) = sin
(mπx

L

)
(4.27)

For the transverse direction, the shape function is assumed to be similar to the shape
function of a plate simply supported on three sides and free on one side, which is a
combination of a hyperbolic sine and a sine function (Jones, 2006). Therefore, the
assumed displacement field is

w1(x, φ) = sin
(mπx

L

) (
A1 sinh (αφ) + A2 sin

(
βφ

θ f

))
(4.28)

where α and β are free parameters that can be varied to find the minimum buck-
ling load. To further simplify the problem, it is assumed that β = π/2 such as
sin

(
βφ/θ f

)
= 1 at φ = θ f . This assumption will be used in the remaining of this

chapter.

The displacement field u1(x, φ) and v1(x, φ) can once again be obtained by solving
Equations 4.14a-b. The expressions are

u1(x, φ) = cos (m̄x)
(
B1 sinh (αφ) + B2 sin

(
β̄φ

) )
(4.29a)

v1(x, φ) = sin (m̄x)
(
C1 cosh (αφ) + C2 cos

(
β̄φ

) )
(4.29b)



57

where

m̄ = mπ/L β̄ = π/2θ f (4.30)

and

B1 =
A1m̄r

(
m̄2νr2 + α2)(

r2m̄2 − α2)2

B2 =
A2m̄r

(
m̄2νr2 − β̄2)(

r2m̄2 + β̄2)2

C1 =
A1α

(
m̄2 (2 + ν) r2 − α2)(
r2m̄2 − α2)2

C2 =
A2

(
m̄2 (2 + ν) r2 + β̄2)(

r2m̄2 + β̄2)2

(4.31)

As detailed in Section 4.2.1, the edge loading is given by

Nx0 = N0
x (1 − cos φ) (4.32)

Solving the linear membrane equations (Equations 4.18) gives Nφ0 = Nxφ0 = 0.

This problem was solved using the Maple software for symbolic mathematical
computation. Substituting Equations 4.28 and 4.29 in the second variation of the
total potential energy (Equation 4.16), the result is a quadratic form in A1 and A2.
This can be written in the form[

A1 A2

]
Ā

[
A1

A2

]
= 0 (4.33)

where Ā is a coefficient matrix. The critical buckling load is found by setting the
determinant of Ā equal to zero and solving for N0

x . The result is an expression that
is a function of the geometry (L, r , θ f and t), the material properties (E and ν), and
two parameters: m and α.

The mode shape can also be computed by substituting the critical buckling load,
assuming A1 = 1, and solving for A2 in the following expression

Ā

[
A1

A2

]
= 0 (4.34)

Specializing for the shell described in Table 4.1, the critical buckling load is
N0

x = −2.25 N mm−1, with m = 1 and α = 1.06. The corresponding mode shape,
shown in Figure 4.7, is defined by A1 = 1 and A2 = 1.68.
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Figure 4.7: Analytical buckling mode for an isotropic cylindrical shell loaded under
non-uniform axial compression, simply supported on three sides and free along one
longitudinal edge, with L = 500 mm, r = 12.7 mm, θ f = 90° and t = 0.1 mm. The
associated buckling load is N0

x = −2.25 N mm−1.

This analytical solution can be compared with a numerical simulation. The same
model presented in the previous section is used to predict the buckling load for
this case. The constraints along one longitudinal side are removed to obtain the
free edge, and the compressive load is defined as an Analytical Field in Abaqus,
following Equation 4.32.

Figure 4.8 shows the buckling mode obtained from simulation. The associated
buckling load is N0

x = −2.75 N mm−1. As predicted from the Rayleigh-Ritz method,
there is only one half-wavelength along the longitudinal direction. However, this
means that this case, in contrast with the previous shell simply supported on all sides,
does not comply very well with the shallow shell assumption of a small wavelength
when compared with the radius. To obtain the equations presented in Section 4.2, it
was assumed that some terms are negligibly small, for example the contribution of
v on the shell rotation was neglected. While the difference between the numerical
and the Rayleigh-Ritz results is less than 20%, a more complete shell theory, while
harder to implement, could be used to reduce the difference.

The ability of the simplified shell model to predict the TRAC structure critical
buckling moment was also verified using finite element method. The framework
described in Section 3.2.2 was used to predict the buckling of an isotropic TRAC
structure. Additionally to the properties defined in Table 4.1, the web width w was
8 mm and the web thickness was twice the flange thickness. A pure bending moment
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Figure 4.8: Finite element buckling mode for an isotropic cylindrical shell loaded
under non-uniform axial compression, simply supported on three sides and free
along one longitudinal edge, with L = 500 mm, r = 12.7 mm, θ f = 90° and
t = 0.1 mm. The associated buckling load is N0

x = −2.75 N mm−1.

MY was applied at each end.

The critical moment obtained from the finite element simulation is MY = 511 N mm
and the bucklingmode is shown inFigure 4.9. UsingEquation 4.7, with IY =148 mm4

(computed from Equation 2.7), this critical moment can be compared with the es-
timate of the critical edge compression obtained from the simplified model. The
result is N0

x = −4.39 N mm−1, which is 95% higher than the analytical prediction of
−2.25 N mm−1, and 60% higher than the numerical result for the simplified model,
−2.75 N mm−1.

While the buckling modes observed in the simplified model and the full TRAC
structure model are similar, the TRAC structure buckling mode also includes a
torsional component which was not captured by the simplified model. Furthermore,
the attachment between the flange and the web is not exactly equivalent to a simply
supported boundary condition, as there is a bending stiffness along the web. One
could therefore assume that, due to the rotation of the web, the boundary condition
along the web would be closer to a rotational spring. To test this assumption, the
buckling load for the simple cylindrical shell model was calculated with Abaqus,
for the case of a clamped boundary condition, instead of the simply supported
longitudinal edge. For this new case, the critical buckling load was found to be
N0

x = −5.52 N mm−1.

Table 4.2 summarizes the results obtained in the current section, with the critical
moment MY calculated from Equation 4.7. While the Rayleigh-Ritz method was
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Figure 4.9: Buckling mode for an isotropic TRAC structure loaded by end moments
MY , with L = 500 mm, r = 12.7 mm, θ f = 90°, t = 0.1 mm and w = 8 mm. The
associated buckling moment is MY = 511 N mm.

able to estimate the buckling load of the simplified model with simply supported
longitudinal edge quite well (less than 20% error), it was observed that the simply
supported boundary condition along the web was not approximating adequately the
actual connection between the inner flange and the web. By contrasting with the
result obtained with the clamped longitudinal edge instead, the actual boundary
condition along the web would be somewhere in between simply supported and
clamped, which is to be expected as the connection at that location has bending
stiffness due to the continuity of the material.

Table 4.2: Summary of the results obtained for the buckling of isotropic TRAC
structure.

N0
x [N mm−1] MY [N mm]

Rayleigh-Ritz Method, SS edge -2.25 262
FEM, SS edge -2.75 320
FEM, Clamped edge -5.52 643
TRAC structure -4.39 511

4.5 Extension to Symmetric Composite Laminates
The method to predict buckling moments presented in the previous section can be
extended to structures made of orthotropic material. More specifically, the current
section derives the stability equations (equivalent to Equations 4.14) and the second
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variation of the potential energy (equivalent to Equation 4.16) for a shell made of
composite material. One key assumption is that the laminate is symmetric, therefore
there is no coupling between the in-plane and bending behavior of the shell. The
equations derived in this section are general and can be used to solve a wide range
of stability problems for such orthotropic cylindrical panels.

4.5.1 Second Variation of Total Potential Energy for Orthotropic Shells
For a symmetric laminate, the constitutive relations expressed in the shell cylindrical
coordinate system are given by the expressions:

Nx

Nφ

Nxφ

 =

A11 A12 A16

A12 A22 A26

A16 A26 A66



εx

εφ

γxφ




Mx

Mφ

Mxφ

 =

D11 D12 D16

D12 D22 D26

D16 D26 D66



κx

κφ

κxφ

 (4.35)

The strain energy is given by (Kollar and Springer, 2003)

U = Um +Ub (4.36)

where Um and Ub are the membrane and bending strain energy, respectively, and are
given by

Um =
r
2

∬ [
εx εφ γxφ

] 
A11 A12 A16

A12 A22 A26

A16 A26 A66



εx

εφ

γxφ

 dxdφ (4.37a)

Ub =
r
2

∬ [
κx κφ κxφ

] 
D11 D12 D16

D12 D22 D26

D16 D26 D66



κx

κφ

κxφ

 dxdφ (4.37b)

The total potential energy is given by

Π = U +Ω (4.38)

where Ω is the potential energy of the applied loads and can be expressed as

Ω = −
∬ (

Nxu,x + Nφ

v,φ

r
+ Nxφ

(u,φ
r
+ v,x

))
dxdφ (4.39)

To obtain the first and second variation of the total potential energy, the displace-
ments are assumed to be of the form

u = u0 + u1 v = v0 + v1 w = w0 + w1 (4.40)
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where u0, v0 and w0 are the pre-buckling displacements and u1, v1 and w1 are the
increments. These expressions for the displacement components are first substituted
in the kinematic equations 4.12, and then in the strain energy equations. The second
variation is obtained by considering only the second-order terms of the increments.
For this reason, the second variation of Ω is zero as it contains only linear terms of
the displacement components.

The second variation of the total potential energy is obtained by combining the
resulting equations, and can be expressed as

1
2
δ2
Π =

r
2

∬ [
εx1 εφ1 γxφ1

] 
A11 A12 A16

A12 A22 A26

A16 A26 A66



εx1

εφ1

γxφ1

 dxdφ

+
r
2

∬ (
Nx0w

2
1,x + Nφ0

w2
1,φ

r2 + 2Nxφ0w1,x
w1,φ

r

)
dxdφ

+
r
2

∬ [
w1,xx

1
r2w1,φφ

1
r w1,xφ

] 
D11 D12 D16

D12 D22 D26

D16 D26 D66



w1,xx

1
r2w1,φφ
1
r w1,xφ

 dxdφ

(4.41)

where the strains are given by

εx1 = u1,x εφ1 =
v1,φ + w1

r
γxφ1 =

u1,φ

r
+ v1,x (4.42)

4.5.2 Stability Equations for Orthotropic Shells
For the two isotropic cases presented in the last two sections, the stability Equations
4.14a-b were used to express u1 and v1 as a function of w1. For the orthotropic
case, equivalent equations can be obtained by substituting the constitutive relations
in Equations 4.8a-b. Then, as detailed for the isotropic case by Brush and Almroth,
(1975), the displacements and loads are expressed as

u = u0 + u1 v = v0 + v1 w = w0 + w1 (4.43)

Nx = Nx0 + ∆Nx Nφ = Nφ0 + ∆Nφ Nxφ = Nxφ0 + ∆Nxφ (4.44)

where ∆Nx , ∆Nφ and ∆Nxφ are the increments due to u1, v1 and w1.

Substituting in Equations 4.8a-b, removing all the terms representing the equilibrium
configuration (terms with displacement components with a 0 subscript), linearizing
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by keeping only the first order terms, and neglecting the pre-buckling rotations w0,x

and w0,φ, the first two stability equations for an orthotropic cylindrical shell are

A11r2u1,xx + (A12 + A66) rv1,xφ + A12rw1,x + A66u1,φφ

+A16r
(
rv1,xx + 2u1,xφ

)
+ A26

(
v1,φφ + w1,φ

)
= 0

(4.45a)

A22
(
v1,φφ + w1,φ

)
+ (A12 + A66) ru1,xφ + A66r2v1,xx

+A16r2ru1,xx + A26
(
2rv1,xφ + rw1,x + u1,φφ

)
= 0

(4.45b)

The orthotropic equivalent to Equation 4.14c can be obtained similarly.

Unlike the isotropic case, these equations generally cannot be decoupled. However,
for the specific case of a balanced laminate, for which A16 = A26 = 0, they can be
decoupled. In a balanced laminate, for every ply oriented at +θ, there is a similar ply
oriented at −θ. This assumption is true for the [±45GFPW/0CF/±45GFPW ] laminate
presented in Chapter 2.

After removing the terms with A16 and A26, the following steps are used to decouple
Equations 4.45:

1. Apply ∂2

∂x2 to Equation 4.45a and solve for v1,xxxφ to obtain a first equation (i)

2. Apply ∂2

∂φ2 to Equation 4.45a and solve for v1,xφφφ to obtain a second equation
(ii);

3. Apply ∂2

∂x∂φ to Equation 4.45b and substitute (i) and (ii) into the resulting
expression.

The result is an equation that is only a function of u1 and w1. Applying the same
procedure, but inverting Equations 4.45a and 4.45b, a second equation is obtained
with only v1 and w1. These decoupled equations are(

A2
12 + 2A12 A66 − A11 A22

)
r2u1,xxφφ − A11 A66r4u1,xxxx

−A22 A66u1,φφφφ + A22 A66rw1,xφφ − A12 A66r3w1,xxx = 0
(4.46a)

(
A2

12 + 2A12 A66 − A11 A22

)
r2v1,xxφφ − A22 A66v1,φφφφ − A11 A66r4v1,xxxx

+
(
A2

12 + A12 A66 − A11 A22

)
r2w1,xxφ − A22 A66w1,φφφ = 0

(4.46b)
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4.5.3 Buckling Prediction Using Rayleigh-Ritz Method
TheRayleigh-Ritzmethod can be used to estimate the buckling load of an orthotropic
cylindrical panel made from a balanced, symmetric laminate. The same simplified
problem described in Figure 4.2 is studied here. The same shape function used in
the isotropic case is assumed for w1(x, φ)

w1(x, φ) = sin (m̄x)
(
C1 sinh (αφ) + C2 sin

(
β̄φ

) )
(4.47)

where

m̄ = mπ/L β̄ = π/2θ f (4.48)

The displacement field u1(x, φ) and v1(x, φ) can be obtained by solving Equa-
tions 4.46. The expressions are

u1(x, φ) = cos (m̄x)
(
Cu

1 sinh (αφ) + Cu
2 sin

(
β̄φ

) )
(4.49a)

v1(x, φ) = sin (m̄x)
(
Cv

1 cosh (αφ) + Cv
2 cos

(
β̄φ

) )
(4.49b)

where

Cu
1 =

C1 A66m̄r
(
A12m̄2r2 + A22α

2)
A11 A66m̄4r4 − m̄2r2α2

(
A11 A22 − A2

12 − 2A12 A66

)
+ A22 A66α4

Cu
2 =

C2 A66m̄r
(
A12m̄2r2 − A22 β̄

2)
A11 A66m̄4r4 + m̄2r2 β̄2

(
A11 A22 − A2

12 − 2A12 A66

)
+ A22 A66 β̄4

Cv
1 =

C1α
(
m̄2r2 (

A11 A22 − A2
12 − A12 A66

)
− A22 A66α

2)
A11 A66m̄4r4 − m̄2r2α2

(
A11 A22 − A2

12 − 2A12 A66

)
+ A22 A66α4

Cv
2 =

C2 β̄
(
m̄2r2 (

A11 A22 − A2
12 − A12 A66

)
+ A22 A66 β̄

2)
A11 A66m̄4r4 + m̄2r2 β̄2

(
A11 A22 − A2

12 − 2A12 A66

)
+ A22 A66 β̄4

(4.50)

The force resultants are unchanged

Nx0 = N0
x (1 − cos φ) Nφ0 = Nxφ0 = 0 (4.51)

The critical buckling load can then be obtained by substituting the shape functions
and the force resultants into the second variation of the total potential energy, and
solving for N0

x . Specializing for a shell with the dimensions presented in Table
4.3, and using the A and D matrices for the laminate [±45GFPW/0CF/±45GFPW ]



65

Table 4.3: Dimensions and material properties for the orthotropic cylindrical shell.

r [mm] θ f L [mm] t [mm]
12.7 90° 500 0.08

Figure 4.10: Analytical buckling mode for an orthotropic cylindrical shell loaded
under non-uniform axial compression, simply supported on three sides and free
along one longitudinal edge, with L = 500 mm, r = 12.7 mm, θ f = 90° and
t = 0.08 mm. The associated buckling load is N0

x = −1.89 N mm−1.

described in Section 2.3, the estimated critical buckling load is N0
x =−1.89 N mm−1,

with m = 1 and α = 1.28. The corresponding mode shape, shown in Figure 4.10, is
defined by A1 = 1 and A2 = 1.63.

This analytical prediction of the buckling edge stress can be compared with a
numerical solution. The same model presented in Section 4.4 is used, changing
the shell section to a General Shell Stiffness section in order to input the A and D

matrices for the laminate. Figure 4.11 shows the buckling mode obtained from the
simulation. The associated buckling load is N0

x = −1.31 N mm−1.

The analytical model overestimates the buckling load by 44% when compared with
the numerical results, which is consistent with the Rayleigh-Ritz method giving in
general an upper bound to the buckling load. It is also consistent with the findings
of Jaunky and Knight, (1999), where they demonstrated that Donnell’s equations
overestimate the buckling load. However, while the analytical model predicts a
single half-wavelength along the length of the shell, the numerical model displays a
more complex bucklingmode, with 12 half-waves along the lengthwith an amplitude
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Figure 4.11: Finite element buckling mode for an orthotropic cylindrical shell
loaded under non-uniform axial compression, simply supported on three sides and
free along one longitudinal edge, with L = 500 mm, r = 12.7 mm, θ f = 90° and
t = 0.08 mm. The associated buckling load is N0

x = −1.31 N mm−1.

that reaches a maximum at L/2. A shape function for w1 with more terms could
better predict the buckling load, for example

w1(x, φ) = sin (m̄1x) sin (m̄2x)
(
C1 sinh (αφ) + C2 sin

(
β̄φ

) )
(4.52)

where m̄1 and m̄1 have different values of m. However, for such shape function, it is
not possible to get exact functions for u1 and v1 using Equations 4.46a-b. Therefore,
the current analytical prediction, while not optimal, is still a good upper bound to
the buckling load, even if it neglects shorter wavelength buckling.

The buckling prediction from the simplified shell model can once again be compared
with the buckling moment for a complete TRAC structure. Similarly to the isotropic
case, the buckling of a TRAC structure with the dimensions described in Table 4.3,
adding w = 8 mm, was studied using the framework described in Chapter 3. The
critical moment thus obtained is MY = 147.3 N mm−1. Using Equation 4.7, with
IY = 118 mm4, this is equivalent to N0

x = −1.27 N mm−1. Figure 4.12 shows the
corresponding mode shape.

Unlike the isotropic case, the buckling mode is only localized in the flange, with no
rotation of the web. Therefore, it is expected that the simplified model, representing
only the inner flange, would give a more accurate prediction. While the number
of half-wavelengths in the case of the full TRAC structure (22) is higher than in
the simplified shell model, the buckling load is only 3% different between the two
numerical models. Furthermore, the assumption of a simply supported longitudinal
edge seems to bemore appropriate in the orthotropic case. A simulation of the simple
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Figure 4.12: Buckling mode for an orthotropic TRAC structure loaded under pure
moment, with L = 500 mm, r = 12.7 mm, θ f = 90°, t = 0.08 mm and w = 8 mm.
The associated buckling moment is MY = 147.3 N mm.

cylindrical shell, but with clamped boundary condition, gives N0
x = −1.51 N mm−1.

Table 4.4 summarizes the results.

Table 4.4: Summary of the results obtained for the buckling of orthotropic TRAC
structure.

N0
x [N mm−1] MY [N mm]

Rayleigh-Ritz Method, SS edge -1.89 219.5
FEM, SS edge -1.31 152.1
FEM, Clamped edge -1.51 175.4
TRAC structure -1.27 147.3

4.6 Conclusion
This chapter has presented an analytical method to predict the buckling moment
of a TRAC structure loaded by pure moments. This was done by studying a
simplified problem, where only the inner flange is present and the loading is a non-
uniform axial compression. Using the Rayleigh-Ritz method with shallow-shell
stability equations, the buckling load was estimated. For one specific isotropic
TRAC structure, the buckling moment estimated using this method was shown to
underestimate the buckling load predicted from finite element simulations by 49%.
The difference was attributed to three factors. First, the actual buckling mode of
the TRAC structure includes a torsional component which is not captured by the
simplified model. Second, the single half-wave of the buckling mode does not
fit well within the shallow-shell assumptions. Third, the high transverse bending
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stiffness of the shell at the flange junction with the web is not well captured by a
simply supported boundary conditions.

The method was also extended to orthotropic TRAC structures. To achieve this,
the second variation of the total potential energy and the stability equations were
derived for symmetric laminates, where there is no coupling between in-plane and
out-of-plane behaviors. Furthermore, it was shown that for the specific case of a
balanced laminate, the stability equations can be partially uncoupled. This method
was shown to overestimate the buckling moment of a specific orthotropic TRAC
boom by only 44% even if the guessed shape function did not capture the shorter
wavelength features observed from simulation.
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C h a p t e r 5

STRUCTURE BEHAVIOR DURING
COILING

Parts of this chapter were modified from the following publications:

Leclerc, Christophe, Pedivellano, Antonio, and Pellegrino, Sergio (2018). “Stress
Concentration andMaterial Failure During Coiling of Ultra-Thin TRACBooms”.
In: 2018 AIAA Spacecraft Structures Conference. 2018–0690. Orlando, FL.

Leclerc, Christophe and Pellegrino, Sergio (2019). “Reducing Stress Concentration
in the Transition Region of Coilable Ultra-Thin-Shell Booms”. In: AIAA Scitech
2019 Forum. 2019–1522. San Diego, CA. doi: 10.2514/6.2019-1522.

5.1 Introduction
5.1.1 Background
To achieve packaging, the TRAC structure needs to be subjected to two changes
of curvature: flattening of the flanges, and coiling of both the flanges and the web
around a cylindrical hub. A simple packaging concept achieves coiling by means
of a mechanism that applies a tension F at the tip of the structure while a hub
with radius R is rotated at angular velocity ω, as shown in Figure 5.1. The tension
is necessary to stabilize the structure during coiling and ensure that it conforms
well to the hub. Using this concept, the two changes of curvature are imposed
simultaneously in a transition region between the fully deployed configuration and
the fully coiled configuration.

Initial research on TRAC boom coiling focused on thick composite boom (flange
thickness of ∼1 mm), and found a lower and an upper limit on the hub radius
(Banik and Murphey, 2010; Roybal, Banik, and Murphey, 2007). The lower limit
was based on longitudinal strain considerations, while the upper limit was found
experimentally to avoid inner flange bifurcation, which occurs when the inner flange
locally and partially opens out instead of being fully flattened and conforming to
the hub. In both cases, only the fully coiled region was considered to derive these
limits. Murphey, Turse, and Adams, (2017) extended this work to thinner composite
booms, and looked at the high localized strains in the fully coiled region when flange

http://dx.doi.org/10.2514/6.2019-1522


70

Z

R

X

Y

F

ω

Figure 5.1: TRAC structure partially coiled around a hub with radius R. The hub
rotates at angular velocity ω and a force F tensions the structure. X , Y and Z form
the global coordinate system, where Z is aligned with the axis of the structure, Y is
parallel to the web, and X is normal to the web (Figure modified fromMurphey and
Banik, 2011).

bifurcation occurs. A study by Fernandez, (2017) also looked experimentally at the
minimum coiling radius for TRAC boomsmade of ultra-thin materials. The smallest
successful coiling radius was 25 mm, for a boomwhere each flange is a single, 85 µm
thick, layer of carbon fiber plain weave. This study also looked at bi-stable TRAC
booms, where the boom is stable both in the deployed and the coiled configuration.
However, this limits the applications, as some packaging schemes have booms coiled
in opposite directions (Arya, Lee, and Pellegrino, 2016).

More recently, the inner flange buckling in the transition region of TRAC booms
during coilingwas studied byCox andMedina, (2018, 2019), focusing on large cross-
section (r = 85 mm) and large hubs (R = 185.5 mm). Reducing the flange arc length
was shown to reduce the maximum strain observed in the transition region, or even
prevent completely inner flange buckling. However, reducing the flange arc length
while keeping the flange radius constant significantly reduces the bending stiffness
in the deployed configuration. Multiple laminates were also studied, showing that
the stress peak in the transition region can be somewhat mitigated by choosing a
suitable laminate. A different study (H. Yang et al., 2019) looked at coiling of
large TRAC booms (r = 140−160 mm) around a large hub (R = 125 mm), adding
flattening rollers upstream of the hub. The influence of flange radius and opening
angle, and web width were also studied.

These recent studies have shown that using ultra-thin composites in TRAC structures
can reduce significantly the packaged volume, extending the range of applications.
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However, greatly decreasing the thickness of the structures has brought up new
issues specific to ultra-thin shells, such as inner flange buckling and blossoming of
the coiled region of the structures, both having a negative impact on the packaging
efficiency and on the deployment behavior. The current study aims at obtaining a
better understanding of the coiling process of ultra-thin composite TRAC structure,
to enable more efficient packaging around small hubs.

5.1.2 Preliminary Coiling Experiments
Preliminary experiments were first performed on three samples to observe the coil-
ing behavior. The laminate used was a [0/90]S made of unidirectional carbon
fiber/epoxy prepreg with a ply thickness of 17.8 µm, for a total flange thickness
of 71 µm. The measured cross-section parameters, using the method described in
Section 2.5, were r = 10.6 mm, θ f = 105° and w = 8 mm. Coiling was done using
the experimental setup described in Section 5.4. Hubs with three different radii
were used: 31.8 mm, 25.4 mm, and 19.1 mm (1.25", 1" and 0.75"). Two important
findings were obtained from these preliminary experiments.

First, a significant tension force (15 N) is necessary to ensure that the TRAC structure
conforms well to the hub. Similar to tape springs, TRAC structures have a natural
coiling radius which is obtained by minimizing the strain energy in the packaged
configuration (Wilson, 2017). This natural radius can be obtained from the following
equation:

RN =

√
2
(
r2θ f + rw

)
D11 +

1
2 t2rwA11

2θ f D22
(5.1)

Using thematerial properties for this laminate (see Section 5.3) and the cross-section
parameters, the natural coiling radius for the test samples is 35.4 mm, larger than
any of the hubs used. Therefore, the tension force is needed to prevent inner flange
bifurcation in the coiled configuration.

Second, while the predicted longitudinal strain in the coiled region for the three hub
sizes (0.2%, 0.3%, and 0.4% for hub radii of 31.8 mm, 25.4 mm, and 19.1 mm,
respectively) was well below the failure strain of carbon fibers, material failure was
observed on two of the three samples when coiled around the largest hub, and on all
samples when coiled around the hub with a radius of 25.4 mm. In all cases, small
cracks were observed in the inner flange, very close to the web.
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A closer observation of the inner flange during coiling showed a buckling phe-
nomenon in the transition region between the fully deployed configuration and the
fully coiled configuration. This inner flange buckling creates a region of very high
localized curvature, right where the flange is merging into the web. Figure 5.2
shows this phenomenon. In this picture, the hub has a radius of 25.4 mm, and the
web is located towards the bottom of the image. The buckling can be clearly seen
initiating from the web and propagating toward the free edge of the flange.

Figure 5.2: Inner flange buckling in the transition region during coiling of a TRAC
structure around a hub with R = 25.4 mm.

Following this preliminary set of experiments, it is clear that the prediction of
maximum strain simply due to the two changes of curvature does not accurately
predict the actual stress imposed on the inner flange during coiling in the case of
TRAC structuresmadewith ultra-thin composites. The location of the high localized
curvature discovered in experiments coincides with the location of observedmaterial
failure, suggesting that the buckling phenomenon in the transition region is the cause
of failure.

5.1.3 Objectives and Scope
Therefore, the objectives of the current study are 1) to better understand the buckling
event observed in the transition region during coiling, 2) to mitigate the resulting
high stress concentration in order to allow coiling around small hub without failure,
and 3) to validate experimentally the findings.

In this chapter, a numerical simulation framework is first proposed to study the
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coiling behavior of ultra-thin TRAC structures. Using this simulation tool, high
stress concentrations were observed in the transition region during the coiling of
a structure made with a [0/90]S carbon fiber laminate. To mitigate this issue, a
different laminate, a hybrid made both from carbon and glass fibers, is proposed.
This newcomposite laminate reduced significantly the observed stress concentration.
The results are validated through experiments where the measured curvature of the
inner flange in the transition region is compared with numerical results. Finally, a
discussion concludes this chapter.

5.2 Numerical Simulation Framework
To better understand the mechanics of coiling ultra-thin composite TRAC structure,
a numerical simulation framework was developed. The model was developed using
the commercial finite element software Simulia Abaqus 2018. Due to both multiple
contacts and large nonlinear shell deformation, the coiling process is challenging to
accurately reproduce in simulation. Therefore, multiple models were created and
tested until a suitable option was found.

The simulations use an implicit direct-integration dynamic formulation, a trade-off
between static implicit and explicit approaches. It converges to a final static response
by using implicit time integration where artificial inertia effects and numerical
dissipation are introduced to help convergence of unstable behavior, for example
due to nonlinearities and contacts.

The first model was created to replicate as closely as possible the experimental setup
(see Section 5.5.1), an exploded view of which can be seen in Figure 5.3. It was
composed of a TRAC structure made of two separate flanges bonded together along
the web using a tie constraint, a rigid cylindrical hub, and a rigid clamp which
was a thin rectangular plate. In a first step, the rigid hub and the rigid clamp were
moved toward each other to flatten the TRAC cross-section at the extremity closest
to the hub (clamped end). The second step added the tension at the free end of
the structure, and the last step performed the coiling. The structure coiling was
driven by imposing an angular rotation to the hub, and by defining a rough contact
(contact preventing any tangential slip) region between the hub and a small section
of the clamped end to ensure that the structure would become coiled on the hub.
This coiling, driven by friction, closely matched the experimental setup described
in Section 5.5.1.

While this model was able to give some results, convergence was highly sensitive
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Figure 5.3: Initial simulation model. The structure is composed of two separate
flanges (inner and outer) bonded along the web, and a rigid clamp flattens the end
of the structure against the hub.

to small changes in either cross-section geometry or material properties. A small
change in the stiffness properties, for example, would cause a previously working
simulation to fail to reach convergence in any of the three steps. Two aspects of this
simulation model were problematic.

First, two types of contacts needed to be enforced, and the contact formulation
changed during the simulation. During the first step, all contacts were frictionless
to allow flattening of the cross-section. Once flattening was achieved, the contact
formulation between the clamped end of the structure (last 5 mm) and both the hub
and the clamp was changed to a rough contact, while contacts everywhere else did
not change.

Second, two rigid bodies (clamp and hub) were used to flatten the clamped end of
the structure. Hence, convergence of the simulations was highly sensitive to the
final distance between those two bodies. If this distance was exactly equal to the
total thickness of the flattened structure (twice the flange thickness), penetration was
often observed, and convergence would not be obtained as the solver could not find
an equilibrium solution. However, if the distance was too large, there was no rough
contact between much of the structure and the hub, and therefore the contact forces
between the hub and the structure were transferred through a very small number of
elements. A distance of twice the total thickness was found to work for some cases,
but convergence could not be achieved for other cases.

While this first model closely followed the experimental setup, the convergence
issues described above prevented it to be used for complete studies of the coiling
behavior of TRAC structures. Therefore, a new model was developed to address the
shortcomings of the first one.

The new model consists of three pieces: a shell structure, defined by geometric
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(a) Initial configuration of the model. The structure is composed of two separate flanges
(inner and outer) bonded along the web.

(b) Coiled model under tension F with the two regions of interest: Transition and Coiled.

Figure 5.4: Finite element model of coilable structure.

and mechanical parameters; a coiling mechanism (hub), defined by the radius R;
and a tension force F applied axially. The structure is modeled using reduced
integration four-node quadrilateral thin-shell elements (S4R). It is composed of an
inner flange (in contact with the hub) and an outer flange, modeled separately and
bonded together using tie constraints along the web. The structure is modeled as a
cylindrical shell made of rigid quadrilateral elements.

To prevent issues related to the flattening process, the rigid clamp was removed and
replaced by pressure applied directly on the top flange. A pressure of 30 kPa was
found to be sufficient to flatten the cross-section. It was applied on both the web
and the flange over a length of 5 mm from the clamped end of the structure, which
is the same area that was previously covered by the clamp.

Another key addition to this model is a reference point located at the center of the
hub. All six degrees of freedom for the nodes from the web located at the clamped
end are kinematically coupled to this reference point. Hence, coiling is achieved by
applying a rotation boundary condition to this reference point, which directly drives
the clamped end of the structure. Therefore, rough contact is no longer necessary,
and only one type of contact (frictionless) is enforced during the simulation.

The full model can be seen in Figure 5.4a. Figure 5.4b shows the structure partially
coiled around the hub, with the two regions of interest, transition and fully coiled,
marked.
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The simulation consists of the following three steps:

1. The cross-section is flattened at the clamped end by moving the hub towards
the structure while pressure is applied on the top flange;

2. An axial load is applied at the free end of the structure;

3. The structure is coiled around the hub by imposing an angular velocity to the
hub and the reference point.

During the first step, the web at both the clamped and the free ends has all six
degrees of freedom constrained. During the second step, the tension load is applied
to all web nodes at the free ends, which are kinematically coupled together. In this
step, the displacement in the axial direction is freed to allow the structure to stretch
under tension. Also, to facilitate convergence in this step, additional constraints
are temporarily applied at the nodes of the web along its full length, preventing
any displacement other than along the axis of the structure. These constraints are
removed prior to the third step.

The structure material properties are defined as a General Shell Stiffness section,
where the ABD matrix can be directly used. During the simulation, the mid-plane
strains ε0 and curvatures κ are recorded. Using this data, the local strains and stresses
in the shell coordinate system (longitudinal x, transverse y) can be computed across
the full thickness of the laminate using the following equations:
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εy

γxy

 =

ε0

x

ε0
y

γ0
xy

 + z


κx

κy

κxy

 (5.2)


σx
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 (5.3)

where Q̄ corresponds to the transformed stiffness matrix of the corresponding ply,
and z is the thickness coordinate representing the position in the shell, where z = 0
is the mid-surface. To obtain the stresses in the material principal directions in each
ply, the following equation can be used:
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σ1

σ2

σ12

 = T

σx

σy

σxy

 (5.4)

where T is the rotation matrix that accounts for ply orientation.

Contacts being an important part of this simulation, the right contact properties need
to be used. A single General Contact interaction is defined and is assigned to two
pairs of surfaces: the two inner surfaces of the flanges, and the outer surface of the
inner flange with the hub surface. The normal behavior of this contact is defined
as "hard" (not allowing any penetration), and the constraint enforcement method is
set to "Augmented Lagrange," which was found to be more stable than the default
method. The tangential behavior is frictionless. As aGeneral Shell Stiffness section
does not have any information about the shell thickness, this information is input
directly into the contact formulation as Surface Thickness Assignments to ensure
proper contact distances.

Due to the large amount of elements and contacts, this model is computationally
expensive to run. To reduce the runtime to about 4 hours, a rotation of only 0.5
turns is imposed to simulate coiling.

A study was performed to find the optimal mesh size. While increasing the number
of elements across the arc length of the flange from 30 to 40 changed the maximum
compressive stress by 0.7%, increasing from 40 to 50 only changed the stress by
0.02%. Therefore, the mesh size was fixed at 0.7 mm, which corresponds to 40
elements across the transverse direction in the flange and the web combined.

This model was shown to be much more stable than the previous one, as no conver-
gence issues were observed while varying both the cross-section geometry and the
material properties. Hence, this model was used for all simulations described next.

5.3 Simulation Results
Simulations were run using the geometry of the samples presented in Section 5.1.2,
with a hub radius of 25.4 mm and a structure length of 470 mm. The laminate is
[0/90]S made of unidirectional carbon fiber prepreg. Each ply consists of T800
carbon fiber with an epoxy resin and has an areal density of 17 g m−2, as described
in Chapter 2. Table 5.1 contains the ply properties. Using the Classical Lamination
Theory, the A and D matrices for this laminate are
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A =


4805 163 0
163 4805 0
0 0 533

 N mm−1 (5.5)

D =


3.386 0.0683 0

0.0683 0.651 0
0 0 0.224

 N mm (5.6)

while the B matrix is zero due to the laminate symmetry.

Table 5.1: Material properties of 17 GSM unidirectional carbon fiber/epoxy prepreg
tape.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 t [µm]
128 6.5 7.5 0.35 17.75

Figure 5.5 shows the nomenclature for the plies in the laminate, and the local
curvilinear shell coordinate system. The x axis is longitudinal, y axis is transverse,
and z axis is normal to the shell. The stress can be computed at any point throughout
the thickness, but themost interesting locations are at the interfaces between twoplies
or at the surfaces. These locations are labeled based on their thickness coordinate,
zi for the inner flange and zo for the outer flange. The thickness coordinate value is
0 at the mid-plane of each flange, and increases going away from the hub.

Outer Flange

Inner Flange

Web

Ply-1-I  CF 0°

Ply-4-I  CF 0°

Ply-2-I  CF 90°
Ply-3-I  CF 90°

Ply-4-O CF 0°

Ply-1-O CF 0°

Ply-3-O CF 90°
Ply-2-O CF 90°

zi = 0 μm
zi = 18 μm
zi = 36 μm

zi = -18 μm
zi = -36 μm

zo = 0 μm

zo = 36 μm

z

x y

Figure 5.5: Naming convention for the individual plies in each flanges for the [0/90]S
carbon fiber TRAC structure, and definition of the local shell coordinate system (x,
y, z). x is along the axis of the structure, y is transverse along the flange, and z
is normal to the shell. Thickness coordinates (zi and zo) for both flanges are also
defined.

The maximum stresses in the fully coiled region are obtained using the following
equations:
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∆κx =
1
R

and ∆κy =
1
r

(5.7)

σx,max = Q̄xx · εx,max = ±∆κxQ̄xx z∗ = ±Q̄xx z∗

R
(5.8)

σy,max = Q̄yy · εy,max = ±∆κyQ̄yyz∗ = ±
Q̄yyz∗

r
(5.9)

In equations 5.8 and 5.9, z∗ corresponds to the location of maximum stress. Due to
fiber orientation, the maximum stress is always in the fiber direction. Therefore, for
σx , the maximum stress is on the flange surfaces, and for σy, the maximum stress is
in Ply-2 and Ply-3, at their interface with Ply-1 and Ply-4 respectively.

In the flanges, the radius of curvature changes from 0 to R in the x direction, and
from r to 0 in y. The web changes curvature only in the x direction. The equation for
the longitudinal stress σx assumes that the two flanges are coiled together without
relative shear displacement, which is true in the web. Therefore, the longitudinal
stress is always compressive in the inner flange, and goes from amaximum in Ply-4-I
at zi = −36 µm (negative value from equation 5.8 with z∗ = t), to zero in Ply-1-I
at zi = 36 µm. Similarly, σx is always positive in the outer flange, going from zero
in Ply-1-O at zo = −36 µm to a maximum value in Ply-4-O at zo = 36 µm. The
transverse stress goes from a maximum tensile value in Ply-3-I at zi = −18 µm, to a
maximum compressive value in Ply-2-I at zi = 18 µm.

Using the laminate material properties, the maximum estimated stresses in the fully
coiled region are σx,max = ±360 MPa and σy,max = ±216 MPa. However, during the
preliminary experiments presented in Section 5.1.2, high curvature changes were
observed in the transition region, meaning that higher stress values are expected.

Figure 5.6 shows the simulation results for coiling around a hub of 25.4 mm. The hub
has been hidden to expose the inner flange. The transverse black line corresponds to
the top of the hub, where the inner flange is fully in contact with it. The contour map
displays the change in longitudinal curvature ∆κx in Figure 5.6a and in transverse
curvature ∆κy in Figure 5.6b.

The change in longitudinal curvature in the fully coiled region is ±39 m−1, corre-
sponding to 1/R (due to sign convention in Abaqus, the value is negative for the
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(a) Longitudinal curvature changes (∆κx , m−1).

(b) Transverse curvature changes (∆κy , m−1).

Figure 5.6: Curvature plots from simulation results for the [0/90]S carbon fiber
TRAC structure.

inner flange and positive for the outer flange). As expected, the change in trans-
verse curvature in the web is always zero. In the fully coiled region, the change of
transverse curvature in the flanges is 94 m−1, corresponding to 1/r .

However, the most interesting feature can be found on the inner flange, in the
transition region between the deployed and coiled parts of the structure. One can
notice a high localized curvature in this region, most notably in the transverse
curvature. It starts close to both the web and the contact point with the hub and
propagating toward the free edge of the flange. This matches well with the buckle
observed in the experiments.

The stress distribution in the transition region can be used to better understand the
effect of this localized curvature. Figures 5.7 and 5.8 show the stress components
in the fiber orientation at different point across the thickness for the inner flange.
The outer flange is not shown here as no localized curvature was observed in its
transition region, leading to lower stresses when compared to the inner flange.

Due to the large difference in orthotropic stiffness, the stress components in the fiber
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direction are always much higher. Therefore, Figure 5.7 displays the longitudinal
stress distribution (σx) for Ply-1-I and Ply-4-I at different values of zi. Figure 5.7a
corresponds to Ply-1-I at the surface touching the outer flange, Figure 5.7b to Ply-1-I
at the interface with Ply-2-I, Figure 5.7c to Ply-4-I at the interface with Ply-3-I, and
Figure 5.7d to Ply-4-I at the surface in contact with the hub.

Figure 5.8 displays the transverse stress distribution (σy) for Ply-2-I and Ply-3-I.
Figure 5.8a corresponds to Ply-2-I at the interface with Ply-1-I, Figure 5.8b to
Ply-2-I at zi =0 µm, and Figure 5.8c to Ply-3-I at the interface with Ply-4-I.

To better display the results, the plots show the stress distribution in the inner flange
unwrapped from the hub and projected onto a plane. The coordinate system is the
local shell system, where x is the longitudinal axis (x = 0 at the clamped end), and
y is the transverse axis (y = 0 at the root of the web). The plots are centered around
the location of contact between the structure and the hub, marked as a black vertical
line. The black horizontal line separates the flanges from the web. Only the stresses
in a 8 cm long region of the structure are shown, because it encompasses both the
fully coiled region and the transition region.

Some stress concentration can be observed in the longitudinal direction (Figure
5.7). The maximal tensile load (270 MPa) is located in the transition region, at
the free edge, and is mostly constant across to full thickness. A compressive
stress is observed in the transition region of Ply-1-I, but the maximum value in this
region is still less than the stress in the coiled region. The maximum longitudinal
compressive stress (−355 MPa) is located in Ply-4-I, at the surface in contact with
the hub (zi = −36 µm), in the web region. This matches well with the predicted
value from Equation 5.8, which gave −360 MPa. Similarly, the longitudinal stress
in the web at the interface between the inner flange and outer flange (Figure 5.7a) is
zero, as expected.

However, the stress concentration in the transition region is much more significant
in the transverse direction (σy). Across only half of the flange thickness (from
Ply-2-I, zi = 18 µm to Ply-3-I, zi = −18 µm), the transverse stress varies from high
compression (−412 MPa) to high tension (343 MPa). These values are both higher
than the correspondingmaximum observed in the longitudinal direction for the inner
flange. Furthermore, this zone of very high stress is highly localized, starting in the
flange very close from both the web and the line of contact with the hub. In the
coiled region, Equation 5.9 (±216 MPa) provided a good prediction of the stress,
with values between 210 MPa and 220 MPa at the flange surface, zero stress in the
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(a) Ply-1-I, zi = 36 µm

(b) Ply-1-I, zi = 18 µm

(c) Ply-4-I, zi = −18 µm

(d) Ply-4-I, zi = −36 µm

Figure 5.7: Longitudinal stress (σx , MPa) in the inner flange of the [0/90]S carbon
fiber TRAC structure.
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(a) Ply-2-I, zi = 18 µm

(b) Ply-2-I, zi = 0 µm

(c) Ply-3-I, zi = −18 µm

Figure 5.8: Transverse stress (σy, MPa) in the inner flange of the [0/90]S carbon
fiber TRAC structure.
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web, and zero stress at zi = 0 µm.

This simulation shows that the high localized curvature observed in the experiments
is due to a combination of the coiling geometry and the TRAC structure geometry.
While some stress concentration is observed in the longitudinal direction, the highest
stress values are seen in the transverse direction. Indeed, in the fully coiled region,
the maximum compressive stress (−360 MPa) is only 87% of the maximum values
in the transition region. Therefore, reducing this stress concentration is important
to avoid failure when coiling a TRAC structure around small hubs.

5.4 Reducing Stress Concentration by Changing Flange Laminate
The simulation results for the TRAC structure made of a [0/90]S laminate showed
stress concentration in the transition region, particularly in the transverse direction.
Therefore, one solution to reduce the stress is to remove altogether the 90° plies,
and replace them by layers of plain weave glass fiber fabric to give some in-plane
shear and transverse strength to the laminate. By orienting the glass fiber plies at
±45°, no fibers are directly in the transverse direction. Furthermore, the glass fiber
plain weave is tougher and has a higher strain limit when compared to carbon fiber.
The idea of having a single ply of unidirectional carbon fiber composite oriented at
0° sandwiched between two plies of a plain weave oriented at 45° to obtain a very
flexible laminate was first proposed by Pollard and Murphey, (2006). Structures
using this type of laminate were studied by multiple authors (Khan, Borowski, and
Taha, 2016; Murphey et al., 2015; M. Peterson and Murphey, 2013).

As the structure mechanical properties in the deployed configuration are mainly
driven by the longitudinal fibers, similar properties can be achieved by keeping the
same thickness of carbon fiber prepreg in the 0° direction. Also, to reduce the longi-
tudinal stress as much as possible, it is optimal to keep the carbon fiber prepreg in the
center of the laminate. The resulting laminate is [±45GFPW/0CF/±45GFPW ], where
GFPW denotes a glass fiber plain weave prepreg, and CF denotes a unidirectional
carbon fiber prepreg tape. The corresponding material properties for this laminate
were given in Section 2.3.

While the corrected ABD matrix is used as explained in Section 2.3, Equation
5.3 uses ply level properties to compute the stress components in the laminate.
Therefore, the nominal ply properties from Table 2.2 are used to compute the
stresses throughout the thickness of the flanges.

The simulation framework presented in Section 5.2 can be used to study this new
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laminate and understand the effects of replacing the 90° carbon fiber plies by a glass
fiber plainweave oriented at 45°. Figure 5.9 shows the nomenclature for the plies in
this laminate. A simulation was performed using the same cross-section geometry
(r = 10.6 mm, θ f = 105° and w = 8 mm) than the full carbon fiber laminate. Figure
5.10 shows the curvature plots extracted from the simulation results.

Outer Flange

Inner Flange

Web

Ply-1-I  GFPW 45°
Ply-2-I  CF 0°
Ply-3-I  GFPW 45°

Ply-1-O GFPW 45°

Ply-3-O GFPW 45°
Ply-2-O CF 0°

zi = -15 μm
zi = 15 μm
zi = 40 μm

zi = -40 μm

zo = 40 μm

z

x y

Figure 5.9: Naming convention for the individual plies in each flanges for the
[±45GFPW/0CF/±45GFPW ] TRAC structure, and definition of the local shell coor-
dinate system (x, y, z). x is along the axis of the structure, y is transverse along
the flange, and z is normal to the shell. Thickness coordinates (zi and zo) for both
flanges are also defined.

When compared with the previous laminate, similar observations can be made from
these curvature plots. The transverse curvature is always zero in the web, and both
curvatures in the fully coiled region match with the predictions from flattening and
coiling. Regions of high curvature can also be observed in the transition region.
However, the maximum curvature is now smaller (138 m−1 versus 157 m−1) in
the transverse direction, and higher in the longitudinal direction (−78 m−1 versus
−52 m−1).

As there are no fibers directly in the transverse direction, only the longitudinal stress
in the carbon fiber ply (Ply-2-I) will be studied. Figure 5.11 shows the stress plots
at three locations through the thickness of the carbon fiber ply. While some stress
concentration can be observed in the transition region, the location of the maximum
compressive stress (−281 MPa) is at zi = −15 µm, in the web, in the fully coiled
region. This matches well with the expected result, obtained using Equation 5.8,
of −278 MPa. Once again, the maximum tensile stress is located in the transition
region, at the free edge, with a value of 290 MPa, similar to the equivalent value for
the [0/90]S laminate (280 MPa).
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(a) Longitudinal curvature changes (∆κx , m−1).

(b) Transverse curvature changes (∆κy , m−1).

Figure 5.10: Curvature plots from numerical simulation results for the
[±45GFPW/0CF/±45GFPW ] TRAC structure.

Using this simulation framework, the effect of reducing the hub radius can also be
studied. Figure 5.12 shows the longitudinal stress distribution for TRAC structures
coiled around hubs with R = 19.1 mm and R = 12.7 mm. Only the stress in Ply-2-I,
at a coordinate thickness of zi = −15 µm, is shown, as this is where the maximum
stress is observed. Once again, the maximum compressive stresses for these two
cases are located in the fully coiled region, with −378 MPa and −577 MPa for the
hub with R = 19.1 mm and R = 12.7 mm, respectively. These values agree very
well with the expected values from Equation 5.8. The maximum tensile stress is
once again located at the free edge, with values of 302 MPa in both cases.

These results, obtained by decreasing the hub radius, demonstrate that the advantages
of the improved laminate, mainly lower stress concentrations in the transition region
leading the the maximum compressive stress being in the fully coiled region, are
still observed for smaller hubs.
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(a) Ply-2-I, zi = 15 µm

(b) Ply-2-I, zi = 0 µm

(c) Ply-2-I, zi = −15 µm

Figure 5.11: Longitudinal stress (σx , MPa) in the inner flange of the
[±45GFPW/0CF/±45GFPW ] TRAC structure.
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(a) R = 19.1 mm

(b) R = 12.7 mm

Figure 5.12: Longitudinal stress (σx , MPa) in Ply-2-I, zi = −15 µm, of the inner
flange of the [±45GFPW/0CF/±45GFPW ] TRAC structure for two different hub radii.

5.5 Experimental Validation
To validate the simulation framework presented in Section 5.2, a new set of experi-
mentswas performed, using the new laminate analysed in Section 5.4. A non-contact
measurement technique was used to obtained the deformed shape during the exper-
imental coiling, and the results were compared with numerical simulations.

5.5.1 Experimental Setup
A dedicated experimental setup for coiling TRAC structures was designed and built.
It can be seen in Figure 5.13. It consists of a cylindrical hub made of transparent
acrylic, attached to a gearbox (Ondrive P30-60) with a 60:1 ratio. An electric
motor drives the gearbox at 60 RPM, turning the hub at only 1 RPM to reproduce
quasi-static coiling conditions. Four different hub radii can be used on the setup:
12.7 mm, 19.1 mm, 25.4 mm, and 31.8 mm (0.5", 0.75", 1", and 1.25"). The TRAC
cross-section is flattened and attached to the hub using a narrow, flat clamp, as seen
in Figure 5.14a. A small piece of sandpaper is bonded under the clamp to increase
friction on the structure and prevent any slipping.
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A constant tension force is applied at the other end of the structure using a calibrated
weight connected to the structure with thin cable and a pulley. This force is applied
using an "L" shaped clamp that is attached to the web only, as shown in Figure 5.14b.
This leaves the end section free to deform, and aligns the force with the centroid of
the cross-section. Three cameras were used to observe the test: one camera looks
from above, one camera positioned on the side (looking in the -Y direction, at the
web), and the other camera views the inner flange from below (with an angle to
avoid looking through the hub).

Figure 5.13: Coiling experimental setup.

(a) 4 different hub radii: 31.8 mm, 25.4 mm,
19.1 mm, 12.7 mm (from left to right).

(b) Clamp applying tension force to the
TRAC structure.

Figure 5.14: Boundary conditions during experimental coiling.

Samples were first coiled around the largest radius (R = 31.8 mm). Because of
the thickness of the clamp, the structure can only be wrapped once around the
hub. Once the sample had been coiled, the experiment was stopped, and then the
structure was uncoiled in a controlled way at the same rotational velocity. Next,
coiling was repeated on the second hub (R = 25.4 mm). If cracking occurred during
the first test, the other end of the sample was used for the next diameter. If no failure
was observed, the same end was reused. Finally, if no cracking occurred after this
second coiling, the smallest radii (R = 19.1 mm and R = 12.7 mm) were also tested.
Inspection for cracks was done through visual examination. If a cracking sound was
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heard during the test, the video recording of the test was used to correlate the sound
with the potential failure location, and a more thorough inspection was done under
microscope. While this method was useful to find cracks on the outer surface, it did
not allow detection of material failure in the inner plies of the laminates.

5.5.2 Curvature Calculation
While material failure provides qualitative information useful to compare different
structure laminates, a quantitative measurement is necessary to adequately compare
experiments with simulation results. Due to the thinness of the laminate, a non-
contact measurement method was preferred to avoid interaction with the structure.
The chosen technique consisted in measuring both the outer flange surface and the
inner flange surface using a Faro arm (Edge 14000) with a 3D laser scanner attach-
ment (ScanArm HD) to acquire the deformed shape during coiling, and compare
the results with the simulations.

To achieve this measurement, a special hub with a cutout was designed and manu-
factured using a laser cutter with a rotary fixture, as seen in Figure 5.15. The cutout
allowed to clearly observe and measure the transition region of the inner flange,
without changing the boundary conditions as it was designed to follow the contact
points between the structure and the hub. To easily locate the measured point cloud
in 3D, the Faro Arm was used to measure the hub, and its axis was used to generate
a coordinate system. This left only two degrees of freedom, the rotation around the
hub and the translation along its axis, simplifying the process of comparing multiple
scans with numerical results.

Figure 5.15: Coiled TRAC structure around hub with cutout (R = 25.4 mm). Inner
flange buckling is seen close to the hub.
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The resulting measured point cloud, after initial cleaning, was processed using
Meshlab, an open source software to process 3D meshes (Cignoni et al., 2008).
First, a subset of the point cloud was extracted using the Point Cloud Simplification
filter, to reduce the number of points. The raw point cloud can have up to 600,000
vertices, so the filter was used to decrease that number to around 6000 in order to
reduce noise. Second, the normal at each point was computed with the Compute
Normals for Point Sets filter, using 10 neighbors to perform the estimate. Third,
the surface was reconstructed using the Ball-Pivoting algorithm (Bernardini et al.,
1999). The default parameters were used, with a clustering radius of 20% and an
angle threshold of 90°. Finally, the principal curvatures of the reconstructed surface
were computed using the Pseudoinverse Quadratic Fitting method.

Using the simulation framework presented in Section 5.2, numerical results were
obtained for a TRAC structure with dimensions corresponding to the test samples
as measured following the process described in Section 2.5 (r = 12.35 mm, θ f =

89.4° and w = 8 mm). As the principal curvatures are not computed during the
simulations, the same data processing was done on the numerical results. The mesh
obtained from the simulations was processed using the same procedure, except for
the first step which was ignored to keep all the available nodes (around 15,000).
Therefore, it was possible to easily compare the shape measured in experiments with
the numerical results.

5.5.3 Results
Four 0.5 m long TRAC structure samples made with the [±45GFPW/0CF/±45GFPW ]
laminate were tested experimentally. All four samples were successfully coiled
around the 31.8 mm hub, without any material damage. All four samples were then
coiled around the 25.4 mm hub. One sample suffered a small localized crack in the
inner flange, while the other three samples were successfully coiled. While a much
more detailed failure analysis would be necessary to accurately compare the two
laminates, this second series of tests suggests that the new laminate can be reliably
coiled around smaller hubs than the previous [0/90]S laminate.

To study how tightly TRAC structures made of this new laminate can be packaged,
one of the samples was then coiled around both the 19.1 mm and 12.7 mm hubs.
While no material failure was observed following coiling around the first hub, small
localized damage was seen after the last test, as seen in Figure 5.16. A crack can
be observed in the inner flange, close to the web, at the location where simulation
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predicts a high localized curvature (see Figure 5.10).

Figure 5.16: Inner flange of TRAC structure after coiling around hub with R =
12.7 mm. A small crack is shown by the green arrow.

By using the partially cut hub from Figure 5.15 (R = 25.4 mm) and stopping the
coiling process at a point such that the inner flange was in contact with the hub as
close as possible to the cutout without influencing the shape, the deformed shape of
the structure was measured using the Faro Arm laser scanner. In this configuration,
it was possible to partially measure the buckled shape of the inner flange. The
curvature map from this measured shape was then compared to simulation results.
Figures 5.17a and 5.17b show the comparison for the outer and inner flanges,
respectively. To better illustrate the shape, the colormap displays themean curvature,
which is the average of the signed curvature over all directions at a given point. The
plots are viewed from the top of the experimental setup, equivalent to looking toward
the X direction (see Figure 5.1). The hub is represented in gray on the left side. For
each figure, the experimental measurements are on top, while the simulation results
are at the bottom.

For the outer flange, the experimental curvature map matches well with simulation
results. The gradual flattening of the flange is well captured, as is the fully coiled
region. As expected, no localized curvature is seen in the transition region of the
outer flange. The only discrepancy is in a small region of the web, in the coiled
region where high curvature was measured. However, it appears to be an artefact of
the measurement method and data processing, as no similar feature could be visually
observed during the experiment.

Similarly, very good agreement is obtained for the inner flange. Due to the presence
of the hub, only a portion of the transition region could be measured. The gradual
flattening of the flange was well captured. The inner flange buckling observed in
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(a) Plots of the mean curvature (mm−1) for the outer flanges. On top is the measured shape
from experiment, and at the bottom is the shape extracted from simulation results.

(b) Plots of the mean curvature (mm−1) for the inner flanges. On top is the measured shape
from experiment, and at the bottom is the shape extracted from simulation results.

Figure 5.17: Comparison of the flanges mean curvature between experiment and
simulation, for a TRAC structure partially coiled around a hub with R = 25.4 mm.

experiments can be easily seen in the measurements, and matches very well with
the predicted shape from simulation.

This comparison shows that the simulation framework developed to study the coil-
ing behavior of ultra-thin TRAC structures predicts well the observed behavior in
experiments.

5.6 Conclusion
A study of the coiling behavior of ultra-thin TRAC structure has been presented in
this chapter. A simple coiling mechanism, consisting of a driven rotating hub and
a stabilizing tension force, was used to perform preliminary coiling experiments on
TRAC structures made with four plies of unidirectional carbon fiber prepreg tape.
In the transition region between the fully deployed region and fully coiled region,
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inner flange buckling was observed, leading to material failure.

A numerical simulation framework was developed to better understand the mechan-
ics of the coiling process for ultra-thin TRAC structures. Results from this model
showed high localized curvature changes in the transition region for the inner flange,
leading to high localized stresses. Indeed, the maximum compressive stress in the
transverse direction due to this localized curvature change was shown to be 16%
higher than the value expected from a simple analytical estimate based on overall
curvature changes due to flattening and coiling.

To address this issue, a new laminate was proposed. This laminate is made by
sandwiching a single ply of unidirectional carbon fiber between two plies of glass
fiber plainweave fabrics. Simulation results for this new design showed that the stress
concentration in the transition region is greatly reduced, leading to the maximum
compressive stress to be in the fully coiled region. Similar results were obtained
when reducing the hub radius. This result is very important for the design of TRAC
structures. For this laminate, simple analytical estimates based on the changes of
curvature due to flattening and coiling can accurately predict the maximum stresses
observed.

Finally, the numerical model was validated by comparing with experiments. The
shape of the inner flange was measured using a 3D laser scanner, and the curvature
thus obtained was compared with simulation results.
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C h a p t e r 6

CONCLUSION

6.1 Summary and Discussion
The overall objectives of the research presented in this thesis were to implement and
enable the use of ultra-thin ply composites in coilable structures, focusing on the
specific case of the TRAC cross-section. These objectives were divided into four
goals that were addressed in this work:

1. Develop a manufacturing process to fabricate structures using the thinnest
composite materials available.

2. Study the behavior of the structures in the deployed configuration when sub-
jected to pure bending and torsion.

3. Predict the buckling load of a structure under pure bending.

4. Study the behavior of the structures during the coiling process.

A TRAC structure design was presented in Chapter 2. A requirement on the
bending stiffness was derived from a system-level study for a large space solar
power satellite. Two laminates made of the thinnest materials available, both a
glass fiber plainweave fabric and a carbon fiber unidirectional tape, were studied.
Coiling considerations, presented in Chapter 5, showed that the laminate made from
both glass fiber plainweave and carbon fiber unidirectional performed better. Using
this laminate, the geometric parameters of the TRAC cross-section were selected to
comply with bending stiffness requirement.

The challenges of working with thin-ply composites were also addressed in Chap-
ter 2. Accurate material stiffness properties were obtained by combining experimen-
tal measurements, both at the ply level and at the laminate level, and the classical
lamination theory. An in-autoclave manufacturing process for ultra-thin composite
TRAC structure was developed, where the flanges are first cured and then bonded
together in a subsequent step. The post-cured shape of the prototypes was observed
to change significantly due to residual stresses. A method to measure the as-built
shape of the prototypes was developed in order to mitigate this variation in shape.
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An investigation of the structure’s behavior in its deployed configuration was pre-
sented in Chapter 3. Three prototypes were tested under pure bending around both
axes of the cross-section. Bending around the Y axis was symmetric, while bending
around the X axis had two load cases: web in compression (+X) and web in tension
(−X). The behavior was highly nonlinear due to large deformation and localized
buckling events. For all three loading cases, two regimes were observed, with a
linear pre-buckling phase followed by a gradual buckling event transitioning into a
stable post-buckling phase. This second regime continued until ultimate buckling
occurred, which occurred at a load as high as four times the initial buckling moment.

A numerical model was developed using Abaqus 2018 to simulate this pure bending
loading case. The model was shown to have good agreement with the experiments,
and was able to predict accurately the pre-buckling regime, the initial buckling event
and some of the stable post-buckling regime. Ultimate buckling was not predicted
by the model.

This simulation framework was used to study the effect of varying the structure
length from 300 mm to 5000 mm on the initial buckling load. For all three load
cases (+X , −X and Y ), buckling was first a localized mode and transitioned to a
global lateral-torsional mode past a certain length. Nonlinear effects in the pre-
buckling regime were shown to have a significant impact on the buckling load when
the flanges are loaded in compression (−X and Y ), leading to a mostly constant
buckling load across the full length range. This was due to the localization of
the deformation in the flanges during the pre-buckling phase, making the buckling
wavelength constant.

The torsional behavior of TRAC structures was also studied in Chapter 3, both
experimentally and numerically. The simulation model was able to accurately
predict the torsional behavior observed in experiments. The torsional stiffness was
shown to increase quadratically with twist. Initial twist in the test prototype due to
the manufacturing process was observed, but had little impact on the results as the
torsional stiffness is low at small rotation angles due to the open cross-section of the
TRAC structure.

An analyticalmethod to predict buckling of TRACstructures under pure bendingwas
proposed in Chapter 4. This was achieved by studying a simplified structure, where
only the flange loaded under non-uniform compression was present. It consisted of
a cylindrical shell panel simply supported on three sides, with one longitudinal free
edge. The buckling load was estimated using the Rayleigh-Ritz method. Partially
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uncoupled stability equations for a balanced laminate were derived. While these
equations could not directly solve the problem of interest in the thesis due to the non-
uniform compression and the free edge, they were used to obtain the shape functions
for the in-plane displacements from the out-of-plane displacement, reducing the
number of unknowns in the system. This analyticalmodelwas shown to overestimate
the buckling load of a 500 mm composite TRAC structure by 44%.

The coiling behavior of TRAC structures was investigated in Chapter 5. Material
failure was observed during experimental testing of prototypes made from a [0/90]S
carbon fiber laminate. Inner flange buckling was observed in the transition region
between the fully coiled and fully deployed regions, leading to high localized cur-
vature at the failure location. A numerical simulation framework was developed
to better understand this coiling process. Results showed high transverse localized
curvature in the transition region, leading to high transverse stress at the failure
location. To mitigate this issue, a new laminate, consisting of a unidirectional
carbon fiber ply sandwiched between two glass fiber plainweave fabric layers, was
proposed. Simulation results for this laminate showed that stress concentrations
were reduced enough in the transition region that the maximum stress was in the
fully coiled region. This result is very important for the design of TRAC structures,
as this shows that simple analytical estimates based on the change of curvatures due
to flattening and coiling can accurately predict the maximum stresses observed.

The contributions presented in the thesis enable the use of ultra-thin ply composites
in the design of coilable structures. Tools to quickly estimate the main structural
properties were developed, with closed-form equations for the bending stiffness and
an analyticalmethod to predict the buckling load under pure bending. This analytical
method is general, and could be used to predict buckling under different loading
conditions and boundary conditions if at least one flange is under compression.
It was also shown that by carefully selecting the laminate for the structure, the
maximum stresses during the coiling process is in the fully coiled region, and that
these values can be predicted by computing the strains due to the change of curvatures
(flattening and coiling). These estimates of the bending stiffness, buckling moment
and maximum coiling stresses enable the rapid design of coilable structures for
various applications. These designs can then be studied in great detail by using
the experimental methods and numerical simulation frameworks developed for pure
bending, torsion and coiling.
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6.2 Future Work
Several areas of research can be explored to complement the work presented in this
thesis.

The study of the effect of the structure length on the initial buckling load presented
in Chapter 3 predicted that this critical load is mostly constant with length for two of
the three load cases. This was due to nonlinear effects in the pre-buckling regime.
However, only experiments at a length of 575 mm were performed, well below the
predicted transition point from localized flange buckling to global lateral-torsional
buckling. This was limited by the experimental setup used, as prototypes as long
as 1.6 m were fabricated. Larger scale experiments should be performed to validate
the conclusions of the present study.

Numerical simulations of the behavior under pure bending gave limited results for the
post-buckling regime. While the loss of stiffness following the initial buckling event
was well predicted, convergence issues in the stable post-buckling regime prevented
the simulations to reach the ultimate buckling load observed in experiments. Other
techniques, such as generalized path-following (Eriksson, 1998; Groh, Avitabile,
and Pirrera, 2018), are more suited to predict the full post-buckling behavior and
could be used to predict the ultimate buckling load.

The coiling study presented in Chapter 5 has focused on reducing the maximum
compressive stress observed during the coiling process. However, while material
failure was observed in the experiments, no prediction of failure was performed
based on the results from the numerical simulations. Incorporating a suitable failure
criterion in the numerical model to predict material failure would benefit the design
process.
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