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Abstract

In Reinforcement Learning l’obiettivo è apprendere come degli agenti deb-

bano prendere sequenze di decisioni o azioni all’interno di un ambiente al fine

di massimizzare un valore numerico chiamato rinforzo (reward). Questo pro-

cesso di apprendimento impiegato in combinazione con reti neurali artificiali

ha dato origine al Deep Reinforcement Learning (DRL), applicato ad oggi a

molti domini, a partire dai videogiochi alla robotica e ai veicoli autonomi.

Questo elaborato investiga dei possibili approcci che utilizzano DRL ap-

plicandoli a Flatland, una simulazione ferroviaria multi-agente in cui l’obiettivo

principale è pianificare i percorsi dei treni in modo da ottimizzare il flusso di

traffico all’interno della rete e riprogrammarli in caso di eventi che ne osta-

colino il cammino. Il problema all’origine dei task proposti in Flatland è il

Vehicle Rescheduling Problem, un problema NP-completo di ottimizzazione

combinatoria, per il quale l’impiego di euristiche e metodi deterministici per

identificare soluzioni subottimali, non è efficace in sistemi ferroviari realistici.

In particolare, si sono analizzati in questo ambiente il task della navi-

gazione di un singolo agente all’interno della mappa, che a partire da una

posizione iniziale deve raggiungere una stazione target nel minor tempo pos-

sibile; e la generalizzazione di questo task ad un sistema multi-agente, in cui

al problema della navigazione si aggiunge quello della risoluzione dei conflitti

tra agenti, i cui percorsi dalla sorgente alla destinazione possono potenzial-

mente incrociarsi.

Per risolvere il problema si sono sviluppate delle osservazioni specifiche

dell’ambiente, in modo da catturare le informazioni necessarie per la rete,
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addestrata con Deep Q-Learning e varianti, ad apprendere come decidere per

ogni agente l’azione che porti alla soluzione migliore, quella che massimizza

il reward totale.

I risultati positivi ottenuti su environment semplificati danno spazio a

numerose interpretazioni e possibili sviluppi futuri e mostrano come il

Reinforcement Learning abbia le potenzialità per risolvere il problema in una

nuova prospettiva.
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Introduction

Reinforcement learning (RL) is a subfield in machine learning, where the

task is learning how agents should take sequences of actions in an environ-

ment in order to maximize a numerical reward signal [1] [5]. Over the past

few years, RL has become increasingly popular, mainly thanks to the achieve-

ments obtained in combination of deep learning techniques, that gave birth

to the new field of Deep Reinforcement Learning (DRL).

Among the most notable works that contributed to donate to DRL signifi-

cant recognition worldwide there are DeepMind papers on Atari games [7] [8],

Go [9] [10] and other board games [11] [12]. Apart from games, Deep Re-

inforcement Learning is applied on a variety of disciplines such as robotics

and autonomous vehicles [13] [14] [15], natural language processing [16] [17],

computer vision [18] and many others [6], where it has shown potential and

has been successful in solving many complex decision-making tasks that were

previously out of reach for a machine. In this work, we investigate the appli-

cation of Deep Reinforcement Learning techniques in the real-world scenario

of transportation, with the aim of solving the combinatorial optimization

problem of vehicle re-scheduling (VRSP) [19] in a multi-agent railway envi-

ronment called Flatland. The goal in this simulation is to optimize traffic

flow inside a network: a research focus particularly interesting, since possible

advancements could lead to improvements in the way modern traffic manage-

ment systems deal with vehicles, in many areas of logistics and transporta-

tion.

v
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Classical solutions to the VRSP, a NP-complete problem in combinato-

rial optimization, are based on the use of heuristics and other deterministic

approaches to find suboptimal but acceptable solutions. However, these solu-

tions are only applicable to a simplified railway simulation such as Flatland,

where many of the real-world constraints were removed, but in a real-world

scenario with realistic maps and a fast-changing environment, heuristics have

been proved to be insufficient to obtain feasible solutions. To be applicable

to real railway systems, an offloading of the computational effort of these

approaches to a learning component could be potentially beneficial to solve

the problem efficiently.

It is in this perspective, that we propose the methods in this work, to over-

come the limits of the classical approaches and identify new alternatives in

the field of Reinforcement Learning.

Chapter 1 contains a theoretical introduction on RL in its definition in re-

lationship to Markov Decision Processes (MDPs), it describes the main ideas

and elements, such as the concepts of reward, policy and value function, the

foundational algorithmic techniques to solve it, namely Monte Carlo meth-

ods, Dynamic Programming and Temporal-Difference Learning and explores

in the end the differences with the variant of Multi-Agent Reinforcement

Learning (MARL).

Chapter 2 focuses on the results obtained combining one of the algorithm

presented in Chapter 1 (Q-Learning), with artificial neural networks, by giv-

ing a detailed overview of the improvements and the achievements over time,

starting from the vanilla DQN to Rainbow, detailing in sections the single

relevant modifications.

Chapter 3 gives a thorough explanation of the problem we are trying to

solve, describing the Flatland environment, its core parts, with a perspective

on the possible tasks and the potential of this simulated system.

Chapter 4 describes the research work proposed to solve the tasks in the

Flatland environment, from finding a suitable policy in the navigation task

to the development of new observation classes to tackle the problem of con-
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flicts avoidance in a multi-agent setting.

Chapter 5 briefly summarizes the results of the approaches presented, high-

lighting the major difficulties posed by the challenge, and further suggests

possible improvements as a future work.
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Chapter 1

Background

As human beings, the principle of learning by interacting with the sur-

rounding environment accompanies us in our lives since our first experiences

as infants.

When we walk, look and talk, we are supported by a complex sensorimotor

system that allows us to perceive the world and change it with our actions

and behavior.

Throughout our existences, such interactions are of undoubted importance

since they concur in building a significant amount of experiences about our-

selves and the world, that will translate into knowledge.

This idea of learning by interaction is indeed foundational in nearly all the-

ories of learning and intelligence.

In this chapter we explore reinforcement learning, a computational ap-

proach to goal-directed learning by interaction, that focuses on providing

solutions to teach machines and artificial intelligence to act and learn in an

environment, exactly as a human being.

First we define it mathematically in terms of a Markov Decision Process,

then we provide an overview of all its meaningful elements, finally explaining

some of the first approaches studied in literature to solve the RL problem,

such as Dynamic Programming, Monte Carlo and Temporal Difference learn-

ing.

1
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1.1 Reinforcement learning

Reinforcement learning is learning what to do - how to map situations

to actions - so as to maximize a numerical reward signal. The learner is not

told which actions to take, but instead must discover which actions yield the

most reward by trying them [1]. In most situations, actions may influence

not only immediate rewards, but also the consequent situations and through

those, also subsequent rewards. These two characteristics of trial-and-error

search and delayed reward define reinforcement learning and distinguish it in

the machine learning field.

Reinforcement learning is usually formalized using ideas from dynamical sys-

tems theory, in particular Markov decision processes. These processes are

well-suited to define the agent-environment interaction as intended to in-

clude the three aspects of sensation, action, and goal.

RL is different from supervised learning, since it is not based on a training

set of labeled data provided by some external supervisor.

It is also different from unsupervised learning, since its goal is to maximize

a reward signal, not to find hidden structure inside collections of unlabeled

data.

Another aspect that characterizes reinforcement learning is the trade-off be-

tween exploration and exploitation, that is the choice between trying actions

with unknown outcomes to see how they affect the environment or perform

actions with expected outcome according to the knowledge already available.

The dilemma lies in the fact that, to obtain the best performance, the agent

has to exploit what it has already experienced in order to obtain reward, but

it also has to explore in order to make better action selections in the future.

Furthermore, one of the most interesting features of reinforcement learning,

is its interactions with many other engineering and scientific disciplines, that

are, as many subfields in artificial intelligence, statistics, optimization, op-
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erations research, control theory and other mathematical subjects, but also

psychology, biology and more precisely neuroscience. Reinforcement learning

has received from these fields the concept of how animals learn to fulfill a

goal and many ideas behind some of the most important algorithms, that

were inspired by biological learning systems.

1.2 Finite Markov Decision Processes (MDP)

In this section we introduce finite Markov decision processes as a suit-

able formalism to define sequential decision making, as in the reinforcement

learning framework.

1.2.1 Agent-Environment Interaction

In order to exploit the MDP formalism, we first frame the problem in an

interaction scheme between a learner, called agent and the outside on which

the agent can act, the environment. In particular, this interaction occurs

in a sequence of discrete time steps t = 0, 1, 2, 3, ... where at each time step

t, the agent observes the environment, receiving some representation of its

state St ∈ S, and upon that, selects an action, At ∈ A(s), from the set of all

possible actions. At the following time step, the agent receives a numerical

reward Rt+1 ∈ R and enters a new state, St+1.

The mechanism is detailed in Figure 1.1.

In a finite MDP, the sets of states, actions, and rewards (S, A, and R)

have a finite number of elements. In addition, the random variables Rt and

St have discrete probability distributions that depend only on the previous

state and action, following the Markov property.

Definition 1.2.1. A discrete time stochastic control process is Markovian
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Figure 1.1: Agent interacting in an environment in the RL framework.

(i.e. it has the Markov property) if

P (St+1 | St) = P (St+1 | S1, ..., St). (1.1)

A Markov Decision Process [20] is a discrete time stochastic control pro-

cess defined as follows:

Definition 1.2.2. A (finite) MDP is a 5-tuple (S,A,P ,R, γ) where:

• S is a (finite) set of states,

• A is a (finite) set of actions,

• P is a state transition probability function P : S × S ×A → [0, 1]

p(s′ | s, a) = P (St = s′ | St−1 = s, At−1 = a) (set of conditional

probabilities between states).

• R is the reward function R : S ×A → R
R(s, a) = E[Rt | St−1 = s, At−1 = a] =

∑
r∈R

r
∑
s′∈S

p(s′, r | s, a).

• γ is a discount factor γ ∈ [0, 1].
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1.2.2 Reward

In reinforcement learning the goal is formalized through the idea of re-

ward signal ; at each time step, the agent receives a numeric value, Rt ∈ R
and its goal is to maximize the total amount of reward received, intended

not as immediate reward but as sum of rewards in the long run.

This idea is known as reward hypothesis :

That all of what we mean by goals and purposes can be well thought of as

the maximization of the expected value of the cumulative sum of a received

scalar signal (called reward) [1].

The way we shape reward directly influences the behaviour of our agent,

that is why reward definition is a key point when defining a reinforcement

learning model.

1.2.3 Returns and Episodes

To express more formally this idea of cumulative reward it is necessary

to introduce the concept of expected return, denoted as Gt, as a function of

the sequence of rewards, that we seek to maximize.

In the simplest case

Gt = Rt+1 +Rt+2 + ...+RT , (1.2)

where T is the final step.

However, this definition applies well only in presence of episodic tasks, namely

when the agent-environment interaction can be naturally divided into subse-

quences, called episodes, where each of them ends in a special terminal state.

On the other hand, in presence of continuing tasks where the interaction

goes on without limits and the sequence of states is impossible to divide,

the return formulation given is problematic, since for T = ∞ would lead to

infinite reward.
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For this reason, the commonly accepted formulation of return makes use of

the definition of discount :

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
inf∑
k=0

γkRt+k+1, (1.3)

where γ is a parameter ∈ [0, 1] called discount rate.

The discount rate estimates the present value of future rewards, in other

words, it works as a ”weight” on the importance of future rewards, where a

reward received k steps in the future is worth only γk+1 times what it would

be worth if received at the current time step.

A value of γ < 1 grants convergence of the sequence to a finite value, given

that Rk is bounded.

If γ = 0 the agent ”sees” only one step ahead, trying to maximize only

immediate rewards Rt+1 . If γ = 1 the agent considers all future rewards as

worthy as the immediate ones.

In general, for a value of γ approaching 1, the agent takes into account future

rewards more strongly, in other words it becomes more farsighted.

1.2.4 Policies and Value Functions

A value function is a function of states or state-action pairs, that esti-

mates how good is for an agent to be in a given state, defined in terms of

future expected return. This value function is evaluated against a policy,

that is informally, the agent’s behaviour.

Formally, a policy π is a probability distribution over actions a ∈ A(S) for

each s ∈ S where

π(a | s) = p(At = a | St = s) (1.4)

in other words, the probability of selecting a possible action given a state.

The value of a state s under a policy π, denoted vs, is the expected return

when starting in s and following π thereafter. Formally:
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vπ(s) = E[Gt | St = s] = E

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
, for all s ∈ S, (1.5)

where Eπ[.] denotes the expected value of a random variable given that

the agent follows policy π, and t is a time step.

This vπ is called the state-value function for policy π.

In a similar manner we can define the value of selecting an action a in state

s under a policy π, denoted qπ(s, a), as the expected return starting from s,

taking the action a and then following policy π:

qπ(s, a) = E[Gt | St = s, At = a] = E

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
. (1.6)

Here qπ is called the action value function for policy π.

Lastly, it is possible to define a third value function, called advantage func-

tion:

aπ(s, a) = qπ(s, a)− vπ(s) (1.7)

that uses both the action value function q and the value function v to describe

how good an action a is compared to the expected return when following a

policy π.

1.2.5 Bellman Equation

A fundamental feature of value functions is that they satisfy recursive

relationships known as Bellman equations.

vπ(s) = Eπ[Gt | St = s] (1.8)

= E[Rt+1 + γGt+1 | St = s] (1.9)

=
∑
a

π(a | s)
∑
s′

∑
r

p(s′, r | s, a)
[
r + γEπ[Gt+1 | St+1 = s′]

]
(1.10)

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s′)

]
, for all s ∈ S, (1.11)
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where a ∈ A, s′ ∈ S and r ∈ R.

The Bellman equation expresses a relationship between the value of a state

and the value of its successor states.

This idea can be exemplified through the backup diagram in Figure 1.2.

Figure 1.2: Backup diagram for vπ

An open circle represents a state

and a solid one represents a state-

action pair. Starting from state s,

the root node of the tree, the agent

can select an action following policy

π. From each of these action the en-

vironment can respond with one of

the several next states s′ along with

the correspondent reward, according

to the distribution p.

The Bellman equation averages over

all the possibilities, weighting each by its probability of occurring. In other

words, it says that the value of the start state equals the value of the ex-

pected next state, plus the reward expected along the way.

This equation has a unique solution, the value function vπ. The Bellman

equation is very interesting since it provides a basis to compute, approxi-

mate and learn vπ.

1.2.6 Optimality

The goal in a reinforcement learning task is to identify the policy that

achieves the most reward in the long run.

To define an optimal policy however, it is first fundamental to define a partial

ordering over policies. A policy π is better than or equal to a policy π′ if its

expected return is greater than or equal to that of π′ in all states. Formally:

π ≥ π′ if and only if vπ(s) ≥ vπ′(s) for all s ∈ S. (1.12)
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There is always (at least) one policy that is better or equal to all the

other policies and it is called optimal policy, denoted with π∗. All the opti-

mal policies share the same optimal state-value function v∗, defined as

v∗(s) = max
π

vπ(s), for all s ∈ (S). (1.13)

They share as well the same optimal action-value function, denoted q∗,

defined as

q∗(s, a) = max
π

qπ(s, a) (1.14)

for all s ∈ S and a ∈ A. This can be rewritten in terms of v∗ as:

q∗(s, a) = E[Rt+1 + γv∗(St+1) | St = s, At = a]. (1.15)

Since v∗ is a value function for a policy, it must satisfy the Bellman

equation. The one that follows is known as Bellman optimality equation:

v∗(s) = max
a∈A(s)

qπ∗(s, a) (1.16)

= max
a

Eπ∗ [Gt | St = s, At = a] (1.17)

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s, At = a] (1.18)

= max
a

Eπ∗ [Rt+1 + γv∗(St+1) | St = s, At = a] (1.19)

= max
a

∑
s′,r

p(s′, r | s, a)[r + γv∗(s
′)]. (1.20)

While the Bellman optimality equation for q∗ is
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q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)
∣∣∣St = s, At = a] (1.21)

=
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)
]
. (1.22)

1.3 Dynamic Programming

Dynamic Programming (DP) is a general algorithmic framework that can

be applied to those problems that possess optimal substructure and overlap-

ping subproblems. In Reinforcement Learning DP is used to find optimal

policies given a perfect model of the environment as in MDPs. As a matter

of fact, MDPs present both characteristics needed, where Bellman equations

allow recursive decomposition and the value function stores and uses sub-

solutions. Thus it is possible to apply dynamic programming to solve a

MDP.

Although classical DP algorithms have limited utility, given their computa-

tional expense and the dependency on a perfect model, they are still impor-

tant because they lie the foundations for many other algorithms.

Solving a MDP consists in - according to the prediction problem - evaluate

the value function given a policy and - according to the control problem - in

finding an optimal value function or optimal policy.

The prediction problem is solved by applying policy evaluation, by consider-

ing a sequence of approximate value functions v0, v1, v2,... where the initial

v0 is chosen arbitrarily, where each following approximation is obtained ap-

plying the Bellman equation as update rule:

vk+1 = Eπ[Rt+1 + γvk(St+1) | St = s] (1.23)

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvk(s

′)
]
, (1.24)

for all s ∈ S.

This algorithm is called iterative policy evaluation and converges in general
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to vπ as k →∞.

Policy evaluation is useful in order to perform policy improvement, namely

finding a new policy that is better than the previous. For this task, it is

possible to compute the action value function q for an action a 6= π(s) and

discover if it would be better to select a and follow π(s) thereafter or to

simply follow π(s) in any state

qπ(s, a) = E[Rt+1 + γvπ(St+1) | St = s, At = a] (1.25)

=
∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s′)

]
. (1.26)

It is possible to extend this reasoning further to all possible actions and

states, by acting greedy with the selection of the action a in state s that

results in the best q value, to obtain a new policy π′

π′(s) = arg max
a

qπ(s, a) (1.27)

= arg max
a

E[Rt+1 + γvπ(St+1 | St = s, At = a)] (1.28)

= arg max
a

∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s′)]. (1.29)

The combination of policy evaluation and policy improvement allows us to

build a sequence of policies and value functions that improve monotonically:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ vπ2

I−→ ...
E−→ π∗

I−→ v∗, (1.30)

where E and I above the arrows stand for evaluation and improvement re-

spectively. Since finite MDPs have a finite number of policies, this process

is granted to converge in a finite number of iterations.

To develop this approach further, by observing that it is not necessary

to perform all the steps of policy iteration until infinity to obtain the best

policy, we truncate the algorithm by using just one update of each state.
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This new approach is called value iteration.

vk+1(s) = max
a

E[Rt+1 + γvk(St+1) | St = s, At = a] (1.31)

= max
a

∑
s′,r

p(s′, r | s, a)
[
r + γvk(s

′)], (1.32)

for all s ∈ S. The same result is obtained by noticing how the Bellman

optimality equation can be turned into an update rule.

A major limitation in these DP approaches is that they require to perform

operations over the whole state set, that can result in a greatly expensive

task when the state is large. Asynchronous DP algorithms partially try to

overcome this issue updating the values of the states in asynchronous fashion,

in other words, some states are updated more times than others.

Figure 1.3: Generalized

Policy Iteration (GPI) loop

This interleaving process between policy

evaluation and improvement, with all its vari-

ants, is referred to as generalized policy iteration.

Almost all RL algorithms are described by this

process where the policy is improved towards

the value function and vice versa, as shown in

Figure 1.3. This loop ends only when we reach

a policy that is greedy with respect to its own

value function, that implies optimality for both

of them according to Bellman optimality equa-

tion.

Another way to see the process is in terms of

two different goals, the two converging lines rep-

resented in Figure 1.4.
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Figure 1.4: Alternative representation of GPI

1.4 Monte Carlo Methods

Monte Carlo methods are learning methods to estimate value functions

and find optimal policies. Differently from DP, they do not require complete

knowledge of the environment, but only experience intended as states, ac-

tions, and rewards sampled from the environment. These methods are based

on averages of sample returns and are applied only to episodic tasks. The

estimates of value function and policy are updated only at the end of an

episode.

As for the prediction problem, Monte Carlo methods estimate the value

function in a state, based on its definition of expected cumulative future

discounted reward. One way to solve it, is to simply average over the returns

obtained after visits to that state. After a number of visits, this average is

bounded to converge to the expected return.

After defining a visit s as the occurrence of a state in one episode, Monte

Carlo differentiates between a first-visit method and a every-visit method: in

the former, vπ is estimated by averaging on the returns following first visits

to s, while the latter averages the returns following all visits to s.

Similarly as the estimate of the state-value function, Monte Carlo esti-

mate the action-value function qπ(s, a) using the concept of visit, with the

difference that visits here are to state-action pairs rather than to states. A

state-action s, a pair is visited if a was chosen in a state s. The first-visit
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method averages the returns that follow the first time in an episode that the

action was picked in that state, while every-visit averages on all the returns

that followed all the visits.

In the control problem, MC methods draw from the idea of generalized

policy iteration (GPI) already presented, thus we consider again a modified

version of classical policy iteration:

π0
E−→ qπ0

I−→ π1
E−→ qπ1

I−→ π2
E−→ qπ2

I−→ ...
E−→ π∗

I−→ q∗, (1.33)

where E stands for policy evaluation and I for policy improvement. We sup-

pose to observe an infinite number of episodes and that they are generated

with exploring starts, that is, they all begin with state-action pairs randomly

selected to cover all possibilities.

Policy evaluation is done in the same known manner, while policy improve-

ment is achieved by making the policy greedy with respect to the current

value function. The one that follows is the greedy policy:

π(s) = arg max
a

q(s, a) (1.34)

Subsequently, policy improvement is done by constructing each πk+1 as

the greedy policy (as defined above) with respect to qπk . To avoid the first

assumption, it is sufficient to alternate between evaluation and improvement

on an episode-by-episode basis in the GPI.

To remove the second assumption on exploring starts or in other words, to

ensure that all actions are selected, it is necessary to introduce the definitions

of on-policy and off-policy methods.

On-policy methods attempt to evaluate or improve the policy that is used to

make decisions while off-policy methods evaluate or improve a policy different

from that used to generate the data. We can use both on-policy and off-policy

to overcome this assumption.

In on-policy, the policy is soft meaning that π(a | s) > 0 for all s ∈ S and

all a ∈ A(s), gradually shifted to a deterministic optimal policy. Without

exploring starts, it is not enough to improve the policy by making it greedy
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with respect to the current value function, because that would lead to lack of

further exploration of non-greedy actions. However, in GPI it is important

just to move the policy towards a greedy policy. For any ε-soft policy π, any

ε-greedy policy with respect to qπ is guaranteed to be better than or equal

to π.

The off-policy approach solves the dilemma of a policy trying to learn action

values conditionally on optimal behaviour while still behaving non-optimally

to allow exploration. This is done through decoupling of the policy in two:

the policy being learned about called target policy and the policy used to

generate the data, called behavior policy.

Almost all of these methods employ importance sampling, that is, weighting

returns by the ratio of the probabilities of taking the observed actions under

the two policies.

1.5 Temporal-Difference Learning

Temporal-difference (TD) learning is a combination of Monte Carlo and

dynamic programming (DP) ideas. Like Monte Carlo, TD can learn without

a precise knowledge of the environment, from experience, and like DP, it

updates estimates using other learned estimates, using a mechanism called

bootstrapping.

In the prediction problem, like Monte Carlo, given some experience following

a policy π, TD learning updates its estimate V of vπ for nonterminal states

St occurring in that experience. However, they don’t need to reach the end

of an episode, but they wait only until the next time step. In the simplest

form of TD, known as TD(0) or one-step TD the update rule is:

V (St)← V (St) + α
[
Rt+1 + γV (St+1 − V (St))

]
, (1.35)

while in Monte Carlo the target for the update is the return Gt, here, the

target is Rt+1 + γV (St+1 (known as TD target).

The quantity Rt+1 + γV (St+1−V (St) is called TD error, since it measures a
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difference between the estimated value of St and the better estimate Rt+1 +

γV (St+1).

1.5.1 SARSA

SARSA (State-Action-Reward-State-Action) is an on-policy control method

to find an optimal policy, defined by the following update rule [6]:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (1.36)

Algorithm 1 SARSA

initialize Q arbitrarily, e.g. to 0 for all states, set action value for terminal

states as 0

for each episode do

initialize state s

for each step of episode, state s is not terminal do

a← action for s derived by Q, e.g. ε-greedy

take action a, observe r, s′

a′ ← action for s′ derived by Q, e.g. ε-greedy

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]

s← s′, a← a′

end for

end for

1.5.2 Q-Learning

Q-Learning is an off-policy TD control algorithm, defined by the rule:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(1.37)

where Q is the learned action-value function that directly approximates

q∗, the optimal action-value function.

From the rule, follows this algorithm [6] :
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Algorithm 2 Q-Learning

initialize Q arbitrarily, e.g. to 0 for all states, set action value for terminal

states as 0

for each episode do

initialize state s

for each step of episode, state s is not terminal do

a← action for s derived by Q, e.g. ε-greedy

take action a, observe r, s′

Q(s, a)← Q(s, a) + α[r + γmax′aQ(s′, a′)−Q(s, a)]

s← s′

end for

end for

1.6 Multi-Agent Reinforcement Learning

In a multi-agent system (MAS) multiple agents interact sharing the same

environment [25]. In this domain, MDPs are generalized to stochastic games

or Markov games.

Let us denote n number of the agents, S a discrete set of states and Ai,

i = 1, 2, ..., n a set of actions for each agent i. It is possible to define the joint

action set for all agents as A = A1×A2× ...×An. The state transition proba-

bility is p : S×A×S → [0, 1] and the reward function is r : S×A×S → Rn.

The value function of each agent depends on the joint action and joint policy,

which is characterized by V π : S × A→ Rn.

MARL introduces a series of challenges to those already present in single

agent RL, such as the curse of dimensionality that becomes even more prob-

lematic given the exponential growth of the state-action space, the problem

of specifying a suitable goal, since agents’ returns are correlated and cannot

be maximized independently - from this the difficulty in shaping the reward,

both in cooperative settings, where agents have a common goal, competitive

and mixed.

In MARL, non-stationarity occurs because agents in a shared environment
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potentially interact with each other and learn concurrently. This continuous

interaction leads to a constant modification in the observed environment,

and the Markov property does not hold anymore (also Q-Learning is not

guaranteed to converge).

The exploration-exploitation dilemma is made more complex since agents

need to explore not only to obtain more knowledge about the environment,

but also on other agents. On the other hand, too much exploration can lead

to destabilization of the other agents that are concurrently learning from the

environment and the agent as well.



Chapter 2

Deep Q Networks (DQN)

In this chapter we explain how neural networks can be used in combi-

nation with the Q-Learning algorithm [21] [22] as function approximators

in DQN [8], from the vanilla architecture to further describing some of the

major advancements proposed in literature.

2.1 Neural Networks

Estimating Q values when action and state spaces are large can soon be-

come an intractable problem: in this scenario, deep neural networks are a

useful solution to approximate various components in a RL problem, such as

policies π(s, a) or values q(s, a). The parameters of these networks are usu-

ally trained with gradient descent in order to minimize some loss function.

Neural networks are a mathematical model used for function approximation.

The most simple model is the deep feedforward network or multilayer per-

ceptron (MLP). A feedforward network defines a mapping y = f ∗(x;θ) and

learns the parameters θ that grant the best approximation.

They are considered networks since they are composed of a sequence of func-

tions, where each function is a layer in the network. The sequence goes from

the first layer called input layer to the last, the output layer. The behavior

19
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Figure 2.1: Example of CNN

of the middle layers is not specified by the training data, so they are known

as hidden layers. The output values at these layers are chosen by activation

functions.

Common networks that are used in Deep Reinforcement Learning and have

been used especially in the first successful approaches applied to video games,

are convolutional neural networks (CNNs).

CNNs are a specialized kind of neural network for processing data that has

grid-like topology, such as images. They employ convolution, that is a spe-

cialized kind of linear operation, in place of simple matrix multiplication in

at least one of their layers.

2.2 Deep Q-Learning

DQN was introduced in [7] [8] as first algorithm that successfully com-

bined deep neural networks and reinforcement learning. In DQN a convolu-

tional neural network was trained to play a range of Atari 2600 games, using

as input data the raw pixels from the images, a high-dimensional visual in-

put, with the aim of reaching performances comparable to humans.

DQN makes use of two different techniques to enable relatively stable

learning: experience replay and target networks. At each time step t after
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Figure 2.2: Screen shots from five Atari 2600 Games: (Left-to-right) Pong,

Breakout, Space Invaders, Seaquest, Beam Rider

Figure 2.3: DQN network architecture

selecting an action ε-greedily with respect to the action values, a tuple of

experience (St, At, Rt+1, γt+1, St+1) is saved into a replay memory buffer that

can store up to one million transitions.

The weights of the network are optimized using stochastic gradient descent

using as loss to minimize:

(Rt+1 + γt+1 max
a′

qθ̄(St+1, a
′)− qθ(St, At))2 (2.1)

where t refers to the time step of a transition randomly chosen from the

replay buffer.

Then, back-propagation through gradient descent is made only into the pa-

rameters θ of the online network, that is the network used to pick actions,

whereas the target network with parameters θ̄ is updated only after a certain
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number of timesteps as copy of the online network, and it is not directly

optimized.

Algorithm 3 Deep Q-Learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights

for episode = 1, M do

Initialize sequence s1 = x1 and preprocessed sequence φ1 = φ(s1)

for t = 1 do

With probability ε select a random action at

otherwise select at = maxaQ
∗(φ(st), a; θ)

Execute action at and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)

Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

rj for terminal φj+1

rj + γmax′aQ(φj+1, a
′; θ) for non-terminal φj+1

Perform a gradient descent step on (yj −Q(φj, aj; θ))
2

end for

end for

DQN showed successful results, producing for some games even better

scores than the ones obtained by professional players.
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Table 2.1 Comparison of games scores between DQN with methods from

literature and a professional human tester

Game
Random

Play

Best Linear

Learner

Contingency

(SARSA)
Human DQN (± std)

Normalized DQN

(% Human)

Alien 227.8 939.2 103.2 6875 3069 (±1093) 42.7%

Amidar 5.8 103.4 183.6 1676 739.5 (±3024) 43.9%

Assault 22.4 628 537 1496 3359 (±775) 246.2%

Asterix 210 987.3 1332 8503 6012 (±1744) 70.0%

Asteroids 719.1 907.3 89 13157 1629 (±542) 7.3%

Atlantis 12850 62687 852.9 29028 85641 (±17600) 449.9%

Bank Heist 14.2 190.8 67.4 734.4 429.7 (±650) 57.7%

Battle Zone 2360 15820 16.2 37800 26300 (±7725) 67.6%

Beam Rider 363.9 929.4 1743 5775 6846 (±1619) 119.8%

Bowling 23.1 43.9 36.4 154.8 42.4 (±88) 14.7%

Boxing 0.1 44 9.8 4.3 71.8 (±8.4) 1707.9%

Breakout 1.7 5.2 6.1 31.8 401.2 (±26.9) 1327.2%

Centipede 2091 8803 4647 11963 8309 (±5237) 63.0%

Chopper Command 811 1582 16.9 9882 6687 (±2916) 64.8%

Crazy Climber 10781 23411 149.8 35411 114103 (±22797) 419.5%

Demon Attack 152.1 520.5 0 3401 9711 (±2406) 294.2%

Double Dunk -18.6 -13.1 -16 -15.5 -18.1 (±2.6) 17.1%

Enduro 0 129.1 159.4 309.6 301.8 (±24.6) 97.5%

Fishing Derby -91.7 -89.5 -85.1 5.5 -0.8 (±19.0) 93.5%

Freeway 0 19.1 19.7 29.6 30.3 (±0.7) 102.4%

Frostbite 65.2 216.9 180.9 4335 328.3 (±250.5) 6.2%

Gopher 257.6 1288 2368 2321 8520 (±3279) 400.4%

Gravitar 173 387.7 429 2672 306.7 (±223.9) 5.3%

H.E.R.O. 1027 6459 7295 25763 19950 (±158) 76.5%

Ice Hockey -11.2 -9.5 -3.2 0.9 -1.6 (±2.5) 79.3%

James Bond 29 202.8 354.1 406.7 576.7 (±175.5) 145.0%

Kangaroo 52 1622 8.8 3035 6740 (±2959) 224.2%

Krull 1598 3372 3341 2395 3805 (±1033) 277.0%

Kung-Fu Master 258.5 19544 29151 22736 23270 (±5955) 102.4%

Montezuma’s Revenge 0 10.7 259 4367 0 (±0) 0.0%

Ms. Pacman 307.3 1692 1227 15693 2311 (±525) 13.0%

Name This Game 2292 2500 2247 4076 7257 (±547) 278.3%

Pong -20.7 -19 -17.4 9.3 18.9 (±1.3) 132.0%

Private Eye 24.9 684.3 86 69571 1788 (±5473) 2.5%

Q*Bert 165.9 613.5 960.3 13455 10596 (±3294) 78.5%

River Raid 1339 1904 2650 13512 8316 (±1049) 57.3%

Road Runner 11.5 67.7 89.1 7845 18257 (±4268) 232.9%

Robotank 2.2 28.7 12.4 11.9 51.6 (±4.7) 509.0%

Seaquest 68.4 664.8 675.5 20182 5286 (±1310) 25.9%

Space Invaders 148 250.1 267.9 1652 1976 (±893) 121.5%

Star Gunner 664 1070 9.4 10250 57997 (±3152) 598.1%

Tennis -23.8 -0.1 0 -8.9 -2.5 (±1.9) 143.2%

Time Pilot 3568 3741 24.9 5925 5947 (±1600) 100.9%

Tutankham 11.4 114.3 98.2 167.6 186.7 (±41.9) 112.2%

Up and Down 533.4 3533 2449 9082 8456 (±3162) 92.7%

Venture 0 66 0.6 1188 3800 (±238.6) 32.0%

Video Pinball 16257 16871 19761 17298 42684 (±16287) 2539.4%

Wizard of Wor 563.5 1981 36.9 4757 3393 (±2019) 67.5 %

Zaxxon 32.5 3365 21.4 9173 4977 (±1235) 54.1%
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In the taxonomy of RL algorithms (see Figure 2.4) DQN belongs to the

model-free subtree.

The difference between the two branches is that, in model-based the agent

has access to a model of the environment, that is a function which predicts

state transitions and rewards, while in model-free, the agent has to learn a

model of it. The main advantage of having a model is that the agent can

think ahead, already knowing what would happen for a range of possible

actions, while deciding for the best option. The results from this planning

can later be translated into a policy. The problem is that often, a ground-

truth model of the environment is not available, forcing the agent to learn it

from experience.

Figure 2.4: Non-exhaustive taxonomy of RL algorithms from OpenAI [26]

In the following subsections we discuss some useful modifications pre-

sented in literature that applied to the standard DQN algorithm here pre-

sented can lead to significant improvements in performance.
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2.2.1 Double Q-Learning

In order to overcome the overestimation bias that affects standard Q-

Learning due to the the maximization step in Equation 2.1, Double Q-

Learning [30] decouples the selection of the action from its evaluation em-

ploying two independent models. It was then shown in [29] that with the use

of an online network and a target network it can be successfully combined

with DQN, by using the following loss function:

(Rt+1 + γt+1qθ̄(St+1, arg max
a′

qθ(St+1, a
′))− qθ(St, At))2 (2.2)

where θ̄ are the weights of the target network, and θ are the weights of

the online network. The greedy policy is evaluated according to the online

network, but using the target to estimate its value.

2.2.2 Prioritized Replay

In the standard experience replay buffer, transitions are sampled ran-

domly, regardless of their significance, although ideally it would be better to

sample more frequently those transitions from which there is more to learn.

With prioritized replay buffer [30] transitions are sampled with probability

pt relative to the last encountered absolute TD error, as a measure of the

expected learning progress:

pt ∝| Rt+1 + γt+1 max
a′

qθ(St+1, a
′)− qθ(St, At) |ω, (2.3)

where ω is a hyper-parameter that determines the shape of the distribution.

2.2.3 Dueling networks

The dueling network [31] [32] is a type of network architecture that uses

two streams of computation, a value stream, for the state-value function

and an advantage stream for the state-dependent action advantage function,

sharing a convolutional encoder, and combined by a special aggregator layer
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Figure 2.5: Comparing classical DQN and dueling network architecture

to produce an estimate of the state-action value function Q. The combination

of the two streams corresponds to a specific factorization of the action values:

qθ(s, a) = vη(fξ(s)) + aψ(fξ(s), a)−
∑

a′ aψ(fξ(s), a
′)

Nactions

, (2.4)

where ξ, η, and ψ are, respectively, the parameters of the shared encoder fξ,

of the value stream vη and the advantage stream aψ; and θ = ξ, η, ψ is their

concatenation.

The main benefit of this architecture is the ability of learning which states

are or are not valuable without having to learn the effect of each action for

each state.

2.2.4 Multi-step learning

Instead of accumulating one single reward and then using the greedy

action at the next step to bootstrap as in simple Q-Learning, multi-step

targets can be used in alternative. Intuitively, the idea is to look ahead to

the next n rewards, states and actions. It is first necessary to define the

truncated n-step return from a given state St
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R
(n)
t =

n−1∑
k=0

γ
(k)
t Rt+k+1. (2.5)

Then we can define an alternative loss for DQN, that utilizes these trun-

cated returns:

(R
(n)
t + γ

(n)
t maxa′qθ̄(St+n, a

′)− qθ(St, At))2. (2.6)

This mechanism can lead to faster learning when n is optimally tuned.

2.2.5 Distributional RL

This technique learns to approximate the distribution of returns, called

Z, instead of the expected return, estimated by the Q action value function

in Q-Learning [34]. In other words, Z is a mapping from state-action pairs

to distributions over returns, called value distribution.

The key idea is that return distributions must satisfy a distributional variant

of Bellman’s equation.

In particular, Z is modeled using a discrete distribution, whose support called

z, namely the values the distribution can assume, is based on a finite set of

atoms, defined as:

Z = {zi | zi = vmin + (i− 1)
vmax − vmin
Natoms − 1

, i ∈ 1, ..., Natoms} (2.7)

where Natoms is the number of atoms, vmin and vmax are the minimum

and maximum values of the distribution, and are used as parameters, where

each combination of values for the parameters originates a different return

distribution. The probabilities of the atoms are determined by a model θ :

S × A→ Rn such that zi is sampled with probability pi:

pi(s, a) =
eθi(s,a)∑
j e

θj(s,a)
. (2.8)

The objective is to learn θ to approximate the true distribution of returns Z.
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We call dt = (z,pθ(St, At)), based on this support vector and these prob-

abilities, the distribution to approximate.

In such way, it is possible to define a distributional variant of Q-Learning,

by constructing first a new support for the target distribution, and then

minimizing the Kullbeck-Leibler divergence - intuitively, a distance metric

- that quantifies the difference between the distribution dt and the target

distribution d′t ≡ (Rt+1 + γt+1z,pθ̄(St+1, ā
∗
t+1)),

DKL(Φzd
′
t||dt), (2.9)

where Φz is a L2-projection of the target distribution onto z, and ā∗t+1 =

arg maxa qθ̄(St+1, a) is the greedy action with respect to the mean action

values qθ̄(St+1, a) = zTpθ(St+1, a) in state St+1.

As in the non-distributional case, a frozen copy of the parameters θ̄ can be

used to build the target distribution.

A neural network represents this distribution, using Natoms×Nactions outputs.

A softmax is then applied to ensure the normalization of the distribution.

2.2.6 Noisy Nets

Noisy Nets [35] are a more sophisticated technique than ε-greedy to solve

the exploration-exploitation dilemma, particularly useful in environments

where it is required to perform many actions before collecting the first re-

ward. Noisy Nets are characterized by a noisy linear layer, combining a

deterministic and a noisy stream:

y = (b+Wx) + (bnoisy � εb + (W noisy � εw)x), (2.10)

where εb and εw are random variables and � is the element-wise product.

This layer is used in substitution of any standard linear layer y = b+Wx.

Over time, the network will learn how to ignore the noisy stream - preferring

exploitation over exploration - but it will do so at different rates in different

parts of the state space, essentially allowing a state-conditional exploration.
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2.2.7 Rainbow

Rainbow [27] is an integrated agent that arises from combining all the

modifications presented so far, reaching in general the best performance

among all.

The 1-step distributional loss is replaced by a multi-step variant, the target

distribution is then defined as d
(n)
t = (R

(n)
t + γ

(n)
z z,pθ̄(St+n, a

∗
t+n)).

The resulting loss is thus the multi-step distributional loss

DKL(Φzd
(n)
t ||dt) (2.11)

where Φz is again the projection onto z.

This loss, originated from the fusion of multi-step learning and the distribu-

tional perspective, is combined then with Double Q-Learning, so the action

in St+n is selected according to the online network as the bootstrap action

a∗t+n, and it is evaluated against a target network.

Prioritized replay buffer is employed but the prioritization is done not through

the TD error as in the standard version, but through the KL loss, that is,

what the algorithm is trying to minimize

pt ∝
(
DKL(Φzd

(n)
t ||dt)

)ω
. (2.12)

Rainbow uses a dueling network architecture, adapted for distributions

of returns. The shared layer fε(s) is fed into a value stream vη with Natoms

outputs, and into an advantage stream aξ with Natoms × Nactions outputs

where aiξ(fξ(s), a) denotes the output corresponding to atom i and action a.

For each atom, the two streams are combined and then passed to a softmax

for normalization

piθ(s, a) =
exp(viη(φ)) + aiψ(φ, a)− āiψ(s)∑
j exp(v

j
η(φ)) + ajψ(φ, a)− ājψ(s)

, (2.13)

where φ = fξ(s) and āiψ(s) = 1
Nactions

∑
a′ a

i
ψ(φ, a′).

Lastly, all the linear layers are replaced with noisy layers.



30 2. Deep Q Networks (DQN)

7 44 100 200
Millions of frames

0%

100%

200%

M
e
d
ia

n
 h

u
m

a
n
-n

o
rm

a
liz

e
d
 s

co
re

DQN
DDQN
Prioritized DDQN
Dueling DDQN
A3C
Distributional DQN
Noisy DQN
Rainbow

Figure 2.6: Performance of Rainbow compared to other DQN variants

Table 2.2 Preprocessing hyper-parameters in Rainbow

Hyper-parameter Value

Grey-scaling True

Observation down-sampling (74, 74)

Frames stacked 4

Action repetitions 4

Reward clipping [-1,1]

Terminal on loss of life True

Max frames per episode 108K
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Table 2.3 Additional hyper-parameters in Rainbow

Hyper-parameter Value

Q network: channels 32, 64 x 64

Q network: filter size 8 x 8, 4 x 4, 3 x 3

Q network: stride 4, 2, 1

Q network: hidden units 512

Q network: output units Number of actions

Discount factor 0.99

Memory size 1M transitions

Replay period Every 4 agent steps

Minibatch size 32





Chapter 3

FLATLAND

Flatland is a discrete time multi-agent simulation of a railway environ-

ment . The Flatland environment was developed by AIcrowd [37] in collabo-

ration with the Swiss Federal Railways (SBB) to foster progress and research

in multi agent reinforcement learning for any rescheduling problem. This re-

search could lead to important improvements in modern traffic management

systems (TMS) in general, that are present not only in railway systems but

also in other areas of transportation and logistics [36].

3.1 Background

The implementation of a simulation to face the problem is highly conve-

nient to measure changes and try new methodologies before applying them

to the real scenario. The Flatland simulation offers a ready-to-use mean to

investigate approaches for automated traffic management systems (TMS),

whose role is to select routes for all trains and decide on their priorities at

switches in order to optimize traffic flow across the network. At the core of

this simulation lies the general vehicle re-scheduling problem (VRSP), that

states:

The vehicle rescheduling problem (VRSP) arises when a previously as-

33
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signed trip is disrupted. A traffic accident, a medical emergency, or a break-

down of a vehicle are examples of possible disruptions that demand the

rescheduling of vehicle trips [19].

3.2 Environment

Figure 3.1: A representation of the Flatland environment

The simulation is represented onto a 2D grid environment, where the grid

consists of cells, and restricted transitions between neighboring cells represent

the railways. A cell is the elementary component of the grid, and has capacity

one, that means, only one agent at a time can occupy that cell. An agent

(train), has the ability to move in the grid, occupying with the passing of

time, different cells according to the lecit transitions. The transitions allowed

depend on the cell type and the agent orientation (North, East, South, West).

There are 8 different cell types, according to their function within the grid:
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Figure 3.2: Types of cells available in Flatland

1. Empty cell : rendered in the environment as a building in a city or a

green space. It can’t be occupied by any agents;

2. Straight rail : navigation is possible only moving forward, there is no

navigation choice;

3. Simple switch: an agent coming from South can choose to proceed

forward or to take a turn left;

4. Diamond crossing : equivalent to two straight rails crossing each other,

there is no possibility to turn, but the chance to conflict with some

other agents;

5. Single slip switch: a diamond crossing with a possibility to turn from

one of the directions available;

6. Double slip switch: as above, but with two possible directions from

which to take a turn;

7. Symmetrical switch: an agent coming from South has the obligation to

turn left or right;

8. Dead-end : an agent here can only stop or be forced to move backwards.

Each of these cells can appear rotated by 90◦, 180◦, 270◦, creating other

combinations of transitions.
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3.2.1 Agent

An agent is a train on the map, starting from an initial position, with

the goal of reaching a target station. The following features characterize an

agent:

• initial position, cell that acts as starting point, indicated as a tuple of

coordinates in the grid

• initial direction, (North, East, South, West)

• direction

• target, coordinates of the cell where the target station lies

• moving, if moving or stopped

• speed data

• malfunction data

• handle, the agent id

• status

• position, cell

• old direction, direction at the previous time step

• old position, position at the previous time step.

Speed

Being Flatland a simulation that aims to mock a realistic and mixed

railway systems, multiple speed profiles are supported. The different speeds

belong to different types of trains, such as fast passenger trains, normal

passenger trains and freight trains. Speeds are specified using a float value,

included in the range [0, 1] where 1 is the fastest profile and 0 the slowest.
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For example, a value of 0.2 would indicate a train that is five times slower

than the fastest. Agents keep their speed profile unaltered for the whole

episode.

Malfunctions

Malfunctions occur in the environment as stochastic events. The aim is to

simulate real case scenarios where the initial trains plans need to be resched-

uled during operations due to minor occurrences of events such as delayed

departures from train stations, malfunctions on trains or infrastructure or

the weather.

Malfunctions are decided by a Poisson process that simulate delays and stops

agents at random times for random durations.

Status

One agent during one episode can change its status, following four differ-

ent combinations:

• ready to depart, the agent is not present in the environment, but it’s

ready to appear at its specified initial position

• active, the agent appears on the grid

• done, the agent has reached its target

• done removed, the agent was removed from the environment after reach-

ing its target.

Action space

Despite the differences between agents, they all share the same action

space, made of five different actions.

1. Do Nothing : If the agent is already moving it continues to move, if it

is stopped it stays stopped;



38 3. FLATLAND

2. Deviate Left : If the agent is at a switch with a possible left transition,

it will turn left. If no turns are possible, the action has no effect and

the agent keeps moving forward. If the agent is stopped, this action

will start agent movement again if allowed by the transitions.

3. Move Forward : If stopped, the agent will start motion again. This

will move the agent forward and choose the go straight direction at

switches.

4. Deviate Right : Same as deviate left but for right turns.

5. Stop: This action causes the agent to stop. If the agent is stopped, it

has no effect.

3.2.2 Tasks

In the Flatland environment, many tasks can be considered for the agent

(or multiple agents) to perform.

Navigation

Figure 3.3: Agent navigating to target (blue path)

The most simple task is the navigation problem in a single-agent set-

ting. In this scenario the train must reach a target position (station) from a

starting point randomly generated in the map, in the least possible time.
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Conflicts avoidance

In this task, multiple agents are present in the environment and in ad-

dition to the navigation task, complexity increases since orienting multiple

trains in a shared map could lead to conflicts that must be predicted and

avoided. In this task too, the goal is to schedule all the agents in a way that

allows all of them to reach their targets as fast as possible.

Re-scheduling

In this scenario, planning ahead the routes for all the agents to navigate

them to the target is not sufficient: due to failures, malfunctions and other

disrupting accidents, some agents could stop functioning, blocking paths and

forcing the others to re-plan their routes in order to reach their goals.

3.3 Observations

In the reinforcement learning problem, an agent receives at every time

step observations from the environment, that represent somehow its state,

and acts upon those to maximize a reward. Thus, in a model-free envi-

ronment, shaping the observations is a key problem to solve for the agents

to behave optimally. In the Flatland environment, some stock observations

classes were developed as baselines for the problem, in the next subsections

we discuss how they work.

Figure 3.4: Global, local and tree observations in Flatland
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3.3.1 Global Observations

As their name suggest, these observations give a global perspective on the

environment, providing information about cell transitions, targets positions

and agents positions and directions.

In particular the observation is composed of the following elements:

• transition map array with dimensions (env height, env width, 16), as-

suming 16 bits encoding of transitions.

• a multidimensional array of shape (env height, env width, 5) with

– first channel containing the agents position and direction

– second channel containing the other agents positions and direc-

tions

– third channel containing agent/other agents malfunctions

– fourth channel containing agent/other agents fractional speeds

– fifth channel containing number of other agents ready to depart

• a multidimensional array of shape (env height, env width, 2) containing

respectively the position of the given agent target and the positions of

the other agents targets.

3.3.2 Local Observations

These observations work similarly as the global ones, but the view is

limited to a local grid of dimensions view height × view semiwidth+1 around

the agent. The observation is composed of the following elements:

• transition map array with dimensions

(view height, 2 * view semiwidth + 1, 16), assuming 16 bits encoding

of transitions (one-hot encoding)

• a multidimensional array of shape

(view height, 2 * view semiwidth + 1, 5) with
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– first channel containing the agent position and direction (int on

grid)

– second channel containing active agents positions and directions

(int on grid)

– third channel containing agent/other agents malfunctions (int, du-

ration)

– fourth channel containing agent/other agents fractional speeds

(float)

– fifth channel containing directions of agents ready to depart (flag

in correspondence to initial positions)

• a multidimensional array of shape (view height, 2 * view semiwidth +

1, 2)

containing respectively the position of the given agent target/subtarget

and the positions of the other agents targets/subtargets as one-hot

encoding.

Figure 3.5: Local observations

in the Flatland environment

Essentially, the parameters view height

and view semiwidth define what the agent

’sees’ at each side. The base field view as

a rectangle is defined with the agent facing

North, and the origin lies at the upper-left

corner. An offset parameter is used to move

the agent along the height axis of this rect-

angle, from a position where it has only ob-

servations in front, to a position where it has

only observations behind.

3.3.3 Tree Observations

These observations are built exploiting

the graph structure of the railway network.
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In particular, observations are built only along allowed transitions on this

graph, starting from the current position of the agent. As the agent moves

along these transitions, a tree is built up, where a new node is created at

every cell where the agent has different possibilities (e.g. a switch), a deadend

or when the target is reached. Every node works as a branching point, from

which subtrees are built along the allowed transitions according to the agent’s

orientation and in the four possible directions: left, forward, right, backward.

Figure 3.6: Extracting tree observation from the railway graph

The exploration starts from a root node (the agent’s current position) to

the leaves, following the branching directions, until a specified max depth

is reached, stopping at terminal nodes and collecting information along the

path.

The information gathered along a branch is stored in the tree as a node.

Node

A node is filled with the information collected along a path, consisting of

the following features:

1. the distance in number of cells from target, if encountered;

2. the distance from the target of some other agent, if encountered;
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3. the distance from another agent, if encountered;

4. the distance from a potential conflict with another agent, computed

when two agents occupy the same cell at the same time;

5. the distance from a cell that is a switch, but can’t be used by this

agent;

6. the distance to the next branching point/node in the tree;

7. the minimum distance to the target, computed using Dijkstra shortest

path algorithm;

8. the number of agents going the same direction;

9. the number of agents going opposite direction;

10. the number of malfunctioning agents;

11. the minimum speed of an agent encountered;

12. the number of agents ready to depart, namely, ready to enter the envi-

ronment.

Data from each branch are arranged in a recursive manner inside a vector

(observations vector), starting from the root node and then following the

order Left-Forward-Right-Back.

Since nodes in the tree are computed for each of the four possibile directions,

also along not allowed transitions, where placeholder values are used, the

number of nodes at each level of the tree is fixed and depends on the current

tree depth. Precisely, there are 4 elevated to the power of the level depth

(starting from 0 for the root) for each level.

The total number of nodes in the tree is thus computed by summing the

number of nodes at each level.

The observations vector, that contains the state representation, has a size of

total number of nodes multiplied by the number of features stored in a node.





Chapter 4

Original work

In this chapter we explain and discuss some approaches that were tried to

solve the tasks offered by the Flatland environment, starting from the most

simple task of navigation, to the development of new classes of observations,

GraphObservations and RailObservations to solve the conflicts problem in

multi-agent settings, through the use of DQN and its more performing vari-

ants.

The code implementation of the described methodologies is available on

GitHub at https://github.com/giulic3/flatland-challenge-marl

and https://github.com/misterdev/flatland-marl (refer to the latter for the

Rail Observations approach).

4.1 Navigation task

The first task to be solved is the navigation problem in a single agent

setting. In this simple scenario, an agent starting from a random position

in a city in the map, must reach a station located a number of cells away.

The goal for the agent is to reach the target in the minimum number of time

steps.

Considering that traversing a cell costs a fixed number of time steps, that

depends on the agent’s speed, and that no other obstacles are present in

45
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the environment, the problem of navigation translates into a shortest path

problem on a graph, that is the underlying structure of the railway.

The algorithm used to compute the shortest path from the agent’s current

position (the source) and its target (the destination) is a variant of Dijkstra’s

algorithm [39] on graphs that have loops. From the current cell, the positions

of the neighboring cells are found and every direction is walked through a

Breadth-First Search (BFS) that keeps track of the nodes that were already

visited and the distances walked to choose the minimum.

In this particular setting, the most straightforward way to shape rewards in

order to make the agent reach its target fast, is to assign a negative reward

(−1) for every time step spent navigating and giving a positive reward (+1)

when reaching the target.

To solve this task, the Tree Observations class was used and as model,

a neural network with a dueling architecture was employed, where the con-

volutional layers were replaced by linear layers, starting from the input one,

with a size in units equals to the observations vector size. A diagram of the

architecture is represented in Figure 4.1.

We trained the network with a Double DQN with Randomized Replay

Buffer, the approach showed successful results, allowing the agent to reach

the target in the totality of the episodes, and showing a stable learning

curve after a training of 6000 episodes. All the trainings in this round were

completed using a cluster of CPUs Intel(R) Xeon(R) CPU E5420 @ 2.50GHz.

4.2 Avoid conflicts

In this second task of increased complexity, the experiments led showed

the limitations of the basic observations classes, that according to our find-

ings do not possess sufficient potential to solve the problem.

The Global Observations contain sparse information about the map, without

providing the agent with specific data to follow to avoid the conflicts.
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Figure 4.1: Neural network architecture

Figure 4.2: Learning curve in single agent navigation task
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The Tree Observations are useful during navigation, since they exploit the

natural structure of the railway as a graph, but are computationally expen-

sive, where the effort is dependent on the chosen tree depth and the length of

the prediction that is used to find the shortest path. This computation may

be feasible in a single-agent setting, but becomes impractical in a multi-agent

environment of 50 to 100 trains.

The Local Observations contain information only on a portion of the map,

lacking any data on the agents’ targets in case they lie outside of the local

grid. A first approach to overcome this issue was attempted by adding sub-

targets into the grid. A subtarget defines an ”exit point” in the cells window,

that indicates the closest cell to the target in that window. However, the

approach still gave scarce results.

After obtaining these findings, we decided to formulate the problem under

a more simple perspective and thus implement new types of observations.

4.2.1 Graph Observations

The first idea was to decouple the problem in two levels: path selection

or navigation (the high level) and conflicts avoidance the (low level). While

the high level is solved by the shortest path algorithm (and potentially by

other path finding techniques on graphs), the low level is approached by deep

reinforcement learning methodologies.

In this view, since path selection is considered only at a high level, navigation

choices like turns are not to be decided by the agent anymore, leading to a

reduction of the action space to only two actions, go (0) and stop (1). The

second one used only in necessary cases to avoid conflicts. The observations

that are presented reflect this idea of the agent’s acting only at the low level.

The new type of observations, called Graph Observations make use, as

the name suggests, of the idea of the railway as a graph, as in Figure (4.3).

The figure at the bottom is the abstract representation of the map at the top.
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In this representation a node is a switch (or fork or bifurcation point) and an

edge is a path between two nodes, also called span (of cells). Edges depend

on connections entering or exiting a node. A node is seen as a global entity,

connections are added from a global perspective, that is, without taking into

account orientation of a particular agent. This means that in a multi-agent

setting a switch for one agent, could not function as a switch for another, if

the combination of node connections and agent current orientation does not

allow that. The red node represents the target station and the green arrow

is the agent.

Given that the path selection/navigation task is not solved by the DRL

agent, our idea is to use the graph structure as a support in defining a

new observation based on the path chosen, seen as a sequence of cells. The

most straightforward data structure to frame this view is the array. Indeed,

this abstract representation supports the construction of the observations as

a vector of many concatenated layers: the agent has a sight on a limited

number of cells that are lying in front of it in the path, and this observation

can be enriched with many different features that analyze that path and can

help the agent in conflicts avoidance. The parameter that is used to delimit

the agent’s view in the future here is referred to as prediction depth or max

prediction depth.

Graph Observations are made of the following components, that will be

later explained in details:

• occupancy info, multidimensional array of shape

(max prediction depth, 2)

• forks, array of shape (max prediction depth)

• targets, array of shape (max prediction depth)

• priority and max priority encountered: two float

• number of malfunctioning agents, integer

• number of agents that are ready to depart, integer
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Figure 4.3: Example of graph extracted from a map
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Occupancy information refers to data about agents’ locations in the se-

quence of predicted cells. Since a cell in Flatland is a resource that can be

occupied at each time step by one agent at maximum, it is important to

define rules on how to determine the rights to occupy these cells, in order to

avoid conflicting situations.

Figure 4.4: Example of conflict zones when comparing two agents’ paths

We consider potential conflicts between agent 1 with target 1 and agent 3 with

target 3.

In yellow, overlapping paths between the two, namely, sequences of cells that are

in common in the prediction.

In red, a potential conflict zone, or overlapping of path in time (e.g. when agent

1 has speed lower than agent 3).

Starting from the sequences predicted for each agent, we compute paths

that overlap in time, to check cells that will be occupied by two agents at

the same time step (conflict). Occupancy information is then organized in

two different layers: in the first one, possible conflict zones are computed -

as stated above - as sequences of 1s marking the overlapping paths, while in

the second layer, we deal with conflict zones that have already been occupied

by some agent. In this case the agent on the conflict zone has priority on the

span resource, and all the others must wait to enter the conflict zone, until
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it is free again.

Forks are computed as the nodes in the graph representation, a cell in the

map is eligible to fork if its group of available transitions matches a switch

configuration.

Targets are represented by a one-hot encoding array, a target is a flag inside

the observations vector that points to a cell that contains a target in the

map.

Priority information consists in two values, one representing priority assigned

to this agent and one representing the maximum priority encountered along

the prediction sequence, if any another agent was encountered. The two

values are used to estimate a comparison between two agents and establish a

hierarchy in the episode. A notion of priority proved to be useful to overcome

deadlock situations, when two agents predictions give rise to conflict zones

but it is not clear which one should enter that area first and which would

wait.

Priority is a key issue in our approach and many trials were made to define

the most suitable one. In the end, we opted for a priority that is function of

the agent status, its speed and its current distance to the target. (See the

Appendix for the code in detail).

The number of malfunctioning agents and agents that are ready to depart are

counters that are updated at each time step, since it is possible to have new

malfunctions and new agents entering the environment at any step.

Rainbow for MARL

Graph observations as described in the previous section are then used

in training in combination with a single-agent Rainbow implementation [40]

adapted for a multi-agent system. The single prioritized replay buffer is

replaced by multiple buffers, one assigned to each agent. Experiences are

then stored relatively to the own replay buffer and during learning we sample

a batch of experience tuples from one of the memories chosen randomly.
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Results

In this section we collect results and findings obtained from the training

on Graph Observations with Rainbow.

Table 4.1 Rainbow hyper-parameters in Flatland

Hyper-parameter Value

Max number of steps 200

History length 1

Network hidden size 512

Std deviation of noisy layers 0.1

Atoms 51

Min value of distribution support -10

Max value of distribution support 10

Replay memory capacity 105

Sampling frequency 4

Exponent in prioritized ER 0.5

Importance sampling weight in prioritized ER 0.4

Steps in multi-step return 3

Discount factor 0.95

Update steps of target network 10

Clip reward False

Learning rate 0.0000625

Adam epsilon 1.5−4

Batch size 32

Number of episodes before training 40

Hyper-parameters are taken from the standard Rainbow implementation, where

we modified history length, update target steps and learn start. The maximum

number of steps in Flatland depends on environment width, height and number

of cities. The value here used is a threshold derived from observations and should

be lower than the max expected from the environment (to speed up learning).
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Table 4.2 Flatland environment base parameters

Parameter Value

Width 20

Height 20

Number of agents 4

Max number of cities 3

Max number of rails between cities 3

Max number of rails in a city 3

Dispose cities in a grid True

Malfunction rate 10000

Min malfunction duration 20

Max malfunction duration 50

Prediction depth 60

Training was performed in relatively small environments to test the performance

of the approach and eventually check later its generalization ability on larger

environments. Malfunction rate is on purpose very high to avoid malfunctions to

occur in one episode and keep the task simple.
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Figure 4.5: Learning curve with Rainbow in a single-agent setting

Training on 6000 episodes of 200 time steps each.

Evaluation is performed every 10 episodes during the learning process, averaging

on a set of 10 episodes. We plot (in blue) the mean reward against the current

episode number and (in red) the mean Q action value against the current episode

number. From the charts we see how the learning diverges: initially the agents

receive a reward correspondent to random actions, then the performance

degenerates.
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(a) Number of agents = 4, prediction depth = 60

(b) Number of agents = 10, prediction depth = 60

Figure 4.6: Comparing learning curves with different number of agents

Evaluation during the training is performed with the same parameters used in the

single-agent setting. As in the other setting, the plots show how the agent is not

able to learn using Graph Observations.
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Figure 4.7: Learning curve with Rainbow in a multi-agent setting, number

of episodes = 4000, prediction depth = 108

Here we raised the number of episodes of training to 4000, since Rainbow - as DQN

in general - is not sample efficient, many experience tuples are usually needed for

it to converge, this suggesting that increasing the number of episodes could lead

to improvements in training. In addition, prediction depth is made longer and set

to a more reasonable value for the size of the environment. As a matter of facts,

given that agents can have different speed profiles, the slowest agent could not be

able to see further enough if prediction depth is too low.
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4.2.2 Rail Observations

The second observation class developed, called Rail Observations, con-

tinues to exploit the idea of occupancy of the agents on a graph structure,

while considering the occupation of agents on edges of this graph, instead of

occupation on single cells, summarizing the information into a bitmap.

In this graph the entity node is still a switch (or diamond crossing) and edges

are the sequences of cells that connect nodes. In particular, nodes and edges

are enumerated from the map and assigned a unique integer id to distinguish

them. This enumeration starts as a process from the first node of the grid

(cell [0,0]), then switches are identified by analyzing the possible transitions

inside cells. Nodes are characterized by four entry (and exit) points, the

cardinal directions North, East, South, West (N, E, S, W for brevity) that

determine the possible connections between edges that are connected through

that node. Information is stored into a connections matrix, a squared matrix

where an element of indices ij is 1 if a connection from i to j is given and 0

otherwise, where i, j ∈ N,E, S,W and all the matrices are then stored into

a dictionary connections that maps node ids to their connections.

Figure 4.8: A switch with connections N-W and E-W
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For example, the connections matrix associated to that switch is:

N E S W


N 0 0 0 1

E 0 0 0 1

S 0 0 0 0

W 1 1 0 0

Subsequently, from this dictionary edges are built through a visit of the

nodes towards the possible directions (in order N-E-S-W) and information

about them is stored into another dictionary called info that maps edge ids

to a tuple of (CardinalNode1, CardinalNode2, edge length), where a Cardi-

nalNode is a named tuple representing a pair (node id, cardinal point).

The last important information that is stored in the process is the correspon-

dence between edges and sequences of cells that compose them together with

the traversal direction, which gives an ordering of the two cardinal nodes at

the two extremes of the edge.

After defining the graph from the map it was necessary to find a suitable

data representation for the input to be fed to the neural network for training.

In order to do this we built for each agent a table, or bitmap, that expresses

the current occupation of the train on the graph in time. In this represen-

tation, an edge or rail, is a resource that can be traversed in two different

directions (+1 and -1), decided accordingly to the traversal direction defined

when creating the edges.
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(a) Graph extracted from a map, with nodes (switches) and edges (rails) labeled

(b) Table (bitmap) filled from the graph representation

Figure 4.9: Rail Observations

Given the graph representation in (a), the agent (green arrow) can reach its target

following the shortest path made of the sequence of nodes and edges: 0 - [2] - 2

- [14] - 23 - [15] - 25 - [17] - 29 - [19]- 30 - [20] (switches are in square brackets).

A (+-1) in the bitmap indicates the presence of an agent on the row rail, where a

sequence of bits indicates a time period of occupation - depending on the length

of the edge and the agent’s own speed, a train could traverse one cell in more than

one time step.
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The bitmap is a matrix of size (number of rails x maximum prediction

depth +1), where rails are the edges (rows of the bitmap) and the maximum

prediction depth refers to the maximum exploration limit of the shortest path

predictor, expressing the notion of a path connected with time (columns of

the bitmap). Essentially, the bitmap summarizes for one agent the occupa-

tion of rails in time steps during its path from source to target (see Figure

4.9).

An element ij in the bitmap can be:

• 0 : the agent is not occupying the rail i at time step j

• +1 : the agent occupies the rail i following the defined traversal direc-

tion at time step j

• -1 : the agent occupies the rail i with opposite direction with respect

to the defined traversal direction at time step j.

In this approach, conflicts avoidance measures are implemented on data

by analyzing the bitmaps of the other agents in the environment; in partic-

ular, to give the current agent indication about the presence and position of

potentially conflicting agents, we build heatmaps, a positive one and a neg-

ative one, by summing up the other agents’ bitmaps. The positive heatmap

represents the occupation from rail traversed with positive direction (+1)

and the negative heatmap express the presence of trains following the nega-

tive direction (-1), resulting each of them in a matrix that gives information

on which are the rails on the map where conflicts are most probable to arise.

Table 4.3 Bitmaps for three different agents
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

rail 0 0 0 0 0 0 0 0 0 0 0

rail 1 0 0 0 0 0 0 0 0 0 0

rail 2 0 0 0 0 0 0 0 0 0 0

rail 3 0 +1 +1 +1 +1 0 0 0 0 0

rail 4 0 0 0 0 -1 -1 -1 -1 -1 -1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

rail 0 0 +1 +1 +1 +1 0 0 0 0 0

rail 1 0 0 0 0 0 0 0 0 0 0

rail 2 0 0 0 0 0 -1 -1 0 0 0

rail 3 0 0 0 0 0 0 0 -1 -1 -1

rail 4 0 0 0 0 0 0 0 0 0 0

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

rail 0 0 +1 +1 +1 +1 0 0 0 0 0

rail 1 0 0 0 0 0 0 0 0 0 0

rail 2 0 0 0 0 0 0 0 0 0 0

rail 3 0 0 0 0 0 0 0 0 0 0

rail 4 0 0 0 0 0 0 0 0 0 0
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Table 4.4 Positive and negative heatmaps
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

rail 0 0 2 2 2 2 0 0 0 0 0

rail 1 0 0 0 0 0 0 0 0 0 0

rail 2 0 0 0 0 0 0 0 0 0 0

rail 3 0 1 1 1 0 0 0 0 0 0

rail 4 0 0 0 0 0 0 0 0 0 0

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

rail 0 0 0 0 0 0 0 0 0 0 0

rail 1 0 0 0 0 0 0 0 0 0 0

rail 2 0 0 0 0 0 -1 -1 0 0 0

rail 3 0 0 0 0 0 0 0 -1 -1 -1

rail 4 0 0 0 0 -1 -1 -1 -1 -1 -1

As we did in the previous approach, we decided to simplify the prob-

lem reducing the action space to the two possible directions go forward or

stop. However, in this framework, computation of alternative paths exiting

from one rail is provided, and the network is forced to evaluate the best

choice against the two actions for all the possible alternative bitmaps (called

altmaps) that can be produced from these alternative paths. From the out-

put Q values then, the action index corresponding to the max is picked, and

a new path for the agent is set according to the altmap selected.

Thus, the RL agent chooses an action only in correspondence of nodes,

in particular before switches, that are encoded in the bitmap, in the initial

part of the following rail, as a sequence, or as a single. It can also choose

actions during the initial phase, with status ready to depart, in order to enter

the environment.

Inside the bitmap, the presence of a switch is represented by the end of a

sequence of non-zero bits and the beginning at the following time step of a

new sequence of bits at a different row.

Table 4.5 Switches on bitmaps are positioned at the end of non-zero se-

quences of bits.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

rail0 0 +1 +1 +1 +1 0 0 0 0 0

rail1 0 0 0 0 0 -1 -1 0 0 0

rail2 0 0 0 0 0 0 0 0 0 0

rail3 0 0 0 0 0 0 0 -1 -1 -1

The final input for the network is thus made of bitmaps (of the current

or of one alternative path) and two heatmaps concatenated, all preprocessed
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with a padding in the matrix that considers the maximum number of rails

that the map could have. In this way, the network is able to learn from data

originating from different maps and episodes. The network determines the

output action for each agent singularly.

Results

The agent was trained on a cluster of machines equipped with GPUs

NVIDIA GeForce GTX 1080, since as opposed to the Graph Observations

approach, we observed how training with bitmaps could benefit from using

GPUs instead of CPUs. The parameters used for the Flatland environment

reflect the ones used in the Graph Observations approach, where the pre-

diction depth was increased to 150 by default. We simplified the task by

considering only agent with constant unitary speed and avoiding the occur-

rence of stochastic malfunctions. These assumptions, together with the use

of small environments could be a good starting point to show the potential

of the approach.

The the algorithm used for the training is a Double DQN with randomized

replay buffer and ε-greedy exploration with the network having the same ar-

chitecture as the previous approach, where the first layer was converted from

linear to convolutional to process the bitmap structure.

We report some charts obtained by plotting the relevant scalars using

TensorBoard for PyTorch.
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(a) Fraction of agents that reached their target

(b) Fraction of completed environments (100% of agents reached the target)

(c) Cumulative reward through episodes

Figure 4.10: Comparison of performance between a learning agent (orange)

and a random agent (red), the latter used as a baseline



4.2 Avoid conflicts 65

(a) Fraction of agents that reached their target

(b) Fraction of completed environments (100% of agents reached the target)

(c) Cumulative reward through episodes

Figure 4.11: Other training experiments: on a bigger environment of 30x30

with 10 agents (green), reordering the rails in the bitmap (blue), reordering

the rails and cutting the ones that are not traversed (orange)
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Discussion

As the plots show, results of using Graph Observations with Rainbow

lead to a divergence of Q values during learning.

This behaviour is very common, DQN is in general hard to train and tune,

and very slow to converge even with a successful state representation. The

difficulties in finding convergence could be also an effect of the stochasticity

of the environment we are trying to learn from, since the maps in the envi-

ronment change at every episode.

According to our findings, after repeating the experiments with different hy-

perparameters and still obtaining not sufficient results, we believe that the

approach we used could have been too simplistic to tackle the problem effec-

tively. For example, the determination of the priorities between agents can

be made more complex by considering also the network structure. In addi-

tion, path selection through the shortest path algorithm for single agent is

probably too reductive, given that it does not take into account the presence

of other agents.

As for the Rail Observations approach, the learning curves resulting from

the experiments gave positive outcome, showing a constant improvement

over the baseline in the performance of the agents until reaching a stable

90% of agents done. These good results show that the representation of

the input data as a bitmap is a successful mechanism for the network to

67
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learn. Further experiments would be trying the effectiveness of this approach

on bigger environments, restore the fractionary speed and conceive more

sophisticated bitmaps, and apply malfunctions with a different strategy for

path re-calculation.

In the following, we point in detail the problems posed by this challenge,

the limitations of the approaches used and conceivable related efforts that

could result in improvements in performance.

DQN and Rainbow

DQN and DQN-related algorithms are state-of-the-art on Atari arcade

games. However, Flatland poses more complex challenges than the ones faced

in Atari, first of all being a multi-agent environment [23]. Our approach is

limited in the modifications done to Rainbow to adapt it to a MAS. Therefore,

we suggest that applying different algorithms from literature, that are suited

for MARL and deal with the non-stationarity of the environment, could lead

to substantial improvements. We refer both to algorithms derived from DQN

than others, such as Actor-Critic.

Reward

In every RL problem, reward definition is key to represent the goal idea

and allow the agent to achieve its goal. Shaping reward inevitably influences

the behavior of the learning agent. In a multi-agent setting, defining reward

is complex, in a cooperative environment such as Flatland, each agent pos-

sesses its own goal, that is reaching the target as fast as possible, and all of

them concur in a race to achieve a shared goal, let the maximum number of

agents reach their target. It is easy to see how balancing individuality and

cooperation is here vital to obtain the best outcome.

In our approach, we decided to assign a positive reward to the agents inde-

pendently of each other. Being the task maximizing the number of trains

that can get to the destination, then giving a single reward seemed to us

more appropriate than a global positive one assigned only in case all agents
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complete.

Another issue in Flatland is sparsity of rewards, an agent receives a positive

reward only at the target, that is, after choosing a long sequence of actions,

with no other feedback in its way to the target, except a simple penalty on

time, that doesn’t depend on the action picked.

We propose that adding local rewards, for example in case of overcoming

conflicting situation, could be beneficial in helping the agent to learn better.

Generalization

A core challenge in RL is generalization, an agent that, after a long train-

ing, performs very well on a specific environment, it is not sure to perform as

well in a slightly different environment. In Flatland the problem consists first

in finding a good policy that generalizes on environments of the same size

(width x height) and different inner structures, such as number of cities, num-

ber of rails between cities and placement of these inside the map. Secondly,

a good policy must be able to generalize correctly for different environment

sizes and different number of agents. This poses crucial difficulties in terms

of scalability of the solution and computational effort.

In our approach we started investigating the tasks on simple grids to take

into account this problem only later.

Time

The idea of time is crucial in RL, that deals with agents facing complex

decision-making problems. In Flatland, timing is vital to avoid conflicts and

it is a key element to be considered during prediction, since agents path du-

ration varies depending on different speed profiles.

The Graph Observations approach was based on the idea of prediction,

namely, for how many cells in time we will be aware of the agent position.

However, our idea of prediction is single, meaning, not dependent on other

agents predictions. A possible improvement would be to consider a more

global idea of prediction in order to take into consideration the interactions
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between agents in time.

Stochasticity

In the perspective of Multi-Agent Reinforcement Learning, the presence

of stochastic events that are not determined by the agents, introduces an

important challenge [49] [50]. Stochasticity in Flatland is represented by

occurrence of malfunctions, determined by a Poisson process parameterized

with a certain malfunction rate. The occurrence of malfunctions introduce

an additional problem to the detection of conflicts. In the standard situation,

conflicts rise when two paths overlap, but malfunctions add a stochastic and

unpredictable factor that forces agents to re-compute their routes in order

to avoid conflicts on rails that contain stuck agents. The first solution that

we propose to avoid these situations is that each agent must be aware of

multiple paths that lead to the target, to choose an alternative in all the

cases a malfunction happens and the predefined path is disrupted because a

rail becomes temporarily unavailable.

In the Graph Observations, a limitation in our approach is the consideration

of shortest paths only. So we propose to enrich the algorithmic part with a

controller that performs a more sophisticated search on the railway graph. In

general, the algorithm that computes the alternative paths must be updated

to consider not only the structure of map but also the position of other agents

to avoid those that are affected by a failure.

More generally, other approaches can be tried and different techniques

can be included, such as decomposition of the end-to-end learning problem

into submodules to speed up learning as proposed in [47] or the mix of rein-

forcement learning with supervised or causal learning, as suggested in [48].

In the following paragraphs we detail some more general research directions

and possible improvements.
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Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are models that try to capture exist-

ing relationships within graph data which contains rich relation information

between elements [46]. These models capture dependence via message pass-

ing between the nodes of the graphs and differently from standard neural

networks, they retain a state that can represent information from its neigh-

borhood with arbitrary depth.

In literature there are many proposed architectures to deal with graph data

using GNNs.

Communication among agents and action negotiation

In multiagent reinforcement learning, some form of communication be-

tween agents is often used [44] [45], especially in cooperative settings where

a common goal is present and agents need to coordinate themselves to achieve

it. Even in Flatland, where the goal is to maximize the number of agents

reaching the targets in the minimum amount of time, some form of commu-

nication can be implemented. For example, one agent could potentially be

aware of the intentions of the other agents (e.g. next planned actions) and

act accordingly. In some settings, also adding a master agent that controls

everybody at once proved to be a successful resolution.

A further mechanism to avoid undesired scenarios is to add another round of

action negotiation following the action selection phase. When all the agents

have chosen their actions and a complete knowledge is available, illicit situ-

ations such as unavoidable conflicts can be detected and a new action selec-

tion phase can be performed pushing the agents to pick alternative actions

to avoid these invalid cases.

Operation research methods

Vehicle Rescheduling Problem (VRSP) is a combinatorial optimization

problem and like others of this kind can be tackled using Operation Research
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(OR), Constraint Programming (CP) or a combination of the two [42] [43].

Adapting Flatland tasks to these formalisms could give us a different way

to analyze the problem under a mathematical perspective and produce a

classical algorithm.

Having available such an algorithm would provide us with a baseline for RL

algorithms or other types of learning, such as imitation learning, where we

learn a policy by observing first the actions picked following the baseline.



Conclusion

In this work we explored Reinforcement Learning principles and its rep-

resentative elements with a focus on the subdomain of multi-agent systems

and its challenges. We explained the classical approaches to solve RL prob-

lems and we focused on Deep RL, where methods include neural networks as

function approximators to represent some aspects of the RL framework and

we detailed one of the most influential algorithms in the Deep RL literature,

DQN and its more performing variants.

Next, we described Flatland, a multi-agent railway simulation that built

the foundation for the environment on which this study is based, and we

applied DQN and Rainbow on a series of diversified tasks derived from the

formulation of the Vehicle Rescheduling Problem (VRSP) within this railway

environment, where the common goal is to optimize the traffic flow within

the network.

To overcome the computational difficulties of solving the VRSP on realis-

tic environments using deterministic algorithms and heuristics, we proposed

a series of alternative approaches based on Deep Reinforcement Learning.

These approaches were applied on a series of tasks of increasing difficulty

to investigate the limitations and the challenges of this learning framework,

together with its potentiality for success.

In the navigation task, where an agent from a random position on a map

must reach its target station, we showed how DRL with DQN can achieve

optimality and a comparable performance to a standard algorithm, such as

Dijkstra’s algorithm on graphs. The challenge faced in this task is to find the
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best approximation for the environment state (observation), in order for the

agent to reach its goal. In our simple case, the key idea is a reward shaping

that reinforces a positive reward only when the target is reached and assign

a negative reward in all the other steps, in order to penalize an agent for its

time spent in the map, so as to speed up its run to the target.

The crucial point in this observation is to feed the agent data about its dis-

tance to the target, that changes at every navigation choice.

In this framework, it would be interesting to extend the work to identify ways

to speed up learning by finding the best observation representation for the

agent.

On the other hand, identifying a successful methodology that could lead

to good outcomes in a multi-agent setting showed more difficulties.

In the conflicts avoidance task the main challenges are derived from the com-

plexity that is typical of multi-agent systems. In this scenario, learning can

become chaotic, since observations for one agent have to take into consider-

ation also other agents, in a vision that is not stationary anymore. Here we

implemented a first simplified possible approach that leverages the structure

of the railway network as a graph, by decomposing the task in two levels,

where only one of them is controlled by DRL algorithms, producing results

that are open to many future improvements.

In the second approach we developed instead a particular representation of

the rails as resources and their occupation in time through a bitmap, that

was also the chosen data structure to express the probability of conflicts be-

tween agents. In this case, the positive results opened to more possibilities

of experimenting with different parameters and settings.
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Graph Observations

This is the main method that is called whenever observation must be

computed for one agent.

def get(self, handle: int = 0) -> {}:

"""

Returns obs for one agent, obs are a single array of concatenated

values representing:

- occupancy of next prediction_depth cells,

- forks,

- targets,

- priority,

- number of malfunctioning agents (encountered),

- number of agents that are ready to depart (encountered).

:param handle: agent id

:return: a graph observation for agent handle

"""

agents = self.env.agents

agent = agents[handle]

# Occupancy

occupancy, conflicting_agents = self._fill_occupancy(handle)

# Augment occupancy with another one-hot encoded layer: 1 if this

cell is overlapping and the conflict span was already entered

by some other agent
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second_layer = np.zeros(self.max_prediction_depth, dtype=int) #

Same size as occupancy

for ca in conflicting_agents:

if ca != handle:

# Find ts when conflict occurred

ts = [x for x, y in enumerate(self.cells_sequence[handle])

if y[0] == agents[ca].position[0] and y[1] ==

agents[ca].position[1]] # Find index/ts for conflict

# Set to 1 conflict span which was already entered by some

agent - fill left side and right side of ts

if len(ts) > 0:

i = ts[0] # Since the previous returns a list of ts

while 0 <= i < self.max_prediction_depth:

second_layer[i] = 1 if occupancy[i] > 0 else 0

i -= 1

i = ts[0]

while i < self.max_prediction_depth:

second_layer[i] = 1 if occupancy[i] > 0 else 0

i += 1

occupancy = np.append(occupancy, second_layer)

# Bifurcation points, one-hot encoded layer of predicted cells

where 1 means that this cell is a fork

# (globally - considering cell transitions not depending on agent

orientation)

forks = np.zeros(self.max_prediction_depth, dtype=int)

# Target

target = np.zeros(self.max_prediction_depth, dtype=int)

for index in range(self.max_prediction_depth):

# Fill as 1 if transitions represent a fork cell

cell = self.cells_sequence[handle][index]

if cell in self.forks_coords:

forks[index] = 1

if cell == agent.target:

target[index] = 1
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# Speed/priority

is_conflict = True if len(conflicting_agents) > 0 else False

priority = assign_priority(self.env, agent, is_conflict)

max_prio_encountered = 0

if is_conflict:

conflicting_agents_priorities = [assign_priority(self.env,

agents[ca], True) for ca in conflicting_agents]

max_prio_encountered = np.min(conflicting_agents_priorities) #

Max prio is the one with lowest value

# Malfunctioning obs

# Counting number of agents that are currently malfunctioning

(globally) - experimental

n_agents_malfunctioning = 0 # in TreeObs they store the length of

the longest malfunction encountered

for a in agents:

if a.malfunction_data[’malfunction’] != 0:

n_agents_malfunctioning += 1 # Considering ALL agents

# Agents status (agents ready to depart) - it tells the agent how

many will appear

n_agents_ready_to_depart = 0

for a in agents:

if a.status in [RailAgentStatus.READY_TO_DEPART]:

n_agents_ready_to_depart += 1 # Considering ALL agents

# shape (prediction_depth * 4 + 4, )

agent_obs = np.append(occupancy, forks)

agent_obs = np.append(agent_obs, target)

agent_obs = np.append(agent_obs, (priority, max_prio_encountered,

n_agents_malfunctioning, n_agents_ready_to_depart))

return agent_obs
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Here instead we show how priority is computed.

def assign_priority(env, env_agent, conflict):

"""

Assign priority in this way:

- if agent is READY_TO_DEPART or DONE, return 0

- if agent is ACTIVE:

- if no conflict was predicted, return 0 (max prio)

- if conflict was predicted,

return priority as function of distance to target and speed

:param env_agent:

:param conflict:

:return:

"""

if env_agent.status is not RailAgentStatus.ACTIVE:

return 0

if not conflict:

return 0

else:

max_distance = distance_on_rail((0,0), (env.height-1, env.width-1))

min_distance = 0

min_speed = 0.25

# Use Euclidean distance

priority = distance_on_rail(env_agent.position, env_agent.target)

priority /= env_agent.speed_data[’speed’]

# Normalize priority

priority = np.around(priority / (max_distance / min_speed),

decimals=3)

return priority
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