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Abstract

State estimation is an integral part of modern control techniques, as it allows
to characterize the state information of complex plants based on a limited
number of measurements and the knowledge of the process model. The benefit
is twofold: on one hand it has the potential to rationalize the number of
measurements required to monitor the plant, thus reducing costs, on the other
hand it enables to extract information about variables that have an effect on
the system but would otherwise be inaccessible to direct measurement.

The scope of this thesis is to design a state estimator for a tubular copolymer-
ization reactor, with the aim to provide the full state information of the plant
and to characterize the quality of the product.

Due to the fact that, with the existing set of measurements, only a small
number of state variables can be observed, a new differential pressure sensor
is installed in the plant to provide the missing information, and a model for
the pressure measurement is developed.

Following, the state estimation problem is approached rigorously and a com-
prehensive method for analyzing, tuning and implementing the state estima-
tor is assembled from scientific literature, using a variety of tools from graph
theory, linear observability theory and matrix algebra. Data reduction and
visualization techniques are also employed to make sense of high dimensional
information.

The proposed method is then tested in simulations to assess the effect of the
tuning parameters and measured set on the estimator performance during
initialization and in case of estimation with plant-model mismatch.

Finally, the state estimator is tested with plant data.
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Chapter 1

Introduction

Nowadays, major efforts are being made in the chemical industry to shift pro-
cesses from batch to continuous operation. There are several motivations for
this endeavour, such as the aim to increase productivity: continuous processes
are generally capable of producing higher quantities of product per unit time
and volume than their batch counterparts, not to mention the ability to ra-
tionalize resource usage and to achieve more consistent product quality over
time.

Some processes, such as polymerizations, are still operated in batch nonethe-
less, owing to the to difficulties that originate from the high viscosities of the
fluid systems in place and the complex behaviour of the reaction systems.
Polymeric fluids pose significant challenges when it comes to heat exchange
and mixing inside tubular reactors, and the loss of control on temperature can
trigger polymerization runaways and loss of operability of the reactor, as it is
illustrated in the events diagram in figure 1.1. On the other hand, it makes
very little sense to operate polymerizations in continuous stirred tank reactors
(CSTR), as the very broad residence time distribution of such reactors would
result in relatively low conversions of the feedstock and poor product quality.

Novel reactor concepts and modern control techniques can be used to overcome
such difficulties. This thesis’ work is framed inside a project to develop a
reactor technology for transferring the production of sulfonated polyacrylamide
from batch to continuous processing by the means of a coiled flow inverter
(CFI) reactor. Prior contributions to this project are discussed in [42, 9, 26,
23, 49, 27].
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Polymerization runaway mechanism

In order to tackle the difficult control problem that arises from the inherent de-
lay behaviour of tubular reactors, nonlinear model predictive control (NMPC)
was identified as a viable solution to operate the reactor (at least for high level
control), together with a model based state observer to reconstruct as much
information as possible about the state of the reactor from a limited number
of measurements.

The reactor was equipped in previous works with temperature sensors [42]
and one Raman spectrometer [9], that were found to be insufficient for the
observer to reconstruct the full information of the plant. The main objective
of this thesis is to extend the capabilities of the observer by installing a pressure
drop sensor at the outlet of the reactor and integrating the new measurement
in the estimation scheme.

To do so, the pressure drop in the outlet piping of the reactor has to be
modelled, as well as the correlation between the composition of the mixture
and the properties of the fluid. Simple models exist to describe the rheological
behaviour of polymeric mixtures in the limit of low concentrations, such as the
Mark-Houwink equation [39], however the ambition of this work is to propose
a more descriptive model that is flexible enough to describe the behaviour of
the concentrated polymer.

Once the model has been developed, the measurement has to be integrated
in the state observer, the observability of the system characterized and the
state observer tuned accordingly. To do this, the state estimation problem is
approached rigorously and several tools are selected from scientific literature
and put to the test in simulations and with real data from the plant.
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Chapter 2

Theoretical background

2.1 Polymer systems

Polymers are macromolecules constituted by a number of smaller molecules,
called monomers, linked together to form long chains. The reactions leading to
the formation of such molecules are called polymerization reactions. Polymers
constituted by two or more different monomers are called copolymers, and
if the sequence of monomers does not follow any particular pattern they are
further specialized as random copolymers [33].

2.1.1 Polymerization reactions

Polymers can form according to different mechanisms, such as polyaddition or
polycondensation, step or chain polymerizations. In polyaddition reactions,
the structure of the monomeric units is preserved in the polymer chains and
the molecular weight of the polymer is the sum of the molecular weights of the
monomers. [33].

In chain polymerizations the growth of chains occurs in specific reactive centers
that originate in the initiation step, in radical, acid/base or photochemical
reactions and propagate along the chain as new monomers are incorporated.
If two reactive centers meet, the reaction terminates (either by coupling or
disproportionation) [33].

The Acrylamide - AMPS copolymerization process is described by four groups
of reactions: initiation, polymer propagation, termination and inhibition [42].

5



6 CHAPTER 2. THEORETICAL BACKGROUND

In this section the letter Q is used in reference to the polymer molecules, and
in particular Q•i,n is to be intended as the polymer chain of length n and active
(terminal) monomer i. QD,n indicates the inactive (dead) polymer chain of
length n.

The two monomers are acrylamide monomer (AAM) and 2-acrylamido-2-methylpropane
sulfonic acid (AMPS).

Initiation

The first step in the reaction is the decomposition of the initiator in active
radicals:

Ini kdf−−→ 2R• (2.1.1)

The kinetic constant kd is multiplied by a radical efficiency factor f that ac-
counts for the parallel reactions of the initiator that don’t result in the forma-
tion of active radicals.

The chemicals used as initiators are potassium persulfate (KPS) and sodium
formaldehyde sulfoxylate (NaFS), with KPS being the limiting reactant.

Once the radical is formed, it can react with the monomers to create live
polymer chains:

R• + M1
kini,1−−−→ Q•1,1 (2.1.2)

R• + M2
kini,2−−−→ Q•2,1 (2.1.3)

Polymer propagation

The second step in the reaction is the propagation of the active polymer chains:

Q•1,n + M1
kp,11−−→ Q•1,n+1 (2.1.4)

Q•1,n + M2
kp,12−−→ Q•2,n+1 (2.1.5)

Q•2,n + M1
kp,21−−→ Q•1,n+1 (2.1.6)
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Q•2,n + M2
kp,22−−→ Q•2,n+1 (2.1.7)

The polymer growth mechanism is chain polymerization (meaning that the
polymer chains grow by one monomeric unit at a time).

Termination

The final step in the polymerization reaction is the termination by combination
or disproportionation:

Q•i,n + Q•j,m
ktc,ij−−−→ QD,n+m (2.1.8)

Q•i,n + Q•j,m
ktd,ij−−−→ QD,n + QD,m (2.1.9)

Inhibition

In addition to the two termination mechanisms cited above, the chain growth
can be stopped (or inhibited) by the presence of an additional component, such
as dissolved oxygen, that reacts with active radicals and generates inactive
peroxy radicals, peroxides and hydroperoxides [42]:

R• + O2
kinh−−→ R (2.1.10)

Q•i,n + O2
kinh−−→ QD,n (2.1.11)

2.1.2 Polymer distribution

One of the main challenges in describing a polymer system comes from the fact
that such system is composed of an unspecified number of polymer chains of
different chain lengths. On one hand the macroscopic properties of a polymer
mixture are determined by its distribution [39], on the other hand keeping track
of all the possible configurations (in terms of chain lengths and composition)
would be computationally expensive and ultimately uninformative for process
control purposes.
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One widely used technique to model polymeric mixtures makes use of the
method of moments [32]. The n-th moment of a distribution φ is given as:

µn =
∞∑
k=1

kn · φk (2.1.12)

If we set φ as the distribution of molar concentrations of the polymer chains
of length k, we can write the zeroth, the first and the second moment as:

Q0 =
∞∑
k=1

ck (2.1.13)

Q1 =
∞∑
k=1

k · ck (2.1.14)

Q2 =
∞∑
k=1

k2 · ck (2.1.15)

The zeroth and first moment have a clear physical meaning in this context,
Q0 being the total molar concentration of the polymer and Q1 the number of
monomeric units incorporated in the polymer chains per unit volume.

Many properties of the polymer can be described by two indices: the number
average chain length (NACL) and the weight average chain length (WACL).

NACL =
Q1

Q0

(2.1.16)

WACL =
Q2

Q1

(2.1.17)

The ratio between WACL and NACL is commonly referred to as polydispersity
index (PDI), and gives a measure of the broadness of the distribution:

PDI =
Q2 ·Q0

Q2
1

(2.1.18)

A visual representation of a polymer distribution and its average chain lengths
is provided in figure 2.1.

In the context of this work WACL is of particular interest due to its strong
connection with the viscosity of the polymer [7].

With the approach 2.1.2 it is also possible to write the reaction kinetics and the
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Figure 2.1: Example of a chain length distribution for a polymeric mixture

conservation equations in terms of the moments. This is extensively described
in [32] for the general case and in [42] for the existing plant, to which reference
should be made for a more detailed discussion. The main idea, however is
to treat the individual moments as physical quantities, and to write their
derivatives in terms of the derivatives of the elements in the distribution:

∂µn
∂t

=
∞∑
k=1

kn · ∂φk
∂t

(2.1.19)

∂µn
∂z

=
∞∑
k=1

kn · ∂φk
∂z

(2.1.20)

∂2µn
∂z2

=
∞∑
k=1

kn · ∂
2φk
∂z2

(2.1.21)

The derivatives of the individual elements of the distribution are typically
linked to each other through conservation equations:

∂φk
∂t

= D · ∂
2φk
∂z2

− v · ∂φk
∂z

+Rk(φ) (2.1.22)

It is possible to apply the method of moments to conservation equations, and
by replacing the summations with 2.1.19 to 2.1.21, equation 2.1.23 is derived:
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∂µn
∂t

= D · ∂
2µn
∂z2

− v · ∂µn
∂z

+
∞∑
k=1

kn · Rk(φ) (2.1.23)

The last step in the derivation of moment conservation equations requires to
algebraically simplify the term

∞∑
k=1

kn · Rk(φ) (2.1.24)

and to express it in terms of the moments. This is shown in [42, 32].

2.1.3 Polymer fluid dynamics

In order to correlate the properties of the polymer to the measured pressure
drop, it is necessary to describe the fluid dynamic behaviour of the fluid inside
the measurement apparatus.

Due to the size and elongated shape of the polymer chains, the intermolecular
forces determine an overall complex effect on the fluid system and ultimately
result in non-Newtonian behaviour [39, 7].

Newtonian fluids are among the simplest classes of fluids, with constant shear
stress-strain rate relation (viscosity), memoryless behaviour and negligible nor-
mal stress-strain rate relation. Non-Newtonian fluids, on the other hand, ex-
hibit nonlinear viscosity, persistence of stress after deformation and measurable
normal stresses resulting from shear flows [7, 8].

Viscosity

Strain rate γ̇ is the rate of change of velocity between surfaces parallel to the
flow, and for monodimensional flow in pipes can be written as [7, 8]:

γ̇ =
∂v

∂r
(2.1.25)

Shear stress τ is the frictional force per unit surface that parallel fluid fillets
exhert on each other. For generalized Newtonian fluids it is possible to write
[7, 8]:

τ = −η(γ̇) · γ̇ (2.1.26)
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Figure 2.2: Comparison of the true viscosity in polymeric fluids and the power
law approximation as a function of the strain rate [7]

For Newtonian fluids in isothermal flows η is constant. Viscosity in polymeric
fluids in intermediate strain rates follows a power law instead [7, 8]:

η(γ̇) = K · |γ̇|n−1 (2.1.27)

with n < 1 (shear thinning fluid).

For very low strain rates, viscosity settles to some plateau value η0 (zero strain
rate viscosity). The strain rate around which the transition between one regime
and the other occurs is called transition strain rate and is denoted as γ̇0 [7].

Polyacrylamide solutions are found to encounter a further change in regime for
very high strain rates, at which the fluid becomes shear thickening [19]. This
effect will be neglected due to the low velocities encountered in the plant.

An illustration of the transition between the Newtonian and the shear thinning
regime is shown in figure 2.2, together with the power law model.

For concentrated polymer solutions, η0 is usually found to be proportional to
some power of the weight average chain length [7]:

η0 ∝WACLα (2.1.28)
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with

α =

1 WACL < CLc

3.4 WACL ≥ CLc
(2.1.29)

The value of CLc (critical chain length) depends on the polymer weight con-
centration and is determined experimentally.

The transition strain rate also follows different regimes depending on the weight
average chain length:

γ̇0 ∝

1 WACL < CL′c
Q2 WACL ≥ CL′c

(2.1.30)

with CL′c slightly larger than CLc [7].

Viscosity is heavily affected by temperature. A simple model is given by the
Andrade equation [3]:

η ∝ eT0/T (2.1.31)

Finally, the power law exponent n in equation 2.1.27 is a function of the
moments as well and spans the range [0.9, 0.2] when going from high dilution to
concentrated solutions [7]. It is assumed that this parameter stays reasonably
constant and near the lower limit when operating the reactor at steady state.
This hypotesis is valid by means of literature [16, 19] but should be verified
experimentally.

Elasticity

Memory effects are quantified by the Deborah number:

De =
Λ

tc
(2.1.32)

where Λ is the relaxation time of the polymer and tc is a characteristic time for
the flow. When De << 1, elastic effects are negligible. If, however, De ∼ 1 or
higher, the polymer will react lazily to changes in flowrate, resulting in residual
stresses and therefore spurious pressure drop readings [7].

For concentrated polyacrilamide solutions, literature provides a relaxation time
in the order of 1s [19]. This suggests an upper bound the for measurement
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bandwidth between flowrate changes of about one sample per second, but does
not require further modelling.

Normal stresses

Normal stresses resulting from shearing flow should be taken into account when
mounting the differential pressure sensor, due to the hole pressure effect [30].
In practice, when measuring pressure in a pipe carrying a polymeric fluid, one
will observe different readings depending on whether the pressure sensor is
flush mounted or recessed with respect to the pipe wall, and in particular the
latter measurement will be smaller than the former. If one is not interested
in knowing the absolute pressure of the fluid inside the pipe but wants to
perform a pressure drop measurement, he should still make sure that the fluid
distance between the pipe wall and the pressure sensor is either the same for
both terminals or enough to dissipate all normal stresses, in order to get a
correct reading.

2.2 Coiled flow inverter

The Coiled Flow Inverter (CFI) is a modern reactor concept that allows for
quasi-plug flow behaviour even at low values of the Reynolds number and in
laminar flow [25].

The CFI reactor exploits two fluid dynamics phoenomena: Dean vortices that
arise when a fluid moves through a coil [11] and rotation of such vortices
(inversion) in bends [25].

The geometry of the reactor and its flow patterns are illustrated in figure
2.3. The reactor pipe is coiled around a rod that provides structural support.
During flow, the difference in distance from the coil axis imparts a secondary
flow pattern to the fluid that is parallel to the pipe section. The vortices that
result from this motion significantly improve radial mixing [31].

After a number of coils, a bend is made and the orientation of the secondary
flow switched. This is what is referred to as inversion. The effect of flow
inversion is to “scramble” the fluid and to shift elements that lied before on
higher residence time streamlines to faster moving regions. The overall effect
is to narrow the residence time distribution [37, 38, 40].
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Figure 2.3: CFI geometry and flow patterns [25]

2.3 Model predictive control

Model Predictive Control (MPC) is a control philosophy that made its debut
in industry during the seventies for linear systems, but only recently started to
gain momentum in its nonlinear applications (NMPC), due to the decrease in
cost for computing power and the availability of commercial software frame-
works [10]. As the name suggests, MPC is a model based technique, therefore
a good model of the process is required for it to be used. A certain amount of
model uncertainty can be tolerated by robust MPC techniques [10, 36].

The main idea behind MPC is to compute a sequence of inputs for the plant
to bring it from an initial operating point to another in the best way possible.
The optimality of the path is determined by a cost function that accounts for
the time required for reaching the objective and the effort of the controller
[10, 36].

Compared to classical control, MPC is capable of handling multivariable non-
linear systems and constraints in a very natural way, thus enabling very tight
control even in strongly coupled processes. Moreover, the optimality of the
control input can translate in quicker reaction to changes in set-point and
lower operating costs of the process [10, 36].

The price to pay for setting up such a control system is a higher initial cost
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for the determination of a suitable model and the availability of full state
information about the system[10, 36].

The NMPC implementation for the plant is made in Python using the open
source software do-mpc and CasADi.

do-mpc (Dortmund model predictive control) [28] is a modular environment for
the implementation of NMPC that was developed in Technische Universität
Dortmund. The modularity allows for fast prototyping and transition from
simulation to online applications, and is used in this work as a platform for
simulations.

CasADi [2] is an open source symbolic framework for automatic differentiation
and numerical optimization. It allows to write models in terms of symbolic
variables and to automatically compute the exact derivatives, as opposed to
using the less precise and more expensive finite differences methods.

The model of the plant is written using CasADi, and most of the computations
(integration of differential equations, calculation of gradients, model function
evaluations) are done within its environment.

2.4 State estimation

As it was stated before, one of the requirements of MPC is the availability of
full state information about the process. This could in theory be accomplished
by installing as many sensors as the state variables, but in practice it would be
expensive if not impossible at all: some variables can only be measured offline,
others could be physically not accessible. One appealing possibility is to infer
the state information from a limited number of measured variables and the
knowledge about the process. A device that accomplishes this task is called
state observer or state estimator [44].

2.4.1 State space representation of dynamical systems

Continuous-time systems

The evolution in time of a continuous-time system can be described by the set
of differential equations:

ẋ = f(x, u) (2.4.1)
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where f is a generic nonlinear function of the state vector x and the controlled
input vector u.

If f is linear, then it is possible to write the system as:

ẋ = Ax+Bu (2.4.2)

where A and B are matrices of appropriate sizes.

A nonlinear system can be linearized around the state x0 and input u0 by
approximating equation 2.4.1 in a truncated Taylor series [43]:

ẋ ' f(x0, u0) + A(x− x0) +B(u− u0) (2.4.3)

with A, B the jacobians of f with respect to x and u, respectively:

Aij =

(
∂fi
∂xj

)
x0,u0

(2.4.4)

Bij =

(
∂fi
∂uj

)
x0,u0

(2.4.5)

Discrete-time systems

If the state of the system is only considered in discrete instants of time tk, the
system is said to be discrete-time. Discrite-time systems arise, for example,
when measurements from a continuous time system are sampled and fed to a
digital computer.

It is possible to write the evolution of a discretized nonlinear continuous-time
system in terms of the solution x(tk+1) of the initial value problem:ẋ = f(x, u)

x(tk) = xk
(2.4.6)

Linear discrete-time systems are described by:

xk+1 = Fxk +Guk (2.4.7)

where F is called transition matrix.
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It is possible to transform a continuous-time linear system into a discrete-time
linear system under the assumption of constant u(t), A and B during the
sampling period by transforming the A and B matrices as follows [34]:

F = eAts (2.4.8)

G =

(ˆ ts

0

eAtdt

)
B (2.4.9)

A nonlinear system can be rigorously discretized and linearized under the
assumption of constant u(t) during the sampling period by setting F and G

as the jacobians:

Fi,j =

(
∂x̂−k,i
∂x̂k−1,j

)
xk−1,uk−1

(2.4.10)

Gi,j =

(
∂x̂−k,i
∂ûk−1,j

)
xk−1,uk−1

(2.4.11)

Measurement function

The description of the system is completed by defining the measured vector yk
and the measurement function:

yk = h(xk,uk) (2.4.12)

The measurement function can be linearized around a certain state x0 just as
it was done with the dynamics equation:

yk ' h(x0, u0) +H(xk − x0) (2.4.13)

with H the jacobian of h with respect to x:

Hij =

(
∂hi
∂xj

)
x0,u0

(2.4.14)
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Distributed parameter systems

The expressions presented so far are only valid for a restricted class of sys-
tems (concentrated parameter systems) and are typically the result of some
simplifications. Physical systems of interest for chemical engineers are seldom
governed by ordinary differential equations and require some treatment before
proceeding any further.

The state in distributed parameter systems is a function of both time and the
position in space. A description of the system can be made in terms of partial
derivatives, such as the convection-diffusion equation [8]:

∂c

∂t
= D · ∂

2c

∂z2
− v · ∂c

∂z
+R (2.4.15)

with c a state variable (such as the concentration of one reactant or the temper-
ature), v the fluid velocity in the spatial direction z, D a dispersion coefficient
and R a generative term.

Distributed parameter systems can be approximated by systems of ordinary
differential equations by discretizing the spatial derivatives in selected grid
points, using techniques such as the finite differences method [18].

2.4.2 Stability

There exist a large number of definitions for stability. Broadly speaking a
system (discrete-time or continuous-time) is said to be stable if, for any initial
state that is close to a steady state, the trajectory of the system remains close
to the steady state. If the trajectory of the system asymptotically converges
towards the steady state, the system is said to be asymptotically stable.

For linear systems, simple criteria can be used to assess stability, while for
nonlinear system multiple steady states can exist with domains of attraction
surrounding each stable steady state [24]. It is possible to linearize nonlinear
systems around steady states and test stability in the direct vicinity.

Asymptotic stability criterion

A discrete-time linear system described by xk+1 = Fxk is asymptotically stable
if all of the eigenvalues λi of F ∈ Rn×n have magnitudes smaller than one [44].
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Furthermore, the eigenvectors vi that satisfy

λivi = Fvi (2.4.16)

are called modes of the system.

2.4.3 Observability

A discrete-time system is said to be observable if, for any initial state x0

and any final time tk, the initial state x0 can be uniquely determined by the
knowledge of the input uj and output yj for all j ∈ [0, k] [44].

Criteria exist for checking observability in linear systems, while for nonlinear
systems there are no simple tests and the previous statement has to be demon-
strated for the particular case. One possibility is to use linear observability
criteria on the linearized system to evaluate local observability [44].

Two common tests for observability are the Kalman observability criterion
[22] and the Hautus observability criterion [17]. The former test is the most
straightforward to implement, however is numerically unstable for systems of
considerable size [35] and is generally used only for didactic purposes, while
the latter is slightly more robust but requires an eigenvalue computation.

A necessary condition for observability in tubular reactors reactors is proposed
in [13].

Kalman observability criterion

A discrete-time linear system is observabile if the observability matrix:

O =


H

HF

HF 2

· · ·
HF n−1

 (2.4.17)

has full rank, with n = number of states [22].

The Kalman observability criterion can be expressed for continuous-time sys-
tems by replacing F with A.
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Algorithm 2.1 Computation of the unobservability indices [21]

1. Compute O+ as the Moore-Penrose inverse of O (see section C.2).

2. Compute Ψ = [Ψ1,Ψ2, . . . ,Ψn]T as

Ψ = I −O+O (2.4.19)

3. Compute the unobservability indices vector ψ2 as

ψ2
i = ‖Ψi‖2

2 (2.4.20)

Hautus observability criterion

A discrete-time linear system (F,H) is observable if the matrix(
λiI − F
H

)
(2.4.18)

has full rank for every λi eigenvalue of F [17]. The eigenvectors for which the
test fails are called unobservable modes of the system.

The Hautus observability criterion can be expressed for continuous-time sys-
tems by replacing F with A.

Method of the unobservability indices

Once the matrix O has been calculated, it is possible to identify the contribu-
tion of individual states to unobservability by computing their unobservability
indices. The procedure is demonstrated in [21] and is illustrated in algorithm
2.1:

Fully observable states are characterized by ψ2
i = 0, while unobservable ones

are those such that ψ2
i > 0. Additionally, it can be proven that [21]:

n− rank(O) =
n∑
i=0

ψ2
i (2.4.21)

Let x0 be the initial state of the system and yk the measurement at time k.
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Let Y =
(
yT0 yT1 . . . yTk

)T
:

Y =


H

HF
...

HF n−1

x0 = Ox0 (2.4.22)

If O is not full rank1, it is possible to write:

x0 = O+Y +
(
I −O+O

)
z (2.4.23)

where z ∈ Rn×1 is an arbitrary vector and (I −O+O) z the free solution.
States with an unobservability index greater than zero have a nonzero weight
on the free solution, meaning that their initial state cannot be determined
uniquely [21].

Moreover, when state estimation is applied on processes with noise, the toler-
ance used in computing the pseudoinverse (see appendix C.2) can be set higher
to distinguish between observable and unobservable states in relation to the
measurement noise [21].

Structural observability in tubular reactors

A tubular reactor with measurements at the outlet only is described by the
following equations:

∂

∂t
x(t, z) = − ∂

∂z
x(t, z) + f(x(t, z)) (2.4.24)

y(t) = h(x(t, z = L)) (2.4.25)

It should be noted that this model does not include axial diffusion, but only
convection.

If we denote with A and C the jacobians of the functions f and h with respect

1If O is full rank, the term I −O+O simplifies to zero.
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to x, we can define their corresponding structure matrices A∗ and C∗2.

The structural observability matrix S∗ is defined as:

S∗ =

(
A∗

C∗

)
(2.4.27)

A directed graph can be constructed using the matrix S∗, where each nonzero
entry Si,j of the matrix denotes a directed connection (edge) from the vertex j
to the vertex i. State vertices are the ones corresponding to the state variables
x, output vertices are those corresponding to the output variables y. Ordered
sequences of edges without loops are called paths.

The system described by equations 2.4.24 and 2.4.25 is said to be structurally
observable if [13]:

• for each state vertex there exists at least one path from this state vertex
to at least one of the output vertices;

• the structural rank of the matrix S∗ is equal to the order of the system.

2.4.4 Detectability

A weaker notion than observability is detectability. An unobservable system is
said to be detectable if all of the unobservable modes are stable. This implies
that even though full state information is not available and some states of the
system can only be simulated, the estimation error on the simulated states
does not grow unboundedly.

2.4.5 Kalman Filtering

The Kalman filter is the optimal linear estimator for a linear dynamic process
with gaussian noise [44]. It works by recursively predicting the current state

2The structure matrix M∗ of a matrix M is defined as the matrix with elements

M∗
i,j =

{
0 if Mi,j = 0

∗ if Mi,j 6= 0
(2.4.26)

The structural rank of M∗ is defined as the maximum rank is defined as the maximum
rank of all its possible realizations.
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estimate given past informations and correcting it as each measurement arrives.
Its main strengths are the algorithmic simplicity and the necessity to store very
little data at a time.

It is possible to extend its validity to nonlinear systems, although losing opti-
mality, by linearizing the dynamics and the measurement around the current
state estimate, hence the name Extended Kalman Filter (EKF). Other nonlin-
ear state estimators exist, such as the unscented Kalman filter or the particle
filter, which generally give better performance but demanding significantly
more computer power [44, 36].

In this section, the Kalman filter is described for the linear discrete-time case
first, then its extension to hybrid continuous-discrete nonlinear systems is dis-
cussed.

Description of the system

The dynamics of the system to be estimated are described by the stochastic
difference equation:

xk+1 = Fkxk +Gkuk + wk (2.4.28)

where wk is a vector that represents disturbances in the process dynamics
(process noise) and Fk and Gk are the matrices defined in section 2.4.1. wk
is modelled as a discrete, normally distributed, zero mean random variable of
covariance Qk [44]:

wk ∼ N (0, Qk) (2.4.29)

The measurement is described by the equation:

yk = Hkxk +mk (2.4.30)

where nk is a vector of measurement noise that is also assumed to be normally
distributed, with zero mean and covariance R [44]:

mk ∼ N (0, Rk) (2.4.31)

The information carried around by the filter is made of two parts: the state
expected value x̂, representing the best guess of the filter regarding the plant
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Quantity A priori A posteriori

State estimate x̂−k x̂+
k

Error covariance P−k P+
k

Table 2.1: Kalman filter estimates

state and the error covariance estimate P , reflecting the amount of uncertainty
on individual states [44]. If we denote with E[·] the expected value operator3:

x̂k = E[xk] (2.4.32)

Pk = E[(x̂k − xk)(x̂k − xk)T ] (2.4.33)

The two estimates can be further specialized to indicate the a priori estimate
and the a posteriori estimate depending on whether the current measurement
has been taken into consideration for the estimate. A summary of these quan-
tities is shown in table 2.1.

One possibility to visualize error covariances is to use uncertainty ellipses: since
P is a covariance matrix, it has to be positive definite, therefore it is possible
to invert it and define the product:

(x− x̂)TP−1(x− x̂) = n2
σ (2.4.34)

With nσ the number of standard deviations for the deviation vector x− x̂ with
respect to the covariance matrix P . When nσ is fixed, the product identifies
an ellipsoid of constant likelihood in the state space. A higher elongation of
the ellipsoid in a certain direction can be seen as a higher uncertainty in such
direction.

Prediction-Correction cycle

At each time step, the current a priori state estimate is calculated using equa-
tion 2.4.28 with the disturbance vector set to zero:

x̂−k = Fk−1x̂
+
k−1 +Gk−1ûk−1 (2.4.35)

3The expected value of a random variable is the probability-weighted average of all the
possible values of such variable
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The state error covariance is propagated as well, to take into account the effect
of existing uncertainty and process noise:

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1 (2.4.36)

After a prediction is made, the state estimate is projected on the output space
and compared with the measured output. The measurement residual is defined
as the difference between the two quantities:

rk = yk −Hkx̂
−
k (2.4.37)

The idea behind recursive estimation is to update the previous state estimate
with a corrective term that is proportional to the residual through some gain
matrix Kk:

x̂+
k = x̂−k +Kkrk (2.4.38)

The choice of Kk determines the amount of correction and results in the a
posteriori error covariance Pk [44]:

P+
k = (I −KkHk)P

−
k (2.4.39)

= (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k (2.4.40)

Eq 2.4.40 is called Joseph form of the covariance update and is guaranteed to
yield a symmetric matrix (the two forms are equivalent, however the Joseph
form is numerically stable [47]).

In the case of the Kalman filter, Kk is chosen such that the a posteriori error
covariance is minimized:

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1 (2.4.41)

The expression for the Kalman gain is formally demonstrated by computing
the matrix derivative of tr(P+

k )4 with respect to Kk and setting it to zero
and is described in [44]. A more intuitive explanation is given in [12, 5] and
is presented here with the aid of figure 2.4 using the concept of uncertainty
ellipses.

4tr(P ) denotes the trace of a matrix (the sum of the diagonal elements)
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At the beginning of the recursion, the previous a posteriori is known (repre-
sented with the green ellipse in the state space). The previous a posteriori is
used to predict the current a priori (dashed red ellipse in the state space). This
distribution can be projected on the output space and, once a measurement is
available, compared with the measurement distribution (represented with the
blue dashed ellipse).
The product of the two output distributions is sometimes called overlap, and
it is a distribution itself, although not normalized, with its own mean and
covariance. The overlap is represented in the output space with the purple
ellipse and shown (sliced) in the bottom right plot. The overlap is a measure
of the likelihood of a particular output vector given the past knowledge and the
current measurement.
The most likely a posteriori estimate is the one that, when projected on the
output space, most closely matches the overlap. The Kalman filter gain matrix
is calculated accordingly.

Figure 2.4: Representation of the Kalman filter recursion using uncertainty
ellipses [12, 5]
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Extended hybrid Kalman filter

If the system to be estimated is continuous-time with discrete measurements
(hybrid) and nonlinear, it is still possible to use the prediction-correction cycle
described in the previous section by linearizing the dynamics and the measure-
ment function around the current state estimate and discretizing [44, 36].

The predicted state estimate x̂−k is computed by solving the initial value prob-
lem ẋ = f(x, uk)

x(tk−1) = x̂+
k−1

(2.4.42)

and setting
x̂−k = x(tk) (2.4.43)

The measurement residual can be computed as the difference:

rk = yk − h(x̂−k , uk) (2.4.44)

The transition matrix F should be rigorously computed using equation 2.4.10,
however this would imply solving the initial value problem 2.4.42 at least n+1

times for just a first order approximation5 with excessive computational costs
for large problems.

A much faster approach is to compute Ak, the Jacobian of f , at
(
x̂+
k−1, uk

)
and

then to approximate Fk using equation 2.4.8:

Fk ' eAkts (2.4.45)

The Hk matrix is computed as the Jacobian of h at
(
x̂−k , uk

)
.

The evolution of error covariance for linear continuous-time stochastic systems
is described by the continuous time Riccati equation [44]:

Ṗ = AP + PAT + Q̇ (2.4.46)

where Q̇ is the continuous-time analog of the discrete-time process noise co-
5The unscented Kalman filter is based on a very similar principle, which however skips

the computation of the transition matrix and uses the solutions to better approximate the
propagated mean state estimate and covariance.
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variance matrix6.

The a priori covariance can be then computed as:

P−k = P+
k−1 +

ˆ tk

tk−1

Ṗ dt (2.4.47)

Numerical methods for the solution of the latter integral will be presented in
section 5.2.

Convergence and stability of the Kalman filter

The steady state error covariance of the state estimate for a time invariant
system can be computed by setting P∞ = P−k = P−k−1 and performing the
relevant substitutions:

P∞ = FP∞F
T − FP∞HT (HP∞H

T +R)−1HP∞F
T +Q (2.4.48)

Equation 2.4.48 is commonly referred to as Discrete Algebraic Riccati Equation
(DARE).

The steady state gain of the Kalman filter then becomes:

K∞ = P∞H
T (HP∞H

T +R)−1 (2.4.49)

For the solution P∞ to be stable, it is necessary that all of the eigenvalues of :

(I −K∞H)F (2.4.50)

are less than one in magnitude. One necessary condition for this is that the
system is detectable [44].

6The continuous-time process noise covariance matrix is denoted as Q̇ with abuse of
notation because it has units [x]/[t], whereas Q has units [x]. This notation is not found
in literature, where both the continuous-time and the discrete-time process noise covariance
matrices are denoted as Q, but was employed here for clearly distinguishing between the
two.
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2.5 Differential pressure measurement

A differential pressure sensor is a device that measures the difference in pres-
sure between two spaces. Electrical differential pressure sensors (DP cells)
allow to transduce the differential pressure into an electric signal.

A DP cell is essentially an assembly of two chambers separated by a deformable
membrane that bulges when a differential pressure is applied (shown in figure
2.5a). A resistive element is placed on the membrane [15].

The resistance of an electrical conductor of uniform cross section as a func-
tion of its length l, cross-sectional area A and electrical resistivity ρel can be
calculated as:

R = ρel
l

A
(2.5.1)

When the resistive element is deformed it stretches, therefore increasing its
resistance. The variation of resistance is captured by a Wheatstone bridge
circuit (shown in figure 2.5b) that allows to transduce the resistance variation
into a voltage reading VG [1]:

VG =

(
R2

R1 +R2

− Rx

Rx +R3

)
VS (2.5.2)

The resistive element of the pressure sensor is indicated with Rx. The voltage
VS between A and C, is supplied externally, the output terminals of the DP
cell are connected to points B and D and measure the voltage VG.
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(a) DP cell schematic [45]

(b) Wheatstone bridge circuit [1]

Figure 2.5: Pressure measurement device
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Chapter 3

Plant setup

The plant is built under a fume hood and consists of five sections: the reac-
tant bay with nitrogen purging, the feeding/mixing section with pumps and
flowmeters, the CFI reactor (placed inside an oven), the outlet measurement
section with the Raman spectrometer, the pressure measurement and a cooling
jacket, and finally the product tank. A process flow diagram with the most
relevant elements for modelling is presented in appendix B.

3.1 Reactant bay and feeding/mixing sections

Reactants are prepared and placed in bottles. Each bottle is connected to the
nitrogen line with a bubbler for purging any dissolved oxygen, as it was found
to severely inhibit the reaction [42]. The oven is also purged with nitrogen.

The two initiators (KPS and NaFS) are stored in separate bottles, while the
monomers (AA and AMPS) are mixed beforehand.

The reactant bottles are connected to the pumps using dip tubes. Pumping
is accomplished using HPLC pumps (double piston type), while flowrate is
monitored using Coriolis flowmeters. The mixing of monomers and initiators
occurs at T junctions right before entering the oven.

It should be noted that the current configuration of the reactor is not optimal,
as it does not allow to dose the monomers independently. The original config-
uration would involve separate bottles and pumps for each reactant, however
due to the malfunctioning of one pump, the setup had to be adapted.

33
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Figure 3.1: Detail of the CFI reactor inside the oven [42]

It is possible to switch the pumps feed to distilled water for startup, shutdown
and cleaning phases.

3.2 CFI Reactor

The CFI reactor is built with PTFE tubing coiled around wooden rods. Four
temperature sensors (PT100 thermometric resistors) are attached to the reac-
tor pipe using Polyimide tape (thermally stable up to temperatures of ∼300
°C). This configuration only indirectly measures the reactor temperature, how-
ever it was chosen as it does not interfere with the Dean vortices and prevents
the polymer from sticking and growing near stagnation points [42]. A picture
of the CFI reactor mounted inside the oven is shown in figure 3.1, with the or-
ange arrows indicating the flow of the reactants and the blue arrows indicating
the flow of the nitrogen.

3.3 Outlet piping

A picture with the various elements of the outlet piping highlighted is displayed
in figure 3.2.
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Figure 3.2: Detail of the outlet piping of the plant

When outside the reactor, the polymer-carrying pipe (red) encounters, in this
order, the first T-junction for pressure measurement (green), the Raman spec-
trometer (yellow), the double pipe heat exchanger (blue) and the second T-
junction (green) before being collected in the product tanks. The pressure
sensor and the heat exchanger were installed in this work.

The two terminals of the pressure sensor are connected with the outlet piping
of the reactor using PTFE three way compression fittings, shown in figure 3.3
and placed roughly at the same height in order not to have a biased reading.

When the fitting is assembled and the compression nut fastened, the olive
(made in PTFE) wedges between the body of the fitting and tubing, holding
the pipe in place by friction. Since the friction factor for PTFE couplings is
very low compared with other materials, the maximum internal pressure that
the fitting can withstand before bursting is relatively low, thus making it one
of the weakest points of the piping.

The pressure-carrying pipes are filled with air to avoid contamination of the
product with previous batches of polymer. Using the ideal gas law it is possible
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Figure 3.3: Three way compression fitting

Figure 3.4: Double pipe heat exchanger schematic

to derive a compression factor for the air inside these pipes:

∆Lair = Lair,0 ·
P − Patm

P
(3.3.1)

which, for the high pressure pipe under the assumption of P = Patm + ∆P can
be written as:

∆Lair = Lair,0 ·
∆P

∆P + Patm
(3.3.2)

With a pressure differential in the order of 0.2 bar (taken from experimental
data), the compression factor is approximately 0.16 cmdisplaced

cmair,0
, meaning that

the fluid penetrates 0.16 cm inside the pressure pipe for each cm initially filled
with air.

The cooling jacket (countercurrent double pipe heat exchanger, see figure 3.4)
is realized using plastic tubing and custom made glass fittings. Tap water
available at 13°C is used for cooling.

The purpose of the cooling jacket is to bring the reactant mixture back to
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room temperature in order to slow down the reaction. Once the mixture gets
in contact with the outside atmosphere, the dissolving oxygen should poison
the residual initiator and inhibit any further reaction.

3.4 Electronics and automation

The sensors and pumps are connected to a computer through an analog-digital
converter. The plant is operated using LabView as an interface between the
user, the plant and the additional software, such as the Raman spectrum an-
alyzer.

The low-level control of the pumps is automated with a regular PI controller
(software-based) that takes a user-defined setpoint.

3.5 Experimental procedure

After installing the new equipment, tests were made to acquire plant data for
fitting the pressure drop model.

The experimental procedure is described as follows:

1. Preparations of the reactants;

2. Initial purging of the reactants and water with nitrogen;

3. Initial purging of the reactor with water;

4. Calibration of the Raman spectrometer with monomer feed;

5. Start of the reaction and sampling of the polymer;

6. Final cleaning and shutdown.

The reactants were prepared in three bottles, one with the monomers (AAM
and AMPS) and water, the other two with the initiators (KPS and NaFS)
and water. This constitutes a deviation from the procedure used in [42], for
which the monomers were prepared in different bottles and only mixed at the
inlet of the reactor, but was made necessary due to the malfunctioning of one
pump. The proportion between the two initiators was left unaltered, although
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higher quantities were used (2x, 3x and 4x the concentrations used in [42] were
tested).

Another deviation from the previous experimental procedure was to halve the
concentration of the monomers, with the aim of mitigating the overpolymer-
ization and clogging of the reactor that was observed in previous runs.

In neither of the experiments it was possible to reach safe steady states, as
the temperature inside the reactor and the pump pressure would reach unsafe
levels (based on experience) soon after the input flowrate was lowered from
1−1.1 kg/h to 0.8−0.9 kg/h.

A number of cloggings were also experienced, with the pressure sensor fittings
bursting as soon as the feed pressure reached 10 bar. Additionally, it was found
that the fittings constituted preferential spots for polymer clots to grow, thus
making the pressure reading less reliable than anticipated.

Due to the number of unsuccesful runs, the laboratory activity was suspended
in favor of the development of the EKF tuning procedure. The data that
was gathered during the most successful run was tested with the EKF and is
presented in section 5.10.



3.5. EXPERIMENTAL PROCEDURE 39



40 CHAPTER 3. PLANT SETUP



Chapter 4

Plant model

4.1 Reactor

The reactor was modelled (and the model validated) in previous works [42,
9], a brief explanation of the reaction kinetics, mass and heat transport and
discretization is presented in the following sections for clarity.

4.1.1 Reaction kinetics

The reaction rates are written for the elementary reactions described in section
2.1.1. The order of reaction is assumed to be equal to the reaction molecularity
(law of mass action), and the temperature dependence is assumed to follow
Arrhenius law:

kj = kj,∞ · e−
Ea
RT (4.1.1)

Once the kinetic model is developed in terms of the individual polymer chains,
the method of moments is used to rewrite the expressions for the reaction rates
in terms of the polymer moments P10, P11, P12, P20, P21, P22, D0, D1, D2 [32]
by factoring them out in 2.1.24. The expressions for the reaction rates are
summarized here for the various species in appendix A.1.
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4.1.2 Mass transport

The conservation equations (expressed in terms of concentrations) are written
in one spatial dimension using a dispersion model:

∂cj
∂t

= −v · ∂cj
∂z

+
∂

∂z
·
(
Dax ·

∂cj
∂z

)
+ rj (4.1.2)

Here Dax is the axial dispersion coefficient that incorporates all the mass trans-
fer effects that result from the enhanced radial mixing. The dispersion coeffi-
cient is correlated to the flow conditions, the geometry of the reactor and the
properties of the fluid through three dimensionless numbers: Re (Reynolds
number), Sc (Schmidt number) and Bo (Bodenstein number). The correla-
tions are presented more in depth in section A.2, for the purpose of state
estimation it suffices to say that:

Dax = Dax (F, ω) (4.1.3)

with F the volume flowrate of the system and ω the weight fraction of the
polymer.

Equation 4.1.2 can be specialized for each concentration state of the model
by appropriately writing the generative term r (the dispersion coefficient is
assumed to be the same for every component of the mixture). The expression
is valid also for the transport of moments, as it was anticipated in section 2.1.2.

The problem is completed with the boundary conditions.

A Danckwerts boundary condition was chosen for the inlet of the reactor:

vcj,feed = vcj(z = 0, t)−Dax
∂cj
∂z

∣∣∣∣
z=0

(4.1.4)

meaning that the total molar flux (given by convection and back diffusion) at
the inlet of the reactor is equal to the molar flux at the feeding section.

The outlet of the reactor is assumed to be described by a zero gradient (Neu-
mann) boundary condition:

0 =
∂cj
∂z

∣∣∣∣
z=L

(4.1.5)
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4.1.3 Heat transport

The heat transfer is modelled by two energy balances equations, one for the
fluid and one for the pipe (which resistance cannot be neglected). Two tem-
peratures are kept track of: the reactor fluid temperature (Tr) and the tube
temperature (Tt). Heat is assumed to only propagate in the axial direction by
convection.

∂Tr
∂t

= −v · ∂Tr
∂z

+
∆Hr

ρ · CP
· r +

UA2

CP · ρ · Aq,f · L
(Tt − Tr) (4.1.6)

∂Tt
∂t

=
UA2

CP,t · ρt · Aq,t · L
(Tr − Tt) +

UA1

CP,t · ρt · Aq,t · L
(To − Tt) (4.1.7)

with Aq,f the cross-sectional area of the fluid and Aq,t the cross-sectional area
of the pipe.

The properties of the tube are indicated with the subscript t. The reaction
enthalpies ∆Hr are fitted from experimental data. The fluid side overall heat
transport coefficient UA2 can be determined from correlations in terms of Re,
Pr (Prandtl number) and Nu (Nusselt number) and is shown in detail in
section A.3. The oven overall heat transport coefficient UA1 is fitted and the
temperature of the oven is indicated with To and is known.

The inlet temperature is specified as a boundary condition.

4.1.4 Discretization

The system is described by 18 state variables that are both functions of axial
position and time. As it was anticipated in section 2.4.1, however, the spatial
dependence is discretized in order to make the problem tractable numerically.
The length of the reactor is approximated with 15 internal grid points (the
inlet and outlet boundaries count as two additional grid points) and the spa-
tial derivatives approximated with an explicit finited differences method. The
number of grid points is the result of a tradeoff between accuracy and perfor-
mance of the model [42].

The full set of state variables and the vectorization of the state matrix are
shown in section A.4.
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4.2 Outlet piping

The pressure drop model for the outlet piping and the correlation between
viscosity and the state variables were developed in this work.

4.2.1 Pressure drop model

The pressure drop model is derived by specializing the general momentum
balance equation [8]:

ρ ·
(
∂v

∂t
+ v • ∇u

)
= ∇ • τ −∇P + ρg (4.2.1)

A cylindrical coordinate system is chosen to describe the problem. The flow is
assumed to be unidirectional in the axial direction z and to evolve along the
radial direction r. The convection term in the momentum equation is neglected
and the problem is assumed to be stationary.

This assumption should be verified by demonstrating that the characteristic
timescale of the process tp is greater than the fluid-dynamics timescale, which
can be determined by comparing the characteristic values of the time derivative
with the pressure drop term:

ρ · Fc/R
2

tf
∼ ∆Pc

L
(4.2.2)

tf ∼
ρ · Fc
∆pc

· L
R2

(4.2.3)

The fluid dynamics time scale is found to be in the order of 9.3 · 10−4 s1,
therefore the stationarity hypothesis is deemed reasonable.

The process timescale should also be greater than the polymer relaxation time,
which is expected to be in the order of 1 s, for the elastic effects to be negligible
(see section 2.1.3).

The problem is completed by the boundary layer conditions at r = 0 (simme-
try condition) and r = R (no-slip condition). The pressure at z = 0 is left

1Using a mass flowrate of 0.4 kg/h, a pressure drop of 0.2 bar over a length of 1.5 m and
a pipe radius of 3 mm.
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unspecified since we’re only interested in the pressure drop over a section of
the pipe.

The full set of equations can be written in dimensional form:

−∂p
∂z

=
1

r
· ∂
∂r

(r · τ)

τ = τ(γ̇)

γ̇ =
∂v

∂r

τ |r=0 = 0

v|r=R = 0

P |z=0 − P |z=L = ∆P

(4.2.4)

An additional equation is provided to link the local velocity to the volume
flowrate in a section of pipe:

F =

R̂

0

v(r) · 2π · rdr (4.2.5)

Reference flow model

In order to faithfully capture the physical behaviour of the polymer mixture
flow inside the apparatus, a truncated power law model (Spriggs model [7])
is chosen to describe the stress-shear rate function. This model is based on
three parameters: zero shear rate viscosity (η0), transition shear rate (γ̇0) and
power law exponent (n). The transition zone between Newtonian and power
law behaviour that is typically observed is regarded as infinitely small, thus
ignoring the effect of polymer distribution. The error introduced from this
approximation should be reasonably small for engineering purposes.

τ(γ̇) =

−η0 · γ̇ γ̇ < γ̇0

−η0 ·
∣∣∣ γ̇γ̇0 ∣∣∣n−1

· γ̇ γ̇ ≥ γ̇0

(4.2.6)

This model has several perks: it’s simple enough to allow for analytical integra-
tion but at the same time it contains the most significant parameters (which
can eventually be connected to the polymer solution’s properties).
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It’s possible to express the boundary value problem 4.2.4 in terms of dimen-
sionless variables, i.e: y∗ = y/y0, with

r0 = R (4.2.7)

dz0 = L (4.2.8)

τ0 = η0 · γ̇0 (4.2.9)

v0 = R · γ̇0 (4.2.10)

dP0 =
L

R
· η0 · γ̇0 (4.2.11)

F0 = 2π ·R3 · γ̇0 (4.2.12)

The set of equations then becomes:

−∂P
∗

∂z∗
=

1

r∗
· ∂
∂r∗
· (r∗ · τ ∗)

τ ∗ = τ ∗(γ̇∗)

γ̇∗ =
∂v∗

∂r∗

τ ∗|r∗=0 = 0

v∗|r∗=1 = 0

(4.2.13)

with:

F ∗ =

ˆ 1

0

v∗(r∗) · r∗dr∗ (4.2.14)

Since the derivatives in the partial differential equation are independent of
each other, the problem can be solved by introducing a constant k:

−∂P
∗

∂z∗
= k (4.2.15)

1

r∗
· ∂
∂r∗

(r∗ · τ ∗) = k (4.2.16)

From the definition, k is a positive number representing the dimensionless
pressure drop over a unit characteristic length.

The second differential equation can be solved by separation of variables, lead-
ing to:

τ ∗ =
k

2
· r∗ (4.2.17)
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Two regimes of viscosity are in general possible: in the innermost cylindrical
region, where the shear rate does not exceed the transition value, the fluid
behaves as Newtonian. Outside of this region the shear rate exceeds the tran-
sition value and the fluid exhibits the power-law behaviour. A transition radius
r∗t can be found by setting the dimensionless stress to 1:

r∗t =
2

k
(4.2.18)

If the critical radius exceeds 1, the flow is entirely Newtonian. In general,
however, the transition shear rate is so small that the transition radius is
much smaller than the pipe radius.

The relevant stress expression is substituted in the equation and the integration
completed to get the velocity profile v∗(r∗):

v∗(r∗) =


1
k

+
( k
2 )

1
n

1
n

+1
·
(

1−
(

2
k

) 1
n

+1
)
− k

4
r∗2 r∗ < r∗t

( k
2 )

1
n

1
n

+1
·
(

1− r∗ 1
n

+1
)

r∗ ≥ r∗t

(4.2.19)

An expression for the dimensionless flowrate is then obtained as a function of
k and n by integrating eq. 4.2.19:

F ∗ =


2−1− 1

n

k3 · (n− 1) · (3n− 1)

(
n · (n+ 1) · k 1

n
+2 + 2

1
n

+1n2 + 2
1
n

+1 · (1− 9n2)
)

for k > 2

k

16
for k ≤ 2

(4.2.20)

The relationship between flowrate and pressure drop is monotonic for positive
values of k, but cannot be inverted analitically. This is not a problem in
practice, as this model only serves as a benchmark for the operational model.

Power law flow model

A simplified representation of the fluid can be done by disregarding the New-
tonian plateau at low shear rates. This approximation is usually acceptable
for practical purposes. The stress term is modelled with a power law function,
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with the parametersK (proportionality constant) and n (power law exponent).

τ(γ̇)pl = −K · |γ̇|n−1 · γ̇ (4.2.21)

The parameter K can be traced back to the material functions η0 and γ̇0 of
the reference model via the relation:

K =
η0

γ̇n−1
0

(4.2.22)

Conversely to the reference flow one, this model will be used to interpret
the differential pressure measurement to evaluate K. The power law slope is
assumed to be known beforehand.

The boundary value problem in eq. 4.2.4 is specialized with the new expression
for τ and solved for ∆P :

∆P = 2 ·
(

1 + 3n

π · n

)n
·K · L F n

R3n+1
(4.2.23)

The previous expression can be inverted in order to make K explicit:

K =
1

2

(
π · n

1 + 3n

)n
∆P

L
· R

3n+1

F n
(4.2.24)

We now wish to evaluate the error between K and the ratio:

e =
K − η0

γ̇n−1
0

η0
γ̇n−1
0

(4.2.25)

To do this we substitute ∆P = k · L
R
· η0 · γ̇0 (from eq.4.2.11) and F =

2π · R3 · γ̇0 · F ∗(k) (from eq. 4.2.12) in eq. 4.2.24, under the assumption that
the n used in the power law model is the same as the one used in the Spriggs
model.

After some simplifications we obtain:

e = 2−1−n
(

n

1 + 3 · n

)n
k

F ∗(k, n)n
− 1 (4.2.26)

This error is generally small (under 1%) except for very low values of F ∗ or
n, in which cases the Newtonian regime is found in an extensive region of
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Figure 4.1: Error map for the power law approximation

the domain and K is underestimated. A map of the approximation error is
provided in figure 4.1 together with the expected (and conservative) region of
operation2.

4.2.2 Connection between viscosity and the state vari-

ables

In order to correlate viscosity to the state variables of the polymer solution we
take advantage of the fact that K can be used to approximate the ratio

η0

γ̇n−1
0

.

The fitness of this approximation is good as long as the value of n used for the
measurement is reasonably close to the true value and the region of Newtonian
flow is negligible in size with respect to the total flow surface.

We know from 2.1.28, 2.1.30 and 2.1.31 that η0 and γ̇0 are powers of the first
and second moments and viscosity depends exponentially on temperature.

A generalized expression for K is proposed as follows:m

K(Q1, Q2, T ) = ea ·Qb
1 ·Qc

2 · e
d
T (4.2.27)

This function can be linearized by taking the natural logarithm. This allows

2A value of γ̇0 ∈ [0.1, 1] s−1 (from [16]) was used to compute F0.
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to determine parameters via linear least squares given experimental data.

ln(K) = a+ b · ln(Q1) + c · ln(Q2) + d · 1

T
(4.2.28)

4.2.3 Mass and heat transport

The models for viscosity presented so far are valid under the assumptions of
constant composition and temperature along the pipe. Clearly this is not the
case for the outlet pipe, which is too long (in relation to the flowrate) for the
assumption of constant composition to be valid during transitories. Moreover,
the cooling of the reaction mixture determines a drastic change in the viscosity
of the fluid that should be accounted for.

Luckily, the balance equations governing the problem are the same as the
ones presented in sections A.3 and A.2, and it’s only necessary to adapt the
correlations to the new geometry (which can be approximated as a straight
pipe).

The dispersion coefficient can be computed for laminar flow in straight pipes
with the Taylor-Aris correlation [38]:

Bo =

(
1

Re · Sc
+
Re · Sc

192

)−1

· L
din

(4.2.29)

The fluid-side heat transfer coefficient can be calculated using the forced con-
vection correlation from [29] for power-law fluids in horizontal straight pipes:

Nu = 1.41 ·
(

3n+ 1

4n

)1/3

·Gz ·
(
K

Kp

) 0.1
n0.7

(4.2.30)

where Gz (Graetz number) is a dimensionless number, and Kp is the non-
newtonian viscosity coefficient computed at the pipe temperature:

Gz =
FwCP
λL

(4.2.31)

The outer heat transfer coefficient U is written for the jacketed section as:

U =
Nuj · λw
DH

(4.2.32)
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with DH the hydraulic diameter of the jacket.

The Nusselt number for the jacket is computed as[15]:

Nuj = 0.027 ·Re0.8
j Pr

1/3
j (4.2.33)

with Rej the Reynolds number for water in the outer pipe (using the hydraulic
diameter as a characteristic length) and Prj the Prandtl number of water.

4.3 Measured variables

The measured set consists of four pipe temperatures, two monomer concentra-
tions, one pressure measurement and 15 fictitious first moment measurements:

ym =
(
T1m T2m T3m T4m cM1m cM2m ∆pm Q1,1m . . . Q1,15m

)T
4.3.1 Reactor pipe temperatures

The measurement of the i−th thermometer resistance is modelled through an
energy balance:

ms · CP,s ·
∂Tim
∂t

=
UAoven
L

· (To − Tim) +
UAtube
L

· (Tt − Tim) (4.3.1)

The accumulation term can be neglected due to the small mass of the sensor,
therefore the temperature of the sensor can be rewritten as:

Tim = νi · (To − Tt) + Tt (4.3.2)

Where νi ∈ [0; 1] is a parameter that contains the heat transfer coefficients of
the system.

4.3.2 Monomer concentrations

The outlet monomer concentration is measured by the means of Raman spec-
troscopy. The spectrum of the Raman spectrometer is sampled and digitally
processed with an algorithm developed in [9] to obtain an area intensity vector
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I. The purpose of this part of the signal processing is to remove the influence
of the materials of the Raman spectrometer and water from the measured
spectrum and to have a more robust reading against disturbances.

The concentration of the monomers can be then computed as:(
cM1

cM2

)
m

= ΓI (4.3.3)

where Γ is a matrix obtained by calibration.

The measurement function employed in the Kalman filter is(
cM1

cM2

)
m

=

(
cM1

cM2

)
out

(4.3.4)

4.3.3 Pressure drop

The pressure drop in the outlet piping of the plant is modelled using the model
4.2.23:

∆pm = 2 ·
(

1 + 3n

π · n

)n
· L · F n

R3n+1
· 1

N
·
N∑
j=1

Kj (4.3.5)

with

Kj = ea · (P11,j + P21,j +D1,j)
b · (P12,j + P22,j +D2,j)

c · e
d
Tj (4.3.6)

where the subscript j denotes the corresponding variable taken at the j−th
discretization point of the outlet piping.

4.3.4 Overall first moment

The first moment of a polymeric mixture is defined as the sum of the molar
concentration of polymer chains of length k times the chain length, extended
to all possible chain lengths

Q1 =
∞∑
k=0

kck (4.3.7)

and it can be seen as the number of monomeric units consumed per unit volume
to form the existing polymer chains.
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If we consider the integral molar balance of the monomers between the inlet
of the reactor and the section z:

dnM[0,z]

dt
= ṅM,0 − ṅM,z − ṅM,r[0,z] (4.3.8)

where ṅM,r[0,z] is the integral rate of reaction of the monomer between the inlet
and the section z.

If we assume constant density we can rewrite the previous equation in terms
of molar concentrations

V[0,z]

F

dc̄M[0,z]

dt
= cM,0 − cM,z −

nM,r[0,z]

V[0,z]

= cM,0 − cM,z −Q1,z (4.3.9)

and if we disregard the accumulation term and we rearrange we obtain:

cM,z +Q1,z = cM,0 (4.3.10)

Since the concentration of the monomers at the inlet section is known, we can
treat this equation as a fictitious measurement in any point of the reactor:

Q1m = cM1 + cM2 + P11 + P21 +D1 = (cM1 + cM2)0 (4.3.11)
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Chapter 5

State estimation

5.1 Observability study

Before going deeper into the practical aspects of the state estimator, an ob-
servability study is presented.

The method described in section 2.4.3 is used to represent the connection
between state variables and measurements. The graph in figure 5.1 displays
the shortest path trees from the individual states to the measured outputs.
The contribution of the diffusive term is disregarded in this analysis to conform
with the method presented by [13] and so are the connections with the overall
first moment fictitious measurement.

From the graph it is already possible to see that some state variables (coM1 ,
coM1 , D0) don’t belong to paths that can influence the measured outputs,
therefore they are completely invisible to the observer (making the system
globally unobservable). The monomer consumption tracking states appear to
be disconnected as they only appear in the diffusive term of the mass transfer
equation 4.1.2, which is neglected in this analysis.

All the modes of the system are stable at any operating point of interest (the
eigenvalues of F for a typical steady state are shown in figure 5.2), therefore
the system is detectable according to the definition in section 2.4.4.

Due to the size of the discretized model (270 state variables) and its strong
nonlinearity, it is impossible to perform a rigorous nonlinear observability anal-
ysis. It is possible to linearize the system around selected operating points and
assess local observability using the methods presented in section 2.4.3.

55
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Figure 5.1: State - measurement connection graph [13]
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Figure 5.2: Eigenvalues of the state transition matrix F

If linear observability criteria are used, the outcome could be severely affected
by the conditioning of the matrices: numerically constructing the Kalman ob-
servability matrix 2.4.17 for a system of such size is likely to result in numerical
overflow. It was found in simulations that the continuous-time observability
criteria would be more susceptible to failures than the discrete-time tests.
This is demonstrated in figure 5.3, where the matrix condition number for the
matrix powers Ak and F k is plotted for increasing k. Clearly, the continuous-
time observability criterion would be much more numerically unstable than
the discrete-time one as it involves the computation of the matrix power Ak.

Even if a more robust method such as the Hautus criterion is used, the matrix
rank check could still give incorrect results1.

The discrete-time unobservability index method was tested and the results are
presented here in figures 5.4a, 5.4b, 5.4c and 5.4d, where observable states
are marked with dots and the degree of unobservability is represented with
different shades of colour. It was found that at different steady states the
unobservability maps do not change significantly, as it is shown in figure 5.4a.
During flowrate changes, however, the system becomes less observable, (figure
5.4b).

1Most numerical packages check the rank of a matrix by performing its singular value
decomposition and counting the number of singular values greater than some tolerance. If
the matrix is full rank but poorly conditioned (for example, if it’s very big in size), some
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Figure 5.3: Matrix condition number for the matrix powers Ak and F k

Compared to the previous configuration, the addition of the pressure drop
measurement at the outlet improves the observability of the system only par-
tially (figure 5.4c). The states that are most clearly affected by the pressure
drop information are the first moments of the live and dead polymer chains,
and to some extent the second moments of the live polymer chains.

Partial observability, recalling the definitions of section 2.4.3, relates to the fact
that the initial value of partially observable states, given a vector of measure-
ments, can be expressed as the combination of one definite solution and one
free solution using equation 2.4.23, with the unobservability index reflecting
the weight of the free solution.

In the case of the CFI reactor, the pressure drop information only partially
improves the observability of the newly measured states, because the reading
depends on a combination of states with similar dynamics. The first moment
constraint appears to have a worsening effect on the observability of some
previously observable states, but this was found to be caused by the automatic
tolerance set by Matlab in computing the pseudoinverse. As it will be shown
in 5.9.1, the first moment constraint has a beneficial effect in state estimation
in that it reduces the violation of the monomer mass balance.

It was found that, in addition to D0, other state variables are practically un-
observable. It is the case of the cR• and cO2 states, for example, which are
characterized by fast dynamics and comparatively small numeric values. De-

singular values could be treated as zeros even though in reality they are not [35].
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(a) Steady state unobservability index at different flowrates

(b) Unsteady state unobservability index during flowrate step

(c) Steady state unobservability index for different measured sets

(d) Steady state unobservability index for different pseudoinverse tolerances

Figure 5.4: Method of the unobservability indices [21]
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spite being measured, D2 appears to be mostly, if not completely, unobservable,
possibly because of its small magnitude compared with P12 and P22 or because
of the way it interacts with the pressure drop in relation to the other measured
states. This is not clear from the graph analysis of figure 5.1, however by in-
specting the reaction kinetics of A.1 it is possible to see that, while the live
polimer chain moments enter in both the live polymer kinetics and the dead
polymer kinetics, the dead polymer chain moments only act as sinks for the
other state variables before being measured. This type of interplay is thought
to be at the roots of the observability behaviour.

One remark should be made regarding the practical use of these unobservability
indices: when computing the Moore-Penrose inverse ofO ∈ Rm·n×n (see section
2.4.3) with numerical packages, the truncation tolerance is chosen by default
as

tol = m · n · ε(||O||2) (5.1.1)

where ε(x) is the positive distance from |x| to the next larger floating point
number. If a different tolerance is chosen, the results can change (a larger toler-
ance will result in more states appearing as unobservable and viceversa). This
is demonstrated in figure 5.4d, where the unobservability test was repeated
different tolerances, showing a sheer decrease in the number of the completely
observable states as the tolerance is increased.

The authors of the unobservability indices method suggest to choose the pseu-
doinverse tolerance to skim off those states that are most affected by noise [21],
though not providing a clear criterion for this choice. One possibility would
be to rescale the H matrix with respect to the noise standard deviation before
computing O, such that the singular values of the observability matrix reflect
the signal to noise ratio of the individual states on the output measurement.

5.2 Discretization of the prediction step

The integration of the continuous time Riccati equation by numerical methods
is particularly hard since the problem grows in size with the square of the num-
ber of states and is severely complicated by ill-conditioned model jacobians.
Under the assumptions of constant A and Q̇ during the sampling interval of
size ts, however, exact solutions exist for the Riccati equation 2.4.46 in the
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Algorithm 5.1 Time discretization of the process noise covariance matrix [48]

1. Compute F = eAts

2. Compute V = Q̇− FQ̇F T

3. Compute Q as the solution of the continuous-time Lyapunov equation:

AQ+QAT = −V (5.2.5)

form:
P−k+1 = FkP

+
k F

T
k +Qk (5.2.1)

where F is the matrix exponential

Fk = eAkts (5.2.2)

and Qk is the solution of the integral

Qk =

ˆ ts

0

eAktQ̇ke
AT

k tdt (5.2.3)

Since A and Q̇ could be, in principle, functions of time, it’s possible to increase
the accuracy of the solution by replacing Ak with 1

2
(Ak + Ak+1) and Q̇ with

1
2
(Q̇k + Q̇k+1) in the previous equations.

A crude approximation of the integral 5.2.3 in is the following:

Qk = Q̇kts (5.2.4)

which however requires sampling times much shorter than the actual process
timescale to be accurate.

A more refined algorithm for computing Qk that works if the matrix Ak does
not contain zero-valued eigenvalues is described in [48]2 and is presented in
5.1.

The routine for solving the continuous-time Lyapunov equation is commonly
found in scientific computing environments, therefore its implementation in
the code is relatively straightforward.

2The same paper also provides a solution for systems with integrators.
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The increased computation time of this solution compared to the crude dis-
cretization is offset by the possibility of increasing the estimator step size with
no significant loss of accuracy.

5.3 Selection of the corrected set

As it was shown in section 5.1, the system to be estimated is globally not
observable, and some states contribute to unobservability more than others.
While it is still possible to perform state estimation on such a system (as long
as the system is detectable, the DARE 2.4.48 admits a stable solution), trying
to correct the whole set of states could lead to failures due to numerical errors.
One possibility to circumvent this problem is to limit the correction step to
only those states that are most observable.

In order not to load the notation too much, the time instance subscript k is
dropped in this section.

From a mathematical point of view the idea is to find the permutation matrix
M that makes possible to express the state vector x as:

x̄ =

(
xc

xs

)
= Mx (5.3.1)

where xc is the vector of states to be corrected and xs the vector of states to
be just simulated.

The elements of F , H, P and Q are also rearranged so that

F̄ =

(
Fc Fcs

Fsc Fs

)
= MFM

T

(5.3.2)

H̄ =
(
Hc Hs

)
= HMT (5.3.3)

P̄ =

(
Pc Pcs

P T
cs Ps

)
= MPMT (5.3.4)

Q̄ =

(
Qc Qcs

QT
cs Qs

)
= MQMT (5.3.5)
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The prediction step of the Kalman filter is left substantially unchanged, and
in particular the error covariance propagation is written as:

P̄− = F̄ P̄+F̄ T + Q̄ (5.3.6)

The correction step, instead, is performed only on the portions xc and Pcc:

Kc = P−c H
T
c (HcP

−
c H

T
c +R)−1 (5.3.7)

x+
c = x−c +Kcr (5.3.8)

P+
c = (I −KcHc)P

−
c (5.3.9)

The stability of this configuration can be discussed by expanding the steady
state covariance equation:(

Pc Pcs

P T
cs Ps

)
=

(
Fc Fcs

Fsc Fs

)(
P+
c Pcs

P T
cs Ps

)(
Fc Fcs

Fsc Fs

)T

+

(
Qc Qcs

QT
cs Qs

)
(5.3.10)

with
P+
c = Pc − PcHT

c (HcPcH
T
c +R)−1HcPc (5.3.11)

Eq. 5.3.10 can be written as a system of four matrix equations:

Pc = FcP
+
c Fc + FcsP

T
csF

T
c + FcPcsF

T
cs + FcsPsF

T
cs +Qc (5.3.12)

Pcs =FcP
+
c F

T
sc + FcsP

T
csF

T
sc + FcPcsF

T
s + FcsPsF

T
s +Qcs (5.3.13)

Ps = FscP
+
c F

T
sc + FsPcsF

T
sc + FscPcsF

T
s + FsPsF

T
s +Qs (5.3.14)

P+
c = Pc + PcH

T
c (HPcH

T +R)−1HPc (5.3.15)

It should be noted that equations 5.3.12 and 5.3.15 can be combined to form
a DARE in Pc, that admits a positive definite solution as long as (Fc, Hc) is
detectable and FcsP T

csF
T
c +FcPcsF

T
cs+FcsPsF

T
cs symmetric (which can be easily

demonstrated).

Equation 5.3.14 is a discrete Lyapunov equation in Ps that admits a posi-
tive definite solution if Fs is asymptotically stable and FscP+

c F
T
sc +FsPcsF

T
sc +

FscPcsF
T
s +Qs is symmetric (which can be easily demonstrated).
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Figure 5.5: Corrected set

Equation 5.3.13 can be thought of as a linear system in the elements of Pcs
and admits a solution if the corresponding coefficient matrix is full rank3.

These clues suggest that if the full system admits a stable solution for the
steady state covariance, a stable solution should exist also for the reduced
order system if the linear system resulting from 5.3.13 can be proven to be full
rank.

The choice of the corrected set can be motivated by the analysis of section
5.1: one could, for example, choose to correct only those states with an un-
observability index lower than some tolerance. The oxygen and radical states,
for example, are almost completely unobservable and can be only simulated,
together with the dead polymer zeroth and second moment.

The choice of the corrected set for the plant is presented in table 5.5, where
the elements of the corrected set are marked with an dot.

3The matrix equality
X = A1XA2 +A3X

TA4 +B

with X ∈ Rm×n and A1, A2, A3, A4 and B matrices of appropriate sizes, can be rewritten
as:

Xij −
m∑

k=1

n∑
l=1

(A1,ik ·A2,lj +A3,il ·A4,kj) ·Xkl = Bij

which is linear in the elements of X.
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Figure 5.6: Loss of optimality due to clipping in the corrected state estimate
[50]

5.4 Correction of the nonphysical state estimates

Due to the fact that the EKF has no physical knowledge of the process, it’s
possible that nonphysical states result from the correction step, such as nega-
tive concentrations. This can cause problems to the predictor integrator and
should be avoided.

One possibility is to clip negative states to zero after correction. This compu-
tationally inexpensive trick comes with its drawbacks: in case clipping occurs,
the state estimate is no longer optimal.

This effect is illustrated in figure 5.6 for the case of two variables. The black dot
represents the corrected (a posteriori) state estimate x̂+ with error covariance
P+, which has a negative component that is physically meaningless. Clipping
the negative state to zero lands the new state estimate to x̂+

clip, which belongs to
an ellipse of constant uncertainty n′σ. Clearly, for the same error distribution,
it is possible to find an ellipse of constant uncertainty n′′σ < n′σ that is centered
on x̂+, and tangent to the axis x1. The tangence point x̂+

opt is the optimal
constrained state estimate.

Optimal constrained implementations of the Kalman filter exist, but they usu-
ally employ least squares optimization over the state vector. This route is
not viable for a system of 270 states. A simpler algorithm was adapted from
[50] that finds a near optimal solution for box constraints and is presented in
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Algorithm 5.2 Correction algorithm for negative states [50]

1. Compute x̂+
k and P+

k according to the previous equations;

2. Initialize the empty set Ac of clipped states and the vector x̂c = x̂+
k ;

3. Define the set An as the ordered set of negative states in x̂c. Replace the
corresponding values with 0 in x̂c;

4. Update Ac = Ac ∪ An;

5. Define the set Au as the ordered set of states not included in Ac;

6. Update the states of xc in the ordered set Au :

x̂c,Au = x̂c,Au + P+
kAuAc

(
P+
kAcAc

)−1 (
x̂c,Ac − x̂+

k,Ac

)
(5.4.1)

7. Repeat steps 3→ 6 until the ordered set Ac becomes empty.

algorithm 5.2.

5.5 Tuning procedure for the extended Kalman

filter

Very often in literature, the tuning procedure for the Kalman filter is described
as a trial and error process based more on the experience of the practitioner
than on theoretically sound procedures. Moreover, most of the times, the Q
matrix is built as a constant diagonal matrix, as the exact nature of the process
noise is unknown [44].

After a cospicuous number of unsuccessful simulations and Kalman filter fail-
ures, it became clear that a well defined procedure for tuning the EKF was
required both to save time and to obtain consistent results.

One possibility, suggested by literature [41, 46], is to determine the noise statis-
tics of the EKF from readily available data and is described in the following
sections.



5.5. TUNING PROCEDURE FOR THE EXTENDED KALMAN FILTER67

5.5.1 Tuning of the R matrix

The R ∈ Rm×m matrix (measurement noise covariance) can be easily deter-
mined from the knowledge of the noise pickup characteristics of the sensing
elements used. One widely accepted method is to construct a diagonal matrix

Σ =


σ1 0 . . . 0

0 σ2 0
... . . . ...
0 0 . . . σm

 (5.5.1)

with the element σi equal to the standard deviation of the noise for i-th the
measurement. The noise covariance matrix can then be computed as:

R = kRΣ2 (5.5.2)

where kR is a scalar tuning parameter that can be used to tweak estimator
performance. Increasing kR decreases the EKF sensitivity to measurements,
making its behaviour closer to the one of an open loop state estimator (slower
and smoother), while decreasing it results in a more aggressive correction.

5.5.2 Adaptive tuning of the Q matrix

Tuning of the Q̇matrix is the trickiest part of the whole EKF tuning procedure.
A common practice is to set Q̇ to a fixed diagonal matrix, whose elements
are chosen by trial and error. This modality, unfortunately, is very labour
intensive and only applicable to small systems, not to mention the fact that it
inherently leads to suboptimal EKF configurations, as it completely disregards
the off diagonal elements. Literature suggests, however, that if a more sound
tuning procedure is used, the EKF performance can be significantly improved
(to the point that it becomes comparable to more advanced state estimators)
and the effort for tuning the estimator reduced to the minimum [41, 46].

Let the system be described by:

ẋ = f(x, u, p) (5.5.3)
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where p denotes a vector of time-varying random parameters that result from
the effect of unmeasured disturbances and structural model error. The nom-
inal value of these parameters p̄ is then determined by fitting a number of
experiments.

The model implemented in the EKF will make use of the nominal parameter
vector:

ẋ = f(x, u, p̄) + ẇ (5.5.4)

ẇ ∼ N (0, Q̇) (5.5.5)

If we define the parameter vector as the sum of the nominal value plus a
normally distributed zero mean stochastic term of covariance Cp [41, 46]

p = p̄+ δp (5.5.6)

δp ∼ N (0, Cp) (5.5.7)

we can then approximate the effect of parameter variation in the system equa-
tion through a Taylor expansion:

ẋ ' f(x̂, u, p̄) + Jf,pδp (5.5.8)

where Jf,p is the jacobian of the model function with the respect to the pa-
rameter vector:

(Jf,p)i,j =

(
∂fi
∂pj

)
x̂,u,p̄

(5.5.9)

If we set the process noise term in the model function to be equal to Jf,pδp,
we can then compute the covariance matrix Q̇ as [41, 46]:

Q̇ = Jf,pCpJ
T
f,p (5.5.10)

The determination of Cp is a problem in and of itself, but it can be approached
on physical grounds by looking at how parameters were fitted in the first place.
One possibility, if confidence intervals are provided, would be to set the diago-
nal elements of Cp to the square of the confidence interval width. Alternatively,
if p̄ was fitted via least squares methods, it is possible to approximate C−1

p with



5.6. INITIALIZATION OF THE FILTER 69

the Hessian matrix of the cost function4 [4].

The advantage of this formulation is that it allows to direct the action of
the Kalman filter towards those states that are most affected by parametric
uncertainty. Additionally, just as it was done for the tuning of the R matrix,
it is possible to introduce the tuning parameter kQ for tweaking the response
of the filter:

Q̇ = kQJf,pCpJ
T
f,p (5.5.11)

5.6 Initialization of the filter

A correct initialization of the EKF can be crucial to its transient behaviour,
however it is implicit in the nature of the filter that some level of uncertainty
in the initial state estimate is tolerated if the initial error covariance is chosen
knowingly. A poor initialization of the error covariance can lead the EKF to
fail in multiple ways. For example, if P0 is chosen too small the filter will
perform sluggishly at best and will “learn” the wrong estimate too well, with
the possibility of not being able to settle to the correct state estimate at all.
If, conversely, P0 is chosen too big, the filter will react erratically with plenty
of oscillations and the possibility of diverging uncontrollably.

One very practical way to initialize the state estimate x̂ is to set it to the
steady state value xss corresponding to the current control input u.

The initial error covariance P0 should be chosen to reflect the uncertainty in
the initial estimate. This is practically impossible to determine rigorously,
however if lower and upper bounds are available for the state variables (xupper,
xlower), it is possible to define a mean state vector

xm =
xupper + xlower

2
(5.6.1)

and then to construct P0 as a diagonal matrix with the element P0,i = (x̂0,i −
xm,i)

2 [41].

If the estimator is initialized at a steady state and the plant is stable in such
steady state, one possibility is to compute the solution of the discrete Lyapunov

4The Hessian matrix is very often provided as an output argument in optimization rou-
tines in scientific numerical packages
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equation:
X = FXF T +Q (5.6.2)

with F and Q computed at the steady state, and set P0 as:

P0 = kPX (5.6.3)

with kP an additional tuning parameter to adjust the confidence in the initial
estimate and to tweak the initial response.

5.7 Scaling of the process variables and statis-

tics

Due to the fact that the states to be estimated span very different numeric
ranges, the jacobians that result from the linearization of the system can be-
come very poorly conditioned very quickly, especially for system of important
size, leading to problems when computing F , not to mention the fact that
numerically integrating a badly scaled function during the prediction step is
not guaranteed to yield meaningful results.

In order to cope with these issues, the process variables and statistics are
unscaled using the diagonal scaling matrices Xsc ∈ Rm×m and Ysc ∈ Rn×n,
defined as:

Xsc = diag (x1,sc, x2,sc, . . . , xm,sc) (5.7.1)

Ysc = diag (y1,sc, y2,sc, . . . , yn,sc) (5.7.2)

The Kalman filter will operate on the unscaled variables x∗ and y∗ defined as:

x∗ = X−1
sc x (5.7.3)

y∗ = Y −1
sc y (5.7.4)

The model and output functions are rewritten in terms of x∗, ẋ∗ and y∗, re-
sulting in the unscaled jacobians:

A∗ = X−1
sc AXsc (5.7.5)
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H∗ = Y −1
sc HXsc (5.7.6)

The unscaled state transition matrix F ∗ is computed using the methods pre-
sented in the previous sections on A∗.

The noise statistics must also be unscaled:

Q̇∗ = X−1
sc Q̇X

−1
sc (5.7.7)

R∗ = Y −1
sc RY

−1
sc (5.7.8)

The choice of Xsc and Ysc is more or less arbitrary, as long as it results in a
better conditioning of the jacobians. It was found, however, that scaling with
respect to the ranges of variation of the variables led to better results than
scaling with respect to absolute values.

A procedure to automate the generation of the scaling matrices was tried with
success during this work and is described in algorithm 5.3.

5.8 Performance evaluation of the estimator

In order to characterize the performance of the estimator, a number of indica-
tors can be defined to measure the quality of the estimation.

5.8.1 State error

One very natural measure for the state estimator performance is the relative
error between the state estimate and the real state:

e(t, z) =
x̂(t, z)− x(t, z)

x(t, z)
(5.8.1)

where the division is performed element-wise, since x(t, z) is a vector.

If we are not interested in the sign of the error, we can take the absolute value
|e| and define a number of useful functions, such as the cumulative maximum
of the error:

|e|max(t, z) = max
t′∈[t;+∞]

|e(t′, z)| (5.8.2)
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Algorithm 5.3 Automatic generation of scaling matrices

1. simulate an input step response of the system. The choice of the step
size is arbitrary, as long as it is realistic for the process. The duration of
the simulation Ns should be enough for the system to reach steady state.

2. create the sample matrices X and Y as:

X =


xT1
xT2
...
xTNs

 (5.7.9)

Y =


h(x1)T

h(x2)T

...
h(xNs)

T

 (5.7.10)

3. compute x̄ and ȳ as the sample averages of X and Y :

x̄T =
1

Ns

Ns∑
k=1

Xk (5.7.11)

ȳT =
1

Ns

Ns∑
k=1

Yk (5.7.12)

4. compute the scaling matrices Xsc and Ysc as:

diag(Xsc) = diag


√√√√ 1

Ns − 1

Ns∑
k=1

(Xk − x̄T )T (Xk − x̄T )

 (5.7.13)

diag(Ysc) = diag


√√√√ 1

Ns − 1

Ns∑
k=1

(Yk − ȳT )T (Yk − ȳT )

 (5.7.14)
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Figure 5.7: Relative error heat map

Because the state of the plant is a function of both time and position along the
reactor axis, |e| and |e|max can be represented either by holding one variable
still or by the means of heat maps or contour plots.

Heat maps are extremely helpful and intuitive in studying the propagation of
the error inside the system, although they fail to convey quantitative informa-
tions. An example is given in figure 5.7, that shows the evolution of error in
the zeroth moments in an initialization simulation.

Drawing the contour plot for |e|max gives precise information about the error
settling time, as it is shown in figure 5.8 for the same simulation as before.

If we treat e2 as a distribution, we can reduce its size by defining its k−th
moment:

µk(z) =

ˆ tf

0

tke(t, z)2dt (5.8.3)

For k = 0 we can define the integral squared error as the zeroth moment,
giving a measure of the total mass of the estimation error:

ISE(z) = µ0(z) =

ˆ tf

0

e(t, z)2dt (5.8.4)

It is also possible to define the error centroid as the ratio between the first
error moment and the zeroth error moment, representing the center of mass of
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Figure 5.8: Settling time contour plot

the estimation error:
t̄(z) =

µ1(z)

µ0(z)
(5.8.5)

5.8.2 Output error

While the presented approaches based on the state estimation error are very
natural in theory, their applicability is questionable in practice for several
reasons: first of all, the true state variables are unknown, making these tools
relevant in simulations only. Furthermore, the bigger the model is in terms of
states, the more cumbersome these tools get.

The measurement residual, defined as:

rk = yk − h(x̂−k , uk−1) (5.8.6)

is the difference between the measurement vector and the predicted output
according to the previous state estimate. If the EKF has converged to the
correct state estimate, the residual is expected to fall in the order of magnitude
of the measurement noise standard deviation.

It is possible to define a scalar index that summarizes this information:

α =
√
rTΣ−2r (5.8.7)
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If the prediction is in agree with the measurement, α→ 1. On the other hand,
a value of α much greater than 1 would indicate a very poor state estimate.

5.9 EKF performance in simulations

A number of computer simulations are presented here to demonstrate the per-
formance of the Kalman filter and the effect of the various tuning parameters.
Two scenarios were envisioned for this purpose: an initialization with state
mismatch due to previous (unspecified) dynamics and a steady state initial-
ization with parameteric mismatch.

The nominal parameter vector p̄ and the parameter covariance matrix Cp for
computing the Q matrix were provided from the previous fitting of the model
[42]. The coefficients of the pressure drop model were fitted from [16], but they
are likely to be incorrect and should have been verified by experimental work.

5.9.1 Initialization with state mismatch

An input flowrate of u0 = 0.4 kg/h is chosen for the simulation. The state
estimator is tuned using the procedures described in the previous sections to
the steady state of the system x̂+

0 = xss(u0). The initial covariance of the
estimation error is computed using the solution of the Lyapunov equation.

The system simulation is initialized to the same steady state plus a 2% devia-
tion on the reactor temperature states:

x0 = xss(u0) + δxTr(2%) (5.9.1)

For example, a 2% deviation on a temperature of 333K (60 °C) would amount
to 6.66 K.

The effect of this deviation on the system is quite drastic, as it induces an
overall increase in reaction rates that results in the rising of both the number
of polymer chains and average chain lengths.

For making comparisons, WACL is used as reference (at 2.5 m and 7.5 m,
where temperature is not measured), as it reflects the quality of the polymer
and determines one of the most critical safety indicators. Other state variables,
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(b) Effect on AAM active chain zeroth moment

Figure 5.9: Effect of the measured set in initial state mismatch simulation

such as the zeroth, first and second moment of the AAM active polymer chain,
the AAM concentration and the reactor temperatures are shown in the same
grid points.

First, the improvement between the old measured set and the new configura-
tion with the DP cell added is demonstrated. Then, various tuning configura-
tions will be explored and the results discussed.

Effect of the measured set

The effect of the measured set is tested for the tuning: kR = 1, kQ = 1, kP = 1

and shown in figures ?? a−b for WACL and the zeroth moment of the AAM
active chain. From these plots it is possible to see a clear improvement in the
rate of convergence of the estimate when the pressure drop measurement is
added.

The first moment constraint described in section 4.3.4 does not appear to have
an effect on the rate of convergence, however it can be shown to slightly limit
the monomers mass balance violation, as it is presented in figure 5.10.
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Figure 5.10: Effect of the measured set on the monomer balance violation in
initial state mismatch simulation

It is possible to have a clearer picture of which states are most affected by the
newly added measurements by representing the relative error distribution in
time and space on a heat map. In figures 5.11 a−b, the error propagation in
the zeroth moment states is shown for the old configuration and for the new
one (with the first moment constraint added). The difference between the two
is not striking, however it should be noted that the information made available
by the new measurements only results in a faster correction of the states near
the outlet of the reactor. It is also interesting to see the difference between
the error distribution in a state that is not observable (the zeroth moment of
the dead polymer chains), which propagates along the reactor by convection
and diffusion (the residence time for the current flowrate is 547 s), and the
distribution in states that are observable, where the propagation is countered
by correction.

Effect of kP

The initial confidence in the state estimate of the EKF can be tweaked by
increasing or decreasing kP . The effect of kP at constant kR = kQ = 1 is
shown in figure 5.12 for WACL and the moments of the AAM active chain.
In the figure it is possible to see how the behaviour of the estimator becomes
more and more aggressive as kP is increased. Values of kP > 10 were found to
destabilize the estimator, while kP = 0.1 seemed a good compromise between
aggressiveness and rate of convergence.
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(a) Error distribution of the zeroth moments in the old configuration

(b) Error distribution of the zeroth moments with the new measurements added

Figure 5.11: Error distribution in time and space in inital state mismatch
simulation
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Figure 5.12: Effect of kP in initial state mismatch simulation
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Effect of the tuning

Another possibility to tweak the response of the EKF is to manipulate kR
and kQ. The estimator can be made more sensitive to measurements either
by decreasing kR or by increasing kQ, and vice versa. In both cases the final
result is to change the ratio between the projected a priori error covariance
and the measurement error covariance (see figure 2.4 in section 2.4.5).

The effect of kR is demonstrated in figure 5.13 at constant kQ = 1, kP = 0.01

for WACL and the moments of the AAM active chain.

The ISE and error centroid introduced in section 5.8 can be used to summarize
the effect of different values of kR at different grid points. In figures 5.14 a−d
the two informations are combined in a scatter plot for different state variables,
with the ISE coded with the size of the bubbles. Two remarks can be made:
first of all, using a smaller kR typically results in a lower centroid, meaning
that the higher the gain of the observer, the earlier the error occurs. Despite
the positive effect on the error centroid, however, a more aggressive tuning can
negatively affect the integral squared error, especially in those states that are
more “distant” from the measurement.

5.9.2 Initialization with parameter mismatch

An input flowrate of u0 = 0.4 kg/h is chosen for the simulation. The state es-
timator is tuned and initialized using the procedures described in the previous
sections to the steady state of the system with the nominal parameter vector
x̂+

0 = xss(u0, p̄).

The system simulation is initialized to the steady state with 20% deviation in
the radical efficiency factor (see section 2.1.1).

x0 = xss (u0, p̄+ δpf (20%)) (5.9.2)

The EKF was tuned in all the simulations with kQ = 1, kR = 0.01, kP = 0. It
should be stressed that such an aggressive tuning is not always possible with
parametric mismatch, and in some cases, if the deviation on the parameter
vector is chosen too daringly, it will result in unstable behaviour and estimator
failures.
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Figure 5.13: Effect of kR in initial state mismatch simulation



82 CHAPTER 5. STATE ESTIMATION

0 1 2 3 4 5 6 7 8

Position (m)

40

60

80

100

120

140

160

180

200

220

E
rr

o
r 

c
e
n
tr

o
id

 (
s
)

c
M1

 (mol/m
3
)

4.70e+04

3.40e-02

kR = 0.01 ISE

kR = 1 ISE

kR = 100 ISE

(a) Effect on AAM concentration state

0 1 2 3 4 5 6 7 8

Position (m)

0

50

100

150

200

250

E
rr

o
r 

c
e
n
tr

o
id

 (
s
)

P
10

 (mol/m
3
)

3.81e+04

9.66e-02

kR = 0.01 ISE

kR = 1 ISE

kR = 100 ISE

(b) Effect AAM active chain zeroth moment

0 1 2 3 4 5 6 7 8

Position (m)

50

100

150

200

250

300

350

400

E
rr

o
r 

c
e
n
tr

o
id

 (
s
)

P
11

 (mol/m
3
)

1.26e+01

1.26e-05

kR = 0.01 ISE

kR = 1 ISE

kR = 100 ISE

(c) Effect AAM active chain first moment

0 1 2 3 4 5 6 7 8

Position (m)

0

50

100

150

200

250

300

350

400

E
rr

o
r 

c
e
n
tr

o
id

 (
s
)

P
12

 (mol/m
3
)

2.00e+02

4.25e-01

kR = 0.01 ISE

kR = 1 ISE

kR = 100 ISE

(d) Effect AAM active chain second moment

Figure 5.14: ISE and error centroid for different values of kR in initial state
mismatch simulation.
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Effect of the measured set

The results for WACL and the moments of the AAM active chain are presented
in figures 5.15 a-d. In addition to the state estimates, the output measure-
ments and predicted outputs (a priori) are shown in figures 5.16 a-c. The
most notable effect of the parametric mismatch is a persistent residual er-
ror in certain states and measurements that does not fully stabilize to zero.
This should be expected, as the Kalman filter is derived under the assumption
of zero mean noise and that parametric mismatch acts as an additional and
persistent process noise component.

Just like with the case of initial state mismatch, the addition of the pressure
drop measurement is beneficial to the state estimate in that it reduces the bias
in the weight average chain lenght near the outlet of the reactor. However,
conversely to what happens when parametric mismatch is not present, some
states that are poorly observable can be steadily corrected in the wrong direc-
tion (as it can be seen in figure 5.15 c for the first moment of the AAM active
polymer chain at 2.5 meters).

5.10 Estimation based on plant data

Before closing this chapter, the results from state estimation made on real
plant data are presented in 5.17 and compared with the measurements.

Only the temperature and monomer concentration measurements were used
with the state estimator. The state estimator was tested with both the old
(fixed) Q matrix from [42] and with the new adaptive matrix. kQ was set to
0.01 with the fixed matrix (higher values would result in estimator failures)
kQ = 1000 for the adaptive matrix case. kR = 1 and kP = 1 for both cases.

From the plots, is possible to see that both the new and the old tuning are
capable of tracking the measurements in comparable and satisfactory ways,
though the possibility to very quickly tune the EKF is what sets apart the
proposed procedure from the previously used one.

From the AAM concentration plot it is possible to see a nonvanishing bias
between the measurement and the predicted output, suggesting the presence
of plant-model mismatch.
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Figure 5.15: Effect of the measured set in parameter mismatch simulation
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Some final comments should be made regarding the measured data. The mea-
sured pressure drop, shown in the fourth plot of figure 5.17, demonstrates the
sensitivity of the outlet pressure measurement to the presence of polymer and
to some extent shows the effects of clogging. The presence of polymer in the
outlet pipe can be deduced both by the monomer concentration measurement
and the pressure drop measurement. The trend that the two curves follow,
roughly speaking, is inverse: the more polymer is present in the outlet, the
higher the viscosity and the lower the monomer concentration. The pressure
measurement, however, is much more sensitive, especially in relation to the
measurement noise, and is capable of providing the information at a higher
rate than the Raman spectrometer does.

The outlet piping, however, is sensitive to fouling, due to the presence of dead
zones in the fittings’ junctions. The polymer can stagnate in those zones and
determine clogs that distort the pressure measurement. The peaks that are
visible in the fourth plot are thought to be caused by such clots. The impact
of the cloggings on the reading can exceed the magnitude of the clean signal
and should be considered in process development.

After the second flowrate step none of the measured variables returns to the
initial baseline. This is likely caused by a combination of higher than modelled
thermal inertia of the system, which in turn causes the reaction to continue
for longer than the hydraulic residence time (217 s at a flowrate of 1 kg/h),
and mismatch on the reaction kinetics. The increased thermal inertia of the
reactor was already observed in [42] and is likely to be caused by the mass of
the wooden rods used to support the reactor.
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Chapter 6

Conclusion and outlook

The main objective of the thesis, the redesign of the estimator with the new
pressure measurement was successfully met. The pressure sensor was installed
in the plant, tested in experiments, and the influence of the polymer on the
pressure reading was demonstrated. A simple model for the pressure drop
was found and implemented in the code, and its beneficial effect to the state
estimation problem proven in a large number of simulations.

The observability analysis that was carried out revealed that the envisioned
observation scheme meets the target of providing the polymer quality informa-
tion and enables a clearer view on the internal states than was possible before.
Moreover, a number of tools for simplifying and systematizing the observabil-
ity analysis and the observer tuning were brought together and tested with
success, and in particular graph-based and indices-based observability criteria,
data-based adaptive EKF tuning. These tools can be easily integrated in the
NMPC framework, as they rely on readily available informations and they have
the potential to ease the burden on the control engineer when designing the
state estimator, with benefits in terms of better performance of the estimator
itself and lower cost of the implementation.

The proposed approach for tuning the estimator relies on data that is made
available by parameter estimation and instrument calibration, and allows to
design the Kalman filter in a way that is consistent with its functioning princi-
ple. The more rigorous approach enables a higher flexibility of the estimator,
which in turn can operate near-optimally in a number of situations potentially
different from the tuning study cases.

89
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Unobservable states are now handled in a rigorous way, by keeping track of
the uncertainty propagated from and to those states. Minor improvements
were also made in the areas of constrained correction and prediction step dis-
cretization. These improvements address the stability of the state estimator
and allow for faster and trouble-free prototyping and simulations.

The estimator was tested in representative situations and was found to be-
have very satisfactorily even in presence of moderate plant-model mismatch.
Improvements can still be made in the area of online parameter estimation in
order to cope with parameter mismatch. What is typically done in these cases
is to implement the uncertain parameters as estimated dummy states in the
model and to let the Kalman filter correct them, just as it does with the actual
state variables. The estimation scheme could benefit from the inlet boundary
conditions being implemented as uncertain parameters.

The new equipment was tested with mixed results. Cloggings were experienced
even at low conversions and it was not possible to reach steady states stable
enough to fit the pressure drop model with. Additionally, it was found that
the newly installed fittings constituted preferential spots for polymer clots to
grow. This phenomenon can make the pressure drop measurement less reliable
than anticipated and should be taken into account in future works when the
pressure drop model is validated, for example by implementing the constriction
of the outlet pipe as an uncertain parameter.

Further improvements in the EKF can be made by separating the prediction
and correction steps and letting the observer accept a variable number of mea-
surements. This modification is trivial in the current configuration and could
open to the possibility of accepting measurements with different sampling rates
in a more natural way. The Raman spectrometer, for example, produces one
measurement every ten seconds and is currently upsampled by holding the
measurement for ten seconds to match the sampling rate of the the temper-
ature and pressure drop measurement, which are available once per second.
This, however, introduces unnecessary delay in the measurement.

Having a flexible measurement structure could prove benefical also to reject bad
measurements, such as the pressure drop readings that are distorted by clog-
gings, and would enable the integration of sparse, off-line measurements (such
as the polymer distribution information from size exclusion chromatography
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on samples of polymer collected during experimental runs) in the estimation
scheme.
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Appendix A

Additional topics in modelling

A.1 Expressions for the reaction rates

Initiator, radical and inhibitor

rIni = −kd · cIni (A.1.1)

rR• = 2 · kd · f · cIni − ki,1 · cR• · cM1

−ki,2 · cR• · cM2 − kinh · cR• · cO2 (A.1.2)

rO2 = −kinh · cO2 · (cR• + P1,0 + P2,0) (A.1.3)

Monomers

rM1 =−ki,1 · cR• · cM1 − kp,11 · cM1 · P1,0 − kp,21 · P2,0 · cM1 (A.1.4)

rM2 =−ki,2 · cR• · cM2 − kp,22 · cM2 · P2,0 − kp,12 · P1,0 · cM2 (A.1.5)

99



100 APPENDIX A. ADDITIONAL TOPICS IN MODELLING

First monomer active chain

rP1,0 = −kinh · P1,0 · cO2 + ki,1 · cR• · cM1 − kp,12 · P1,0 · cM2

+kp,21 · P2,0 · cM1 − ktc,1 · P 2
1,0 − ktd,1 · P 2

1,0

−ktc,12 · P2,0 · P1,0 − ktd,12 · P2,0 · P1,0 (A.1.6)

rP1,1 = −kinh · P1,1 · cO2 + ki,1 · cR• · cM1 + kp,11 · cM1 · P1,0

−kp,12 · P1,1 · cM2 + kp,21 · (P2,0 + P2,1) · cM1

−ktc,1 · P1,0 · P1,1 − ktd,1 · P1,0 · P1,1

−ktc,12 · P1,1 · P2,0 − ktd,12 · P1,1 · P2,0 (A.1.7)

rP1,2 = −kinh · P1,2 · cO2 + ki,1 · cR• · cM1

+kp,11 · cM1 · (P1,0 + 2 · P1,1)− kp,12 · P1,2 · cM2

+kp,21 · (P2,0 + 2 · P2,1 + P2,2) · cM1 − ktc,1 · P1,0 · P1,2

−ktd,1 · P1,0 · P1,2 − ktc,12 · P1,2 · P2,0 − ktd,12 · P1,2 · P2,0 (A.1.8)

Second monomer active chain

rP2,0 = −kinh · P2,0 · cO2 + ki,2 · cR• · cM2 + kp,12 · P1,0 · cM2

−kp,21 · P2,0 · cM1 − ktc,1 · P 2
2,0 − ktd,2 · P 2

2,0

−ktc,12 · P1,0 · P2,0 − ktd,12 · P1,0 · P2,0 (A.1.9)

rP2,1 = −kinh · P2,1 · cO2 + ki,2 · cR• · cM2 + kp,22 · cM2 · P2,0

+kp,12 · (P1,0 + P1,1) · cM2 − kp,21 · P2,1 · cM1

−ktc,2 · P2,1 · P2,1 − ktd,2 · P2,0 · P2,1

−ktc,12 · P1,0 · P2,1 − ktd,12 · P1,0 · P2,1

rP2,2 = −kinh · P2,2 · cO2 + ki,2 · cR• · cM2 (A.1.10)

+kp,22 · cM2 · (P2,0 + 2 · P2,1)− kp,21 · P2,2 · cM1

+kp,12 · (P1,0 + 2 · P1,1 + P1,2) · cM2 − ktc,2 · P2,0 · P2,2

−ktd,2 · P2,0 · P2,2 − ktc,12 · P1,0 · P2,2 − ktd,12 · P1,0 · P2,2 (A.1.11)
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Dead polymer

rD0 = kinh · (P1,0 + P2,0) · cO2 + (ktc,12 + 2 · ktd,12) · P1,0 · P2,0

+(0.5 · ktc,1 + ktd,1) · P 2
1,0 + (0.5 · ktc,2 + ktd,2) · P 2

2,0

(A.1.12)

rD1 =kinh · (P1,1 + P2,1) · cO2 + (ktc,12 + ktd,12) · (P1,0 · P2,1 + P1,1 · P2,0)

+(ktc,1 + ktd,1) · P1,0 · P1,1 + (ktc,2 + ktd,2) · (P2,0 · P2,1)

(A.1.13)

rD2 = kinh · (P1,2 + P2,2) · cO2 + ktd,1 · P1,0 · P1,2 + ktd,2 · P2,0 · P2,2

+ktc,1 · (P1,0 · P1,2 + P 2
1,1) + ktc,2 · (P2,0 · P2,2 + P 2

2,1)

+ktc,12 · (P1,0 · P2,2 + 2 · P1,1 · P2,1 + P1,2 · P2,0)

+ktd,12 · (P1,2 · P2,0 + P2,2 · P1,0)

(A.1.14)

A.2 Correlations for axial dispersion in the CFI

reactor

The axial dispersion coefficient is correlated to the flow conditions, the geom-
etry and the properties of the fluid through the dimensionless numbers:

Re =
ρ · v · din

η
(A.2.1)

Sc =
η

D · ρ
(A.2.2)

Bo =
v · L
Dax

(A.2.3)

Where D is the molar diffusivity of the component under consideration. The
viscosity used for computing Sc and Re is Newtonian, was determined in [9]
and is modelled as a function of the polymer mass fraction ω:

η − ηwater = 17.6607 · ω2 (Pa · s) (A.2.4)
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The weight fraction of the polymer can be approximated by defining two ad-
ditional state variables (coM1 and coM2), which derivatives are respectively:

∂coM1

∂t
= −∂cM1

∂t
(A.2.5)

∂coM2

∂t
= −∂cM2

∂t
(A.2.6)

The total mass of the polymer can be approximated by the mass of the reacted
monomers, with the knowledge about the molar masses, therefore:

ω =
MM1coM1 +MM1coM1

ρ
(A.2.7)

The density of the mixture ρ is assumed to be constant.

Correlations for Bo are available in literature [38, 40, 37] for different geome-
tries and flow conditions. The correlation used in this work was assembled
from those sources:

Bo =
L

din

[(
nbend + 1

20

)0.58

·
(
Sc

192
· k1 ·Rek2

)−1

+

(
1

Sc ·Re
+
Sc ·Re

192

)−1
]

(A.2.8)

A.3 Correlations for heat transfer in the CFI

reactor

The heat transfer coefficients are expressed as functions of the Reynolds num-
ber Re, the Prandtl number Pr and the Nusselt number Nu:

Pr =
η · CP
λ

(A.3.1)

Nu =
h · din
λ

(A.3.2)

The correlation for the Nusselt number in coiled flow applications was taken
from [14]:
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Nu = 3.66 + 0.08 ·

[
1 + 0.8 ·

(
din
dD

)0.9
]
·Rem · Pr1/3 (A.3.3)

UA2 =

(
1

h · Ai
+

log(do/di)

λt · 2 · π

)−1

(A.3.4)

A.4 State variables

The state of the system can be visualized a 18×15 matrix that is then unfolded
in a 270× 1 vector for numerical computations. The relationship between the
state matrix and the state vector is as follows:

x =


X1

X2

...
X15

 (A.4.1)

with Xj the j−th column of the X matrix.

The elements of Xj are described in table A.1.
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Element State Units Description

Xj,1 cIni mol/m3 Concentration of initiator
Xj,2 cR• mol/m3 Concentration of the active radical
Xj,3 cM1 mol/m3 Concentration of acrylamide
Xj,4 P10 mol/m3 Zeroth moment of the acrylamide active polymer chain
Xj,5 P11 mol/m3 First moment of the acrylamide active polymer chain
Xj,6 P12 mol/m3 Second moment of the acrylamide active polymer chain
Xj,7 cM2 mol/m3 Concentration of AMPS
Xj,8 P20 mol/m3 Zeroth moment of the AMPS active polymer chain
Xj,9 P21 mol/m3 First moment of the AMPS active polymer chain
Xj,10 P22 mol/m3 Second moment of the AMPS active polymer chain
Xj,11 D0 mol/m3 Zeroth moment of the dead polymer chain
Xj,12 D1 mol/m3 First moment of the dead polymer chain
Xj,13 D2 mol/m3 Second moment of the dead polymer chain
Xj,14 Tt K Tube temperature
Xj,15 Tr K Reaction medium temperature
Xj,16 cO2 mol/m3 Concentration of inhibitor/oxygen
Xj,17 coM1 mol/m3 Concentration tracking state of acrylamide consumption
Xj,18 coM2 mol/m3 Concentration tracking state of AMPS consumption

Table A.1: State variables per grid point
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Process flow diagram of the plant
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Appendix C

Linear algebra topics

C.1 Singular value decomposition

The singular value decomposition (SVD) of a matrix A ∈ Rm×n is the matrix
factorization defined as [18]:

A = UΣV T (C.1.1)

where U = (u1, u2, . . . , ur, ur+1, . . . , um) ∈ Rm×m and V = (v1, v2, . . . , vn) ∈

Rn×n are orthogonal matrices and Σ =

(
diag (σ1, σ2, . . . , σr, 0, . . . , 0)

0

)
∈

Rm×n

The elements σ1 ≥ σ2 ≥ · · · ≥ σr are called singular values.

C.2 Moore-Penrose inverse

The Moore-Penrose inverse A+ of a matrix A is a generalization of the matrix
inverse for rank-deficient or non-square matrices that satisfies the four Moore-
Penrose conditions [6]:

AA+A = A (C.2.1)

A+AA+ = A+ (C.2.2)

(AA+)T = AA+ (C.2.3)

(A+A)T = A+A (C.2.4)
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If A = UΣV T is the singular value decomposition of A, it is possible to compute
the Moore-Penrose inverse as [18]:

A+ =
r∑
i=1

viu
T
i

σi
(C.2.5)

Usually the summation is truncated to some σp smaller than a tolerance.

C.3 Matrix exponential

The matrix exponential of a square matrix A is defined as the power series

eA =
∞∑
k=0

1

k!
Ak (C.3.1)

It is computed in numerical packages using specialized algorithms such as the
scaling and squaring algorithm [20].
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