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Introduction

Initially packet filtering mechanism in many Unix versions was imple-

mented in the userspace, meaning that each packet was copied from the

kernel-space to the user-space before being filtered. This approach resulted

to be inefficient compared with the performance shown by the introduction

of the BSD classic Berkeley Packet Filter (cBPF). cBPF consists of an as-

sembly language for a virtual machine which resides inside the kernel. The

assembly language can be used to write filters that are loaded in to the ker-

nel from the user-space allowing the filtering to happen in the kernel-space

without copying each packet as before. cBPF use is not limited to just the

networking domain but it is also applied as a mechanism to filter system calls

through seccomp mode. Seccomp allows the programmer to arbitrary select

which system calls to permit, representing an useful mechanism to implement

sandboxing.

In order to increase the number of use cases and to update the architecture

accordingly to new advancements in modern processors, the virtual machine

has been rewritten and new features have been added. The result is extended

Berkeley Packet Filter (eBPF) which consists of a richer assembly, more pro-

gram types, maps to store key/value pairs and more components. Currently

eBPF (or just BPF) is under continuous development and its capacities are

evolving, although the main uses are networking and tracing. It is worth

to note that seccomp support has not been introduced despite the fact that

recently two patches have been proposed.
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ii INTRODUCTION

The goal of this thesis is to provide an overview on cBPF and eBPF use

cases, their components, how to use them introducing basic examples avail-

able on a dedicated GitHub repository and finally to describe an attempt to

introduce seccomp to eBPF and why it could be useful.
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Chapter 1

Classic BPF

Berkeley Packet Filter was introduced in the BSD operative system as a

mean to filter packets as early as possible, avoiding the need to copy packets

from the kernel-space to the user-space, before filtering them through user-

space network monitoring tools. This approach greatly improved packet fil-

tering performance compared with the existing ones. BPF allows to simply

attach a filter to any socket from an user-space program [1].

The Linux version of the Berkeley Packet Filter (introduced in Linux 2.1.75)

[2], referred as Linux Socket Filtering (LSF), although differs from the BSD

version (for example there is no need to interact with devices), intends the

same mechanism, in fact LSF filters use the same filter code of the BSD ver-

sion. Therefore is adviced to consult the BSD bpf man page when writing

filters [35].

During the years BPF has been rewritten adding different components and

functionalities, then the original BPF will be referred as classic BPF (cBPF)

to distinguish it from the new implementation, the extended BPF (eBPF).

Figure 1.1 shows how cBPF components work and interact with the sys-

tem. Normally every time a packet arrives, the link-level device driver sends

it to the protocol stack. With cBPF instead the packet is sent to user-defined

process’ filter which decides the number of bytes of the packet to accept that

1



2 1. Classic BPF

Figure 1.1: cBPF overview [1].

are consequently copied in to the buffer relative to that particular filter. Then

if the packet destination is that specific host the packet is processed through

the network protocol stack [1].

1.1 Filter model

The filters efficiency is a major point to consider because most applica-

tions which capture packets discard more packets than the ones they accept.

cBPF uses directed acyclic control flow graph (CFG) filter model that can be

implemented with a register machine code [1]. Figure 1.2 illustrates a filter

which accepts IP, ARP, RARP packets that have src or dst field equals to

foo.
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Figure 1.2: CFG example [1].

The filter is a boolean function which can be evaluated to true or false

depending on the traversed path. For example, suppose an Ethernet frame

which contains an IP packet arrives but the packet is not sent from foo, then

the filter checks the next predicate - if the packet’s destination is foo - if also

it is not true then the filter is evaluated to false.

1.2 Architecture

An accumulator machine model is used to implement the BPF pseudo-

machine. The machine consists of [1, 35]:

• A: a 32 bit accumulator

• X: a 32 bit index register

• M[ ] 16x32 bit misc registers (scratch memory store)

• an implicit program counter

The instructions that can be performed are: load, alu, branch, return and

miscellaneous instructions. The format of each instruction is shown in Figure

1.3, where opcode encodes a particular instruction, jt and jf are conditional
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Figure 1.3: Instruction format [1].

jumps offsets and k contains a value whose semantic depends on the instruc-

tion type. The semantic of each instruction is described in the BSD bpf man

page [33]. The return instructions indicate the number of bytes of the packet

to be accepted, then 0 bytes means discard the packet [1].

Suppose the link level header format is Ethernet for example, the instructions

reported in the Listing 1.1

(000) ldh [ 1 2 ]

(001) j eq #0x800 j t 2 j f 3

(002) r e t #262144

(003) r e t #0

Listing 1.1: cBPF IPv4

load in to the accumulator half word starting 12 bytes from the beginning

of the ethernet header (see section C.6 of Appendix C for a reference to the

Ethernet frame header), then compare the stored value with 0x800 (IPv4)

and if the result of the comparison is true jump to the instruction 2 which

returns a number of bytes great enough to include the entire packet, otherwise

jump to the instruction 3 which returns 0 bytes of the packet (e.g. discard

the packet). These instructions, using human readable macros in C language,

can be rewritten as in the Listing 1.2

BPF STMT(BPF LD+BPF H+BPF ABS, 12) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, 0x800 , 0 , 1 ) ,

BPF STMT(BPF RET+BPF K, 0x40000 ) ,
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BPF STMT(BPF RET+BPF K, 0) ,

Listing 1.2: IPv4 with macro

that expands in

{ 0x28 , 0 , 0 , 0 x0000000c } ,

{ 0x15 , 0 , 1 , 0x00000800 } ,

{ 0x6 , 0 , 0 , 0x00040000 } ,

{ 0x6 , 0 , 0 , 0x00000000 } ,

Listing 1.3: IPv4 expanded

If the filter shown in the Listing 1.2 or in the Listing 1.3 is attached to a

packet socket it has the effect to accept only IPv4 packets. More examples

and details about writing cBPF filters, and how tcpdump uses cBPF are

available in the relative appendix (see section A.1 of Appendix A ).

The CFG of the previously shown filter in Figure 1.2 illustrates how each

node is a predicate that needs to be evaluated. The resulting value is stored

in the accumulator and determines which branch to choose next. Using BPF

instructions the filter can be rewritten as reported in Figure 1.4.



6 1. Classic BPF

Figure 1.4: CFG filter with cBPF instructions [1].

As in the description of the previous higher-level example (Figure 1.2),

suppose that an Ethernet frame which contains an IP packet arrives. The 2

bytes of the ethernet type field are loaded in the accumulator and the value

is compared with the constant for IPv4 packets. As the first predicate is

evaluated as true, 4 bytes (word) starting 26 bytes from the beginning of the

ethernet header are loaded in the accumulator. This operation corresponds

to load the source address field of the IPv4 header in the accumulator: 14

bytes of Ethernet frame header plus 12 bytes to reach the beginning of the

IPv4 header source field (see section C.2 of Appendix C). If the address

doesn’t match with foo then the content of the destination address field of

the IPv4 header is loaded in the accumulator and compared with foo. This

last comparison determines the boolean value of the filter.

1.3 Internals

Injecting user-space code into the kernel can be dangerous because it

raises the possibility of write/read kernel memory or crash/hang the kernel,

then a verifier needs to check the user’s filter code. The verifier for cBPF

programs could be found in net/core/filter.c file. It was implemented by

the sk_chk_filter() function which checked that the filter contained only
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valid instructions, a return statement, no backward jumps, and no jumps or

reference out of range. A maxium of 4096 instructions was allowed [34].

The verifier consists in a for loop which iterates through the filter’s instruc-

tions and verifies if each of them is legal (Listing 1.4).

/∗ check the f i l t e r code now ∗/
for ( pc = 0 ; pc < f l e n ; pc++) {

. . .

}

Listing 1.4: verifier for loop

As an example, in the Listing 1.5 is shown the test performed by the verifier

on conditional jumps. It consists of verifying if adding the current jump

offsets (ftest->jt and ftest->jf ) to the program counter (pc) produces a value

which is equal or greater than the filter length (flen). If the condition is true

the function returns -EINVAL, otherwise it proceeds with the checks.

. . .

case BPF JMP |BPF JGT |BPF X:

case BPF JMP |BPF JSET |BPF K:

case BPF JMP |BPF JSET |BPF X:

/∗ f o r c ond i t i o n a l s both must be s a f e ∗/
i f ( pc + f t e s t−>j t + 1 >= f l e n | | pc + f t e s t−> j f + 1 >= f l e n )

return −EINVAL

break ;

Listing 1.5: sk chk filter

The interpreter was implemented by the sk_run_filter() function which

consisted in a big switch case that performed decoding of the filter instruc-

tions and application of them to the socket buffer.

An extract of the code is reported in the Listing 1.6.
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/∗
∗ Process array o f f i l t e r i n s t r u c t i o n s .

∗/
for ( pc = 0 ; pc < f l e n ; pc++) {

const struct s o c k f i l t e r ∗ f e n t r y = &f i l t e r [ pc ] ;

u32 f k = fentry−>k ;

switch ( f entry−>code ) {
case BPF ALU |BPF ADD |BPF X:

A += X;

continue ;

case BPF ALU |BPF ADD |BPF K:

A += f k ;

continue ;

. . .

Listing 1.6: sk run filter

The program counter starts from the first instruction and executes the proper

operation based on the current entry code.

Currently cBPF instructions are internally converted in eBPF instructions

which are closer to the underlying architecture, therefore if a JIT compiler for

that architecture is supported it is possible to improve the filter performance

[35].

1.4 Application

1.4.1 tcpdump

The main use of cBPF is through tcpdump which is a network moni-

toring tool. tcpdump permits to use an higher level syntax to write packet

filtering rules. An example of a command to filter all ICMP echo-reply

packets on the loopback interface and its output (when on another terminal
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ping -c1 localhost is executed) is illustrated in the Listing 1.7

$ sudo tcpdump −nni l o icmp [ icmptype ] == 0

tcpdump : verbose output suppressed , use −v or −vv for

f u l l p r o to co l decode

l i s t e n i n g on lo , l ink−type EN10MB ( Ethernet ) ,

capture s i z e 262144 bytes

10 : 25 : 07 . 054584 IP 1 2 7 . 0 . 0 . 1 > 1 2 7 . 0 . 0 . 1 : ICMP echo rep ly ,

id 4488 , seq 1 , l ength 64

Listing 1.7: tcpdump echo-reply

As shown in the Listing 1.7, the ouptut reports only the information about

the echo-reply and not about the echo request. These high-level rules are

transparently compiled to cBPF instruction through libpcap (see section

A.1.2.2 of Appendix A for an example on how to show cBPF instructions

from tcpdump).

1.4.2 seccomp

cBPF is not used only for packet filtering. The other most known use is

SECure COMPuting (seccomp BPF).

Seccomp is a mean to limit the kernel surface exposed to an application by re-

ducing the set of system calls that a user-space process can use [8]. Seccomp

was first introduced by Andrea Arcangeli in the 2005 [4] as a mechanism to

implement the security required for his cpushare project, which had the goal

to let users sell theirs CPU’s idle cycles to others, therefore the consequent

need to control arbitrary code execution [3].

A process running in seccomp mode was allowed to perform just 4 syscalls:

read(2), write(2), _exit(2), sigreturn(2). As reported by Google de-

veloper Markus Gutschke, that was a main downside to use seccomp for

building a Chrome sandbox [5]. The discussion about the suggested patches
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to extend seccomp lasted more than 2 years [6]. At the end, in the 2011, Will

Drewry proposed a patch which extended seccomp reusing cBPF, then al-

lowing to write personalized cBPF programs that instead of analyze packets

would evaluate every system call (based on system call number and argu-

ments) before to be executed [7]. The former and restrictive seccomp mode

is named strict mode, while the latter is referred as filter mode.

It is adviced that developers using seccomp should keep attention to main-

tain filters because library updates could break code. For example, since

glibc 2.26, the wrapper open(2) doesn’t invoke directly kernel’s open system

call but it’s a special case of openat(2) [9, 12]. It should be noted that

currently seccomp can use only cBPF language and not eBPF [66].



Chapter 2

Extended BPF

As already mentioned in the section 1.3, cBPF instructions are converted

in eBPF instructions. Extended BPF has been also referred as internal BPF

because the user-space was not exposed directly to eBPF and the translation

from cBPF to eBPF was (and currently is) transparent to the user [35, 11].

At present, it is also known just as BPF. eBPF was introduced (first in the

kernel 3.15) because the cBPF virtual machine architecture was far from

the modern processors architecture which started to use 64 bit registers and

more instructions [56], and also with the intend to add new features beyond

packets/system calls filtering mechanism.

Major changes were made to the older virtual machine architecture bringing

several new functionalities with the effect of making the kernel programmable

while maintaining the user/kernel space separation. As an example of the

modifications, the instruction set and the registers were expanded.

It’s worthwhile to note that eBPF does not consist only just of a new in-

struction set but also provides different infrastructures which extend use

cases. The number of events to which attach programs increased, therefore

the application of eBPF is not limited to the kernel networking subsystem

and allows kernel/user space communication through data structures (maps),

then introducing the concept of state.

11
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2.1 Architecture

This section describes the new virtual machine architecture.

2.1.1 Registers and stack

A 512 byte fixed size stack is available. The number and the width of

registers increased respectively, from 2 to 11 (R0-R10) and from 32 bit to

64 bit. As a consequence eBPF registers map one to one to x86 hardware

registers as illustrated in the Listing 2.1.

R0 − rax

R1 − r d i

R2 − r s i

R3 − rdx

R4 − rcx

R5 − r8

R6 − rbx

R7 − r13

R8 − r14

R9 − r15

R10 − rbp

Listing 2.1: registers mapping [35]

R0 stores the return value of an helper (in kernel) function or the return value

of the eBPF program. R1-R5 contain the arguments for the helper function

called by the eBPF program. R6-R9 are the callee saved register and they

are preserved by the called helper function. The content of these registers is

moved to the stack (spill) or the content of the stack is moved to them (fill).

The aforementioned registers are also used for eBPF to eBPF calls. R10 is

the read only frame pointer for the stack [35, 13].
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2.1.2 Instruction set

The instruction set is a mix of real CPUs instructions (mostly x86) with

two operands specified, like on real architectures. Also a bpf call instruction

was added to call in kernel functions. Each eBFP program loaded as normal

user can have at maximum 4096 instructions, instead eBPF programs loaded

as root can have up to 1 million instructions [21]. The calling convention has

been defined analyzing x86/arm64/risc calling conventions and in a way to

avoid extra copy in calls.

As a consequence of these changes not only the registers but also the eBPF

instructions map one to one into x86 real ones [2].

Internally, a cBPF instruction is converted in the eBPF instruction format

shown in the Listing 2.2

op : 8 , d s t r e g : 4 , s r c r e g : 4 , o f f : 1 6 , imm:32

Listing 2.2: eBPF instruction format

Where op determines the operation to be executed and it’s further subdivided

as reported in the Listing 2.3

code : 4 source : 1 c l a s s : 3

Listing 2.3: op code

class specifies the instruction class (BPF_LD, BPF_ALU, etc.), code determines

an operation code within that class, for instance if the class is BPF_ALU code

can be BPF_ADD, BPF_MUL, etc. and source specifies if the source operand is

an immediate value or a register [35].

dst reg and src reg indicate which registers to use for the operation. off is

used for operations that require a relative offset. imm contains an immediate

value.

To make the conversion from cBPF instructions to eBPF instructions easier

the cBPF encoding is reused. These architectural choices have led to the
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implementation of a Just-In-Time compiler from eBPF to native machine

code which in turn improved the performance [56]. JIT compiler is available

for the most common architectures. If the JIT compiler is not available

for an architecture it is still possible to execute eBPF programs using the

interpreter as a fallback (if it is enabled).

2.2 Program type

If with cBPF is possible to write only two kind of programs: socket fil-

ters and system call filters, eBPF introduced several program types which

are still evolving. The main categories are networking and tracing. List-

ing 2.4 reports an extract of the content of enum bpf prog type, defined in

uapi/linux/bpf.h, which enumerates all the currently available program

types (more than 20 at time of writing).

enum bpf prog type {
BPF PROG TYPE UNSPEC,

BPFPROGTYPESOCKETFILTER,

BPF PROG TYPE KPROBE,

BPF PROG TYPE SCHED CLS,

BPF PROG TYPE SCHED ACT,

BPFPROGTYPETRACEPOINT,

BPFPROGTYPEXDP,

BPF PROG TYPE PERF EVENT,

. . .

} ;

Listing 2.4: bpf prog type

When working with eBPF program it’s important to comprehend the follow-

ing information about program types: which use case the program satisfies;

how to attach the eBPF program for that particular program type; what

context (data) is passed as an input to the program; which event triggers
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the attached program [59]. To better illustrate how the program type affects

these information, 3 program types (highlighted in bold in the Listing 2.4)

are now described in more details.

2.2.1 BPF PROG TYPE SOCKET FILTER

As the original classic BPF use case, socket filter type applies to network

traffic filtering, then allows discarding or trimming of packets based on the

return value. eBPF programs of this type are attached to a socket using

setsockopt(2) with SO_ATTACH_BPF (see Listing B.26). The context is rep-

resented by a data structure (__sk_buff) that is a mirror of the in kernel

data structure (sk_buff) used to represents packets metadata (see the de-

scription of Listing B.6). Every time a packet is received on that socket the

program is executed.

2.2.2 BPF PROG TYPE XDP

XDP stands for eXpress DataPath. The goal of XDP is to improve packet

processing performance by providing a hook closer to the hardware (at the

driver level), accessing a packet before the operative system creates metadata

stored in sk_buff. Return values of a XDP program can indicate different

actions: drop the packet (XDP_DROP), pass the packet to the networking stack

(XDP_PASS), send the packet out the same interface it was received (XDP_TX),

redirect the packet to userspace or to another interface (XDP_REDIRECT) [14].

The XDP program can be attached to a network interface through a netlink

socket message. The context of XDP programs is a lightweight data struc-

ture (struct xdp md). XDP program runs every time a packet arrives to the

NIC.

It’s worth mentioning that XDP can operates in 3 modes: driver (native)

mode that is, the eBPF program is executed at the driver level (the device

needs XDP support); generic mode which is used as fallback mode for net-
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work devices that don’t support native XDP. It’s slower compared to the

driver mode because works at an higher level in the stack; hardware offload

mode which allows to run the XDP program directly on the NIC bringing

higher speed than native mode. Just one mode at time can be used [13].

2.2.3 BPF PROG TYPE TRACEPOINT

This program type allows to instrument kernel code. To attach an eBPF

program first a perf event is opened with perf_event_open(2), then through

ioctl(2) the returned file descriptor is used to enable the associated individ-

ual event or event group and to attach the eBPF program to the tracepoint

event. The context definition depends on the specific tracepoint. The eBPF

program is executed every time the tracepoint is hit (see section B.1.4 and

the example reported in the Listing B.1.10 for more details).

2.3 Helper functions

As already mentioned in section 2.1.2 from an eBPF program it is possible

to call helper functions. Program type is what determines which subset of in

kernel functions can be called. Helper functions are called from within eBPF

programs in order to interact with the system, to operate on the data passed

as context or to interact with maps. Calling these functions don’t introduce

an overhead [15]. Then in order to be able to write eBPF programs is required

to know which helpers can be called from a specific program type. A script

to generate the man page which documents helper functions has been added

to the kernel source code [17].

The prototypes are declared in the kernel source code within

tools/testing/selftests/bpf/bpf_helpers.h. To retrieve the list of the

helpers supported by a program type is possible to execute from within the

kernel source code tree the command reported in the Listing 2.5

$ grep −R ’ func pro to (enum b p f f u n c i d f u n c i d ’ k e rne l / \
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net / d r i v e r s /

Listing 2.5: grep func proto

For instance, the function definition ( see net/core/filter.c ) shown in

the Listing 2.6 illustrates that socket filter programs can use base helper

functions and four more.

stat ic const struct bp f func p ro to ∗
s k f i l t e r f u n c p r o t o (enum b p f f u n c i d func id ,

const struct bpf prog ∗prog )

{
switch ( f u n c i d ) {
case BPF FUNC skb load bytes :

return &b p f s k b l o a d b y t e s p r o t o ;

case BPF FUNC skb load bytes re lat ive :

return &b p f s k b l o a d b y t e s r e l a t i v e p r o t o ;

case BPF FUNC get socket cookie :

return &b p f g e t s o c k e t c o o k i e p r o t o ;

case BPF FUNC get socket uid :

return &b p f g e t s o c k e t u i d p r o t o ;

default :

return b p f b a s e f u n c p r o t o ( f u n c i d ) ;

}
}

Listing 2.6: sk filter func proto

The section 2.8.1 explains how the verifier uses this information to check if

an helper call is valid.

2.4 Maps
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Figure 2.1: Maps [13].

Another main component of the eBPF infrastructure is represented by

maps, which are data structures that store key-value pairs (with an arbitrary

structure chosen by the user) and allow the communication between user

space program and eBPF program. Maps permit to keep state between

different program executions. Moreover, different eBPF programs can access

the same map [51, 18].

Using the proper helpers it’s possible to create/update or delete a map and

to lookup for an element. Several types of maps (more than 20 at the time of

writing) are available and enumerated by enum bpf_map_type. An extract

is reported in the Listing 2.7

enum bpf map type {
BPF MAP TYPE HASH,

BPF MAP TYPE ARRAY,

BPF MAP TYPE PROG ARRAY,

BPF MAP TYPE PERF EVENT ARRAY,

. . .

} ;

Listing 2.7: enum bpf map type

The bpf(2) man page describes the main types in more details. For instance,
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array maps don’t support value deletion and the key size can be only 4

bytes. In this case the key is the index of the array. Hash maps keys instead

can have a different size and values deletion is supported. It’s worth to

mention BPF_MAP_TYPE_PROG_ARRAY which stores file descriptors of other

eBPF programs that can be called from the current one (see section 2.5).

Maps are defined in the eBPF program source code as a separated section.

See the section B.1.9 of Appendix B for an example of array map usage.

2.5 Tail calls

Figure 2.2: Tail calls [13].

As mentioned in the Maps section an eBPF program can call another

eBPF program using a proper map type. To implement this functionality

another component is required. In fact bpf_tail_call() helper function

has been introduced to make it possible. As input this helper takes the

context, a reference to the program array map and the index where jump to.

This mechanism is called tail call because the current stack frame is reused

to execute another eBPF program avoiding to add a new one. To prevent

loops the limit of tail calls number is 32 [16]. Main use cases are simplify

complicated programs, dynamically modify an eBPF program behaviour and

dispatch into other programs.

2.6 eBPF to eBPF calls
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Figure 2.3: eBPF to eBPF Calls [13].

Initially there was no concept of function in eBPF, then no support was

provided. As a consequence reusable code was declared with the always_inline

attribute so each function with that attribute was copied many times with

the effect of increasing the object code size. The support for eBPF to eBPF

calls has made possible to rewrite functions without the always_inline at-

tribute.

2.7 Object pinning

Figure 2.4: Object Pinning [13].
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eBPF objects are accessed through file descriptors and have a reference

counter which until is strictly greater than 0 guarantees that the kernel keeps

the object alive. For example if a map is created by an user space process

the kernel increases maps reference counter to 1 and sends the associated

file descriptor to the user space process but, if the process which created the

map terminates, as a consequence the file descriptor is closed, the reference

counter is decreased to 0 and the memory is freed.

Instead the eBPF program reference counter is increased when the program

is attached to a hook. When a user space process creates a program and

maps, and the program is attached to a hook, the process can exit because

program’s reference counter will be greater than 0 and, since the maps are

used by the program their reference count is also set to 1 and the kernel will

keep program and maps alive [20].

Initially the design didn’t provide a mechanism for eBPF programs and maps

to persist after the termination of the process that created them. Kernel

4.4 introduced this feature through a kernel virtual file system (mounted at

sys/fs/bpf). Files within this file system can have arbitrary names. They

represent eBPF persistent objects and then can be accessed between differ-

ent program invokations. Indeed a pinned object will have an increase in its

reference counter, as a consequence the object will be kept alive also if the

BPF program is not attached or the BPF map is not used by any program.

New commands for the bpf(2) system call have been introduced: BPF_OBJ_PIN

to pin eBPF objects and BPF_OBJ_GET to retrieve their file descriptor [19].

An use case can be found in networking, for instance an eBPF program han-

dles packet processing and stores information in a map which is pinned and

periodically the admin checks the map’s content getting the file descriptor

associated with the map [20].
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2.8 Internals

2.8.1 Verifier

Also with eBPF it is critical to guarantee that an eBPF program ter-

minates and doesn’t cause damage to the kernel (e.g. access arbitrary ker-

nel memory). The code that implements the verifier can be found within

/kernel/bpf/verifier.c. The function bpf_check() performs a static

analysis of the eBPF bytecode.

The verification process is performed in two steps: in the first step the pro-

gram’s control flow graph is build and a depth-first-search is executed to

check if it is a Directed Acyclic Graph (DAG). In this phase the programs

are rejected if they: are too big; contain forbidden loops (program contains

back-edge and is loaded by an unprivileged user or program contains back-

edge performed using a call); call functions which are not eBPF helpers or

other eBPF programs; present unreachable instructions; have out of range

jumps. During the second step the verifier simulates the execution of all the

possible branches of the program starting from the 1st instruction and checks

the state of the stack and the registers after each instruction.

Moreover, if the user that loads the eBPF program doesn’t have CAP_SYS_ADMIN

the verifier is run with secure mode and pointer arithmetic is forbidden. If

the verifier finds that there is an attempt to read uninitialized register the

program is rejected. The verifier also check if the context access is valid and

if the helper functions called by the eBPF program are a subset of in-kernel

functions associated with that specific program type [56].

The verifier code is complex and consists of about 10.000 lines of code.

Just to have an insight on how it performs some checks an example on how

helper calls verification is executed is now described. The information about

the helpers that a particular program type can call are listed in the program’s

function prototype that is defined in the form of a type_func_proto function
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( see Listing 2.6 for socket filter program type example ). A reference to this

function is stored in a field (get_func_proto) of a data structure used by

the verifier (see Listing 2.8) to check if the eBPF program calls an allowed

helper.

const struct b p f v e r i f i e r o p s s k f i l t e r v e r i f i e r o p s = {
. g e t f u n c p r o t o = s k f i l t e r f u n c p r o t o ,

. . .

} ;

Listing 2.8: sk filter verifier ops

If the verifier in the do_check() function, called inside bpf_check(), finds

a BPF_CALL opcode it first checks if it is handling a call to another BPF

function or a call to an helper function (see Listing 2.9).

. . .

i f ( insn−>s r c r e g == BPF PSEUDO CALL)

e r r = c h e c k f u n c c a l l ( env , insn , &env−>i n s n i d x ) ;

else

e r r = c h e c k h e l p e r c a l l ( env , insn−>imm, env−>i n s n i d x ) ;

. . .

Listing 2.9: call check

In the latter case the function check_helper_call() implements the verifi-

cation on the allowed helpers as reported in the Listing 2.10

. . .

i f ( env−>ops−>g e t f u n c p r o t o )

fn = env−>ops−>g e t f u n c p r o t o ( func id , env−>prog ) ;

i f ( ! fn ) {
verbose ( env , ”unknown func %s#%d\n” ,

func id name ( f u n c i d ) , f u n c i d ) ;
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return −EINVAL;

}
. . .

Listing 2.10: check helper call

If the value of func_id maps to an helper function present within

sk_filter_func_proto definition, the verifier subsequently checks if the

type of the arguments passed to the helper and stored in the relative registers

satisfy the constraints required by that helper (see Listing 2.11), otherwise

returns invalid argument error.

/∗ check args ∗/
e r r = check func a rg ( env , BPF REG 1 , fn−>arg1 type , &meta ) ;

i f ( e r r )

return e r r ;

e r r = check func a rg ( env , BPF REG 2 , fn−>arg2 type , &meta ) ;

. . .

Listing 2.11: check helper arguments

The contraints that the arguments need to satisfy are stored within

struct bpf func proto. Suppose that a socket filter eBPF program calls

bpf_skb_load_bytes() helper function, the type required by its arguments

is shown in the Listing 2.12

stat ic const struct bp f func p ro to b p f s k b l o a d b y t e s p r o t o = {
. func = bp f skb load byte s ,

. g p l on l y = f a l s e ,

. r e t t y p e = RET INTEGER,

. arg1 type = ARG PTR TO CTX,

. arg2 type = ARG ANYTHING,

. . .
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} ;

Listing 2.12: bpf skb load bytes proto

Furthermore, it is worth to note that the goal of the verifier is to check eBPF

programs safety to protect the kernel and not to check if they perform their

intended function efficiently. Therefore is a programmer’s responsibility to

not write programs which, for example, can slow down the machine [14].

2.9 How to use an eBPF program

All the components which are required to write an eBPF program have

been introduced. The diagram shown in Figure 2.5 illustrates an overview

on how these components interact and on how eBPF programs are compiled,

loaded into the kernel and executed when a specific event occurs. As re-

ported in the figure eBPF programs are written in restricted C (a subset of

C language) because, although is possible to use other high level languages,

currently is the standard way to write them and also in the Appendix B, C

language and LLVM/Clang compiler are used.

The steps to run an eBPF program are summarized in the following [47]:

1. the user-space code loads the eBPF program into the kernel specifying

the program type, which determines accessible kernel’s functions

2. the kernel checks if the program is safe through the verifier

3. the kernel, if possible and if it is desirable, JIT-compiles the eBPF

bytecode to native machine code, otherwise the program is interpreted

4. the injected code is attached to an event and is executed every time

that event occurs

5. the loaded code through the helpers can write data to maps and ring-

buffers and the user-space code can read/write from them
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All the operations related to eBPF are performed through the bpf(2) system

call which is described in the section B.1.2 of the Appendix B.

Figure 2.5: eBPF usage overview. Adapted from [22]

2.10 Application

The major applications of eBPF can be summarized in two main groups:

networking and tracing.

2.10.1 Networking

In the context of networking eBPF can be used for routing software (XDP

has an helper which performs routing table lookups), DoS mitigation (packet

filtering) and load balancing [14].
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For instance, XDP use is largely increasing. Two examples created by Face-

book are represented by Katran, an open source network load balancer [25]

and Droplet, a DDoS protection based on eBPF [26].

Another example are the products of Netronome company which has im-

plemented a JIT compiler that compiles eBPF to code directly executable

by a SmartNIC. This approach provides different advantages: the use of XDP

offload mode moves processing from host to the NIC hardware (e.g. CPU

can be used for other tasks); the hardware offload brings an increase in per-

formance; the ability to dynamically load and unload programs prevents the

need to restart the system after programs bug correction and adjustments.

This is critical for big data centers [24].

Currently there is the will to replace the iptables backend with an eBPF

based one. This project is bpfilter and the purpose is to translate exist-

ing iptables rules to eBPF programs while preserving the semantic of the

rules. The translation can be complex, therefore is performed by a bpfilter

user mode helper which runs in the user space and is invoked by bpfilter

kernel module. A proof of concept is already available [27]. This mecha-

nism has been compared to the other existing mechanisms and the results

are promising (see Figure 2.6).

Figure 2.6: bpfilter performance [24].
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2.10.2 Tracing

Two frameworks which take advantages of the several pogram types re-

lated to the system tracing are BPF Compiler Collection (BCC) and bpftrace.

• BCC includes more than 70 tools for tracing and monitoring and pro-

vides a way to write eBPF programs outside the kernel source tree.

BCC supports both Python and Lua as languages for the user space

code. As an example the tool opensnoop.py prints a line for each call

to open(2). It can be useful to acquire information about the files used

by an application.

sudo python . / opensnoop . py

PID COMM FD ERR PATH

1602 gsd−c o l o r 15 0 / e tc / l o c a l t i m e

1602 gsd−c o l o r 15 0 / e tc / l o c a l t i m e

1384 vminfo 4 0 / var /run/utmp

. . .

Listing 2.13: opensnoop.py

• while BCC is mainly used to write complex tracing tools, bpftrace is

a frontend for eBPF tracing features that employs some BCC libraries

and is used to write personalized short scripts on the fly. For example,

Listing 2.14 shows a command which traces all the files as soon as they

are opened. The format of the tracepoint

(tracepoint:syscalls:sys_enter_openat in this case) is explained

in the section B.1.4 of Appendix B where it is described how to define

the context for an eBPF program which is attached to a tracepoint.

# bp f t r a c e −e ’ t r a c epo i n t : s y s c a l l s : s y s en t e r op ena t \
{ printf ( ”%s %s \n” , comm, s t r ( args−>f i l ename ) ) ; } ’

Attaching 1 probe . . .

snmp−pass / proc / cpu in fo
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snmp−pass / proc / s t a t

snmpd / proc / net /dev

snmpd / proc / net / i f i n e t 6

ˆC

Listing 2.14: bpftrace

These frameworks internally work using libbpf library (see section B.1.8)

to manipulate eBPF object files and attaching eBPF programs to kprobes,

uprobes, tracepoints and perf events.
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Chapter 3

eBPF and seccomp

As mentioned in the section 1.4.2 currently seccomp filters can be written

only in cBPF. At the time of writing two patches to extend eBPF usage to

seccomp have been proposed: one which adds seccomp type program but

doesn’t provide maps [28] and one which adds the support for maps and is

focused on libseccomp [29].

3.1 Patch

This section shows the main changes reported in the first patch. The

purpose is to illustrate how some parts of seccomp are implemented and

the main components to modify when adding a new program type to eBPF.

This should help to have a better idea on the eBPF architecture and how it

is developed. In both patches one of the reason which drove the authors to

propose them is to improve seccomp filter performance, although this point

has been attacked in both cases.

3.1.1 Discussion

Despite the patch is not merged in the kernel, an attempt to enable eBPF

for seccomp was made by Sargun Dhillon in the 2018. The patch doesn’t give

the possibility to use all the features introduced by eBPF, for instance maps

31
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usage is not allowed. The reason behind this choice, explains the author,

is to avoid new complexities around PR_SET_NO_NEW_PRIVS (the mechanism

which guarantees that processes can’t escalate privileges through execve).

Kees answered stating that there should be really solid reasons to use eBPF

for seccomp. The main reasons reported by Sargun are: user space eBPF

tools are better than cBPF user space tools; use eBPF to write seccomp

policies for Docker (C instead of json) and a better performance reported us-

ing eBPF array instead of normal branches to lookup rules. Regarding this

last point it is worth to note that currently seccomp puts the shorter rules

(syscall only) at the top while the longer (syscall + arguments) towards the

end.

Anyway Kees mantained his opinion that seccomp doesn’t need a richer lan-

guage and proposed to improve libseccomp instead, also because rules in

seccomp filters can be written as a balanced tree and ordered by frequency

to reach a better performance [28].

3.1.2 Code

A new kernel configuration option is added within arch/Kconfig (Listing

3.1). The new option can be enabled only if seccomp filter and bpf syscall

options are already selected.

c o n f i g SECCOMP FILTER EXTENDED

bool ”Extended BPF seccomp f i l t e r s ”

depends on SECCOMP FILTER && BPF SYSCALL

help

Enables seccomp f i l t e r s to be wr i t t en in eBPF, as opposed

to j u s t cBPF f i l t e r s .

Listing 3.1: seccomp kernel configuration

If the new configuration option is selected then within

include/linux/bpf_types.h is added the macro (Listing 3.2) which defines
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struct bpf verifier ops (needed by the verifier) and struct bpf prog ops data

structures for seccomp (seccomp_verifier_ops and seccomp_prog_ops).

#ifde f CONFIG SECCOMP FILTER EXTENDED

BPF PROG TYPE(BPF PROG TYPE SECCOMP, seccomp )

#endif

Listing 3.2: seccomp BPF PROG TYPE

Further, the seccomp program type is added within include/uapi/linux/bpf.h

to the eBPF program types list (Listing 3.3).

enum bpf prog type {
. . .

BPF PROG TYPE SECCOMP,

} ;

Listing 3.3: seccomp bpf prog type

Within include/uapi/linux/seccomp.h is added the extended seccomp

mode filter constant (Listing 3.4), then invoking seccomp(2) or prctl(2)

with this mode will enable the use of eBPF seccomp filters.

∗ Valid va lue s for seccomp . mode and

∗ p r c t l (PR SET SECCOMP, <mode>) ∗/
. . .

#define SECCOMP MODE STRICT 1 /∗hard−coded f i l t e r ∗/
#define SECCOMP MODE FILTER 2 /∗user−s upp l i e d f i l t e r ∗/
#define SECCOMP MODE FILTER EXTENDED 3 /∗eBPF f i l t e r from fd ∗/

Listing 3.4: mode filter extended constant

To let unprivileged users to use seccomp filters written in eBPF (no_new_privs

needs to be set) the seccomp prog type is added within kernel/bpf/syscall.c

to the list of program types which don’t require high privileges (Listing 3.5).
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i f ( type != BPF PROG TYPE SOCKET FILTER &&

type != BPF PROG TYPE CGROUP SKB &&

type != BPF PROG TYPE SECCOMP &&

! capable (CAP SYS ADMIN) )

return −EPERM;

Listing 3.5: unprivileged seccomp

If the new seccomp filter configuration is enabled the function to pre-

pare the seccomp filter (seccomp_prepare_extended_filter()) is defined

as illustrated in the if branch, otherwise the body just consists in a return

statements that returns an invalid argument error (Listing 3.6).

The function first gets the file descriptor from the user space with a call to

the kernel API’s function get_user() and then checks, through

bpf_prog_get_type(), if the eBPF program corresponding to that file de-

scriptor (fd) has the same program type of the second argument

(BPF_PROG_TYPE_SECCOMP). If this is the case the prog field of the filter is

initialized to fp and the reference counter of the filter is increased by one to

indicate that it is used.

#ifde f CONFIG SECCOMP FILTER EXTENDED

/∗
∗ s e c c omp p r e pa r e e x t end ed f i l t e r

∗ prepares a user−s upp l i e d eBPF fd

∗ @u s e r f i l t e r : po in t e r to the user data con ta in ing an fd .

∗
∗ Returns f i l t e r on succe s s or an ERR PTR on f a i l u r e .

∗/
stat ic struct s e c c o m p f i l t e r ∗
s e c c o m p p r e p a r e e x t e n d e d f i l t e r ( const char u s e r ∗ u s e r f d )

{
. . .
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/∗ Fetch the fd from userspace ∗/
i f ( g e t u s e r ( fd , ( int u s e r ∗) u s e r f d ) )

. . .

/∗ Al l o ca t e a new s e c c omp f i l t e r ∗/
s f i l t e r = k z a l l o c ( s izeof (∗ s f i l t e r ) , GFP KERNEL | \

GFP NOWARN) ;

. . .

fp = b p f p r o g g e t t y p e ( fd , BPF PROG TYPE SECCOMP) ;

. . .

s f i l t e r −>prog = fp ;

r e f c o u n t s e t (& s f i l t e r −>usage , 1 ) ;

return s f i l t e r ;

}
#else

stat ic struct s e c c o m p f i l t e r ∗
s e c c o m p p r e p a r e e x t e n d e d f i l t e r ( const char u s e r ∗ f i l t e r f d )

{
return ERR PTR(−EINVAL) ;

}
#endif

Listing 3.6: prepare extended filter

A new parameter (filter type) is added to the internally called function

seccomp_set_mode_filter() (Listing 3.7). This argument is needed to dis-

tinguish between cBPF and eBPF filters usage so the proper

seccomp_prepare_{extended_filter, user_filter} function can be called.

stat ic long s e c c o m p s e t m o d e f i l t e r (unsigned int f l a g s ,

const char u s e r ∗ f i l t e r ,

unsigned long f i l t e r t y p e )

{
/∗We use SECCOMPMODE FILTER fo r both eBPF and cBPF f i l t e r s ∗/
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const unsigned long f i l t e r m o d e = SECCOMP MODE FILTER;

struct s e c c o m p f i l t e r ∗prepared = NULL;

long r e t = −EINVAL;

. . .

/∗ Prepare the new f i l t e r b e f o r e ho l d ing any l o c k s . ∗/
i f ( f i l t e r t y p e == SECCOMP SET MODE FILTER EXTENDED)

prepared = s e c c o m p p r e p a r e e x t e n d e d f i l t e r ( f i l t e r ) ;

else i f ( f i l t e r t y p e == SECCOMP SET MODE FILTER)

prepared = s e c c o m p p r e p a r e u s e r f i l t e r ( f i l t e r ) ;

else

return −EINVAL;

. . .

}

Listing 3.7: seccomp set mode filter

As reported in the section A.2 of the Appendix A seccomp can be en-

abled either with prctl(2) or seccomp(2). The common entry point for the

aforementioned system calls is represented by do_seccomp() function. In fact

this function appears within both seccomp(2) (Listing 3.8) and prctl(2)

implementations.

SYSCALL DEFINE3( seccomp , unsigned int , op , unsigned int ,

f l a g s , void u s e r ∗ , uargs )

{
return do seccomp ( op , f l a g s , uargs ) ;

}

Listing 3.8: seccomp implementation

In the case of prctl(2) implementation (see Listing 3.9) the do_seccomp()

function is called internally by prctl_set_seccomp(), as shown in the List-

ing 3.11
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SYSCALL DEFINE5( prc t l , int , option , unsigned long , arg2 ,

unsigned long , arg3 , unsigned long , arg4 , unsigned long , arg5 )

{
switch ( opt ion ){
. . .

case PR SET SECCOMP:

e r r o r = p r c t l s e t s e c c o m p ( arg2 , (char u s e r ∗) arg3 ) ;

break ;

. . .

}

Listing 3.9: prctl implementation

The patch adds a new case for op argument of do_seccomp() (Listing 3.10).

This value determines which function to call to prepare the filter.

stat ic long do seccomp (unsigned int op , unsigned int f l a g s ,

void u s e r ∗uargs )

{
switch ( op ) {
. . .

case SECCOMP SET MODE FILTER:

return s e c c o m p s e t m o d e f i l t e r ( f l a g s , uargs , op ) ;

case SECCOMP SET MODE FILTER EXTENDED:

return s e c c o m p s e t m o d e f i l t e r ( f l a g s , uargs , op ) ;

. . .

}
}

Listing 3.10: do seccomp

A new case to select extended filter mode is added to prctl_set_seccomp()

function which configures seccomp mode and then calls do_seccomp() (List-

ing 3.11).
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long p r c t l s e t s e c c o m p (unsigned long seccomp mode ,

char u s e r ∗ f i l t e r )

{
switch ( op ) {
. . .

case SECCOMP MODE FILTER EXTENDED:

op = SECCOMP SET MODE FILTER EXTENDED;

uargs = f i l t e r ;

break ;

. . .

}
return do seccomp ( op , 0 , uargs ) ;

}

Listing 3.11: prctl set seccomp

A function which checks if the eBPF program is accessing a valid address

within the seccomp data structure is needed (Listing 3.12). This function is

used by the verifier to check eBPF program memory accesses to the context.

stat ic bool s e c c o m p i s v a l i d a c c e s s ( int o f f , int s i z e ,

enum b p f a c c e s s t y p e type ,

struct b p f i n s n a c c e s s a u x ∗ i n f o )

{
i f ( type != BPF READ)

return f a l s e ;

i f ( o f f < 0 | | o f f + s i z e > s izeof ( struct seccomp data ) )

return f a l s e ;

switch ( o f f ) {
case b p f c t x r a n g e t i l l ( struct seccomp data , args [ 0 ] , \

args [ 5 ] ) :

return ( s i z e == s izeof ( u64 ) ) ;
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case bp f c tx range ( struct seccomp data , nr ) :

return ( s i z e == FIELD SIZEOF( struct seccomp data , nr ) ) ;

case bp f c tx range ( struct seccomp data , arch ) :

return ( s i z e == FIELD SIZEOF( struct seccomp data , arch ) ) ;

. . .

}
return f a l s e ;

}

Listing 3.12: seccomp is valid access

The seccomp program type function prototype which lists the allowed

helpers is defined as reported in Figure 3.13. Therefore with this patch a

seccomp program can just get the GID, UID and use bpf_trace_printk()

to print messages for debugging purpose.

stat ic const struct bp f func p ro to ∗
seccomp func proto (enum b p f f u n c i d f u n c i d )

{
switch ( f u n c i d ) {
case BPF FUNC get current uid gid :

return &b p f g e t c u r r e n t u i d g i d p r o t o ;

case BPF FUNC trace printk :

i f ( capable (CAP SYS ADMIN) )

return b p f g e t t r a c e p r i n t k p r o t o ( ) ;

default :

return NULL;

}
}

Listing 3.13: seccomp func proto

The data structure used by the verifier is initialized as shown in Listing 3.14,

similar as previously reported in the socket type program example ( Listing
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2.8) with the difference that in this case the values are relative to the seccomp

eBPF program type.

const struct b p f v e r i f i e r o p s s e c c o m p v e r i f i e r o p s = {
. g e t f u n c p r o t o = seccomp func proto ,

. i s v a l i d a c c e s s = s e c c o m p i s v a l i d a c c e s s ,

} ;

Listing 3.14: seccomp verifier ops

3.1.3 eBPF seccomp example

To have an idea on how an eBPF seccomp filter would be written after

applying this patch, Listing 3.15 reports one of the examples added by Sar-

gun. The programs return the operation not permitted error if the process

tries to close a file descriptor with the value of 999.

/∗ Returns EPERM when t r y i n g to c l o s e fd 999 ∗/
SEC( ”seccomp” )

int bpf prog1 ( struct seccomp data ∗ ctx )

{
i f ( ctx−>nr == NR close && ctx−>args [ 0 ] == 999)

return SECCOMP RET ERRNO | EPERM;

return SECCOMP RET ALLOW;

}

char l i c e n s e [ ] SEC( ” l i c e n s e ” ) = ”GPL” ;

Listing 3.15: eBPF seccomp example
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3.2 Another application of seccomp eBPF

In addition to the reasons exposed by Sargun to support the use of eBPF

for seccomp, this section introduces another possible application. Generally

there are two ways to give a process a different view of its execution environ-

ment.

The first requires the concept of namespaces, which is a feature of the ker-

nel that allows each process to be associated with a particular namespace.

Therefore each process can have a different view on the resources, as if it

has its own isolated instance of the global resource. Linux kernel provides 7

types of namespaces: Cgroup, IPC, Network, Mount, PID, User, UTS [61]. A

process must belong to some namespace and if it is not specified Linux adds

the process to the default namespaces. This mechanism is used to implement

a lightweight virtualization tool (containers).

The code which supports the namespace functionality resides inside the ker-

nel and it involves between 7% and 15% of the core Kernel code [64]. As a

consequence the kernel attack surface increases because a flaw can open the

way to privilege escalation exploits. For example the CVE 2013-1858 affects

the implementation of the user namespace in the Linux kernel before 3.8.3

leveraging the mismatch between the scope of two flags (CLONE_NEWUSER,

CLONE_FS) used in the clone(2) system call [62]. The Figure 3.1 provides

an high level overview on how the namespace feature is an integral part of the

kernel and how this affects the kernel attack surface (highlighted in orange).
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Figure 3.1: Namespace

The second approach consists of introducing an intermediate layer located

in the userspace with the task of providing the process with a different view

of the resources. The kernel attack surface in this case remains the same

(Figure 3.2), anyway this approach is less efficient because adding a layer

introduces an overhead.

A third approach could be to let the intermediate layer to offload all the

Figure 3.2: Intermediate layer

possible computations to the kernel (Figure 3.3). This solution may be im-

plemented taking advantage of BPF. Furthermore, it is both efficient, due to

the offload of some operations to the kernel, and also safe because: although



3.2 Another application of seccomp eBPF 43

some code is loaded in to the kernel, a BPF program is first checked by the

verifier which guarantees that it doesn’t harm the kernel. As a result there

is a minor increase of the kernel attack surface.

UMVU, which is an implementation of VUOS is an example of the afore-

mentioned approach. The idea behind VUOS is that it is possible to give

processes their specific running environment (view). UMVU uses partial vir-

tual machines (PVM). PVM is a system call virtual machine which operates

as a filter, meaning that a system call can be forwarded to the hosting kernel,

if it needs access to non virtualized resources, or processed by the hypervi-

sor. Basically UMVU intercepts system calls and modifies their behaviour

accordingly to the calling process view [63, 64].

The current tracer implementation handles system calls manipulation us-

Figure 3.3: intermediate layer with bpf

ing ptrace(2) which is mainly used for system calls tracing and debugging

purposes. This brings some performance issues because for every system call

the tracee is stopped and two calls to ptrace(2) are required (one at the

enter to and one at exit from a system call). The reason is that there is no

way to tell the Kernel which system calls to trace [64].

The forwarding decision is made using seccomp. However, seccomp filters
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are limited to cBPF which doesn’t provide maps and other features exposed

by eBPF. For instance, maps could be used to store the set of system calls

(e.g. open) file descriptors which are real/virtual. Consequently, the hyper-

visor could communicate with the offloaded module to specify the set of real

file descriptors, then a system call with a real file descriptor would be directly

elaborated by the kernel without redirecting it to the hypervisor.

3.3 Would eBPF seccomp introduce new weak-

nesses?

Figure 3.4: Hypothetical scenario

If it is assumed an hypothetical scenario where: eBPF support for sec-

comp is already implemented giving to this program type the same con-

straints given to the socket filter program type; there is a malicious seccomp

eBPF program which violates system security when it handles a particular

configuration of struct seccomp data.

Then if the malicious seccomp eBPF program can be rewritten as a packet

filter program, sending a packet which contains the same sequence of bytes

of the seccomp_data to the filter, should bring the system in the same com-

promised state.
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As a first attempt to consider this hypothesis, a test was conducted to verify

if an UDP socket with a eBPF program attached to it can receive a

struct seccomp_data as a payload and act on it. To realize the test an

ethernet frame crafter was written in C language and was used to send an

UDP datagram to another physical machine where the eBPF filter was run-

ning. The first field (nr) of the seccomp_data was initialized to the value of

an arbitrary system call (e.g. __NR_exit) and the fiter shown in the Listing

3.16 was used on the second machine. The filter used an offset of 8 bytes

to directly access the datagram payload to load the first 4 bytes (nr field

of seccomp_data). As a result the filter successfully received only the pack-

ets transporting a seccomp_data with the value of __NR_exit. That would

mean that eBPF seccomp would not introduce new weaknesses which are not

already present because the compromised state would be reached through the

existing packet filtering mechanism.

SEC( ” socke t ” )

int bpf prog ( struct s k b u f f ∗ skb )

{
int nr = load word ( skb , 8 ) ;

i f ( nr == 0 x3c000000 ) // NR ex i t

return −1; // re turn the en t i r e packe t

else

return 0 ; // d i s card the packe t

}
char l i c e n s e [ ] SEC( ” l i c e n s e ” ) = ”GPL” ;

Listing 3.16: nr filter

Anyway few considerations are needed: seccomp is a critical piece of

code, consequently the maintainers are not inclined to add new features.

Furthermore, Alexei Starovoitov the BPF mantainer, talking about how the

verifier is under continuous development, argued that he ”would hate to see
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arguments against adding more verifier features just because eBPF is used by

seccomp/landlock/other security thing” [65]. Therefore, it may be difficult to

see seccomp support implemented in a brief time.



Conclusions

eBPF is a promising technology that is undergoing an intensive devel-

opment. The increasing number of kernel hooks, maps and program types

combined with BPF calls have introduced safe kernel programmability which

allows programmers to create user-space programs that can communicate

with kernel-space eBPF programs. These features can be used to aggregate

kernel data for tracing purposes but also to store maps and programs within

pinned objects that can be retrieved at a later time. It is worth to mention

that most of program types require high privileges and that probably this

scenario will not change [66].

As discussed, currently the main applications are represented by tracing and

networking domains, in particular it is worth to remember the ability to

offload XDP eBPF programs to NICs hardware which is of paramount im-

portance to avoid the high CPU overload due to the new available network

speeds.

Although the recent advancements of eBPF and different expressions of in-

terest in eBPF support for seccomp filters, at the moment it doesn’t seem

that it will be added in a brief time for different reasons: seccomp is critical

code; BPF mantainer reconsidered unprivileged BPF and he wants to freely

add new features to the verifier.

Future works could go in different directions: deeper explore other program

47
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types, applications and tools (e.g. bpftool) with the aim to produce a more

accessible documentation and basic examples; further explore the hypoteth-

ical scenario described in the last section studying in more details how the

introduction of eBPF support for seccomp would affect kernel code; write/ap-

ply a patch which adds eBPF seccomp support, modify UMVU implementa-

tion accordingly and compare the performances.



Appendix A

Classic BPF usage

This appendix describes the modus operandi to write and to use cBPF

filters. The first section illustrates how to apply filters for packet filtering,

instead the second section explains how to apply filters to system calls .

Each section describes the components (data structures, macros, headers,

constants) and the steps to follow to implement a filter. Furthermore, prac-

tical examples are explained in detail. All the examples are available at the

following repository: https://github.com/midist0xf/cbpfexamples.

A.1 Packet Filtering

The main steps to follow to write a network packets filter are the following:

• create a socket for network communication

• write a filter managing the offsets based on the socket type

• attach the filter to the socket

A.1.1 Socket creation

It is important to know which socket type is used because, at each net-

work stack level, the filter is applied to the payload relative to that level. For

49



50 A Classic BPF usage

example, a socket with the AF PACKET domain and with the SOCK RAW

type can access also the data link information, while TCP or UDP sockets

can access just to the transport level information. Then the more the packet

goes upward through the network stack, the less information are visible to

the filter [30].

The aforementioned considerations affect filters writing because, to access

by offset the payload’s fields of interests, first the base address needs to be

determined. To highlight this difference the examples will use two socket

types: packet socket and UDP socket.

The basic network programming tools required to realize the examples are

briefly reported.

Listing A.1 shows the socket(2) system call prototype:

#include <sys / types . h>

#include <sys / socket . h>

int socke t ( int domain , int type , int pro to co l ) ;

Listing A.1: socket system call

domain specifies the protocol family used to communicate. type specifies the

semantic of the communication and protocol specifies the type of the protocol

to use with the socket.

The code fragments in the Listing A.2 and in the Listing A.3 show the calls

to create both sockets. Checks on the returned values are omitted for brevity.

. . .

sock fd = socket (AF PACKET, SOCK RAW, htons (ETH P ALL ) ) ;
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. . .

Listing A.2: packet socket

Packet socket (AF PACKET) are used to send and receive raw packets at

the data link level. With the SOCK RAW socket type, packets include data

link level header. ETH P ALL indicates that all protocols encapsulated in

ethernet frames are received. It is worth to note that packets are passed to

any raw socket before they are passed to the protocols implemented within

the kernel [31].

. . .

sock fd = socket (AF INET , SOCK DGRAM, IPPROTO UDP) ;

. . .

Listing A.3: udp socket

AF INET indicates the familiy of the IPv4 protocols, while SOCK DGRAM

specifies that the semantic is UDP. UDP sockets allow to access the packet

at an higher level of the network stack, then starting from the information

contained in the UDP datagram.

A.1.2 Writing a filter

Once the socket type has been chosen is possible to write the proper filter.

To write a filter it is required to know how the network stack operates, the for-

mats of packets headers and the semantic of the instructions. Please refer to

the Appendix C for packet headers structure details. The semantic of the in-

structions is available at https://www.freebsd.org/cgi/man.cgi?bpf(4).
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A.1.2.1 Data structures

The user space program through #include<linux/filter.h> can access to

the data structure shown in the Listing A.4:

struct s o c k f i l t e r { /∗ F i l t e r b l o c k ∗/
u16 code ; /∗ Actual f i l t e r code ∗/
u8 j t ; /∗ Jump true ∗/
u8 j f ; /∗ Jump f a l s e ∗/
u32 k ; /∗ Generic mu l t iuse f i e l d ∗/

} ;

Listing A.4: struct sock filter

struct sock filter is the data structure which represents a single instruction

for the virtual machine. code indicates the operation code, jt and jf are

the jump offsets while k is a generic value used differently by the diverse

instructions [33, 35].

struct s o ck fp r og { /∗ Required f o r SO ATTACH FILTER. ∗/
unsigned short l en ; /∗ Number o f f i l t e r b l o c k s ∗/
struct s o c k f i l t e r u s e r ∗ f i l t e r ;

} ;

Listing A.5: struct sock fprog

struct sock fprog (Listing A.5) is the data structure for which a pointer to

it is passed to the kernel as a parameter of the setsockopt(2) system call.

len indicates the number of the filter instructions and filter is a pointer

to the program which represents the filter [35].

Suppose now to write a program which filters IP packets that encapsulate

UDP datagrams with 1030 as source port.
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Figure A.1: Tcpdump socket [32].

A.1.2.2 Packet socket example

To generate the filter code is possible to use tcpdump. This network tool,

allows to use expressions written in an high level language, which are trans-

lated in programs written in cBPF [1]. Furthermore tcpdump, through the

library libpcap, creates a packet socket (see Figure A.1) to receive packets,

as a consequence all the offsets will be already correct.

Suppose src port 1030 is the filter expression. tcpdump allows to gen-

erate three different filter representations:

• tcpdump udp and src port 1030 -d

(000) ldh [12]

(001) jeq #0x86dd jt 2 jf 6

(002) ldb [20]

(003) jeq #0x11 jt 4 jf 15

(004) ldh [54]

(005) jeq #0x406 jt 14 jf 15

(006) jeq #0x800 jt 7 jf 15

(007) ldb [23]

(008) jeq #0x11 jt 9 jf 15

(009) ldh [20]

(010) jset #0x1fff jt 15 jf 11

(011) ldxb 4*([14]&0xf)
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(012) ldh [x + 14]

(013) jeq #0x406 jt 14 jf 15

(014) ret #262144

(015) ret #0

• tcpdump udp and src port 1030 -dd

{ 0x28, 0, 0, 0x0000000c },

{ 0x15, 0, 4, 0x000086dd },

{ 0x30, 0, 0, 0x00000014 },

{ 0x15, 0, 11, 0x00000011 },

{ 0x28, 0, 0, 0x00000036 },

{ 0x15, 8, 9, 0x00000406 },

{ 0x15, 0, 8, 0x00000800 },

{ 0x30, 0, 0, 0x00000017 },

{ 0x15, 0, 6, 0x00000011 },

{ 0x28, 0, 0, 0x00000014 },

{ 0x45, 4, 0, 0x00001fff },

{ 0xb1, 0, 0, 0x0000000e },

{ 0x48, 0, 0, 0x0000000e },

{ 0x15, 0, 1, 0x00000406 },

{ 0x6, 0, 0, 0x00040000 },

{ 0x6, 0, 0, 0x00000000 },

• tcpdump udp and src port 1030 -ddd

16

40 0 0 12

21 0 4 34525

48 0 0 20

21 0 11 17

40 0 0 54

21 8 9 1030

21 0 8 2048
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48 0 0 23

21 0 6 17

40 0 0 20

69 4 0 8191

177 0 0 14

72 0 0 14

21 0 1 1030

6 0 0 262144

6 0 0 0

In the first output the filter is represented by human-readable instructions. In

the second output the filter is represented as a usable C fragment (in the case

of a packet socket). In the third output first the number of the instructions

is reported and then instructions are illustrated as decimal numbers.

Any filter can be written using macros (Listing A.6), which are defined, along

with the other instructions codes, within #include<linux/filter.h>.

/∗
∗ Macros f o r f i l t e r b l o c k array i n i t i a l i z e r s .

∗/
#ifndef BPF STMT

#define BPF STMT( code , k ) \
{ (unsigned short ) ( code ) , 0 , 0 , k }

#endif

#ifndef BPF JUMP

#define BPF JUMP( code , k , j t , j f ) \
{ (unsigned short ) ( code ) , j t , j f , k }

#endif

Listing A.6: macro BPF

Both macros expand to initialize a single instruction of the filter. As an

example it is explained how to write the filter using macros, illustrating for

each step the meaning of the instructions and how they refer to the packet.
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The following instructions considered all together implement the filter.

/∗ check i f the e t h e rne t type f i e l d i s ip6 ∗/
BPF STMT(BPF LD+BPF H+BPF ABS, 12) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, 0x86dd , 0 , 4 ) ,

Listing A.7: type IPv6

The instructions shown in the Listing A.7 verify that the type field in the

ethernet frame header is IPv6.

The first instruction semantic is A <- P[k:2], where k=12, meaning that it

loads in the accumulator the first 2 bytes starting from the 12th byte, so the

content of the type field.

The second instruction semantic is pc += (A == k) ? 0 : 4, where k=0x86dd,

meaning that if the type field is 0x86dd (IPv6) it adds to the program counter

an offset of 0, otherwise it adds an offset of 4 and in this case the next in-

struction to be executed will be the one which checks if the type field is

IPv4.

/∗ check i f the next header f i e l d i s UDP ∗/
BPF STMT(BPF LD+BPF B+BPF ABS, 20) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, 0x11 , 0 , 11) ,

Listing A.8: next header UDP

The two instructions in the Listing A.8 verify if the next header field within

the IPv6 packet header is UDP.

The first instruction semantic is A <- P[k:1], where k=20, meaning that

it loads in the accumulator the first byte starting from the 20th byte. The

ethernet header is 14 bytes long to which are added 6 bytes to reach the start

of the next header field of the IPv6 packet header.

The second instruction semantic is pc += (A == k) ? 0 : 11, where k=0x11,

meaning that if the next header field is 0x11 (UDP) it adds to the program
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counter an offset of 0, otherwise it adds an offset of 11 and in this case the

next instruction to be executed will be the one which discards the packet.

/∗ check i f the UPD header src por t i s 1030 ∗/
BPF STMT(BPF LD+BPF B+BPF ABS, 54) ,

BPF JUMP(BPF JUMP+BPF JEQ+BPF K, 0x406 , 8 , 9 ) ,

Listing A.9: src port 1030

The two instructions in the Listing A.9 verify that the src port field in the

UDP header is equal to 1030.

The first instruction semantic is A <- P[k:1], where k=54, meaning that

it loads in the accumulator the first byte starting from the 54th byte. The

ethernet header is 14 bytes long to which are added 40 bytes of the IPv6

header to reach the start of the src port field in the UDP header.

The second instruction semantic is pc += (A == k) ? 8 : 9, where k=0x406,

meaning that if the src port field is 0x406 (1030) it adds to the program

counter an offset of 8 and the packet is accepted, otherwise it adds an offset

of 9 and the packet is discarded.

/∗ check i f the e t h e rne t type f i e l d i s ip4 ∗/
BPF JUMP(BPF JMP+BPF JEQ+BPF K, 0x800 , 0 , 8 ) ,

Listing A.10: type IPv4

The semantic of the instruction in the Listing A.10 is pc += (A == k) ?

0 : 8, where k=0x800, meaning that if the type field of the ethernet header

is 0x800 (IPv4) it adds to the program counter an offset of 0, otherwise it

adds an offset of 8 and in this case the next instruction discards the packet.

/∗ check i f the ip4 header p ro t o co l f i e l d i s UDP ∗/
BPF STMT(BPF LD+BPF B+BPF ABS, 23) ,



58 A Classic BPF usage

BPF JUMP(BPF JMP+BPF JEQ+BPF K, 0x11 , 0 , 6 ) ,

Listing A.11: protocol UDP

The two instructions in the Listing A.11 verify if the protocol field of the

IPv4 packet header is UDP.

The first instruction semantic is A <- P[k:1], where k=23, meaning that

it loads in the accumulator the first byte starting from the 23rd byte. The

ethernet header is 14 bytes long to which are added 9 bytes to reach the start

of the protocol field in the IPv4 header.

The second instruction semantic is pc += (A == k) ? 0 : 8, where k=0x11,

meaning that it adds to the program counter an offset of 0 if the protocol

field is 0x11 (UDP), otherwise it adds an offset of 8 and in this case the next

instruction to be executed discards the packet.

/∗ check i f ip4 header fragment o f f s e t i s 0 ∗/
BPF STMT(BPF LD+BPF H+BPF ABS, 20) ,

BPF JUMP(BPF JMP+BPF JSET+BPF K, 0 x 1 f f f , 4 , 0 ) ,

Listing A.12: fragment offset 0

The two instructions in the Listing A.12 verify if the fragment offset is 0 (0

means that it is the first fragment).

The first instruction semantic is A <- P[k:2], where k=20, meaning that it

loads in the accumulator the first 2 bytes starting from the 20th byte. The

ethernet header is 14 bytes long to which are added 8 bytes to reach the start

of the flags field, loaded along with the fragment offset field.

The second instruction semantic is pc += (A & k) ? 4 : 0, where k=0x1fff,

meaning that it adds to the program counter an offset of 4 if the fragment

offset is not 0 and in this case the next instruction to be executed discards

the packet, otherwise it adds an offset of 0.

/∗ l oad ip4 header l e n g t h in the index r e g i s t e r ∗/
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BPF STMT(BPF LDX+BPF B+BPF MSH, 14) ,

Listing A.13: load IHL

The instruction in the Listing A.13 implements a frequent operation: it loads

in the index register the length of the IPv4 header.

The instruction semantic is X <- 4*(P[k:1]&0xf), where k=14, meaning

that it takes the first byte starting from the 14th byte (version and Internet

Header Length fields), then using a bit mask it considers just the last 4 bits

(IHL) and it multiplies this value by 4 to have the header length in bytes,

which finally is loaded in the index register.

/∗ check i f UDP src por t i s 1030 ∗/
BPF STMT(BPF LD+BPF H+BPF IND , 14) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, 0x406 , 0 , 1 ) ,

Listing A.14: src port 1030

The two instruction in the Listing A.14 verify if the src port field in the UDP

header is 1030.

The first instruction semantic is A <- P[X+k:2], where k=14, meaning that

it adds 14 (header ethernet length) to the content of the index register X

(IPv4 header length) and starting from the resulting offset it loads the first

2 bytes in the accumulator, that is the content of the src port field of the

UDP header.

The second instruction semantic is pc += (A == k) ? 0 : 1, where k=0x406,

meaning that it adds to the program counter an offset of 0 if the src port

is 1030 and then the next instruction to be executed accepts the packet,

otherwise it adds an offset of 1 and the next instruction discards the packet.

/∗ re turn the en t i r e packe t ∗/
BPF STMT(BPF RET+BPF K, 0x40000 ) ,

Listing A.15: return
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The instruction in the Listing A.15 returns the entire packet.

The instruction semantic is accept k bytes, where k=0x40000, a value

which guarantees to return all the bytes of the packet.

/∗ d i s card the packe t ∗/
BPF STMT(BPF RET+BPF K, 0) ,

Listing A.16: discard

The instruction in the Listing A.16 discards the packet.

The instruction semantic is accept k bytes, where k=0, meaning that no

byte of the packet will be returned.

A.1.2.3 UDP socket example

The filter for an UDP socket instead, as already mentioned (Section A.1.1)

is different. In this case it is not possible to directly use the output of tcpdump

but it needs to be properly adapted as shown in the Listing A.17.

/∗ check i f UDP src por t i s 1030 ∗/
BPF STMT(BPF LD+BPF H+BPF ABS, 0) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, 0x406 , 0 , 1 ) ,

/∗ re turn the en t i r e packe t ∗/
BPF STMT(BPF RET+BPF K, 0x40000 ) ,

/∗ d i s card the packe t ∗/
BPF STMT(BPF RET+BPF K, 0) ,

Listing A.17: UDP socket filter

The reason is that in this scenario link level information are not visible,

then the base address is related to the UDP header and not to the Ethernet

header.
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A.1.2.4 Macros and constants

In the aforementioned example numeric values were used both to indicate

protocol types (0x800 for IPv4, etc.) and to indicate the different field offsets.

To make the filter more readable and to facilitate the offsets computation it

is possible to use already defined constants and macros.

#include<stddef.h> makes available the macro in the Listing A.18

#define o f f s e t o f (TYPE, MEMBER) ( ( s i z e t )&((TYPE ∗)0)−>MEMBER)

Listing A.18: macro offsetof

which returns the offset in bytes of MEMBER starting from the base address of

TYPE.

#include<linux/if ether.h> makes available constants and data structures

of the ethernet header, see Listing A.19:

#define ETH HLEN 14 /∗ Tota l o c t e t s in header . ∗/
#define ETH P IP 0x0800 /∗ I n t e rne t Pro toco l packe t ∗/
#define ETH P IPV6 0x86DD /∗ IPv6 over b luebook ∗/
. . .

Listing A.19: ethernet constants

#include<linux/in.h> makes available constants which are useful when han-

dling the protocol field in the IP packet header. Few examples are reported

in the Listing A.20:

IPPROTO IP = 0 , /∗ Dummy pro t o co l f o r TCP ∗/
#define IPPROTO IP IPPROTO IP

IPPROTO UDP = 17 , /∗ User Datagram Protoco l ∗/
#define IPPROTO UDP IPPROTO UDP
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. . .

Listing A.20: protocol constants

In order to use UDP, TCP, IP, etc. protocols data structures, proper C head-

ers are needed, for example #include<linux/ip.h> makes available struct iphdr,

while #include<linux/udp.h> defines struct udphdr, and so forth. These

data structures allow programmer to use the macro offsetof to get fields

offsets easily.

As an example, in the Listing A.21 is shown how to rewrite some instructions

of the previously explained filter (Listings A.7, A.8)

/∗ check i f the e t h e rne t type f i e l d i s ip6 ∗/
BPF STMT(BPF LD+BPF H+BPF ABS, o f f s e t o f ( struct ethhdr , h proto ) ) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, ETH P IPV6 , 0 , 9 ) ,

/∗ check i f the next header f i e l d i s UDP ∗/
BPF STMT(BPF LD+BPF B+BPF ABS, ETH HLEN + \

o f f s e t o f ( struct ipv6hdr , nexthdr ) ) , \
BPF JUMP(BPF JMP+BPF JEQ+BPF K, IPPROTO UDP, 0 , 11) ,

. . .

Listing A.21: instructions with macros

A.1.3 Attach the filter

The last step is to attach the filter to the socket through the setsockopt(2)

system call. This step is introduced illustrating the code structure in its en-

tirety. A packet socket is used in the example. Some details are omitted,

however they are available at the repository.
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/∗ i n i t i a l i z e the f i l t e r program ∗/
struct s o c k f i l t e r bpfcode [ ] = {

/∗ check i f the e t h e rne t type f i e l d i s ip6 ∗/
BPF STMT(BPF LD+BPF H+BPF ABS, o f f s e t o f ( struct ethhdr , \

h proto ) ) ,

. . .

} ;

struct s o c k fp r og bpf ;

bpf . l en = s izeof ( bpfcode )/ s izeof ( struct s o c k f i l t e r ) ;

bpf . f i l t e r = bpfcode ;

/∗ open a packe t s o c k e t ∗/
sock fd = socket (PF PACKET, SOCK RAW, htons (ETH P ALL ) ) ;

. . .

/∗ a t t ach the f i l t e r to the socke t ∗/
r e t = se t sockopt ( sockfd , SOL SOCKET, SO ATTACH FILTER, \

&bpf , s izeof ( bpf ) ) ;

. . .

c l o s e ( sock fd ) ;

Listing A.22: code structure

It is recalled that when the array which contains the filter code is initialized,

in the case of a packet socket, it is possible to directly use the output of

tcpdump with the option -dd.

Lastly, programs which use a packet socket with needs to be assigned the

CAP_NET_RAW capability or to be executed as root.
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A.2 Seccomp

System calls filtering with seccomp provide two modes:

• strict

• filter, which is fine-grained

In the first mode there is no need to write a filter, only predefined system

calls are allowed.

In the second mode the programmer writes the filter using cBPF syntax

implementing it based on the system calls he needs to allow or block.

Both modes can be enabled either through prctl(2) (since Linux 2.6.23) or

through seccomp(2) (since Linux 3.17). To invoke seccomp it is required to

use syscall(2) because currently the glibc library doesn’t have a wrapper

for seccomp [36]. All the constant regarding seccomp are available through

#include <linux/seccomp.h>.

A.2.1 Strict mode

#include <sys/prctl.h> defines parameters for the prctl(2) system call,

which permits to enable strict mode if invoked as shown in the Listing A.23:

p r c t l (PR SET SECCOMP, SECCOMP MODE STRICT) ;

. . .

Listing A.23: prctl strict

Instead using seccomp(2) to enable the strict mode (Listing A.24) requires

also the following headers: #include <sys/syscall.h>, to have access to sys-

tem calls numbers (including __NR_seccomp); #include <unistd.h> to invoke

syscall(2).

s y s c a l l ( NR seccomp , SECCOMP SET MODE STRICT, 0 , NULL) ;
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. . .

Listing A.24: seccomp strict

A.2.1.1 Allowed system calls

The allowed system calls in strict mode are only 4: read(2), write(2),

sigreturn(2) and _exit(2) (but not exit_group(2)). It is noteworthy

that usually the applications don’t directly invoke system calls, instead they

calls wrapper functions exposed by the glibc library. Wrappers can internally

invoke system calls with different names. Furthermore, system calls may vary

depending on the underlying architecture, lastly internally called system calls

can change based on glibc version [37].

An example to illustrate a first application of seccomp is now introduced,

also to highlight some of the aforementioned points regarding the wrappers.

int main ( int argc , char ∗∗ argv )

{
/∗ a c t i v a t e seccomp s t r i c t mode ∗/
r = p r c t l (PR SET SECCOMP, SECCOMP MODE STRICT) ;

. . .

e x i t ( 0 ) ;

}

Listing A.25: strict exit

When the program reported in the Listing A.25 is compiled and executed,

the process is terminated by the signal SIGKILL.

This happens because the function _exit(2), since glibc version 2.3, invokes

exit_group(2) system call [38], which is not allowed in strict mode. The

code can be modified substituting the call to _exit(0) with the call in the

Listing A.26
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/∗ s y s c a l l (2) a l l ow s to c a l l d i r e c t l y

∗ the k e rne l system c a l l e x i t ∗/
s y s c a l l ( NR exit , 0 ) ;

Listing A.26: syscall exit

In this case the process terminates normally because an allowed system call

is invoked.

A.2.2 Filter mode

The strict mode is very rigid. To have more flexibility it is possible to

enable the second seccomp mode and take advantage of the data structure

described in the section A.1.2.1 to write personalized filters.

Generally it is advisable to follow a whitelisting approach [37], then it is

required to know all the system calls needed by the application. The main

steps to follow to write a system call filter are the following:

• write the filter verifying the architecture and creating a system calls

whitelist

• possibly set the bit which avoids that new processes use filters with

greater privileges

• enable filter mode

• install the filter

A.2.2.1 bit no new privs

To enable filter mode the thread needs CAP_SYS_ADMIN capability assigned

to it or the no_new_privs bit set. If the bit is not already set the following

call is required:

r = p r c t l (PR SET NO NEW PRIVS, 1 , 0 , 0 , 0 ) ;
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. . .

Listing A.27: no new privs

The call in the Listing A.27 reduces the attack surface exploitable by a non

privileged user by ignoring set-user-id, set-group-id and capabilities [39], then

preventing that a child process applies filters with higher privileges than the

process which installed them [8]. The bit is inherited by children processes

created through clone(2), fork(2) and it is preserved after the execution

of execv(2) system call [40].

A.2.2.2 Data structures

In addition to the already mentioned struct sock filter and struct sock fprog,

a new data structure accessible through #include <linux/seccomp.h> is

described. While in the packet filtering application the filters operate on

packets information, in this case they operate on system call information,

described within struct seccomp data (Listing A.28)

struct seccomp data {
int nr ; /∗ System c a l l number ∗/

u32 arch ; /∗ AUDIT ARCH ∗ va lue ∗/
u64 i n s t r u c t i o n p o i n t e r ; /∗ CPU in s t r u c t i o n po in t e r ∗/
u64 args [ 6 ] ; /∗ Up to 6 system c a l l arguments ∗/

} ;

Listing A.28: struct seccomp data

where nr is the number of the invoked system call, arch indicates the ar-

chitecture. This last value needs to be checked because system call numbers

may vary between the architectures and also because some architectures al-

low processes to use different calling conventions. instruction_pointer

represents the machine instruction that executed the system call. args[6]

is the field to access system call arguments, for a maximum of 6 arguments
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[37].

A.2.2.3 Return values

The 16 most significant bits, of the 32 bits returned by the filter, specify

to the kernel the action to perform. If more filters are installed, for each

invoked system call, they are executed all starting from the last added filter

and, the action which will be performed by the kernel, is the one which has

been encountered first and that has the highest precedence.

The actions used in the examples are SECCOMP_RET_KILL, which terminates

the thread, SECCOMP_RET_ALLOW which allows the execution of the system call

and SECCOMP_RET_TRAP, that sends a SIGSYS signal to the thread and sets

some fields within siginfo_t, including si_syscall, useful for debugging

purposes [37].

A.2.2.4 Strict mode

Listing A.29 shows a filter which acts as the strict mode but in addition

it allows the exit_group(2) system call.

1 /∗ v a l i d a t e the a r c h i t e c t u r e ∗/
2 BPF STMT(BPF LD+BPF W+BPF ABS, \
3 ( o f f s e t o f ( struct seccomp data , arch ) ) ) ,

4 BPF JUMP(BPF JMP+BPF JEQ+BPF K, AUDIT ARCH X86 64 , 1 , 0 ) ,

5 BPF STMT(BPF RET+BPF K, SECCOMP RET KILL) ,

6 /∗ l oad s y s c a l l number in the accumulator ∗/
7 BPF STMT(BPF LD+BPF W+BPF ABS, \
8 ( o f f s e t o f ( struct seccomp data , nr ) ) ) ,

9 /∗ check i f the s y s c a l l number i s a l l owed ∗/
10 /∗ e x i t g r oup ∗/
11 BPF JUMP(BPF JMP+BPF JEQ+BPF K, NR exit group , 0 , 1 ) ,

12 BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW) ,

13 /∗ e x i t ∗/
14 BPF JUMP(BPF JMP+BPF JEQ+BPF K, NR exit , 0 , 1 ) ,



A.2 Seccomp 69

15 BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW) ,

16 /∗ wr i t e ∗/
17 BPF JUMP(BPF JMP+BPF JEQ+BPF K, NR write , 0 , 1 ) ,

18 BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW) ,

19 /∗ read ∗/
20 BPF JUMP(BPF JMP+BPF JEQ+BPF K, NR read , 0 , 1 ) ,

21 BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW) ,

22 /∗ s i g r e t u rn ∗/
23 BPF JUMP(BPF JMP+BPF JEQ+BPF K, NR rt s i g r e tu rn , 0 , 1 ) ,

24 BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW) ,

25 /∗ k i l l t he proces s ∗/
26 BPF STMT(BPF RET+BPF K, SECCOMP RET KILL)

Listing A.29: strict più exit group

To validate the architecture the arch field is loaded in the accumulator and

it is compared with the proper value chosen between the constants (available

within #include <linux/audit.h>) which distinguish different system call

tables (lines 1-5). Then the nr field is loaded in the accumulator (lines 6-8)

and its value is compared with the numbers of the system calls reported in

the whitelist (lines 9-25). The list consists of the system calls allowed by

default in the strict mode plus the exit_group system call. The filter, in

contrast to the behaviour of the example in the Listing A.25, now allows also

the call _exit(0), so in this case the process would not terminate.

A.2.2.5 dup

To illustrate how to filter a system call based on its actual parameters

suppose to allow the dup(STDOUT_FILENO) system call. At the filter reported

in the Listing A.29, after the line 24, the following lines should be added.

/∗ dup (STDOUT FILENO) ∗/
BPF JUMP(BPF JMP+BPF JEQ+BPF K, NR dup , 0 , 3 ) ,

BPF STMT(BPF LD+BPF W+BPF ABS, \
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( o f f s e t o f ( struct seccomp data , args [ 0 ] ) ) ) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, STDOUT FILENO, 0 , 1 ) ,

BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW) ,

Listing A.30: dup

The first and only argument of the system call is loaded in the accumulator

and it is compared with the constant k=STDOUT_FILENO, if the expression is

true the call is allowed, otherwise a jump to the instruction which terminates

the process is performed.

A.2.2.6 Macros

Some sequences of frequently used instructions can be rewritten in a more

compact way using the macros reported in the Listing A.31:

#define arch num ( o f f s e t o f ( struct seccomp data , arch ) )

#define sysca l l num ( o f f s e t o f ( struct seccomp data , nr ) )

#define VERIFY ARCHITECTURE( arch audit num ) \
BPF STMT(BPF LD+BPF W+BPF ABS, arch num ) , \
BPF JUMP(BPF JMP+BPF JEQ+BPF K, \

arch audit num , 1 , 0 ) , \
BPF STMT(BPF RET+BPF K, SECCOMP RET KILL)

#define LOAD SYSCALL NUMBER \
BPF STMT(BPF LD+BPF W+BPF ABS, sysca l l num )

#define ALLOW SYSCALL( sysca l l name ) \
BPF JUMP(BPF JMP+BPF JEQ+BPF K, \

NR ##sysca l l name , 0 , 1 ) , \
BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW)

#define KILL THREAD \
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BPF STMT(BPF RET+BPF K, SECCOMP RET KILL)

#define TRAP THREAD \
BPF STMT(BPF RET+BPF K, SECCOMP RET TRAP)

Listing A.31: macro seccomp

The complete filter, which allows the execution of both the default strict

mode system calls, plus exit_group(2) and dup(2) with the parameter

STDOUT_FILENO, can be rewritten as shown in the Listing A.32

VERIFY ARCHITECTURE(AUDIT ARCH X86 64 ) ,

LOAD SYSCALL NUMBER,

ALLOW SYSCALL( ex i t g roup ) ,

ALLOW SYSCALL( e x i t ) ,

ALLOW SYSCALL( wr i t e ) ,

ALLOW SYSCALL( read ) ,

ALLOW SYSCALL( r t s i g r e t u r n ) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, NR dup , 0 , 3 ) ,

BPF STMT(BPF LD+BPF W+BPF ABS, \
( o f f s e t o f ( struct seccomp data , args [ 0 ] ) ) ) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, STDOUT FILENO, 0 , 1 ) ,

BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW) ,

KILL THREAD

Listing A.32: seccomp filter with macros

A.2.3 Installing the filter

The last step is the filter installation. As already seen for mode strict

activation, either prctl(2) (see Listing A.33 ) or seccomp(2) (see Listing

A.34) can be used.
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s y s c a l l ( NR seccomp , SECCOMP SET MODE FILTER, 0 , &bpf ) ;

. . .

Listing A.33: seccomp mode filter

An example which shows the complete code structure including all the steps

previously described is reported in the Listing A.34.

/∗ i n i t i a l i z e the f i l t e r program ∗/
struct s o c k f i l t e r bpfcode [ ] = {

BPF STMT(BPF LD+BPF W+BPF ABS, \
( o f f s e t o f ( struct seccomp data , arch ) ) ) ,

BPF JUMP(BPF JMP+BPF JEQ+BPF K, AUDIT ARCH X86 64 , 1 , 0 ) ,

BPF STMT(BPF RET+BPF K, SECCOMP RET KILL) ,

. . .

} ;

struct s o ck fp r og bpf ;

bpf . l en = ( s izeof bpfcode / s izeof bpfcode [ 0 ] ) ;

bpf . f i l t e r = bpfcode ;

/∗ s e t no new pr ivs b i t ( i f the thread doesn ’ t

∗ have CAP SYS ADMIN ass i gned ) ∗/
r = p r c t l (PR SET NO NEW PRIVS, 1 , 0 , 0 , 0 ) ;

. . .

/∗ i n s t a l l the f i l t e r ∗/
r = p r c t l (PR SET SECCOMP, SECCOMP MODE FILTER, &bpf ) ;

. . .

Listing A.34: seccomp code structure
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A.2.3.1 Debug

A command which can be useful while writing a filter is strace(1), that

can be used to track both the system calls called by a process and the received

signals [41]. Suppose to add new instructions, which allow the fork(2)

system call, to a preexisting filter. A code fragment of the original filter is

shown in the Listing A.35.

struct s o c k f i l t e r bpfcode [ ] = {
. . .

BPF STMT(BPF RET+BPF K, SECCOMP RET KILL)

} ;

. . .

int main ( int argc , char ∗∗ argv )

{
r = p r c t l (PR SET NO NEW PRIVS, 1 , 0 , 0 , 0 ) ;

. . .

r = p r c t l (PR SET SECCOMP, SECCOMP MODE FILTER, &bpf ) ;

. . .

f o rk ( ) ;

return 0 ;

}
˜

Listing A.35: fork example

A first attempt could consist of adding the instructions reported in the Listing

A.36 to the filter

BPF JUMP(BPF JMP+BPF JEQ+BPF K, NR fork , 0 , 1 ) ,

BPF STMT(BPF RET+BPF K, SECCOMP RET ALLOW) ,

Listing A.36: allow fork

However if the program is compiled and executed it can be noted that the
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process is terminated. To verify which is the system call that causes the

termination, the line in the Listing A.37 can be temporarily substituted with

the line in the Listing A.38

BPF STMT(BPF RET+BPF K, SECCOMP RET KILL)

Listing A.37: kill

BPF STMT(BPF RET+BPF K, SECCOMP RET TRAP)

Listing A.38: trap

As a consequence now is possible to examine the information contained within

siginfo_t. In fact executing the program as in the Listing A.39

$ s t r a c e . / prog

Listing A.39: strace prog

produces the output in the Listing A.40

−−− SIGSYS { s i s i g n o=SIGSYS , s i c o d e=SYS SECCOMP, \
s i c a l l a d d r =0x7f1d65215b1c , s i s y s c a l l= NR clone , \
s i a r c h=AUDIT ARCH X86 64} −−−

+++ k i l l e d by SIGSYS ( core dumped) +++

Bad system c a l l ( core dumped)

Listing A.40: strace output

which highlights, through the si_syscall field, how in reality the actual

system call is __NR_clone, then also in this example, as already seen in the

Listing A.25, the called wrapper internally invokes a system call with a dif-

ferent name (for this system call since glibc 2.3.3 version [42]). Consequently

__NR_fork needs to be substituted with __NR_clone in the filter instruc-
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tions.

In conclusion, strace is useful to create the whitelist because it helps to

identify all the system calls needed by the application to work properly.

A.2.4 Libseccomp

To simplify filter writing the libseccomp library has been introduced.

This library provides an high level API to abstract from the underlying cBPF

language [43]. The main steps to use the library can be summarised in the

following [44]:

• initialize the seccomp filter state defining the default action to perform

• add the rules to the filter

• load the filter in to the kernel

• release the seccomp filter state

To explore the use of the main functions provided by the library, an example

which implements the filter already described in the Listing A.29, is now

explained along with the API exposed by libseccomp.

A.2.4.1 seccomp init

The first step consists in the filter initialization through the seccomp_init()

function. The prototype is shown in the Listing A.41

s c m p f i l t e r c t x s ec comp in i t ( u i n t 3 2 t d e f a c t i o n ) ;

Listing A.41: seccomp init

The function seccomp_init() needs to be called before of all the others

functions. As an argument it takes the default action to perform, meaning



76 A Classic BPF usage

the action to execute if the system call doesn’t match any rule. Available

default actions are the following:

• SCMP ACT KILL terminates the thread with the SIGSYS signal

• SCMP ACT KILL PROCESS terminates the entire process with the

SIGSYS signal

• SCMP ACT TRAP the thread receive a SIGSYS signal which can be

captured

• SCMP ACT ALLOW has no effect

The first code fragment to implement the filter is reported in the Listing

A.42.

/∗ i n i t i a l i z e f i l t e r s t a t e and s e t

∗ k i l l as d e a f u l t ac t i on ∗/
s c m p f i l t e r c t x ctx ;

ctx = seccomp in i t (SCMP ACT KILL ) ;

Listing A.42: seccomp init

scmp_filter_ctx is a data structure which contains the filter context,

returned on success from seccomp_init().

A.2.4.2 seccomp rule add

Now the rules can be added to the filter through seccomp_rule_add()

(Listing A.43).

int seccomp rule add ( s c m p f i l t e r c t x ctx , u i n t 3 2 t act ion ,

int s y s c a l l , unsigned int arg cnt , . . . ) ;

Listing A.43: seccomp rule add
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ctx is the context returned during the filter initialization phase. action can

take one of the values already seen for seccomp_init(). syscall indicates the

number of the system call to which the rule is referring. It is advisable to pass

this argument using the macro SCMP_SYS(syscall_name) to be sure that all

the correct operations related to the different architectures will be performed.

arg cnt specifies the number of the rules related to the system call arguments.

To write these last rules different macros are available which allow to compare

an actual parameter with a particular value (Listing A.44).

struct scmp arg cmp SCMP CMP(unsigned int arg ,

enum scmp compare op , . . . ) ;

Listing A.44: SCMP CMP

SCMP_CMP() allows to choose an arbitrary argument through arg and to use

one of the comparison operator. The SCMP_A{0-5} macros instead, refer to

a specific argument of the system call.

The second code fragment of the filter, which implements the whitelist, is

illustrated in the Listing A.45. In this scenario the general use of the system

calls is allowed, then there are no rules about the arguments and for this

reason arg cnt is 0.

/∗ add r u l e s to b u i l d the w h i t e l i s t ∗/
/∗ e x i t g r oup ∗/
r = seccomp rule add ( ctx , SCMP ACT ALLOW, \

SCMP SYS( ex i t g roup ) , 0)

/∗ e x i t ∗/
r = seccomp rule add ( ctx , SCMP ACT ALLOW, \

SCMP SYS( e x i t ) , 0 ) ;

/∗ wr i t e ∗/
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r = seccomp rule add ( ctx , SCMP ACT ALLOW, \
SCMP SYS( wr i t e ) , 0 ) ;

/∗ read ∗/
r = seccomp rule add ( ctx , SCMP ACT ALLOW, \

SCMP SYS( read ) , 0 ) ;

/∗ s i g r e t u rn ∗/
r = seccomp rule add ( ctx , SCMP ACT ALLOW, \

SCMP SYS( r t s i g r e t u r n ) , 0 ) ;

Listing A.45: whitelist libseccomp

To permit the process to duplicate its standard output, as in the previously

shown example (Listing A.30), a new rule can be added as in the Listing

A.46)

/∗ dup (STDOUT FILENO) ∗/
r = seccomp rule add ( ctx , SCMP ACT ALLOW, SCMP SYS( dup ) , 1 ,

SCMP A0(SCMP CMP EQ, STDOUT FILENO) ) ;

Listing A.46: dup SCMP A0

or using the more generic macro SCMP_CMP(), as in the Listing A.47

/∗ dup (STDOUT FILENO) ∗/
r = seccomp rule add ( ctx , SCMP ACT ALLOW, SCMP SYS( dup ) , 1 ,

SCMP CMP(0 , SCMP CMP EQ, STDOUT FILENO) ) ;

Listing A.47: dup SCMP CMP

In both cases arg cnt is set to 1 to indicate that there is a rule relative

to the system call arguments and also the comparison operator is the same

(SCMP_CMP_EQ) which specifies that there is a match only if the chosen ar-

gument is equal to a particular value (STDOUT_FILENO). With the generic

macro the rule relative to the system call arguments has three parameters,

of which the first specifies which argument to evaluate. In this example the
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only possible value is 0 because dup(2) takes just one argument.

A.2.4.3 seccomp rule add array

In addition to seccomp_rule_add() it is possible to invoke seccomp_rule_add_array()

that allows to pass the system call arguments rules as an array. For example

to permit the call shown in the Listing A.48

open ( ” h e l l o . txt ” , OWRONLY|O CREAT, S IWUSR | S IRUSR ) ;

Listing A.48: open con flag

the proper rule can be added through the call reported in the Listing A.49

which has arg_cmp as the last parameter, that is a pointer to an array of

struct scmp_arg_cmp containing the rules for the single arguments.

/∗ open ∗/
r = seccomp ru le add array ( ctx , SCMP ACT ALLOW, \

SCMP SYS( openat ) , 2 , arg cmp ) ;

Listing A.49: add array

In particular, using strace, may be verified how open(2) internally calls

openat(2) with AT_FDCWD as argument to specify that the pathname needs

to be interpreted relatively to the current directory. The initialized array

with the proper rules is shown in the Listing A.50.

struct scmp arg cmp arg cmp [ ] = {
SCMP A0(SCMP CMP EQ, AT FDCWD) ,

SCMP A2(SCMP CMP EQ, OWRONLY|O CREAT) ,

SCMP A3(SCMP CMP EQ, S IWUSR | S IRUSR)

} ;

Listing A.50: openat arguments array
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It is worth to note that the filter is not active until it is loaded in to the

kernel.

A.2.4.4 seccomp load

Loads the filter in to the kernel (Listing A.51).

int seccomp load ( s c m p f i l t e r c t x ctx ) ;

Listing A.51: seccomp load

The third filter code fragment is reported in the Listing A.52

r = seccomp load ( ctx ) ;

Listing A.52: load

A.2.4.5 seccomp release

Releases the filter and frees the memory associated to ctx (Listing A.53)

void s e c comp re l ea s e ( s c m p f i l t e r c t x ctx ) ;

Listing A.53: seccomp release

After loading the filter into the kernel the filter state can be destroyed releas-

ing the associated resources. The filters already loaded into the kernel are

not affected. Furthermore, after the function is invoked, the filter context

can’t be used anymore [45, 46]. Therefore the filter code includes the call

shown in the Listing A.54,

s e c comp re l ea s e ( ctx ) ;

Listing A.54: release
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wherever an error, denoted by a return value, occurs in one of the library

functions.

A.2.4.6 libseccomp strict example

The overall filter code structure comprehensive of all the steps previously

explained is now illustrated (Listing A.55)

/∗ i n i t i a l i z e f i l t e r s t a t e and s e t

∗ k i l l as d e f a u l t ac t i on ∗/
s c m p f i l t e r c t x ctx ;

ctx = seccomp in i t (SCMP ACT KILL ) ;

/∗ add r u l e s to b u i l d the w h i t e l i s t ∗/
. . .

/∗ s i g r e t u rn ∗/
r = seccomp rule add ( ctx , SCMP ACT ALLOW, \

SCMP SYS( r t s i g r e t u r n ) , 0 ) ;

i f ( r<0){
s e c comp re l ea s e ( ctx ) ;

}

/∗ l oad the f i l t e r i n t o the k e rne l ∗/
r = seccomp load ( ctx ) ;

i f ( r<0){
s e c comp re l ea s e ( ctx ) ;

}

/∗ r e l e a s e f i l t e r s t a t e ∗/
s e c comp re l ea s e ( ctx ) ;

. . .

e x i t (EXIT SUCCESS ) ;

Listing A.55: seccomp full code
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The library offers also other functions. The explanation of few of them

follows.

A.2.4.7 seccomp syscall priority

It allows to assign a priority to the system calls in the filter (Listing A.56).

int s e c c o m p s y s c a l l p r i o r i t y ( s c m p f i l t e r c t x ctx ,

int s y s c a l l , u i n t 8 t p r i o r i t y ) ;

Listing A.56: seccomp syscall priority

System calls with higher priority are positioned at the beginning in the filter

code. priority may vary within a range of 0-255. The function takes a

context as its first argument, so it needs to be called before the context is

made unusable by seccomp_release().

A.2.4.8 seccomp syscall export pfc

It allows to export the filter in a human readable format (Listing A.57).

int seccomp export p fc ( const s c m p f i l t e r c t x ctx , int fd ) ;

Listing A.57: lst:seccomp export pfc

To invoke this function some system calls need to be allowed (including

fcntl(2)). To identify them, as already seen in the section, strace can

be used.

An example is now introduced to show how the change of a system call pri-

ority has an impact on its position within the filter. In the Listing A.58 is re-

ported the output of the call to seccomp_export_pfc(ctx, STDOUT_FILENO)

on a filter which allows both exit_group and fcntl.

$ . / s t r i c t e x l i b



A.2 Seccomp 83

#

# pseudo f i l t e r code s t a r t

#

# f i l t e r f o r arch x86 64 (3221225534)

i f ( $arch == 3221225534)

# f i l t e r f o r s y s c a l l ” e x i t g r oup ” (231) [ p r i o r i t y : 65535]

i f ( $ s y s c a l l == 231)

ac t i on ALLOW;

# f i l t e r f o r s y s c a l l ” f c n t l ” (72) [ p r i o r i t y : 65535]

i f ( $ s y s c a l l == 72)

ac t i on ALLOW;

. . .

Listing A.58: fcntl pre

It can be noted that fcntl has the same priority of exit_group.

Instead if the program invokes seccomp_syscall_priority() as shown in

the Listing A.59

r = s e c c o m p s y s c a l l p r i o r i t y ( ctx , SCMP SYS( f c n t l ) , 1 ) ;

Listing A.59: seccomp syscall priority

the system call priority is changed through the hint 1 passed as an argument,

which will be used by the filters generator to modify the positioning of the

system calls. The new output is shown in the Listing A.60

$ . / s t r i c t e x l i b

#

# pseudo f i l t e r code s t a r t

#

# f i l t e r f o r arch x86 64 (3221225534)

i f ( $arch == 3221225534)

# f i l t e r f o r s y s c a l l ” f c n t l ” (72) [ p r i o r i t y : 131071]
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i f ( $ s y s c a l l == 72)

ac t i on ALLOW;

# f i l t e r f o r s y s c a l l ” e x i t g r oup ” (231) [ p r i o r i t y : 65535]

i f ( $ s y s c a l l == 231)

ac t i on ALLOW;

. . .

Listing A.60: fcntl post

which clearly shows how fcntl has been moved up. The effect is to reduce

the overhead for the system calls with an higher priority.
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Extended BPF usage

To write an eBPF program basically two approaches can be adopted :

• using eBPF instruction set

• using an higher level language (e.g. C, go, rust)

With the first approach also to write a small program can become a cumber-

some and time-consuming task, in fact it is like writing processor assembly.

The second approach permits to compile the eBPF program written in the

higher level language into an eBPF object file making the process easier. The

latter approach is the most adopted and will be described.

Useful tools and libraries will be discussed along with examples. All the

examples and more details are available at the following repository https:

//github.com/midist0xf/ebpfexamples.

Generally an eBPF program is made of different components [47]:

• the backend : the eBPF bytecode

• the loader : loads the eBPF bytecode into the kernel

• the front-end : reads data written by the backend in the data structures

85
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• data structures : permit communication between backends and fron-

tends

Section B.1 explains how to use llvm/clang to compile eBPF programs writ-

ten in restricted C and how to load them into the kernel using C as frontend

language and with the help of libbpf library.

Section B.1.8 describes libbpf that is a BPF library which goal is to provide

a standard way to access eBPF object files.

B.1 Clang - LLVM

LLVM Clang compiler provides eBPF backend which compiles a subset

of C language (often referred as ”restricted C”) to eBPF bytecode [56]. Re-

stricted C does not provide global variables, variadic functions, floating-point

numbers, and passing structures as function arguments [51]. Also (not un-

rolled) loops were forbidden but, since recently, bounded loops are allowed

[57].

For an example on how to use clang and llc to compile an eBPF program

written in restricted C see section B.10.

The program structure and the main components required to write an eBPF

program will be described before to introduce few complete examples.

B.1.1 eBPF program files structure

Each program can be divided in two files: one which contains the frontend

and the loader code (*_user.c) and one which contains the eBPF program

and data structures code (*_kern.c). Several examples are available in the

samples/bpf directory within the kernel source code but with the disad-

vantage that they need to be compiled from within the kernel source tree.

Therefore, it is also described how to use libraries and tools to compile and

loads eBPF programs indipendently from the kernel source tree.
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B.1.2 bpf system call

bpf(2) system call is available since Linux 3.18 through #include <linux/bpf.h>

and allows to execute operations related to eBPF [51].

int bpf ( int cmd , union b p f a t t r ∗ attr , unsigned int s i z e ) ;

Listing B.1: bpf

cmd value determines the operation performed by bpf(2). attr is a pointer

to an union of anonymous structures used by different bpf commands. size

is the size of the union pointed by attr.

enum bpf cmd within linux/bpf.h lists all the available commands usable

as cmd value. Few of them are reported in the Listing B.2:

enum bpf cmd {
BPF MAP CREATE,

BPF MAP LOOKUP ELEM,

. . .

BPF PROG LOAD,

BPF OBJ PIN ,

BPF OBJ GET,

. . .

} ;

Listing B.2: bpf cmd

They allow to operate on maps (BPF_MAP_*), to verify and load programs

into the kernel (BPF_PROG_LOAD), to pin maps and programs in the filesystem

(BPF_OBJ_*) and more.

Regarding the anonymous structures, for example, to operate on maps

with BPF_MAP_*_ELEM commands the following attributes are needed:
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union b p f a t t r {
struct { /∗ anonymous s t r u c t used by

∗ BPF MAP ∗ ELEM commands ∗/
u32 map fd ;

a l i g n e d u 6 4 key ;

union {
a l i g n e d u 6 4 value ;

a l i g n e d u 6 4 next key ;

} ;

u64 f l a g s ;

} ;

}

Listing B.3: BPF MAP * ELEM attributes

Suppose a lookup operation on a map is required. Once the attributes are

initialized (which depends on the operation that is performed) is possible to

lookup for an element in the map executing the call in the Listing B.4

s y s c a l l ( NR bpf , BPF MAP LOOKUP ELEM, &attr , s izeof ( a t t r ) ) ;

Listing B.4: syscall bpf

In this case, if the element is found, its value is stored in value, otherwise

-1 is returned. To perform a different operation the same steps are applied

using the proper anonymous structure.

B.1.3 Macro

Writing an eBPF program requires to tell LLVM in which separated ELF

sections put the eBPF program object file, maps and license. bpf_helpers.h

(accessible in the kernel source code) makes available a macro named SEC

which has the effect to initialize the section attribute.



B.1 Clang - LLVM 89

/∗ he l p e r macro to p l ace programs , maps , l i c e n s e in

∗ d i f f e r e n t s e c t i o n s in e l f b p f f i l e . Sec t ion names

∗ are i n t e r p r e t e d by e l f b p f l oader

∗/
#define SEC(NAME) a t t r i b u t e ( ( s e c t i o n (NAME) , used ) )

Listing B.5: SEC macro

The bpf loader interprets the section name to understand to which system

event to attach the ebpf program. Moreover, the kernel can allow the access

to some helper-functions only to GPL compatible license, possibly rejecting

programs with a different one [52], therefore a section named license will

be present in eBPF programs.

B.1.4 eBPF program context

Each eBPF program type determines the input (context) passed to the

program [51]. In the case an eBPF program is attached to a socket

SEC( ” socke t ” )

int bp f s o c ke t p r og ( struct s k b u f f ∗ skb )

{
/∗ d i s card the packe t ∗/
return 0 ;

}
char l i c e n s e [ ] SEC( ” l i c e n s e ” ) = ”GPL” ;

Listing B.6: context socket

the context consists of a pointer to struct sk buff (see Listing B.6), that is

an user accessible mirror of in-kernel struct sk buff, which is the structure

where the packet is stored in the kernel [32]. The access to the context it’s

converted into the access to the kernel data structure by

sk_skb_convert_ctx_access() (see net/core/filter.c).
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An eBPF program can be attached to several hooks in to the kernel.

Suppose that a program needs to be attached to a tracepoint. It’s possible

to list all the tracepoints that can be used executing the command in the

Listing B.7. The output is in the form of category:name.

$ sudo p e r f l i s t

. . .

s y s c a l l s : s y s e n t e r o p e n [ Tracepoint event ]

s y s c a l l s : s y s e n t e r o p e n b y h a n d l e a t [ Tracepoint event ]

s y s c a l l s : s y s e n t e r o p e n a t [ Tracepoint event ]

s y s c a l l s : s y s e n t e r p a u s e [ Tracepoint event ]

. . .

Listing B.7: perf list tracepoint

In this case the context of the program consists in a data structure which

can be build using the fields found within

/sys/kernel/debug/tracing/events/category/name/format. For instance,

in the samples/bpf/xdp_monitor_kern.c kernel example,

SEC("tracepoint/xdp/xdp_redirect_*") are the sections where eBPF pro-

grams will reside. Consequently, the relative tracepoint context struct is de-

fined, as reported in the Listing B.8, based on the fields contained within

/sys/kernel/debug/tracing/events/xdp/xdp_redirect_*/format files.

struct x d p r e d i r e c t c t x

u64 pad ; // F i r s t 8 b y t e s are not a c c e s s i b l e

// by bp f code

int prog id ; // o f f s e t : 8 ; s i z e : 4 ; s i gned : 1 ;

. . .
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} ;

Listing B.8: struct xdp redirect ctx

This solution is required because an eBPF program in the kernel can’t read

these files [60].

It should be noted that eBPF programs can’t access the first 8 bytes of

tracepoint data because they are common to all tracepoints and are used to

store the pointer to struct pt regs which some of the bpf helpers will use,

therefore an 8 bytes pad field is added at the beginning of the tracepoint

context struct [58, 60].

The general structure of an eBPF program which will be attached to a

tracepoint is reported in the Listing B.9

struct category name ctx {
. . .

} ;

SEC( ” t r a c e p o i n t / category /name” )

int b p f t r a c e p o i n t p r o g ( struct category name ctx ∗ ctx )

{
. . .

}
char l i c e n s e [ ] SEC( ” l i c e n s e ” ) = ”GPL” ;

Listing B.9: context tracepoint

where category and name need to be replaced accordingly to the chosen

tracepoint. See section B.1.10 for a complete example.

An article which describes the main program types contexts is available online

[59].
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B.1.5 eBPF program section

Suppose that the file which contains the eBPF program in the Listing

B.6 is called sockex_kern.c. To illustrate how the eBPF program object

code is loaded in the relative ELF section, first it is required to compile

sockex_kern.c file with the command shown in the Listing B.10

c lang −S −I . −O2 −emit−l lvm −c sockex kern . c −o − | \
l l c −march=bpf − f i l e t y p e=obj −o sockex kern . o

Listing B.10: clang/llvm sockex

The command first emits LLVM intermediate assembly language which is

subsequently compiled into the assembly language for a specific architecture

(bpf in this case). It is possible to read sections of the generated ELF file

using the command reported in the Listing B.11.

llvm−r e a d e l f −8 −s e c t i o n s sockex kern . o

Listing B.11: llvm-readelf-8

which in turn produces the output shown in the Listing B.12

Sec t i on Headers :

[ Nr ] Name Type Address . . .

. . .

[ 3 ] socke t PROGBITS 0000000000000000 . . .

[ 4 ] l i c e n s e PROGBITS 0000000000000000 . . .

. . .

Listing B.12: llvm-readelf-8 output

that shows both the sections previously defined in the source code. Further-

more, to read the content of socket section, the command in the Listing

B.13 can be used.
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llvm−objdump −no−show−raw−in sn −s e c t i o n=socket −S sockex kern . o

Listing B.13: llvm-objdump socket

The output (Listing B.14) is the eBPF bytecode of the program.

Disassembly o f s e c t i o n socke t :

bp f s o c ke t p r og :

0 : r0 = 0

1 : e x i t

Listing B.14: llvm-objdump socket output

In this example it consists of just two instructions. The first stores the value

0 into the register R0. The second terminates the program. In this case,

since a socket program type has been used, a return value of 0 tells to the

kernel to discard the packet.

B.1.6 eBPF program loader

An eBPF program in C is first compiled with LLVM into an ELF file (as

seen in the Listing B.13), then a loader in the user-space parses the ELF file

and loads it into the kernel [53]. Different loaders are available (tc, iproute2,

bcc, libbpf, etc.). They differs in the ELF conventions. Currently the use of

libbpf is suggested [55] and there is an effort to use libbpf as the loader

standard implementation [54], then it will be used in the examples.

B.1.7 eBPF program verifier

Suppose that the eBPF program shown in the Listing B.6 - without the

return 0; statement - has been loaded into the kernel using libbpf through

the user-space frontend program (see section B.1.9 for an example). The

eBPF calling convention requires that the R0 register of the virtual machine

contains the return value of an helper function, the exit value for the eBPF
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program [35] or the return value from an eBPF function for BPF to BPF calls.

As a consequence, when the user space code is executed, the verifier shows

the error message reported in the Listing B.15 because R0 is not initialized

(e.g. no return 0; statement).

l i b b p f : −− BEGIN DUMP LOG −−−
l i b b p f :

0 : (95) e x i t

R0 ! read ok

l i b b p f : −− END LOG −−

Listing B.15: verifierreadok

The error message makes clear that the output is generated by libbpf. In

particular it’s the load_program() function which is responsible for printing

the error message. This function is called by bpf_program__load(), which is

invoked through a sequence of function calls that starts with bpf_prog_load(),

the function that loads the eBPF program in to the kernel (more details on

libbpf in section B.1.8).

The BPF kernel document [35] illustrates other examples of verifier error

messages which can be extremely helpful to debug eBPF programs.

B.1.8 libbpf

Last example regarding the verifier introduced the libbpf library. It is

available in the kernel source tree [48], as a stand-alone version [49] or as a

Debian sid package [50].

libbpf provides different groups of types and functions. The library facil-

itates the operations on eBPF object files exposing bpf(2) wrappers, ”ob-

jects” and functions to work with them [49]. Objects and relative functions
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are in libbpf.h, instead system call wrappers can be found in bpf.h [49].

The description of few helpful functions used in the examples follows.

B.1.8.1 bpf prog load

Load an eBPF program object file into the kernel

int bp f p rog l oad ( const char ∗ f i l e , enum bpf prog type type ,

struct b p f o b j e c t ∗∗pobj , int ∗ prog fd )

Where file is a pointer to a string that is the name of the eBPF object file, for

example "prog_kern.o". type is the eBPF program type. pobj is a pointer

to a pointer to the data structure that represents the ELF object. prog fd

will contain the file descriptor associated to the program.

For example, to load an eBPF program object file, a call as reported in

the Listing B.16, is performed

fd = bp f p rog l oad ( ” prog kern . o” , BPF PROG TYPE SOCKET FILTER,

&obj , &prog fd )

Listing B.16: bpf prog load socket

Internally bpf_object__load_xattr() is invoked, which in turns calls

consecutively

b p f o b j e c t c r e a t e m a p s ( ) ;

b p f o b j e c t r e l o c a t e ( ) ;

b p f o b j e c t l o a d p r o g s ( ) ;

Listing B.17: bpf prog load calls

therefore this function also handles maps creation before the programs are
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loaded.

B.1.8.2 bpf object find map fd by name

This function allows to retrieve a map file descriptor by the map’s name.

int bp f ob j ec t f ind map fd by name ( const struct b p f o b j e c t ∗obj ,

const char ∗name ) ;

Listing B.18: bpf object find map fd by name

For instance if a map is defined in prog_kern.c as follows,

struct bpf map def SEC( ”maps” ) my map = {
. type = BPF MAP TYPE ARRAY,

. . .

} ;

Listing B.19: my map

after that the eBPF program named prog_kern.o has been loaded into

the kernel with bpf_prog_load(), it’s possible to get the map’s file descriptor

performing a call, as reported in the Listing B.20.

map fd = bpf ob j ec t f ind map fd by name ( obj , ”my map” ) ;

Listing B.20: find map by name

The call combines two functions, in fact internally it invokes

bpf_map__fd(bpf_object__find_map_by_name()). Therefore first, iterat-

ing through all the map sections a reference to the map (or NULL) with that

map name is retrieved, then its file descriptor is returned.
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map_fd can be used to interact with the map as shown in the Listing B.21

bpf map update elem ( map fd , &key , &value , BPF ANY) ;

Listing B.21: bpf map update elem

B.1.8.3 bpf object find program by title

This function returns a pointer to a program object, given the section

name where the program resides within the ELF file.

struct bpf program ∗ b p f o b j e c t f i n d p r o g r a m b y t i t l e (

const struct b p f o b j e c t ∗obj , const char ∗ t i t l e )

Listing B.22: bpf object find program by title

Where obj is a pointer to the ELF file object and title is the name given to

the section where the eBPF program resides. For instance, if a program is

defined in the *_kern.c file as follows

SEC( ” t r a c e p o i n t / s y s c a l l s / s y s e n t e r c l o n e ” ) ;

int b p f t r a c e p o i n t p r o g ( struct s y s c a l l s s y s e n t e r c l o n e a r g s \
∗ ctx )

{
. . .

}
char l i c e n s e [ ] SEC( ” l i c e n s e ” ) = ”GPL” ;

after loading the program into the kernel, it is possible to get a pointer to

the program object executing the call shown in the Listing B.23

prog = b p f o b j e c t f i n d p r o g r a m b y t i t l e ( obj , \
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” t r a c e p o i n t / s y s c a l l s / s y s e n t e r c l o n e ” ) ;

Listing B.23: bpf object find program by title example

B.1.8.4 bpf program attach tracepoint

This function attaches an eBPF program to a tracepoint. In the example

reported in the Listing B.23 a pointer to the program object was retrieved.

That program can be attached to a particular tracepoint performing the call

in the Listing B.24

bp f p rog ram at ta ch t ra c epo in t ( prog , ” s y s c a l l s ” , \
” s y s e n t e r c l o n e ” ) ;

Listing B.24: bpf program attach tracepoint example

In this case, every time a call to clone(2) is performed, the eBPF program

is executed.

The function calls perf_event_open_tracepoint() which in turn invokes

perf_event_open(2) to create the file descriptor relative to the event to

be measured. Successively the eBPF program is attached to the tracepoint

event and is enabled calling ioctl(2) with, respectively,

PERF_EVENT_IOC_SET_BPF and PERF_EVENT_IOC_ENABLE flags.

B.1.9 Socket filter example

To show the usage of the different components previously introduced, this

example illustrates an eBPF program which reads from a map, updated from

the userspace code, the number of the port that should be allowed and then

compares the port number with the source port of the received UDP packet

header. If port numbers are equal the program accepts the packet, otherwise

the program discards it. More details are available at the repository.
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The udpmap_kern.c file contains the eBPF program and the map defini-

tion, as shown in the Listing B.25

1 struct bpf map def SEC( ”maps” ) my map = {
2 . type = BPF MAP TYPE ARRAY,

3 . k e y s i z e = s izeof ( u i n t 3 2 t ) ,

4 . v a l u e s i z e = s izeof ( u i n t 3 2 t ) ,

5 . max entr i e s = 1 ,

6 } ;

7

8 SEC( ” socke t ” )

9 int bp f s o c ke t p r og ( struct s k b u f f ∗ skb )

10 {
11 /∗ index o f the f i r s t and only e lement in the

12 ∗ array map ∗/
13 int index = 0 ;

14 /∗ s rc por t wr i t t en from userspace in the map ∗/
15 u i n t 3 2 t ∗ s r c p o r t u s r = bpf map lookup elem(&my map ,\
16 &index ) ;

17 i f ( s r c p o r t u s r ){
18 /∗ s rc por t from udp packe t header ∗/
19 int s r c p o r t p k t = l o a d h a l f ( skb , o f f s e t o f ( \
20 struct udphdr , source ) ) ;

21 /∗ compare por t numbers ∗/
22 i f ( s r c p o r t p k t == (∗ s r c p o r t u s r ) )

23 return −1; // re turn the en t i r e packe t

24 }
25 return 0 ; // d i s card the packe t

26 }
27 char l i c e n s e [ ] SEC( ” l i c e n s e ” ) = ”GPL” ;

Listing B.25: udpmap kern.c
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Initially an array map is defined (lines 1-6). The array map has just one ele-

ment, since the only value to be inserted is the port number. Every time an

UDP packet arrives, through the helper function bpf_map_lookup_elem()

the value inserted in to the map is retrieved accessing it by an index value

of 0 (lines 15-16). It is noteworthy that before to use the srcport_usr vari-

able, its content needs to be checked (line 17), otherwise the verifier emits an

error message (e.g. R0 invalid mem access ’map_value_or_null’, again

refer to the kernel documentation [35] for errors explanation). The call to

load_half() LLVM builtin function loads the UDP header source port field

(line 19). At the end port numbers are compared and a proper decision is

taken (lines 22-25).

The udpmap_user.c file contains the userspace program, as shown in the

Listing B.26

1 int main ( int ac , char ∗∗ argv )

2 {
3 /∗ l oad the ebp f program ob j e c t code in t o the k e rne l ∗/
4 i f ( bp f p rog l oad ( ”udpmap kern . o” , \
5 BPF PROG TYPE SOCKET FILTER, &obj , &prog fd ) )

6 return 1 ;

7

8 /∗ ge t the map fd by name ∗/
9 map fd = bpf ob j ec t f ind map fd by name ( obj , ”my map” ) ;

10 . . .

11

12 /∗ c r ea t e soc ke t f i l e d e s c r i p t o r f o r UDP pro t o co l ∗/
13 int fd = socket (AF INET , SOCK DGRAM, IPPROTO UDP) ;

14 . . .

15

16 /∗ a t t ach the f i l t e r ∗/
17 a s s e r t ( s e t sockopt ( fd , SOL SOCKET, SO ATTACH BPF, &prog fd ,
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18 s izeof ( prog fd ) ) == 0 ) ;

19

20 /∗ bind the l o c a l address to the socke t ∗/
21 int n ;

22 n = bind ( fd , ( struct sockaddr ∗)&servaddr , s izeof ( servaddr ) ) ;

23 . . .

24

25 /∗ updates the map with the por t number to a l l ow ∗/
26 for ( i = 1031 ; i < 1035 ; i++) {
27 r e t = bpf map update elem ( map fd , &key , &i , BPF ANY) ;

28 . . .

29 }
30 return 0 ;

31 }

Listing B.26: udpmap user.c

The userspace codes loads the ebpf program into the kernel (lines 4-5). Then

retrieves the file descriptor associated with the map (line 9) and, after at-

taching the program to the UDP socket (lines 17-18), through a for loop

updates the map with the port number which should be allowed next (lines

26-28).

B.1.10 Tracepoint example

The traceopenat_kern.c file contains the eBPF program, as shown in

the Listing B.27

1 struct s y s c a l l s e n t e r o p e n a t c t x {
2 u64 pad ;

3 int s y s c a l l n r ;

4 const char ∗ f i l ename ;

5 int f l a g s ;

6 unsigned short modep ;
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7 } ;

8 SEC( ” t r a c e p o i n t / s y s c a l l s / s y s e n t e r o p e n a t ” )

9 int bp f tp prog ( struct s y s c a l l s e n t e r o p e n a t c t x ∗ ctx )

10 {
11 char fmt [ ] = ” He l lo \n” ;

12 int f l a g s = ctx−>f l a g s ;

13

14 i f ( ( f l a g s & O RDONLY) == O RDONLY)

15 b p f t r a c e p r i n t k ( fmt , s izeof ( fmt ) ) ;

16 return 0 ;

17 }
18 char l i c e n s e [ ] SEC( ” l i c e n s e ” ) = ”GPL” ;

Listing B.27: traceopenat kern.c

First the tracepoint context struct and the specific section name are defined

(lines 1-8), as already described in the eBPF program’s context section B.1.4.

Every time the openat(2) system call is invoked the eBPF program is exe-

cuted and the flags value is checked to verify if O_RDONLY flag is set, in that

case an helper function which prints a message is called (lines 14-15).

bpf_trace_printk() should be used only for debugging purposes because

is slow [15] . The output of bpf_trace_printk() can be read executing the

command illustrated in the Listing B.28.

$ sudo cat / sys / ke rne l /debug/ t r a c i n g / t r a c e p i p e

Listing B.28: cat trace pipe

The traceopenat_user.c file contains the userspace program, as shown

in the Listing B.29

1 int main ( int argc , char ∗∗ argv )

2 {
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3 . . .

4 /∗ l oad the ebp f program ob j e c t code in t o the k e rne l ∗/
5 i f ( bp f p rog l oad ( ” t raceopenat ke rn . o” , \
6 BPF PROG TYPE TRACEPOINT, &obj , &prog fd ) )

7 return 1 ;

8

9 /∗ ge t a r e f e r ence to the eBPF program ob j e c t ∗/
10 prog = b p f o b j e c t f i n d p r o g r a m b y t i t l e ( obj , \
11 ” t r a c e p o i n t / s y s c a l l s / s y s e n t e r o p e n a t ” ) ;

12

13 /∗ a t t ach the program to the t r a c epo i n t ∗/
14 bp f p rog ram at ta ch t ra c epo in t ( prog , ” s y s c a l l s ” , \
15 ” s y s e n t e r o p e n a t ” ) ;

16

17 /∗ t r i g g e r the eBPF program ∗/
18 fd = open ( ” f i l e . txt ” , O RDONLY) ;

19

20 return 0 ;

21 }

Listing B.29: traceopenat user.c

First the eBPF program is loaded into the kernel (lines 5-7). Then a reference

to the eBPF program is retrieved (lines 10-11) and the program is attached to

the proper tracepoint (lines 14-15). At the end to trigger the eBPF program

execution a call to open(2), which internally invokes openat(2) (as already

seen in the seccomp section), is performed.



104 B Extended BPF usage



Appendix C

Packet headers

This Appendix contains the headers structure of the main network pro-

tocols to better understand how BPF filters refer to specific fields.

C.1 IPv6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure C.1: Header IPv6 [67].
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C.2 IPv4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Figure C.2: Header IPv4 [68].

C.3 TCP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data
Offset

Reserved
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer

Options Padding

Figure C.3: Header TCP [69].



C.4 UDP 107

C.4 UDP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Length Checksum

Figure C.4: Header UDP [70].

C.5 ICMP - Echo/Echo-Reply

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Length Checksum

Figure C.5: Header ICMP [71].

C.6 Ethernet 802.3

Destination MAC Address Source MAC Address Type︸ ︷︷ ︸
6 Byte

︸ ︷︷ ︸
6 Byte

︸ ︷︷ ︸
2 Byte

Figure C.6: Header Ethernet [72].
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