
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

Scuola di Scienze
Corso di Laurea in Informatica

TgFuseFs: How High School Students Can Write
a Filesystem Prototype

Tesi di laurea

Relatore:
Chiar.mo Prof.
Renzo Davoli

Correlatori:
Dott. Marco Sbaraglia
Dott. Michael Lodi

Presentata da:
Riccardo Maffei

Sessione III
Anno Accademico 2018-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Laurea

https://core.ac.uk/display/294761162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Information about licenses and credits can be found in Appendix A.

ii

To those I love and
those who love me...

iii

iv

Abstract

Italian high school students who are majoring in Computer Science usually
study subjects like programming, databases, networks, system engineering,
electronics and operating systems. While most of these subjects let the stu-
dents practice with projects, operating systems usually is taught in a more the-
oretical way because practical projects either are too simple to be didactically
useful or require too many prerequisites. Hence, components like filesystems
are only studied in theory from an high level point of view.
We think that building a filesystem prototype could be considered active learn-
ing and could improve the operating systems learning experience. For this
reason in this work we will show how fifth year students with very few pre-
requisites can build their first working prototype of a remote filesystem in
userspace using Python, FUSE and Telegram.
Since the activity is designed for high school students, the prototype won’t be
perfect but we will present some of the issues that students should be aware
of and more advanced students should address.

v

vi

Contents

Introduction 1

1 General Concepts 3
1.1 Requirements . 3
1.2 Python . 4

1.2.1 asyncio . 4
1.3 FUSE and libfuse . 8

1.3.1 pyfuse3 . 10
1.4 Telegram . 11

1.4.1 Telethon . 11

2 Implementation 13
2.1 Data Structures . 13

2.1.1 Inode . 13
2.1.2 Superblock . 14
2.1.3 DirectoryData . 15
2.1.4 FileData . 16

2.2 Wrapper . 16
2.2.1 Connection . 16
2.2.2 Helpers . 17
2.2.3 Serialization . 18
2.2.4 Public API . 19

2.3 mktgfs.py . 22
2.4 Filesystem . 24

2.4.1 Operations . 24
2.4.2 Initialization and Mount . 38

2.5 Testing . 40

3 Issues and Improvements 43
3.1 Data Storage . 43
3.2 Synchronization . 43
3.3 Caching . 44
3.4 Serialization . 44
3.5 Additional Improvements . 44

4 Conclusions and Future Works 45

vii

Appendix A Licenses and Credits 47
A.1 Third-Party Content . 47

Acknowledgments 49

References 51

viii

List of Figures

1.1 A flow-chart diagram showing how the event loop manages tasks. . . 5
1.2 A flow-chart diagram showing how FUSE works. 8
1.3 A Telegram Desktop native app screenshot shown on a laptop. 11

2.1 Example of testing session. 41
2.2 Telegram chat after tests. 41

ix

x

List of Listings

1 Coroutines definition syntax. 4
2 Example of task creation to schedule a coroutine on the loop. 5
3 Example of two different coroutines. 6
4 Example of coroutine affected by TOC/TOU bug 7
5 Example of deadlock due to non-reentrancy of asyncio locks 7
6 Example of a pyfuse3-based filesystem implementation structure . . 10
7 Example of how to start the Telethon client. 12
8 Example of inode implementation. 13
9 Example of superblock implementation. 14
10 Example of directory implementation. 15
11 Example of file implementation. 16
12 Example of TgFuseWrapper initializer implementation. 16
13 Example of _get_pinned_file implementation. 17
14 Example of _upload_data implementation. 18
15 Example of _download_data implementation. 18
16 Example of _pickle_and_save implementation. 19
17 Example of _unpickle implementation. 19
18 Example of write_superblock implementation. 20
19 Example of read_superblock implementation. 20
20 Example of write_data implementation. 21
21 Example of read_data implementation. 21
22 Example of delete_data implementation. 21
23 Example of mktgfs.py implementation. 22
24 Example of TgFuseFs initializer implementation. 24
25 Example of getattr and _getattr implementation. 25
26 Example of setattr implementation. 26
27 Example of lookup and _lookup implementation. 27
28 Example of opendir implementation. 28
29 Example of readdir implementation. 29
30 Example of releasedir implementation. 29
31 Example of mkdir and mknod implementation. 30
32 Example of _create implementation. 31
33 Example of _update_directory implementation. 32
34 Example of open implementation. 33
35 Example of read implementation. 34
36 Example of write implementation. 34
37 Example of release implementation. 35
38 Example of rmdir and unlink implementation. 36

xi

39 Example of _remove implementation. 36
40 Example of forget implementation. 37
41 Example of close implementation. 38
42 Example of mount script implementation. 39
43 Unlink handler test from the documentation. 40

xii

Introduction

Italian high school students who are majoring in Computer Science usually study
subjects like programming, databases, networks, system engineering, electronics and
operating systems. While most of these subjects let students practice with projects,
operating systems usually is taught in a more theoretical way because practical
projects either are too simple to be didactically useful or require too many prereq-
uisites. Hence, components like filesystems are only studied in theory from an high
level point of view.

We think that building a filesystem prototype could be a practical activity that
falls under the definition of active learning presented by Bowell and Eison[1] because
it “involves students in doing things and thinking about the things they are doing”.
According to a study by Freeman et al.[2], “active learning increases student perfor-
mance across the STEM disciplines” and for this reason we think that building a
filesystem prototype could improve the operating systems learning experience.

Even though there are other kind of schools teaching a subset of the subjects
listed above, we think that students of Computer Science at “istituti tecnici”1 usu-
ally have a more comprehensive computing education. In particular we think that
the subject called “Tecnologie e progettazione di sistemi informatici e di telecomu-
nicazioni”2 could teach filesystems through practical projects during its 4 hours3
weekly schedule following the ministerial guidelines4.

In this work we will show how to implement a remote filesystem in userspace
using Python, FUSE and Telegram.

Telegram lets user upload an unlimited number of files (up to 1.5GB each) as
message attachments and supports a “self” chat where users can keep their files
and messages. We will use that chat as the actual storage for filesystem data and
metadata. The protocol used to interact with Telegram APIs is called MTProto;
however, we are not going to use it directly but we will use a library called Telethon
which will make the interaction easier for students.

Writing filesystems usually requires kernel programming experience that high
school students usually lack of. On the other hand writing a filesystem in userspace
lets students use almost every language and library they want and also reduce the
effort needed for debugging and avoids system crashes which may occur during the
development of kernel modules. For this reason we are going to use libfuse v3.x
through its Python bindings pyfuse3.

Since the activity is designed for high school students, the prototype won’t be
1Vocational technical high schools. Lit.: “technical institutes”
2Lit.: “Technologies and design of computer systems and telecomunications”
3Attachment C4 of the decree of the President of the Republic “D.P.R. 15 marzo 2010, n. 88”[3]
4Attachment A.2 of the ministerial directive “Direttiva 16 gennaio 2012, n. 4”[4]

1

perfect; in chapter 3 we will present some of the issues and improvements that
students should be aware of.

2

Chapter 1

General Concepts

1.1 Requirements

This work assumes the students are enrolled in the fifth year of a Computer Science
high school program. For this assumption, students should satisfy at least the
following requisites:

• 3+ year of programming experience (in this work we use Python 3.7)

• very basic knowledge of concurrent programming concepts such as:

– interleaving

– locking and mutual exclusion

• strong experience and knowledge of UNIX/Linux environment

• OS knowledge including some theoretical knowledge of basic filesystem imple-
mentation concepts

This whole work assumes the development is done on Ubuntu (or any Debian deriva-
tive) with the following packages:

• Python 3.7

• fuse3

• libfuse3 v3.4.x or later

• libfuse3-dev development packages.

The following Python libraries are also required:

• pyfuse3

• Telethon

For obvious reasons, a Telegram account is needed too.

3

1.2 Python

In high school programming classes student are usually taught programming lan-
guages such as Python, C++ or Java. For this filesystem implementation we decided
to use Python because there are many useful libraries that will ease the develop-
ment. Even though we will not use multithreading, both Telethon and pyfuse3
use asynchronous programming through asyncio. In the following section we will
briefly introduce some of its basic concept, more can be found in the official docu-
mentation[5].

1.2.1 asyncio
asyncio[5] is an asynchronous programming module introduced in Python 3.4.
It consists of several components but students will need to get familiar with:

• event loop

• coroutines

• asyncio locks

1.2.1.1 Event Loop

The event loop manages and distributes the execution of different tasks which are
used to run coroutines in event loops. As shown in figure 1.1, when a task needs
to wait something to finish, such as an I/O call, the task is suspended and another
one is executed. This works in a similar way to cooperative schedulers. When the
blocking call ends, the task will be pushed back into the loop queue and will be
eventually executed resuming the coroutine from where it was interrupted.
More about coroutines and the loop in the following sections.

1.2.1.2 Coroutines

Coroutines are a more generalized form of subroutines which can be entered, exited,
and resumed at many different points. The basic syntax to define a coroutine is to
define a function with async before def as shown in listing 1

1 async def coroutine():
2 # code here
3 ...

Listing 1: Coroutines definition syntax.

Inside coroutines it’s possible to await on other coroutines or any awaitable.
Coroutines should be scheduled and cannot be called directly; calling coroutine()
will just return a coroutine object. To be actually executed they must be awaited

4

event loop

if is blocking
(e.g. I/O, sleep)

Task 1 gets task from queue

runs coroutine 1

coroutine 1
awaits another coroutine

runs
coroutine 2

coroutine 2

no

...

yes

control goes
back to loop

event loop

executes other tasks
Task 2

...
Task n

Task 1
resumes coroutine 1

...

Figure 1.1: A flow-chart diagram showing how the event loop manages tasks.

from another running coroutine or must be scheduled on the loop for example cre-
ating a task (see listing 2) that will be executed concurrently to other tasks already
scheduled on the loop.

1 async def coroutine():
2 # code here
3 ...
4 ...
5 task = asyncio.create_task(coroutine())

Listing 2: Example of task creation to schedule a coroutine on the loop.

5

1.2.1.3 asyncio Locks

Students should be already familiar with concurrent programming, in particular with
race conditions and basic synchronization primitives. In this work we will disable
multithreading for the sake of simplicity; however, due to the nature of coroutines
there could still be interleaving and race conditions.
Let’s take a look at the example shown in listing 3.

1 async def first():
2 print('First start')
3 await asyncio.sleep(10)
4 print('First end')
5

6 async def second():
7 print('Second start')
8 await asyncio.sleep(10)
9 print('Second end')

Listing 3: Example of two different coroutines.

Let’s say that both first and second are scheduled on the loop at the same
time. A beginner student may think that without concurrency there will not be
interleaving but that’s false. When something blocking like sleep is awaited a
context switch happens. The currently running task (wrapping the coroutine) is
suspended and the control goes back to the loop which may resume a different task
as explained in section 1.2.1.1. One possible output may be something like this:

First start
Second start
First end
Second end

Note that awaiting something doesn’t necessarily imply that a (task) context switch
will happen. The context switch will happen if and when a blocking call is executed
(such as I/O, sleep etc...).

Because of this behavior, access to shared data may lead to race conditions and
bugs such as the TOC/TOU[6] shown in listing 4.

6

1 async def coroutine(self):
2 # check if some file is not open
3 if not self.file.is_open:
4 # the file is not open here
5 # await something
6 await asyncio.sleep(10)
7 # the file could be already open here!!
8 ...

Listing 4: Example of coroutine affected by TOC/TOU bug

To avoid this kind of bugs we could use some advanced synchronization tech-
niques but they are too advanced for high school students and, therefore, they are
out of the scope of this work. In this implementation we will use simpler yet ineffi-
cient techniques such as using mutual exclusion around critical sections using locks
which students should be already familiar with. This will lead to performance issues
as described in chapter 3.
Beware that asyncio.Locks are not reentrant, this means that the execution of
coroutine shown in listing 5 will lead to deadlock.

1 async def coroutine(self):
2 # acquire lock
3 with self.lock:
4 # call something which requires the same lock
5 await self.same()
6

7 async def same(self):
8 # acquire lock
9 with self.lock: # <-- deadlock

10 ...

Listing 5: Example of deadlock due to non-reentrancy of asyncio locks

7

1.3 FUSE and libfuse

FUSE[7] (Filesystem in Userspace) is a software interface that lets non-privileged
users to write their own filesystem writing only userspace code.
FUSE main components are:

• the FUSE kernel module (fuse.ko)

• the userspace library (libfuse.*)[8]

• a mount utility (fusermount)
To write a filesystem, either real or virtual, we should write a userspace program
that will handle all the filesystem operations we want to support. To do so, the
program will be linked to libfuse and implement the operations callbacks such as
geattr, open etc... (more information in chapter 2 and section 2.4.1)

Let’s say that we have implemented a FUSE filesystem in a program called hello,
we mount it on /tmp/fuse and try to list that directory. As shown in figure 1.2 the
following will happen:

1. ls will send the request to the kernel through system calls.

2. in kernelspace VFS will check which filesystem is mounted at that location and
redirects the request to the right module. In this scenario: FUSE.

3. the FUSE kernel module will redirect the request to the hello program (which
has been registered in the kernel module on launch).

4. the program (in userspace) will handle the request through the implemented
callbacks and sends the answer all the way back.

libfuse

libclibc

FUSE

Ext3

...

VFS

ls -l /tmp/fuse

./hello /tmp/fuse

Kernel

Userspace

NFS

Figure 1.2: A flow-chart diagram showing how FUSE works.

8

Writing a FUSE-based filesystem has both advantages and disadvantages.
The advantages of FUSE over standard kernel implementation are:

• Kernel development experience is not required.

• Both development and usage can be done by non-privileged users.

• Developing in userspace means no system crash will occur in case of something
goes wrong.

• The filesystem can be developed in almost any preferred programming lan-
guage thanks to the several bindings available.

• Any IDE, debugger and library can be used.

• Clean API to implement operations.

• Out-of-the-box user isolation.

• Avoid potential license issues like those happened to ZFS[9][10].

On the other hand there are disadvantages such as:

• Lower performance

• Higher requirements for the target system (such as libfuse installed)

• Not the best option when needing a multi user filesystem.

9

1.3.1 pyfuse3
pyfuse3[11][12] is a library that implements libfuse bindings for Python and it’s
compatible with both Trio and asyncio. Writing a filesystem consist in subclass-
ing the pyfuse3.Operations class and implementing the request handler for the
operation we want to support.
The FUSE kernel module will call those handlers as described in section 1.3 and in
the official documentation[12]. In listing 6 is shown a simple empty structure (pay
attention to the sixth line which enables the support for asyncio) while in chapter 2
we will present the prototype implementation details.

1 import pyfuse3
2 import pyfuse3_asyncio
3 import asyncio
4

5 # enable asyncio support
6 pyfuse3_asyncio.enable()
7

8 # implement subclass
9 class ExampleFS(pyfuse3.Operations):

10 # implement request handlers here such as open(), read() etc...
11

12 async def open(self, inode_n, flags, ctx):
13 ...
14

15 async def read(self, fh, off, size):
16 ...
17

18 async def write(self, fd, offset, buf):
19 ...
20

21 ...
22

23 # init the operations handler and FUSE options
24 operations = ExampleFS()
25 fuse_options = set(pyfuse3.default_options)
26 fuse_options.add('fsname=examplefs')
27 # run pyfuse through asyncio
28 asyncio.get_event_loop().run_until_complete(pyfuse3.main())
29 # error handling is omitted

Listing 6: Example of a pyfuse3-based filesystem implementation structure

10

1.4 Telegram

Telegram[13] is a popular cloud-based instant messaging and VoIP platform with a
focus on security and speed. It supports several platforms and provides mobile and
desktop native clients.

Figure 1.3: A Telegram Desktop native app screenshot shown on a laptop.

Telegram, which is based on the MTProto[14] protocol, has a lot of functionalities
such as bots, groups, channels, scheduled messages, reminders, stickers and secret
chats but we will only use a little subset including the “self" (or “Saved Messages")
chat and the file upload functionality.
Telegram let’s its users upload an unlimited number of files with the maximum size
of 1.5GB each.
The special chat called “Saved Messages" is a chat where people can save all kinds
of messages supported by Telegram. For example users can send a message (text,
file, document, media etc) directly to that chat or forward there any message from
other chats.

1.4.1 Telethon
Telethon[15][16] is a Pure Python 3 MTProto library to interact with Telegram APIs
based on asyncio.
To interact with Telegram APIs the first requirement is to get an API key (an ID-
hash pair) from https://my.telegram.org/ then the client must be started in one
of the many documented way[16]. An example is shown in listing 7.

11

https://my.telegram.org/

1 from telethon import TelegramClient
2 import asyncio
3

4 # ID-hash pair from my.telegram.org
5 api_id = 12345
6 api_hash = '0123456789abcdef0123456789abcdef'
7

8 # init the client
9 client = TelegramClient('SESSIONNAME', api_id, api_hash)

10 # start the client with the given phone number.
11 client.start('+390000000000')
12

13 # example coroutine
14 async def coroutine1():
15 # send a message to myself
16 await client.send_message('me', 'Hello world!')
17

18 # run the coroutine
19 asyncio.get_event_loop().run_until_complete(coroutine1())

Listing 7: Example of how to start the Telethon client.

The library provides a lot of functionalities, in chapter 2 and section 2.2 we will
explain those we need to use.

12

Chapter 2

Implementation

In this chapter we will show an example of implementation for the filesystem proto-
type. In particular we will show the code along with comments and an explanation
of the major choice made.

2.1 Data Structures

In this section we will present the implementation of the main data structure used
in this filesystem prototype.
All the data structures are implemented in a file called model.py.

2.1.1 Inode
The inode contains all the file metadata along with some other utility information.

7 class Inode:
8 def __init__(self, number):
9 # inode attributes like 'stat'

10 self.attributes = EntryAttributes()
11 # pointer to data (message id) or data when inlining
12 self.data_pointer = 0
13 # init the number in attributes
14 self.attributes.st_ino = number
15

16 def is_directory(self):
17 # check mode and return
18 return stat.S_ISDIR(self.attributes.st_mode)
19

20 def is_regular_file(self):
21 # check mode and return
22 return stat.S_ISREG(self.attributes.st_mode)

Listing 8: Example of inode implementation.

13

The attribute attributes is of type pyfuse3.EntityAttributes[12] and con-
tains all the metadata usually returned by a stat(1) call such as the inode number,
the size, the mode, timestamps etc...

The attribute data_pointer is a pointer to the actual file data. In this prototype
we used a only a single pointer to a Telegram message which contains the file data
as attachment. More considerations about this choice in chapter 3.

2.1.1.1 is_directory(self) and is_regular_file(self)

This prototype supports only regular files and directories. These two utility methods
are useful to check whether the inode belong to a file or a directory. They are
implemented using the stat library and the mode attribute.

2.1.2 Superblock
The superblock contains metadata of the filesystem and all the inodes.

25 class Superblock:
26 def __init__(self, inode_n):
27 # init inode dict with the root inode and free set
28 self.inodes = {1: Inode(1)}
29 self.free_set = set(range(2, inode_n + 1))
30

31 def get_new_inode(self):
32 # if there are free inodes
33 if self.free_set:
34 # get a free inode number
35 free_n = self.free_set.pop()
36 # add a new inode with the given number to the dict
37 self.inodes[free_n] = Inode(free_n)
38 # return the new inode
39 return self.inodes[free_n]
40 # return None otherwise
41 return None
42

43 def free_inode(self, number):
44 # delete the inode from the dictionary
45 del self.inodes[number]
46 # add the inode number to the free set
47 self.free_set.add(number)
48

49 def get_inode_by_number(self, number):
50 # return the inode if exist, None otherwise
51 return self.inodes.get(number, None)

Listing 9: Example of superblock implementation.

14

For easier access the inodes are stored in a dictionary but in order to reduce the
size of the superblock (that needs to be uploaded) unused inodes are not saved at all
and only their numbers are stored in a set. More considerations about this choice
in chapter 3. The inode number 1 is automatically added for the filesystem root
directory.

2.1.2.1 get_new_inode(self)

This method is used to get a new empty inode. It removes one inode number from
the free set and creates a new empty Inode with the same number and than adds
it to the dictionary. Returns None if no inode is available.

2.1.2.2 free_inode(self, number)

This method frees the inode with the given number. The actual inode is removed
from the dictionary and its number is added in the free set.

2.1.2.3 get_inode_by_number(self, number)

This method returns the inode with the given number if exists. None otherwise.

2.1.3 DirectoryData
UNIX well known philosophy says that “everything is a file or a process"[17].
Directories are just files whose content is a list of other files. The DirectoryData
class wraps exactly that list.

54 class DirectoryData:
55 def __init__(self, self_inode_n, parent_inode_n):
56 # init directory entries with '.' and '..'
57 self.entries = {b'.': self_inode_n, b'..': parent_inode_n}
58

59 def __len__(self):
60 return len(self.entries)

Listing 10: Example of directory implementation.

The “list" is implemented as a dictionary where the key is the name of the entry
in bytes (as requested by the documentation[12]) and the value is the number of
the inode. The dictionary is always prefilled with ’.’ and ’..’ respectively the
current and parent directory entry.

2.1.3.1 __len__(self)

This method is invoked when len is called with a DirectoryData object as a pa-
rameter to get the size of the directory. Since this is implemented as the size of the
dictionary, an empty directory will always have a size of 2.

15

2.1.4 FileData
The FileData class wraps the actual data of a file.

63 class FileData:
64 def __init__(self, initial_data=b''):
65 self.raw_data = initial_data
66

67 def __len__(self):
68 return len(self.raw_data)

Listing 11: Example of file implementation.

In this prototype it could be replaced by using bytes directly; however, this class
will become useful when other feature will be added to the filesystem. The data is
saved as bytes and it’s prefilled as empty.

2.1.4.1 __len__(self)

This method is invoked when len is called with a FileData object as a parameter
to get the size of the file. This is implemented simply calling len on the raw bytes.

2.2 Wrapper

The class TgFuseWrapper, implemented in the file wrapper.py, contains all the
utility methods needed to interact with the remote storage, in this case Telegram.
This class should be the only piece of code interacting directly with Telegram and
exposes a little API (its methods) used by the other modules of the filesystem. In
this way changing the storage should be as easy as reimplementing this class without
any other modification to the rest of the code.

The class has only 2 static constants, api_id and api_hash, which contains the
Telegram API keys.

2.2.1 Connection
The class initializer shown in listing 12 takes care of the connection to Telegram
using the Telethon library.

15 def __init__(self, number):
16 # create and save the client with default api keys
17 self.client = TelegramClient('anon', TgFuseWrapper.api_id,

TgFuseWrapper.api_hash)↪→

18 # start the client
19 self.client.start(number)

Listing 12: Example of TgFuseWrapper initializer implementation.

16

The attribute client is a TelegramClient created and started connecting to
the given number. As documented[16], start works even outside of coroutines.

2.2.2 Helpers
The following methods are helpers to accomplish common task such as download
and upload of raw data.

2.2.2.1 _get_pinned_file(self)

This method, shown in listing 13, retrievers the file attached to the pinned message
as bytes if exists. None otherwise.

21 async def _get_pinned_file(self):
22 # WORKAROUND: to get pinned messages in PRIVATE chats
23 # get full chat object which contains the pinned message id
24 full = await self.client(GetFullUserRequest('me'))
25 # get the message from its id
26 message = await self.client.get_messages('me',

ids=full.pinned_msg_id)↪→

27 # get and return the attached file as bytes (None if missing)
28 return await self.client.download_media(message, file=bytes)

Listing 13: Example of _get_pinned_file implementation.

In order to get pinned messages for private chats we cannot use the high level
API so the chat full information is retrieved using the low-level raw API. Once the
message is retrieved, the attached media is downloaded in-memory and returned as
bytes if any.

2.2.2.2 _upload_data(self, data, caption, old_to_delete)

This method, shown in listing 14, uploads the given data and returns the message.

17

30 async def _upload_data(self, data, caption=None, old_to_delete=None):
31 # upload given data
32 message = await self.client.send_file('me',
33 file=data,
34 caption=caption,
35 force_document=True)
36 # if old to delete is provided then try to delete that message
37 if old_to_delete is not None:
38 await self.delete_data(old_to_delete)
39 # return the new message
40 return message

Listing 14: Example of _upload_data implementation.

When the old_to_delete parameter is provided this upload is intended as a
replacement and the message with the given id is deleted. This method accepts a
caption which is useful for debug purposes to visualize in Telegram a caption below
the uploaded message.

2.2.2.3 _download_data(self, message_id)

This method, shown in listing 15, downloads the data from the message with the
given id and returns it as bytes if exists. Returns None otherwise.

45 async def _download_data(self, message_id):
46 # get message by id from 'me'
47 message = await self.client.get_messages('me', ids=message_id)
48 # get and return the attached file as bytes (None if missing)
49 return await self.client.download_media(message, file=bytes)

Listing 15: Example of _download_data implementation.

2.2.3 Serialization
Both data and metadata (such as the superblock shown in section 2.1.2) must be
eventually saved somehow. While there are more secure and efficient way to do
that (more considerations in chapter 3), for sake of simplicity in this prototype we
serialized the whole object using the pickle library.

2.2.3.1 _pickle_and_save(self, obj, caption, old_to_delete)

This method, shown in listing 16, serializes the given object to bytes using pickle
and then uploads the data with the other given parameters.

18

90 async def _pickle_and_save(self, obj, caption=None,
old_to_delete=None):↪→

91 # pickle the given object
92 pickled = pickle.dumps(obj)
93 # upload the pickled data and return the message
94 return await self._upload_data(pickled, caption, old_to_delete)

Listing 16: Example of _pickle_and_save implementation.

2.2.3.2 _unpickle(self, file)

This method, shown in listing 17, deserializes the object from the given file using
pickle and then returns it. At the moment is just a wrapper around pickle.loads
but it’s useful in case the serialization technique changes.

96 def _unpickle(self, file):
97 # load (may be changed in case of new serialization method)
98 return pickle.loads(file)

Listing 17: Example of _unpickle implementation.

2.2.4 Public API
The following methods are those that are called from the other modules. In case the
storage changes (from Telegram to something different) the class should be rewritten
keeping the signatures of these methods intact. In this way only minor changes to
the other modules may be required.

2.2.4.1 write_superblock(self, superblock, should_replace)

This method, shown in listing 18, writes the given superblock to Telegram.

19

51 async def write_superblock(self, superblock, should_replace=False):
52 # WORKAROUND: to get pinned messages in PRIVATE chats
53 # if the old superblock should be replaced get its message id,

None otherwise↪→

54 old_id = (await
self.client(GetFullUserRequest('me'))).pinned_msg_id if
should_replace else None

↪→

↪→

55 # pickle and save the superblock
56 message = await self._pickle_and_save(superblock, 'superblock',

old_id)↪→

57 # pin the message containing the superblock data
58 await message.pin()
59 # return the message id
60 return message.id

Listing 18: Example of write_superblock implementation.

This is done by serializing and uploading the superblock and then pinning the
message so that it can be retrieved easier later. In case the old one should be
replaced, the old message id is retrieved and passed as old_to_remove.

2.2.4.2 read_superblock(self)

This method, shown in listing 19, reads the superblock from Telegram.

62 async def read_superblock(self):
63 # get the pinned file if exist, None otherwise
64 file = await self._get_pinned_file()
65 # the superblock, None as default
66 superblock = None
67 # if existed
68 if file is not None:
69 # unpickle the superblock
70 superblock = self._unpickle(file)
71 # return the superblock or None
72 return superblock

Listing 19: Example of read_superblock implementation.

This is done by getting the pinned file and then deserializing the superblock from
that file.

2.2.4.3 write_data(self, data, caption, old_to_delete)

This method, shown in listing 20, writes the given data to Telegram and returns the
message id.

20

74 async def write_data(self, data, caption=None, old_to_delete=None):
75 # pickle and save data then return the message id
76 return (await self._pickle_and_save(data, caption,

old_to_delete)).id↪→

Listing 20: Example of write_data implementation.

This is done by serializing the object (FileData or DirectoryData) and upload-
ing it to Telegram. If necessary the old_to_delete is replaced and a caption is
added.

2.2.4.4 read_data(self, message_id)

This method, shown in listing 21, reads and returns the data from Telegram from
the message with the given id if exist. None otherwise.

78 async def read_data(self, message_id):
79 # get the file by id
80 file = await self._download_data(message_id)
81 # the directory data, None as default
82 data = None
83 # if existed
84 if file is not None:
85 # unpickle the data
86 data = self._unpickle(file)
87 # return the retrieved data or None
88 return data

Listing 21: Example of read_data implementation.

This is done by downloading the file attached to the message and then deserial-
izing the object (FileData or DirectoryData).

2.2.4.5 delete_data(self, message_id)

This method, shown in listing 22, deletes the data from Telegram from the message
with the given id.

42 async def delete_data(self, message_id):
43 await self.client.delete_messages('me', message_id)

Listing 22: Example of delete_data implementation.

The implementation is straightforward, just call Telethon to remove the message
with the given id.

21

2.3 mktgfs.py

This prototype, implemented in the file tgfuse.py, mounts an existing filesystem
from Telegram to a local mountpoint. An empty filesystem should be somehow
created before mounting it.

1 import asyncio
2 import os
3 import sys
4 from time import time_ns
5

6 from wrapper import *
7

8

9 async def make():
10 # Create an empty superblock
11 s = Superblock(1000)
12 # get the inode reserved for the root directory
13 ino = s.get_inode_by_number(1)
14 # init its attributes
15 entry = ino.attributes
16 entry.st_mode = (stat.S_IFDIR | 0o755)
17 stamp = time_ns()
18 entry.st_atime_ns = stamp
19 entry.st_ctime_ns = stamp
20 entry.st_mtime_ns = stamp
21 entry.st_gid = os.getgid()
22 entry.st_uid = os.getuid()
23 # create and init an empty directory
24 dd = DirectoryData(1, 1)
25 entry.st_size = len(dd)
26 # write the directory
27 message_id = await w.write_data(dd, 'ROOT directory data')
28 # save the pointer in the inode
29 ino.data_pointer = message_id
30 # write the superblock
31 await w.write_superblock(s)
32

33

34 # create a wrapper with the argument phone number
35 w = TgFuseWrapper(sys.argv[1])
36 # run the coroutine on the loop
37 asyncio.get_event_loop().run_until_complete(make())

Listing 23: Example of mktgfs.py implementation.

The file mktgfs.py shown in listing 23 is used to create an empty filesystem with

22

1000 maximum inodes and only an empty root directory. This script is extremely
useful even during development because lets students easily clean the remote filesys-
tem which could have been corrupted by bugs or other reasons.

A TgFuseWrapper is created with the phone number provided as parameter and
then the make coroutine is run. The coroutine creates a new superblock and ini-
tializes the attributes for the root directory inode. The empty directory is then
uploaded and its id is saved in the inode data_pointer. Finally the superblock is
written to Telegram.

Note that the parent inode is set as itself, this will be overwritten with the actual
parent of the mountpoint by the kernel.

23

2.4 Filesystem

The actual filesystem implementation is part of the file tgfuse.py. In this section
we will describe our implementation example of some of the operation handlers.

2.4.1 Operations
The class TgFuseFs, extension of pyfuse3.Operations, implements the core of the
filesystem operations.
Most of the requirements used in the following sections are described in
the pyfuse3 documentation[12].
Note: we assume asyncio support is enabled through pyfuse3_asyncio.enable().

2.4.1.1 Attributes and Initializer

22 def __init__(self, number: str, *args, **kwargs):
23 super().__init__(*args, **kwargs)
24 # create the wrapper
25 self.wrapper = TgFuseWrapper(number)
26 # synchronously get the superblock
27 self.superblock = asyncio.get_event_loop().run_until_complete(c

self.wrapper.read_superblock())↪→

28 assert self.superblock is not None
29 # create a mutex lock for the superblock
30 self.sb_lock = asyncio.Lock()
31 # init a counter
32 self.counter = itertools.count()
33 # create open files and dirs dict
34 self.open_dirs = {}
35 self.open_files = {}
36 # create a lookup counter dict defaulting to 0
37 self.lookup_counters = defaultdict(int)
38 # create a list deferred removal
39 self.deferred = []

Listing 24: Example of TgFuseFs initializer implementation.

The initializer shown in listing 24 creates a TgFuseWrapper and synchronously
retrievers the superblock then initializes some utility attributes.

The attribute sb_lock is an asyncio.Lock used as mutex for operations over
the superblock.

The attribute counter is just an integer counter used to avoid collisions of di-
rectories file handles.

The attribute open_dirs is a dictionary that holds data for open directories.
The keys are the integer file handles returned by an opendir call while the val-
ues are tuples (inode, dd) where inode is a reference to the directory inode and

24

dd is a reference to the directory data (cloned at opendir time as explained in
section 2.4.1.5).

The attribute open_files is a dictionary that holds data for open files.
The keys are the file handles returned by an open call (inode numbers) while the
values are tuples (inode, fd, dirty, count) where inode is a reference to the
file inode, fd is a reference to the file data (used as cache until the file is closed by
all clients), dirty is a flag that is true if the cache has been written to and count
is an integer which counts how many time the file has been opened (and not closed
yet).

The attribute lookup_counters is a defaultdict which holds lookup counters
for inodes as requested by the documentation. The keys are the inode numbers
while the values are integers defaulting to zero.

The attribute deferred is a list of inodes whose deletion has been deferred by
the unlink handler. See section 2.4.1.8.

2.4.1.2 getattr(self, inode_n, ctx)

The getattr request handler should return the attributes of the inode with the
given number if exist.
More detailed requirements can be found on the pyfuse3 request handlers docu-
mentation.

41 async def getattr(self, inode_n, ctx):
42 # acquire superblock mutex and call internal method
43 async with self.sb_lock:
44 return await self._getattr(inode_n, ctx)
45

46 async def _getattr(self, inode_n, ctx=None):
47 # try to get the requested inode and if succeeded
48 inode = self.superblock.get_inode_by_number(inode_n)
49 if inode is not None:
50 # return the requested attributes
51 return inode.attributes
52 # otherwise raise ENOENT
53 raise FUSEError(errno.ENOENT)

Listing 25: Example of getattr and _getattr implementation.

Listing 25 shows our example of getattr and _getattr implementation.
The internal _getattr method assumes the superblock lock has already been

acquired. Tries to get the inode with the requested number and if succeeded returns
its attributes. Otherwise, the inode doesn’t exist and ENOENT is raised. This method
is useful and can be called internally by other handlers.

The method getattr is the actual handler. It simply acquires the superblock
lock and then calls the internal _getattr method returning its result.

25

2.4.1.3 setattr(self, inode_n, new_attr, fields, fh, ctx)

The setattr request handler should change the attributes of the inode with the
given number to the new provided values and then return all the attributes.
More detailed requirements can be found on the pyfuse3 request handlers docu-
mentation.

55 async def setattr(self, inode_n, new_attr, fields, fh, ctx):
56 # acquire superblock mutex
57 async with self.sb_lock:
58 # try to get the requested inode
59 inode = self.superblock.get_inode_by_number(inode_n)
60 # get its attributes
61 attr = inode.attributes
62 # update the required fields
63 attr.st_atime_ns = new_attr.st_atime_ns if

fields.update_atime else attr.st_atime_ns↪→

64 attr.st_mtime_ns = new_attr.st_mtime_ns if
fields.update_mtime else attr.st_mtime_ns↪→

65 attr.st_ctime_ns = new_attr.st_ctime_ns if
fields.update_ctime else time_ns() # now if not
specified

↪→

↪→

66 attr.st_mode = new_attr.st_mode if fields.update_mode else
attr.st_mode↪→

67 attr.st_uid = new_attr.st_uid if fields.update_uid else
attr.st_uid↪→

68 attr.st_gid = new_attr.st_gid if fields.update_gid else
attr.st_gid↪→

69 attr.st_size = new_attr.st_size if fields.update_size else
attr.st_size↪→

70 # return the attributes
71 return attr

Listing 26: Example of setattr implementation.

Listing 26 shows our example of implementation.
After acquiring the superblock lock, the inode and its attributes are retrieved

and then only the required values are updated (field, instance of SetattrFields,
specifies which fields should be updated). The only exception is st_ctime_ns: when
no new value is provided it’s set to the current time (to indicate that the inode
metadata was changed). Finally all the inode attributes are returned (both the
changed and unchanged values).

2.4.1.4 lookup(self, parent_inode_n, name, ctx)

The lookup request handler should look up a directory entry by name and get its
attributes.

26

More detailed requirements can be found on the pyfuse3 request handlers docu-
mentation.

73 async def lookup(self, parent_inode_n, name, ctx):
74 # acquire superblock mutex
75 async with self.sb_lock:
76 # try to lookup (may raise exceptions)
77 result = await self._lookup(parent_inode_n, name, ctx)
78 # increase the lookup count (if no exceptions occurred)
79 self.lookup_counters[result.st_ino] += 1
80 return result
81

82 async def _lookup(self, parent_inode_n, name, ctx=None):
83 # try to get the requested inode
84 parent_inode =

self.superblock.get_inode_by_number(parent_inode_n)↪→

85 # get directory data
86 dd = await self.wrapper.read_data(parent_inode.data_pointer)
87 # try to get the entry inode number and if succeeded
88 entry_inode_n = dd.entries.get(name, None)
89 if entry_inode_n is not None:
90 # FOUND: get attr and return
91 return await self._getattr(entry_inode_n, ctx)
92 # entry not found: raise ENOENT
93 raise FUSEError(errno.ENOENT)

Listing 27: Example of lookup and _lookup implementation.

Listing 27 shows our example of lookup and _lookup implementation.
The internal _lookup method assumes the superblock lock has already been

acquired. The parent directory’s DirectoryData is downloaded from Telegram and
the entry with the given name is retrieved if exists. If the entry existed its attributes
are returned calling _getattr; otherwise, ENOENT is raised. This method is useful
and can be called internally by other handlers.

The method lookup is the actual handler. It acquires the superblock lock and
calls the internal _lookup method. If the call succeeded the lookup counter for
the entry is increased as required by the documentation and the result is returned.
Otherwise, the exception (in this case FUSEError(ENOENT)) is propagated.

2.4.1.5 opendir(self, inode_n, ctx),
readdir(self, fh, start_id, token) and
releasedir(self, fh)

The handlers opendir, readdir and releasedir are used to access directories.
In particular opendir should open the directory with the given inode number and
return a file handle, readdir should list some entries from the open directory with

27

the given file handle and releasedir should release the open directory with the
given file handle.
Instead of returning the directory entries directly, the readdir handler should call
readdir_reply for each directory entry and stop when there are no more entries or
when the call returns False. Multiple readdir calls may be used to read a direc-
tory, to keep track of the position an identifier next_id is passed to the reply and is
passed back to the next readdir call (start_id). If entries are added or removed
between calls, they may or may not be returned. However, they must not cause
other entries to be skipped or returned more than once.
More detailed requirements can be found on the pyfuse3 request handlers docu-
mentation.

In order to comply with the requirement to be resilient against concurrent edits
of the directory, a simple caching approach is used in this prototype example:
when the directory is opened with opendir the current status of the directory is
cached and reused for each subsequent readdir call until the directory is closed with
releasedir. The next_id passed to readdir_reply and passed back to readdir
is just the index of the last read entry incremented by one (treating the cached
DirectoryData entries as a list).

95 async def opendir(self, inode_n, ctx):
96 # acquire superblock mutex
97 async with self.sb_lock:
98 # try to get the requested inode
99 inode = self.superblock.get_inode_by_number(inode_n)

100 # if completely failed
101 if inode is None:
102 # raise ENOENT
103 raise FUSEError(errno.ENOENT)
104 # else if succeeded but is not a directory
105 elif not stat.S_ISDIR(inode.attributes.st_mode):
106 # raise ENOTDIR
107 raise FUSEError(errno.ENOTDIR)
108 # else, it's a directory, good!
109 # get directory data
110 dd = await self.wrapper.read_data(inode.data_pointer)
111 # get next counter value as fh
112 fh = next(self.counter)
113 # save current DD status in open dirs (cache) and return the

key↪→

114 self.open_dirs[fh] = (inode, dd)
115 return fh

Listing 28: Example of opendir implementation.

Listing 28 shows our example of opendir implementation.
After acquiring the superblock lock, if the inode with the given number doesn’t

28

exist ENOENT is raised. If it exists but isn’t a directory ENOTDIR is raised instead. If
everything is right the DirectoryData is downloaded from Telegram and it’s saved
along with a reference to the inode as a tuple (inode, dd) in the open_dirs dic-
tionary using the next value of the internal counter counter as key. That key is
used as file handle and is returned.

117 async def readdir(self, fh, start_id, token):
118 # acquire superblock mutex
119 async with self.sb_lock:
120 # get directory data from cache and its inode
121 (dir_inode, dd) = self.open_dirs[fh]
122 # init an index as start id
123 index = start_id
124 # iterate over the entries from the given offset
125 for (name, inode_n) in list(dd.entries.items())[start_id:]:
126 # get attributes for the current inode
127 attr = await self._getattr(inode_n)
128 # reply and if necessary stop the iteration
129 if not readdir_reply(token, name, attr, index + 1):
130 break
131 # increase lookup counter only if not '.' nor '..'
132 if name != b'.' and name != b'..':
133 self.lookup_counters[inode_n] += 1
134 index += 1
135 # update atime
136 dir_inode.attributes.st_atime_ns = time_ns()

Listing 29: Example of readdir implementation.

Listing 29 shows our example of readdir implementation.
After acquiring the superblock lock, the cache is accessed and an index is ini-

tialized as the given start_id (0 if the first call, the next entry position otherwise).
The entries are treated as a list and are iterated over starting from start_id posi-
tion (note that the cached data never changes). For each entry the attributes are
retrieved and readdir_reply is called with the entry’s name, attributes and the
index incremented by one. If the call returned False the iteration is stopped; oth-
erwise, the lookup counter for the entry is incremented unless it’s ’.’ or ’..’ as
requested by the documentation. The index is increased in each iteration.
Before returning, the handler updates the directory access timestamp.

138 async def releasedir(self, fh):
139 # remove the cached DD status
140 del self.open_dirs[fh]

Listing 30: Example of releasedir implementation.

29

Listing 30 shows our example of releasedir implementation.
The cached data is simply removed from open_dirs.

2.4.1.6 mkdir(self, parent_inode_n, name, mode, ctx) and
mknod(self, parent_inode_n, name, mode, rdev, ctx)

The handlers mkdir and mknod are used to create new directories and files (the pro-
totype presented in this work supports only regular files).
The new file or directory must be created with the given name and mode inside the
directory with parent_inode_n inode number. These methods should return the
attributes of the newly created file or directory.
More detailed requirements can be found on the pyfuse3 request handlers docu-
mentation.

166 async def mkdir(self, parent_inode_n, name, mode, ctx):
167 # acquire superblock mutex and call internal method
168 async with self.sb_lock:
169 return await self._create(parent_inode_n, name, mode, ctx)
170

171 async def mknod(self, parent_inode_n, name, mode, rdev, ctx):
172 # acquire superblock mutex and call internal method
173 async with self.sb_lock:
174 # special file are not supported: rdev is ignored
175 return await self._create(parent_inode_n, name, mode, ctx)

Listing 31: Example of mkdir and mknod implementation.

Listing 31 shows our example of mkdir and mknod implementation.
Since the creation of directories and files is very similar, these two methods just

acquire the superblock lock and then call an internal method _create. That method
takes care of the actual creation of the new file or directory.

30

177 async def _create(self, parent_inode_n, name, mode, ctx):
178 # get a new inode for the new file or directory
179 new_ino = self.superblock.get_new_inode()
180 # if none (no more inodes) raise ENOSPC
181 if new_ino is None:
182 raise FUSEError(errno.ENOSPC)
183 # init metadata
184 new_ino.attributes.st_mode = mode
185 new_ino.attributes.st_uid = ctx.uid
186 new_ino.attributes.st_gid = ctx.gid
187 now = time_ns()
188 new_ino.attributes.st_atime_ns = now
189 new_ino.attributes.st_mtime_ns = now
190 new_ino.attributes.st_ctime_ns = now
191 # if we are creating a directory
192 if new_ino.is_directory():
193 # create DirectoryData with only add '.' and '..'
194 data = DirectoryData(new_ino.attributes.st_ino,

parent_inode_n)↪→

195 # if we are creating a regular file
196 elif new_ino.is_regular_file():
197 # create empty FileData
198 data = FileData()
199 else:
200 # we don't implement this case:
201 # free the inode and raise ENOSYS
202 self.superblock.free_inode(new_ino.attributes.st_ino)
203 raise FUSEError(errno.ENOSYS)
204 # write the file data and save the id as pointer
205 new_ino.data_pointer = await self.wrapper.write_data(data)
206 # save the size
207 new_ino.attributes.st_size = len(data)
208 # update parent directory
209 await self._update_directory(parent_inode_n, [('+', name,

new_ino.attributes.st_ino)])↪→

210 # increase the lookup counter and return the attributes
211 self.lookup_counters[new_ino.attributes.st_ino] += 1
212 return new_ino.attributes

Listing 32: Example of _create implementation.

Listing 32 shows our example of _create implementation.
The internal _create method assumes the superblock lock has already been

acquired. If there is no available inode then ENOSPC is raised. Otherwise, a new inode
is retrieved from the superblock and its metadata is initialized. If the method is
handling the creation of a directory, then the data is set as an empty DirectoryData
(with only ’.’ and ’..’), if the method is handling the creation of a regular file,

31

then the data is set as an empty FileData, otherwise, the method is handling
the creation of an unsupported type then the inode is freed and ENOSYS is raised.
During development it’s useful to add a custom caption here to help visualize in
the chat what’s happening. The data is uploaded to Telegram, the id is saved in
the inode data_pointer and the size is updated. The new entry is added to the
parent directory calling the internal _update_directory method then the lookup
counter for the new file or directory is increased as required by the documentation
just before returning the attributes.

142 async def _update_directory(self, dir_ino_n, entries):
143 # get directory data
144 dir_ino = self.superblock.get_inode_by_number(dir_ino_n)
145 dir_dd = await self.wrapper.read_data(dir_ino.data_pointer)
146 # for each entry
147 for (action, name, inode_n) in entries:
148 # if action is an add ('+')
149 if action == '+':
150 # add the new entry
151 dir_dd.entries[name] = inode_n
152 # otherwise is a delete
153 else:
154 assert dir_dd.entries[name] == inode_n
155 # remove the entry
156 del dir_dd.entries[name]
157 # update parent directory size
158 dir_ino.attributes.st_size = len(dir_dd)
159 # update ctime and mtime
160 now = time_ns()
161 dir_ino.attributes.st_ctime_ns = now
162 dir_ino.attributes.st_mtime_ns = now
163 # write and save parent directory data
164 dir_ino.data_pointer = await self.wrapper.write_data(dir_dd,

old_to_delete=dir_ino.data_pointer)↪→

Listing 33: Example of _update_directory implementation.

Listing 33 shows our example of _update_directory implementation.
The internal _update_directory method assumes the superblock lock has al-

ready been acquired. This method receives the inode number of the parent direc-
tory and a list of tuples (action, name, inode_n) where action is the action to
perform (’+’ if the entry should be added or something else if it should be re-
moved), name is the entry name and inode_n is the entry inode number. The old
DirectoryData is downloaded from Telegram and the given entries are added or
removed. The inode metadata is updated (size, timestamps...) and the new data is
uploaded back to Telegram replacing the old one.

32

2.4.1.7 open(self, file_inode_n, flags, ctx),
read(self, fh, off, size),
write(self, fh, off, buf) and
release(self, fh)

The handlers open, read, write and release are used to access files.
In particular open should open the file with the given inode number and flags and
return a FileInfo instance with the file handle, read should read the given amount
of bytes from the open file with the given file handle starting from the given offset,
write should write the given buffer to the open file with the given file handle at the
given offset and return the amount of bytes written and release should release the
open file with the given file handle.
More detailed requirements can be found on the pyfuse3 request handlers docu-
mentation.

In this prototype example the open flags are ignored and the built-in cache is not
enabled. In order to speed up the file access, a simple caching approach is used:
when a file is opened with open the file is downloaded from Telegram and reused
for any subsequent read or write call. If the file is already opened, open will access
the in-memory copy of the file instead of downloading it from Telegram. When the
file is released for the last time (one for each open call) the file is actually uploaded
to Telegram if necessary.

214 async def open(self, file_inode_n, flags, ctx):
215 # acquire superblock mutex
216 async with self.sb_lock:
217 # try to get the file and open count from local open cache
218 (inode, fd, dirty, count) = self.open_files.get(file_inode_n,

(None, None, False, 0))↪→

219 # if failed then populate it
220 if fd is None:
221 # get the inode
222 inode = self.superblock.get_inode_by_number(file_inode_n)
223 # get file data from Telegram
224 fd = await self.wrapper.read_data(inode.data_pointer)
225 # dirty already false and count already 0
226 # update (or create) entry in cache
227 self.open_files[file_inode_n] = (inode, fd, dirty, count + 1)
228 # return the inode number as fh
229 return FileInfo(fh=file_inode_n)

Listing 34: Example of open implementation.

Listing 34 shows our example of open implementation.
After acquiring the superblock lock, the method tries to access the cache to get

the tuple (inode, fd, dirty, count) where inode is a reference to the file inode,
fd is the cached FileData, dirty is a flag that is true if the cache has been written

33

to and count is a counter of how many times the file has been opened (and not
closed yet). If the cache was empty the FileData is downloaded from Telegram
and the inode is retrieved (Note that the default value for dirty is False and for
count is 0). The cache is then populated (or updated) with the values and the
counter incremented by one. A new FileInfo with the inode number as file handle
is returned. Note that access to the cache must be done in mutual exclusion and
this is automatically achieved because is done after acquiring the superblock lock.

231 async def read(self, fh, off, size):
232 # acquire superblock mutex
233 async with self.sb_lock:
234 # get inode and fd from the cache
235 (inode, fd, _, _) = self.open_files[fh]
236 # update atime and return the requested data
237 inode.attributes.st_atime_ns = time_ns()
238 return fd.raw_data[off:off + size]

Listing 35: Example of read implementation.

Listing 35 shows our example of read implementation.
After acquiring the superblock lock, the inode and FileData are retrieved from

the cache. The file access timestamp is updated and the requested data is returned.

240 async def write(self, fh, off, buf):
241 # acquire superblock mutex
242 async with self.sb_lock:
243 # get inode and fd from the cache
244 (inode, fd, _, count) = self.open_files[fh]
245 # if the resulting file would be too big raise EFBIG
246 if max(off + len(buf), len(fd)) > 1.5E9:
247 raise FUSEError(errno.EFBIG)
248 # write to cache, set as dirty and update size
249 fd.raw_data = fd.raw_data[:off] + buf + fd.raw_data[off +

len(buf):]↪→

250 self.open_files[fh] = (inode, fd, True, count)
251 inode.attributes.st_size = len(fd)
252 # update timestamps and return the amount of data written
253 now = time_ns()
254 inode.attributes.st_ctime_ns = now
255 inode.attributes.st_mtime_ns = now
256 return len(buf)

Listing 36: Example of write implementation.

Listing 36 shows our example of write implementation.
After acquiring the superblock lock, the inode, FileData and counter are re-

trieved from the cache. If the file would become too big (current implementation

34

uses 1 telegram attachment) EFBIG is raised. Otherwise, the given buffer is writ-
ten to the FileData and the dirty flag is updated as True. The inode size and
timestamps are updated and the length of the buffer is returned.

258 async def release(self, fh):
259 # acquire superblock mutex
260 async with self.sb_lock:
261 # get inode and fd from the cache
262 (inode, fd, dirty, count) = self.open_files[fh]
263 # if is the last "open"
264 if count == 1:
265 # if the cache is dirty (invalid remote data)
266 if dirty:
267 # write (replace) data and save pointer
268 inode.data_pointer = await self.wrapper.write_data(c

fd, old_to_delete=inode.data_pointer)↪→

269 # delete from cache
270 del self.open_files[fh]
271 # otherwise just reduce the counter
272 else:
273 self.open_files[fh] = (inode, fd, dirty, count - 1)

Listing 37: Example of release implementation.

Listing 37 shows our example of release implementation.
After acquiring the superblock lock, the cache is accessed and if the counter is

not 1 it’s simply decreased. Otherwise, this means that this is the last release call
and the cached data should be removed. If the dirty flag is True the FileData is
uploaded to Telegram replacing the old one and the new id is saved in the inode
data_pointer.

2.4.1.8 rmdir(self, parent_inode_n, name, ctx) and
unlink(self, parent_inode_n, name, ctx)

The handlers rmdir and unlink are used to delete directories and files (the proto-
type presented in this work doesn’t support links).
The file or directory with the given name should be removed from the directory
with parent_inode_n inode number. As required by the documentation, the entry
should be removed from the parent directory but the deletion of the actual data and
inode may be deferred until the inode is not known to the kernel anymore.
More detailed requirements can be found on the pyfuse3 request handlers docu-
mentation.

35

275 async def rmdir(self, parent_inode_n, name, ctx):
276 # acquire superblock mutex
277 async with self.sb_lock:
278 await self._remove(parent_inode_n, name, ctx, is_dir=True)
279

280 async def unlink(self, parent_inode_n, name, ctx):
281 # acquire superblock mutex
282 async with self.sb_lock:
283 await self._remove(parent_inode_n, name, ctx)

Listing 38: Example of rmdir and unlink implementation.

Listing 38 shows our example of rmdir and unlink implementation.
Since the deletion of directories and files is very similar, these two methods just

acquire the superblock lock and then call an internal method _remove. That method
takes care of the actual deletion of the file or directory.

285 async def _remove(self, parent_inode_n, name, ctx, is_dir=False):
286 # try to lookup (may raise ENOENT)
287 attr = await self._lookup(parent_inode_n, name, ctx)
288 # if we are removing a directory
289 if is_dir:
290 # ensure it's actually a directory otherwise raise ENOENT
291 if not stat.S_ISDIR(attr.st_mode):
292 raise FUSEError(errno.ENOTDIR)
293 # else if is not empty (only . and ..) raise ENOTEMPTY
294 elif attr.st_size > 2:
295 raise FUSEError(errno.ENOTEMPTY)
296 # if the lookup count is zero
297 if self.lookup_counters[attr.st_ino] == 0:
298 # get the inode
299 inode = self.superblock.get_inode_by_number(attr.st_ino)
300 # remove the file data and free its inode
301 await self.wrapper.delete_data(inode.data_pointer)
302 self.superblock.free_inode(attr.st_ino)
303 else:
304 # defer deletion
305 self.deferred.append(attr.st_ino)
306 # update the parent directory
307 await self._update_directory(parent_inode_n, [('-', name,

attr.st_ino)])↪→

Listing 39: Example of _remove implementation.

Listing 39 shows our example of _remove implementation.
The internal _remove method assumes the superblock lock has already been

acquired. The attributes are retrieved calling _lookup (which may raise ENOENT)

36

then if the method is called to remove a directory, is checked if it’s actually a
directory (raising ENOTDIR otherwise) and if it’s empty (raising ENOTDIR otherwise).
As required by the documentation, if the lookup counter for the inode is 0, then
the data and the inode is immediately deleted; otherwise, the deletion is deferred
adding the inode to the deferred list. In both cases the entry is removed from the
parent directory. The actual deletion will be done when the counter reaches 0, see
section 2.4.1.9.

2.4.1.9 forget(self, inode_list)

The forget handler is used to decrease the lookup counters for the given inodes by
the given amount. inode_list is a list of tuples (inode, amount) where inode is
the inode number and amount is the amount to be subtracted. If the lookup counter
reaches 0 deferred deletion should be performed.

309 async def forget(self, inode_list):
310 # acquire superblock mutex
311 async with self.sb_lock:
312 # iterate over the list
313 for (inode_n, amount) in inode_list:
314 # decrease the counter by the given amount
315 self.lookup_counters[inode_n] -= amount
316 # if the lookup count is 0 and the removal is deferred
317 if self.lookup_counters[inode_n] == 0 and inode_n in

self.deferred:↪→

318 # remove the file data and free its inode
319 await self.wrapper.delete_data(self.superblock c

.get_inode_by_number(inode_n).data_pointer)↪→

320 self.superblock.free_inode(inode_n)
321 # remove it from the deferred list
322 self.deferred.remove(inode_n)

Listing 40: Example of forget implementation.

Listing 40 shows our example of forget implementation.
After acquiring the superblock lock, lookup counters for all the given inodes are

decreased by the given amount. If the counter reaches 0 and the deletion was deferred
then it’s performed at this point and the inode is removed from the deferred list.

2.4.1.10 Cleanup

After the pyfuse3.main ends (e.g. when the file system is unmounted) there are
some additional steps to perform. The superblock must be updated on Telegram
also, as specified in the documentation, the filesystem needs to take care to clean up
inodes that at that point still have non-zero lookup count because it may not have
received all the forget calls.

37

324 async def close(self):
325 # we assume this is called only when not running the fs
326 # for this reason we don't need to acquire the mutex
327 # force-forget any deferred inode with non-zero lookup count
328 await self.forget(
329 [(inode_n, self.lookup_counters[inode_n]) for inode_n in

self.deferred]↪→

330)
331 # write the superblock
332 await self.wrapper.write_superblock(self.superblock, True)

Listing 41: Example of close implementation.

Listing 41 shows our example of close implementation. The method forget is
explicitly called with the current lookup count for every deferred inode then the
superblock is uploaded replacing the old one.

2.4.2 Initialization and Mount
One of the responsibilities of the file tgfuse.py is to initialize and mount the filesys-
tem. As shown in listing 42 some arguments such as the mountpoint, phone number
and a debug flag are parsed. pyfuse is initialized with a TgFuseFs instance (linked
to the phone number), the mountpoint and other options. Adding the debug option
is extremely recommended because it will make pyfuse print which handlers are
called and their debug information. The pyfuse3.main function is executed on the
loop until completed and then the tgfusefs.close method is called to clean and
sync the filesystem. Only a basic error handling is done here and should be improved
in a production-grade implementation.

38

335 def main():
336 # parse arguments from command line
337 options = parse_args()
338 # instance a TgFuseFs with the given number
339 tgfusefs = TgFuseFs(options.phone_number)
340 # add fuse options including debug if necessary
341 fuse_options = set(pyfuse3.default_options)
342 fuse_options.add('fsname=tgfuse')
343 if options.debug_fuse:
344 fuse_options.add('debug')
345 # init pyfuse3 with our filesystem implementation and options
346 pyfuse3.init(tgfusefs, options.mountpoint, fuse_options)
347 loop = asyncio.get_event_loop()
348 try:
349 # run pyfuse3.main and then tgfusefs.close
350 loop.run_until_complete(pyfuse3.main())
351 loop.run_until_complete(tgfusefs.close())
352 except:
353 pyfuse3.close(unmount=True)
354 raise
355 finally:
356 loop.close()
357 # close pyfuse3 normally
358 pyfuse3.close()
359

360

361 def parse_args():
362 parser = ArgumentParser()
363 parser.add_argument('mountpoint', type=str,
364 help='Where to mount the file system')
365 parser.add_argument('phone_number', type=str,
366 help='Phone number like +XXXXXXXXXXXX')
367 parser.add_argument('--debug-fuse', action='store_true',
368 default=False,
369 help='Enable FUSE debugging output')
370 return parser.parse_args()
371

372

373 if __name__ == '__main__':
374 main()

Listing 42: Example of mount script implementation.

39

2.5 Testing

Students have not enough experience to do extensive testing, test performance or
prove correctness. Students should mainly do empirical tests manually verifying the
expected results while looking at the Telegram chat evolving.
Some of the tests may be:

• mount and unmount the filesystem

• create a file

• create a directory

• change metadata and permissions

• list a directory

• execute stat

• read and write to files

• try to remove files and directory testing edge cases

• ...

Students are invited to perform tests during the development as soon as the func-
tionalities are ready. If the storage on Telegram gets corrupted it should be cleaned
using the mktgfs.py script, see section 2.3.
Figure 2.1 shows a simple example of testing session and figure 2.2 shows the chat
at the end of the session.

Other useful tests are provided by the pyfuse3 documentation[12] in the “com-
mon gotchas” section. For example if the script shown on listing 43 raises an error
this means that there probably is a bug in the implementation of the unlink handler
and the file content is removed immediately instead of deferring the actual deletion
to the forget handler.

1 # assuming the filesystem is mounted at mnt
2 with open('mnt/file_one', 'w+') as fh1:
3 fh1.write('foo')
4 fh1.flush()
5 with open('mnt/file_one', 'a') as fh2:
6 os.unlink('mnt/file_one')
7 assert 'file_one' not in os.listdir('mnt')
8 fh2.write('bar')
9 os.close(os.dup(fh1.fileno()))

10 fh1.seek(0)
11 assert fh1.read() == 'foobar'

Listing 43: Unlink handler test from the documentation.

40

Figure 2.1: Example of testing session.

Figure 2.2: Telegram chat after tests.

41

42

Chapter 3

Issues and Improvements

The prototype presented in this work has been designed to be understood by fifth
year high school students who are majoring in Computer Science. Even if it works,
the prototype is a toy and has issues and limitations that students should be aware
of.

3.1 Data Storage

In the current prototype implementation each inode has a single data pointer and
each file (or directory) is stored completely in a single Telegram attachment. This
rises two issues:

1. The maximum file size (or size of the directory content) is 1.5GB.

2. Every time a small part of the file needs to be downloaded, the whole file must
be retrieved from Telegram.

There are many possible solutions, one of them would be to divide the file in
data blocks and upload them in different Telegram attachments. More advanced
techniques could use multi-level data block indexing like those implemented in ext
filesystems[18].

3.2 Synchronization

In order to avoid race conditions the filesystem needs to use some kind of synchro-
nization technique when accessing shared data structures. The current implemen-
tation uses simple locks which are easily understandable by students; however, as
a side effect this solution serializes most of the handler calls degrading the overall
performance. In a production-grade filesystem this issue should be addressed.

It should be noted that FUSE and the VFS layer already provide some basic
locking for example preventing a file creation and a file rename at the same time in
the same directory. More about this can be found in the pyfuse3 documentation[12].

43

3.3 Caching

Network latency affects the filesystem performance. In the presented implementa-
tion files are kept in memory as long as they are open in order to speed up reads
and writes. An useful improvement would be to implement a more solid caching
mechanism and enabling the kernel write-back cache if available.

3.4 Serialization

Another aspect that could be improved is the serialization. The naive implementa-
tion shown in this work uses the pickle library to serialize the whole object which
is quick and easy but comes with some downsides:

• It’s language-specific. Therefore writing software in different languages to
access the filesystem can be difficult.

• It’s not memory efficient.

• It has serious security implications, for example, malicious data can lead to
arbitrary code execution[19].

A solution could be to create a custom binary format for each data structure.

The Superblock serialization could be further improved. Unused inodes are not
stored at all (and for this reason are not serialized) but there should be a way to
keep track of them. The presented implementation uses a set of integers to store
the numbers of unused inodes which is more efficient than keeping the inodes but it
still is has a large memory footprint[20]. An improvement would be to not serialize
that set at all and just reconstruct it parsing the inode list during deserialization.
This would require to serialize only the maximum inode number.

3.5 Additional Improvements

A lot of additional improvements can be done. Some of them may be:

• support links and other types.

• support other handlers (e.g.: rename).

• implement a more robust security and error handling1 (e.g.: too big directory,
invalid flags, wrong permissions etc...).

• implement a more robust failure handling (e.g.: prevent corruption after crash).

• implement better file handles (e.g.: prevent them from growing indefinitely).

1some scenarios are already checked by FUSE, other should be implemented in the handlers

44

Chapter 4

Conclusions and Future Works

In this work, we showed how to implement a remote filesystem in userspace using
Python, FUSE, and Telegram, as a project example for high school students.
In chapter 1 we presented the requirements along with some advanced Python func-
tionalities, the main libraries used in the prototype and their basic usage. We
advise teachers to have students practice beforehand with those functionalities and
libraries, for example through some small exercises.
In chapter 2 we showed our example of filesystem prototype presenting and ex-
plaining functionalities and major implementation choices. In the same chapter we
showed an example of testing that we suggest students do as soon as possible while
developing in order to spot and fix bugs and improve their engagement.
In chapter 3 we explained some of the issues and limitations of this prototype. It’s
extremely important that students understand those issues and the reasons why a
production-grade filesystem should be implemented in a different way. Those stu-
dents who will continue studying Computer Science at university may find it useful
to try writing a new implementation and fix the issues using their new operating
systems knowledge and experience.

The prototype shown in this work is just an example of how students can write
their own first filesystem prototype at school. Teachers can tailor their own versions
to their students’ needs and learning goals. For example teachers could create a
version where most of the filesystem is already implemented and ask students to
implement only the missing parts, providing and discussing specifications together.
In more advanced classes teachers and students together could discuss and define
new and more advanced specifications, in order to co-construct developing strategies
and implementation choices.

In the future, with more time and resources, this work could be further improved
not only from the technical point of view but also in terms of computing education.
From a practical point of view, a teaching unit can be created. In particular, the
activities should be detailed providing ready-to-use material and tools to teachers,
deciding times and methods of teaching and providing an effective way to assess
students learning and help them recover if necessary. From a research point of view,
we assumed that this practical approach could improve the operating systems learn-
ing experience but that should be proved. A study should be conducted on real
students, designing and executing an experiment through which the learning results

45

of students that experience this practical approach are compared to those of another
group of students (the control group) that follow a more traditional approach.

46

Appendix A

Licenses and Credits

This work is the thesis for the Bachelor’s degree in Computer Science presented by
Riccardo Maffei1.

Except otherwise noted, this work is licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License2.

Except otherwise noted, the code is licensed under the GNU Affero General Public
License3 either version 3 or any later version.

A.1 Third-Party Content

The image shown in figure 1.2 is named “Structural diagram of Filesystem in Userspace”4
and is licensed by Sven5 under the Creative Commons Attribution-ShareAlike 3.0
International License6.

The image shown in figure 1.3 is property of Telegram7 and is used here with per-
mission obtained through the support.

The code shown in listing 43 is a slightly edited version of the test provided by
the pyfuse3 documentation[12] in the “common gotchas” section and is used here
with the author’s permission.

1https://orcid.org/0000-0002-6392-9701
2To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/
3To view a copy of this license, visit https://www.gnu.org/licenses/agpl-3.0.html
4Source: https://commons.wikimedia.org/wiki/File:FUSE_structure.svg
5User page: https://commons.wikimedia.org/wiki/User:Sven
6To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/3.0/
7Source: https://desktop.telegram.org/

47

https://orcid.org/0000-0002-6392-9701
http://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/agpl-3.0.html
https://commons.wikimedia.org/wiki/File:FUSE_structure.svg
https://commons.wikimedia.org/wiki/User:Sven
https://creativecommons.org/licenses/by-sa/3.0/
https://desktop.telegram.org/

48

Acknowledgments

I want to thank my thesis supervisor, Professor Davoli, and my co-supervisors,
Dr. Sbaraglia and Dr. Lodi, for their patience and precious support during the de-
velopment of this thesis. I also want to thank all the Professors who have fed my
hunger for knowledge and fueled my desire to become a Professor.

Thanks to my friends, classmates and all my teammates with whom I created great
projects and wonderful memories. Thanks to Federico, Fox, Francesco, Giosuè,
Nicholas, Oleksandr and Samuele.

A special thanks goes to my girl best friend, teammate and partner in crime Teresa.
We spent days and nights studying, coding, debugging or looking for a solution to
issues together. She helped me study and made me pass exams I wouldn’t otherwise.
She’s been a great friend and supported me while my life was falling apart.
Thank you Teresa, “sei la piccola stella che porto nei momenti in cui non ho luce”.[21]

Thanks to that little part of my family that decided not to stab me in the back
and to everybody who did their best to help me while I was bleeding.

Finally, a thanks goes to those who deserve one but may not like to be directly
mentioned here.

49

50

References

[1] Charles C. Bonwell and James A. Eison. Active Learning: Creating Excitement
in the Classroom. ASHE-ERIC Higher Education Report No. 1, 1991. isbn:
1-878380-08-7.

[2] Scott Freeman et al. “Active learning increases student performance in science,
engineering, and mathematics”. In: Proceedings of the National Academy of
Sciences 111.23 (2014), pp. 8410–8415. issn: 0027-8424. doi: 10.1073/pnas.
1319030111. eprint: https://www.pnas.org/content/111/23/8410.full.
pdf. url: https://www.pnas.org/content/111/23/8410.

[3] Presidente della Repubblica. “Decreto del Presidente della Repubblica 14 marzo
2010, n. 88, Regolamento recante norme per il riordino degli istituti tecnici a
norma dell’articolo 64, comma 4, del decreto-legge 25 giugno 2008, n. 112,
convertito, con modificazioni, dalla legge 6 agosto 2008, n. 133.” In: Gazzetta
Ufficiale Serie Generale n. 137 - Suppl. Ordinario n. 128 (June 15, 2010),
pp. 43–89. url: https://www.gazzettaufficiale.it/eli/gu/2010/06/
15/137/so/128/sg/pdf.

[4] Ministero dell’istruzione, dell’università e della ricerca. “Direttiva 16 gennaio
2012, n. 4, Adozione delle Linee guida per il passaggio al nuovo ordinamento
degli Istituti tecnici a norma dell’articolo 8, comma 3, del decreto del Presi-
dente della Repubblica 15 marzo 2010, n. 88 - Secondo biennio e quinto anno.”
In: Gazzetta Ufficiale Serie Generale n. 76 - Suppl. Ordinario n. 60 (Mar. 30,
2012), pp. 1–295. url: https://www.gazzettaufficiale.it/eli/gu/2012/
03/30/76/so/60/sg/pdf.

[5] asyncio documentation. https://docs.python.org/3/library/asyncio.
html. [Online; accessed 15-November-2019].

[6] Wikipedia contributors. Time-of-check to time-of-use — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Time-of-
check_to_time-of-use&oldid=925302898. [Online; accessed 15-November-
2019]. 2019.

[7] FUSE kernel.org documentation. https://www.kernel.org/doc/Documentation/
filesystems/fuse.txt. [Online; accessed 20-November-2019].

[8] libfuse GitHub repository. https://github.com/libfuse/libfuse. [On-
line; accessed 15-November-2019].

[9] Bradley M. Kuhn and Karen M. Sandler. GPL Violations Related to Combin-
ing ZFS and Linux. https://sfconservancy.org/blog/2016/feb/25/zfs-
and-linux/. [Online; accessed 21-November-2019]. Feb. 25, 2016.

51

https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1073/pnas.1319030111
https://www.pnas.org/content/111/23/8410.full.pdf
https://www.pnas.org/content/111/23/8410.full.pdf
https://www.pnas.org/content/111/23/8410
https://www.gazzettaufficiale.it/eli/gu/2010/06/15/137/so/128/sg/pdf
https://www.gazzettaufficiale.it/eli/gu/2010/06/15/137/so/128/sg/pdf
https://www.gazzettaufficiale.it/eli/gu/2012/03/30/76/so/60/sg/pdf
https://www.gazzettaufficiale.it/eli/gu/2012/03/30/76/so/60/sg/pdf
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://en.wikipedia.org/w/index.php?title=Time-of-check_to_time-of-use&oldid=925302898
https://en.wikipedia.org/w/index.php?title=Time-of-check_to_time-of-use&oldid=925302898
https://www.kernel.org/doc/Documentation/filesystems/fuse.txt
https://www.kernel.org/doc/Documentation/filesystems/fuse.txt
https://github.com/libfuse/libfuse
https://sfconservancy.org/blog/2016/feb/25/zfs-and-linux/
https://sfconservancy.org/blog/2016/feb/25/zfs-and-linux/

[10] Eben Moglen and Mishi Choudhary. The Linux Kernel, CDDL and Related
Issues. https : / / www . softwarefreedom . org / resources / 2016 / linux -
kernel-cddl.html. [Online; accessed 21-November-2019]. Feb. 26, 2016.

[11] pyfuse3 GitHub repository. https://github.com/libfuse/pyfuse3. [On-
line; accessed 15-November-2019].

[12] pyfuse3 documentation. http://www.rath.org/pyfuse3-docs/. [Online;
accessed 15-November-2019].

[13] Telegram official website. https : / / telegram . org. [Online; accessed 11-
November-2019].

[14] MTProto documentation. https://core.telegram.org/mtproto. [Online;
accessed 11-November-2019].

[15] Telethon GitHub repository. https://github.com/LonamiWebs/Telethon.
[Online; accessed 9-November-2019].

[16] Telethon documentation. https://docs.telethon.dev/en/latest/. [On-
line; accessed 9-November-2019].

[17] Wikipedia contributors. Everything is a file — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Everything_is_
a_file&oldid=921228251. [Online; accessed 21-November-2019]. 2019.

[18] Rémy Card, Theodore Ts’o, and Stephen Tweedie. “Design and Implementa-
tion of the Second Extended Filesystem”. In: Proceedings of the First Dutch
International Symposium on Linux. 1994. isbn: 9036703859.

[19] Wikipedia contributors. Arbitrary code execution — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Arbitrary_
code_execution&oldid=931153642. [Online; accessed 4-January-2020]. 2019.

[20] M. Gorelick and I. Ozsvald. High Performance Python: Practical Performant
Programming for Humans. O’Reilly Media, 2014. isbn: 9781449361778.

[21] Ultimo. Piccola stella. 2019.

52

https://www.softwarefreedom.org/resources/2016/linux-kernel-cddl.html
https://www.softwarefreedom.org/resources/2016/linux-kernel-cddl.html
https://github.com/libfuse/pyfuse3
http://www.rath.org/pyfuse3-docs/
https://telegram.org
https://core.telegram.org/mtproto
https://github.com/LonamiWebs/Telethon
https://docs.telethon.dev/en/latest/
https://en.wikipedia.org/w/index.php?title=Everything_is_a_file&oldid=921228251
https://en.wikipedia.org/w/index.php?title=Everything_is_a_file&oldid=921228251
https://en.wikipedia.org/w/index.php?title=Arbitrary_code_execution&oldid=931153642
https://en.wikipedia.org/w/index.php?title=Arbitrary_code_execution&oldid=931153642

	Introduction
	General Concepts
	Requirements
	Python
	asyncio

	FUSE and libfuse
	pyfuse3

	Telegram
	Telethon

	Implementation
	Data Structures
	Inode
	Superblock
	DirectoryData
	FileData

	Wrapper
	Connection
	Helpers
	Serialization
	Public API

	mktgfs.py
	Filesystem
	Operations
	Initialization and Mount

	Testing

	Issues and Improvements
	Data Storage
	Synchronization
	Caching
	Serialization
	Additional Improvements

	Conclusions and Future Works
	Appendix Licenses and Credits
	Third-Party Content

	Acknowledgments
	References

