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Introduction

In this thesis we discuss �nite state Markov chains, which are a way to

model stochastics processes without memory in time. Thus, we assume that

the past does not in�uence the future. Finite chains are interesting for their

properties. We examine some of them in order to study how we can use these

chains to model long-term processes. In the end, we discuss one application

to �nance.

In the �rst chapter we introduce some basic de�nitions and results of

probability. The concepts of measurable space, measure and of space of

probability are presented on the base of the course pf Probability of A. Pas-

cucci. After the de�nition of a stochastic process, we introduce the reader

to Markov chains. They are stochastic processes in discrete time where the

past has no in�uence on the future behavior of the process. Two useful ways

to represent them are matrices and directed graphs, which are a set of nodes,

each of which corresponds to a certain state, connected by directed arrows.

In the second chapter we classify Markov chains in the same way as MIT

open courses present them. First we de�ne what classes are and then we

divide them into recurrent and transient. We then conclude dealing with the

periodicity of classes.

Previous chapters lay the basis to explain when [P n], the matrix obtained

by taking the nth power of [P ], converges as n approaches in�nity. We focus

on the case of ergodic unichains. We give some preliminary results, using

the Chapman-Kolmogorov equation, that will be used to prove convergence

of this particular type of Markov chains.

We �rst prove the convergence in the case of [P ] > 0 and then we generalize

to the case of ergodic unichains. We conclude we a comment on other types

of Markov chains.

Last chapter deals with the application of Markov chains in the prediction

of �uctuations in prices of stocks. We �rst give a brief insight of how stock
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markets work.

Then we carry on an empirical analysis in order to predict how prices will

change in the future. Since the model we develop is based on ergodic

unichains, the theory we introduced in previous chapters shows that we

should be able to predict prices in the long run. We use data on the FITSE-

MIB index from Borsa Italiana to build Markov chains. The index is based

on a basket of forty relevant �rms belonging to di�erent sectors of the Ital-

ian economy. We use the �uctuations in prices between July the 29th and

July the 31st of each component of the basket the calculate the percentage

of increase, decrease or stationarity. We then use the matrix form to predict

the prices in the future. A Python code is also used to make predictions in

the far future.

Comparing the theoretical results to the real �uctuations, we see that re-

sults were not reliable. We explain what are the di�culties in developing a

mathematical model for the �nancial markets.
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1 Preliminary knowledge

We start by giving some basic de�nitions.

De�nition 1.1. A measurable space is a couple (Ω, F ), where:

i) Ω is a non-empty set

ii) F is a σ-algebra, meaning that F is a non-empty family of subsets of Ω

that satis�es the following properties:

ii-a) if A ∈ F then Ac := Ω \ A ∈ F
ii-b) the countable union of the elements of F belongs to F .

De�nition 1.2. A measure on the measurable space (Ω, F ) is a function

µ : F −→ [0,+∞] such that:

i) µ(∅) = 0

ii) µ is σ-summable on F , meaning that for every sequence (An)n∈N of disjoint

elements of F it holds that

µ(
⋃
n=1

An) =
∑
n=1

µ(An).

De�nition 1.3. Let us consider as measurable space a generic metric space

(M,ρ).

The Borel σ− algebra Bρ is the smallest σ− algebra that contains the open
sets of (M,ρ).

De�nition 1.4. A measure space (Ω, F, µ) in which µ(Ω)=1 is called a space

of probability. In this such case, let us use the letter P instead of µ and let

us call P a measure of probability.
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In a probability space (Ω, F, P ), each element ω ∈ Ω is de�ned as outcome;

each A ∈ F is de�ned as an event and P (A) is the probability of A. If Ω

is �nite or countable, we always assume that F = P (Ω) and we say that

(Ω, P (Ω), P ) is a discrete probability space. If Ω is not countable, then we

are in the case of continuous probability space.

De�nition 1.5. Let Bρ be the Borel σ − algebra on a metric space (M,ρ).

A distribution is a probability measure on (M,Bρ).

De�nition 1.6. In a probability space (Ω, F, P ), let B be an event such that

P (B) > 0. The probability of A given B is de�ned by:

P (A|B) :=
P (A ∩B)

P (B)
, A ∈ F.

De�nition 1.7. Let us a consider a given probability space (Ω, F, P ) and

d ∈ N. For a given H ∈ Rd and a given function X : Ω −→ Rd, let us denote

with

(X ∈ H) := {ω ∈ Ω | X(ω) ∈ H} = X−1

the inverse image of H.

Intuitively (X ∈ H) is the set of ω such that X(ω) ∈ H.

De�nition 1.8. A random variable on (Ω, F, P ) with values in Rd is a func-

tion X : Ω −→ Rd such that (X ∈ H) ∈ F for each H ∈ Bd. In this such

case, we say that X is F −measurable.

De�nition 1.9. A discrete distribution is of the form

µ(H) :=
∑
n=1

pnδxn(H), H ∈ Bd
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where (xn) is a sequence of points in Rd and (pn) is a sequence that satis�es

the following property:
∑∞

n=1 pn = 1 and pn ≥ 0, n ∈ N.

De�nition 1.10. Let X be a random variable on (Ω, F, P ) with values in Rd.

The distribution of X conditional on B is the distribution of X relatively

to the conditional probability P (• | B). It is de�ned as

µX|B(H) := P (X ∈ H | B), H ∈ Bd.

De�nition 1.11. A stochastic process is a family of random variables Xθ,

indexed by a parameter θ, which belongs to some index set Θ.

If this set is a set of integers, we have stochastic processes in discrete time.

In this such a case we write Θ = {t0, t1, , ..., tk, tk+1, ...} for k ∈ N.

De�nition 1.12. A discrete stochastic process is said to be homogeneous

(or time invariant) if the transition probability between any two state values

at two given times depends only on the di�erence between those times.

In formulas, we have that the conditional probabilities must satisfy

P (Xt|Xt−a) = P (Xs|Xs−a) for all t, s ∈ Θ and for all a ∈ N

We are often interested in conditional distributions of the form

P (Xtk |Xtk−1
, Xtk−2

, ..., Xt1 , Xt0)

for a certain set of times tk > tk−1 > tk−2 > ... > t1 > t0 where ti ∈ Θ for

all i ∈ N. In discussing them, we will focus on a speci�c kind of stochastic

processes that satisfy the Markov property.
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De�nition 1.13. The Markov property states that

Pij = P (Xt = j|Xt−1 = i) (1.1)

where Pij is the probability of transition from state i to state j. In other

words, the distribution of Xt only depends on the position of the process at

time t− 1 and not on what happened at times s ≤ t− 2.

De�nition 1.14. A finite Markov chain is a homogeneous discrete stochas-

tic process with a �nite number of states.

Let M be the number of states of a �nite Markov chain: [M ] = {1, 2, ...,M}.
The previous de�nitions state that Markov chains are stochastic processes in

which changes can happen only for integer-times. Due to the Markov prop-

erty, the e�ect of the past on the future is totally summarized by the previous

state. Markov chains are called homogeneous because of their time indepen-

dence. In fact, the conditional probability of the Markov property states that

all the history depends only on the last step, independently on when that

step happens.

Thus, �nite state Markov chains are a tool to model any discrete integer time

process.

For every Markov chain, we have an initial probability, which is the proba-

bility distribution of the states at time 0. Using the iteration process, just

knowing the transition probabilities and initial probabilities is enough to �nd

the probability distribution of the states at any instant time.

1.1 Representation of �nite state Markov chains

We have di�erent ways to represent a �nite Markov chain: we can use a

matrix, such as part (b) of �gure (1.1), or we can use a directed graph, such

as part (a).
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The M × M transition matrix of a Markov chain is [P ] = (Pij)ij, where

Pij = P [xn+1 = j|xn = i] i, j ∈ [M ]. Associated to the matrix [P ] there is an

initial distribution q = (q1, ..., qM), where qi = P (x0 = i). This [P ] matrix is

stochastic if its entries are non-negative real numbers and the sum of each

row is 1.

Figure 1.1: Representation of Markov chains

On the other side we have the graphical model, in which each node cor-

responds to a state and each arc corresponds to a transition probability. It

is really useful because it makes a clear distinction between the zero and

non-zero transition probabilities: if there is a positive probability of going

from one of the M states to another we have an arc, otherwise we don't.



8

2 Classi�cation of states

We now introduce some other useful de�nitions.

De�nition 2.1. A walk is an ordered string of nodes, where the probability

of going from each node to the next one is non-zero.

There is no kind of constraint in the de�nition of a walk. For example,

we can have repetition of states. The minimum number of states in a walk

is one and there is no limit for the maximum number.

De�nition 2.2. A path is a walk where there are no repeated nodes.

Since we never go through one node twice, the maximum number of steps

for a path in an M �nite state Markov chain is M − 1.

Walks can be joined to form a longer walk. If there's a walk from i to j

and from j to k, then there is a walk also from i to k that is found by

concatenation.

We say that state i communicates with state j if it exists a walk from i to j

and one from j to i.

Looking at �gure (1.1), we see that node 3 is accessible from node 1 because

there's a walk made by nodes 1, 2, 3. So there's a positive probability of

going to state 3 from node 1. But if we want to calculate probability P13, we

should also look at the fact that we can have cycles. For example 1, 1, 2, 3

and 1, 2, 3, 2, 3 are also walks.

Node 6 is not accessible. So, if we are in node 6, we always go away from it.

More formally, we say that state j is not accessible from i if P n
ij is equal to

0 for all n.

We now want to group states on the basis of how they communicate with

each other.
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De�nition 2.3. A class of states is a non-empty set of states, where all the

pairs of states in a class communicate with each other, and none of them

communicate with any other state in the Markov chain.

For �nding or naming a class, we can have a representative state. We

can just pick one of the states in a certain class and �nd all the states that

communicate with this single state. This is due to the fact that if two states

communicate with one state, then these two states communicate with each

other. And if there's a state that doesn't communicate with the chosen

state, it doesn't communicate with anybody else whom the chosen state

communicates with.

We can partition a Markov chain using classes, which means that we want to

cover all the �nite space of the states without intersections between classes.

To do so, we call a single state a class even if it does not communicate with

itself.

We have to show that classes do not intersect: if a state i belongs to both

class 1 and class 2, this means that i communicates with all the states in

class 1 and in class 2, so all states in class 1 communicate with the states

in class 2.

In the Markov chain of �gure (2.1), we notice that there are four com-

municating classes. Nodes 1 and 2 communicate with each other, but they

do not communicate with any other nodes in the graph. Similarly, states 3

and 4 communicate with each other, but with none of the others. Node 5

does not communicate with any other nodes, so it by itself is a class. Finally,

states 6, 7, and 8 form another class. Thus, here are the classes:

Class 1 = {state 1, state 2} ,
Class 2 = {state 3, state 4} ,
Class 3 = {state 5} ,
Class 4 = {state 6, state 7, state 8} .

De�nition 2.4. We say that state i is recurrent if for all the states j that



10

Figure 2.1: Classi�cation of states

are accessible from i, we also have that i is accessible from j.

Using symbols: i→ j ⇒ j → i.

If a state is not recurrent, we call it transient.

If i is recurrent and there is a walk from i to any other state j, there

should be a walk from j to i.

On the other side, a transient state i says that there might be some kind of

walk from i to some k but it's impossible to go back.

In �gure (2.1), we have that states {6, 7, 8} are recurrent, while states

{1, 2, 3, 4, 5} are transient.

Theorem 2.1. If we partition a Markov chain using classes, then the states

in the class are all recurrent or all transient.

Proof : Let's assume that state i is recurrent and let's de�ne Si as the

set of all the states that communicate with i. Since i is recurrent, if j is

accessible from i, state i is also accessible from j. We know that i and j

communicate with each other if and only if j is in set Si.

Let's now consider a state k, that is accessible from j, and j is accessible

from i. So k is accessible from i. But k accessible from i implies that i is also

accessible from k, because i is recurrent. We also have that j is accessible

from i and this implies that j is also recurrent. So if k is accessible from

j, then j is also accessible from k for any k. This means that if one state
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in a class is transient, then all the states in the class are transient too. We

conclude that if a state in a class is recurrent, then also all the other states

in that class are recurrent.

Thus, the states in a class are either or all recurrent or all transient.

De�nition 2.5. The periodicity of state i is the greatest common divisor of

the number of steps needed to go from state i to state i, under the hypothesis

that there's a positive probability that we can go from state i to state i.

If i's period is a number greater than 1, then i is said to be periodic,

otherwise it's called aperiodic.

Figure 2.2: Periodicity of states

Consider the Markov chain shown in �gure (2.2). Starting from state 1,

we only return to 1 at times n = 2, 4, 6, 8, ..., i.e. at times n = 2i, where i

is a positive integer. We have periodicity since the greatest common divisor

of 2i is 2. Thus, state 1 is called a periodic state with period d(1) = 2. If n

is not divisible by 2 we have that P n
1,1 = 0.

We always say that a state i is aperiodic if there's a walk from i to i, and

in this walk, there is a loop. In �gure (2.2), state 0 has a period of 1 and is

called aperiodic.

Theorem 2.2. All the states in the same class have the same period.

Proof : Let P k
ij denote the k-step transition probability from state i to j.

Let d(i) denote i's period. Suppose that i and j communicate, which means
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that Pij > 0 and Pji > 0. Let m and n be some positive integers such that

P n
ij > 0 and Pm

ji > 0. Then we have that P n+m
ii ≥ P n

ijP
m
ji > 0. This implies

that n+m is a multiple of d(i).

Let's consider q ∈
{
k | P k

jj > 0
}
. We have that P n+q+m

ii > 0, which means

that we can go from i to j, then from j to some other node and back to j

and �nally returne to i. Therefore n+ q+m is a multiple of d(i). Thus, also

q is a multiple of d(i). As a consequence, d(j) ≥ d(i). If we reverse the roles

of i and j, we get d(i) ≥ d(j).

Since all the representatives of a certain class have the same period, we

say that the class they belong to has that period.

Similarly, since all the states in a class are or all recurrent or all transient,

we say that the class is recurrent or transient.

Theorem 2.3. Assume that all the states in a certain class have period d =

n. Then the considered class can be partitioned into n subclasses S1, S2, ..., Sn.

For each subclass, we only have transitions from it to another one. There's

no transition in a subclass to itself and the only possible transitions are from

S1 to S2, from S2 to S3,..., from Sn−1 to Sn and �nally from Sn to S1.

Figure 2.3: Subclasses

Figure (2.3) gives an illustration of the theorem.

Proof : We choose a certain state in the class, for example state 1. Then,
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we de�ne the subclasses as the sets S1, ..., Sn, such that

Sm =
{
j : P dn+m

1j > 0 for some d ≥ 0
}

; 1 ≤ m ≤ n. (2.1)

For every state j in the class, we show that there is one and only one value

of m such that j ∈ Sm.
Since 1 and j communicate, it exists some r such that P r

1j > 0 and some s

such that P s
j1 > 0. Thus, we can build a walk of length r+ s from state 1 to

state 1 by joining the walks of length r from 1 to j and of length s from j to

1. As a consequence, r + s is divisible by n.

Dividing r by n, we de�ne m, 1 ≤ m ≤ n, by r = m + nd, where d is an

integer.

From (2.1) we have that j ∈ Sm.
We de�ne r′ as any other integer such that P r′

1j > 0. Then r′ + s is also

divisible by n, so that r′ − r is divisible by n. Thus r′ = m + d′n for some

integer d′ and the same m. Since r′ is any integer such that P r′
1j > 0, then

j ∈ Sm for only that one value of m. The fact that j was chosen as any of

the states of a given class shows that the sets Sm are disjoint and partition

the class.

Finally, suppose j ∈ Sm and Pik > 0. Given a walk of length r = nd + m

from state 1 to j, there is a walk of length nd+m+ 1 from state 1 to k. It

follows that if m < n, then k ∈ Sm+1 and if m = n, then k ∈ S1. The proof

in complete.
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3 Convergence of [P n]

The initial state distribution can be deterministic, which means either that

we start from some speci�c state all the time or that there is a �xed dis-

tribution at the initial state. Knowing the transition probabilities and the

initial state, we can �nd the distribution of states at each time instant. So,

for characterizing a Markov chain, we just need to know the transition prob-

abilities and the initial distribution.

However, this data is not su�cient to determine the behavior in the very far

future. There are very interesting questions that can be asked about it, such

as: is there any kind of stable behavior in the very far future? If we can state

something about this behavior, then what kind of statements can we have?

Under which hypotheses can we have these statements? If there is a pattern

of future behavior, is it unique? Is the initial state relevant in determining

what happens very far away from the present?

To answer these questions, we see that there is a certain kind of Markov

chains that loses memory as n goes to in�nity, meaning that whatever dis-

tribution it has for the initial state, it will lose memory of that.

This kind of Markov chains is called ergodic.

De�nition 3.1. An ergodic Markov chain is a Markov chain that has a

single recurrent class and is aperiodic.

To study ergodic chains, we use the Champan-Kolmogorov equation,

which needs some preliminary knowledge to be introduced.

De�nition 3.2. A stochastic matrix is a square matrix of non-negative

terms in which the elements in each row sum to 1.
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An example of stochastic matrix is [P ], the matrix of transition prob-

abilities of a Markov chain. We denote by [P n] the product of n terms:

[P ][P ]...[P ]. If n = 2, [P 2] is the matrix with entries:

P 2
ij =

M∑
k=1

PikPkj. (3.1)

We already know that Pij is the probability to go from state i to state j

in one step, while P n
ij is the probability that at time n the state is equal to

j, given that the initial state is equal to i. Using the mathematical notation

we have:

P n
ij = Pr {Xn = j|X0 = i}

For example, when n = 2, we have to sum over all the possible values 1 to

M that x1 can take to get the desired probability, as we do in equation (3.1).

The same reasoning can be iterated to �nd P n
ij. This idea is made more

general by the Chapman−Kolmogorov equation: since [Pm+n] = [Pm][P n],

we have that:

Pm+n
ij =

M∑
k=1

Pm
ik P

n
kj. (3.2)

This implies that, when we want to go from step i to step j, we can go

to an intermediate state and sum over all the possible intermediate states we

can have. So in this case, if the step is m + n transition, we can slit it up

into m and n.

We now ask: does [P n] converge? In other words, does

lim
n→∞

P n
ik = πij (3.3)

exist for all i and j?

Let's assume that this limit exists for all i and j, which means that for each

column j of [P n], all the elements of the column should converge towards the

same value. If this limit does exist and is equal to πj for each column j, we
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can �rst multiply both sides of (3.3) by Pik and then sum over all j:

lim
n→∞

∑
j

P n
ijPjk =

∑
j

πjPjk. (3.4)

We can now use the Chapman −Kolmogorov equation and the left side of

(3.4) becomes limn→∞ P
n+1
ik . We de�ne:

lim
n→∞

P n+1
ik = πk

So (3.4) becomes:

πk =
∑
j

πjPjk

In vector form we write: ~π = ~π[P ]. We de�ne the probability vector.

De�nition 3.3. A probability vector is a vector ~π = (π1, ..., πm) for which

each πi is non-negative and
∑

i πi = 1. A probability vector ~π is called a

steady − state vector for the transition matrix [P ] if

~π = ~π[P ] where
∑
i

πi = 1, πi ≤ 0, 0 ≤ i ≤M (3.5)

If ~π satis�es (3.5), it is a probability vector and it holds that ~π[P ] = ~π[P 2].

Iterating this, we get ~π = ~π[P 2] = ~π[P 3] = ... = ~π[P n] = .... Thus, for each

positive integer n it holds that ~π[P ] = ~π[P n].

This shows it is su�cient for ~π to be a steady state vector for [P n] to converge

to a matrix whose rows are π. However, it is only a su�cient and not a

necessary condition. If ~π satis�es (3.5), it does not imply that [P n] converges.

We remark this concept with an example: let ~π be such that π2 = π3 = 1/2

and πi = 0 otherwise. Then it satis�es (3.5). This means that if the chain

starts at time 0 at states 2 or 3, then it oscillates between the two for the

rest of the time.

However, as we see in �gure (3.1), the ~π we just de�ned is not a satisfying

form of steady state.
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Figure 3.1: Steady state

In order to study the steady-state, it is useful to introduce the following

de�nitions:

De�nition 3.4. A unichain is a �nite state Markov chain that contains

a single recurrent class and, perhaps, some transient states. An ergodic

unichain is a unichain for which the recurrent class is ergodic.

A unichain is a recurrent chain that allows for some transient initial be-

haviors, that do not a�ect the long term behavior of the chain.

If the chain has a unique recurrent class, i.e. it is a unichain, then the steady

state vector ~π is unique. If a chain has c recurrent classes, then (3.5) has

c linearly independent solutions, each nonzero only over the elements of the

corresponding recurrent class.

Since the limit exists for ergodic chains, it holds that each row of [P n] con-

verges to a unique probability vector solution if the chain is an ergodic

unichain.

On the other side, [P n] does not converge if the Markov chain has one or

more periodic recurrent classes.

To have convergence, the elements of each column j must be the same for

each row i. Therefore, we are now going to study the di�erence between the

largest and the smallest value of a column j and see how this di�erence varies

as n grows large.
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Lemma 3.1. Let [P ] be the M ×M transition matrix of an arbitrary �nite

state Markov chain. Let [P n] be the matrix with entries P n
ij. Then for each

state j and for all integers n ≥ 1

max
i
P n+1
ij ≤ max

l
P n
lj min

i
P n+1
ij ≥ min

l
P n
lj . (3.6)

So for each j, maxi P
n
ij, which is the most probable path from i to j in n

steps is non increasing in n, and mini P
n
ij is non-decreasing in n.

This theorem implicitly says that for an ergodic �nite state Markov chain

the limit of equation (3.3) converges, as we will later see.

Proof : For any states i, j and any step n,

P n+1
ij =

M∑
l=1

PilP
n
lj ≤

M∑
l=1

Pil max
l
P n
lj = max

l
P n
lj

This is true for all states i, so it is true also for the maximizing i. The same

holds when we substitute the max with the min and we reverse the inequality:

P n+1
ij =

M∑
l=1

PilP
n
lj ≥

M∑
l=1

Pil min
l
P n
lj = min

l
P n
lj

Example 1 Figure (3.2) shows a two-states chain where P12 = 1 and

Figure 3.2: Example 1

P21 = 1. Then, P n
12 and P

n
21 alternates between 1 and 0. So the maximum is

1, which is non-increasing, and the minimum is 0, which is non-decreasing in

n.
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Example 2

Consider the two-states Markov chain with P12 = 3/4 and P21 = 3/4 of �gure

(3.3).

Figure 3.3: Example 2

Then, as n increases, P n
12 =

3/4, 3/8, 9/16, ... and P n
22 =

1/4, 5/8, 7/16, .... Each sequence

oscillates while approaching 1/2.

max(P n
12, P

n
22) = 3/4, 5/8, 9/16, ...,

which is decreasing towards 1/2,

whilemin(P n
12, P

n
22) = 1/4, 3/8, 7/16, ...

We now show how max(P n
12, P

n
22) and min(P n

12, P
n
22) vary with n.

First, we consider the case where end up in state 2 in exactly n steps with

n = 1. We have two alternatives: either we are in state 1 and we go to state

2, or we are in state 2 and we stay in state 2. The maximum is going to be

3/4 and the minimum is going to be 1/4.

Now suppose n = 2, so we want to end up in state 2 in 2 steps. We

are going to have the maximum if we start in state 2, then we go with

the �rst step to state 1 and then we go back to state 2. We get that

max(P 2
12, P

2
22) = P 2

22 = 5/8.

We can repeat the same reasoning for various values of n.

Notice that, since the chain of example 2 has loops, its periodicity is com-

pletely destroyed.

3.1 Steady state for [P ] > 0

The previous lemma (3.1) is true for any �nite state Markov chain. Now we

are going to focus on the case in which [P ] > 0 and then we will prove the

results for an arbitrary �nite Markov chain.

[P ] > 0 means that every entry in this matrix is greater than 0 for all i and

j, which means that the graph is fully connected. In this such case, we can

get from i to j in one step with nonzero probability.

We now want to prove that, as n goes to in�nity, the state at time n is
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independent of the initial state at time 0.

Theorem 3.2. Let P be the transition matrix of a �nite state Markov chain

where [P ] > 0 and let α = mini,j Pij. Then for all states j and all n ≥ 1:

max
i
P n+1
ij −min

i
P n+1
ij ≤ (max

l
P n
lj −min

l
Pljn)(1− 2α) (3.7)

(max
l
P n
lj −min

l
P n
lj) ≤ (1− 2α)n (3.8)

lim
n→∞

max
l
P n
lj = lim

n→∞
min
l
P n
lj = πj > 0 (3.9)

Proof : For given j and n, let lmin be the value that minimizes P n
lj . Then:

P n+1
ij =

∑
k

PikP
n
kj

≤
∑
k 6=lmin

Pik max
l
P n
lj + Pilmin

min
l
P n
lj

=
∑
k 6=lmin

Pik max
l
P n
lj + Pilmin

min
l
P n
lj + Pilmin

max
l

Pljn − Pilmin
max
l
Pljn

= max
l
P n
lj − Pilmin

(max
l
P n
lj −min

l
P n
lj)

≤ max
l
P n
lj − α(max

l
P n
lj −min

l
P n
lj) (3.10)

In the last step we used the fact that α ≤ Pilmin
and that the terms in

parenthesis are positive.

We can repeat the same argument switching min and max, as follows:

P n+1
ij =

∑
k

PikP
n
kj

≥
∑
k 6=lmin

Pik min
l
P n
lj + Pilmin

max
l
P n
lj

=
∑
k 6=lmin

Pik min
l
P n
lj + Pilmin

max
l
P n
lj + Pilmin

min
l
Pljn − Pilmin

min
l
Pljn

= min
l
P n
lj + Pilmin

(max
l
P n
lj −min

l
P n
lj)
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≥ min
l
P n
lj + α(max

l
P n
lj −min

l
P n
lj) (3.11)

We then substitute the left side of (3.10) with mini P
n+1
lj instead of P n+1

lj ,

and the left side of (3.11) with maxi P
n+1
lj instead of P n+1

lj . Doing so we

obtain the following inequalities:

min
i
P n+1
lj ≤ max

l
P n
lj − α(max

l
P n
lj −min

l
P n
lj)

max
i
P n+1
lj ≥ min

l
P n
lj + α(max

l
P n
lj −min

l
P n
lj)

Subtracting (3.12) from (3.13), we obtain:

max
i
P n+1
ij −min

i
P n+1
ij ≤ (max

l
P n
lj −min

l
Pljn)(1− 2α)

(3.7) is proved.

To prove (3.8), we observe that:

min
l
Pij ≥ α > 0 (3.12)

max
l
Pij ≤ 1− α (3.13)

Subtracting (3.12) from (3.13), we obtain: maxl Pij −minl Pij ≤ 1− 2α,

which can be iterated over n to get (3.8).

Taking into account lemma (3.1), we can conclude that the limits of (3.9)

exist and are non negative.

3.2 Ergodic Markov chains

So far, we have proved results for [P ] > 0. However the previous theorem

(3.2) can be extended to ergodic �nite state Markov chains. To do this, we

�rst prove that P n
ij > 0 for all i and j when n is su�ciently large. We quantify

"n su�ciently large" in the following theorem.
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Theorem 3.3. For an ergodic M state Markov chain, Pm
ij > 0 for all i, j

and m ≥ (M − 1)2 + 1.

For the chain in �gure (3.4), this theorem implies that if m ≥ 26, then

[Pm] > 0.

Notice that Pm
11 is possible for m = 6, 11, 16, 17, 18, .... In other terms,

Pm
11 > 0 for m = 6x+5y, x, y ∈ N. So, if for example 7 ≤ m ≤ 10 or m = 25,

we cannot go back to state 1 starting from 1. However, if m ≥ 26, we can

always start from state 1 and arrive in state 1.

To have an intuition of the reason why theorem (3.3) holds, we introduce the

following lemma:

Lemma 3.4. Let a and b be two positive relatively prime integers, then the

greatest number that cannot be written as a combination of a and b, i.e.

m 6= xa+ yb, x, y ∈ N, x ≥ 1, y ≥ 0, is m = ab− a− b. 1

If we set a = M and b = (M − 1), we obtain theorem (3.3). In fact,

M(M − 1)−M − (M − 1) +M = (M − 1)2 is the largest m that cannot be

obtained.

Figure 3.4: Cycles in ergodic Markov chains

Proof of theorem (3.3): First, we notice that the chain must contain a

cycle with fewer than M nodes. The de�nition of ergodic chain states that the

chain must have cycles. If the chain has only an M-nodes cycle, then in would

be periodic, which is in contrast with the de�nition of ergodic Markov chain.

1See the appendix for the proof. Note that the conditions of lemma (6.1) include that
x, y ≥ 0. On the contrary, in lemma (3.4) we account for x ≥ 1.
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We conclude that some nodes must be on smaller cycles. Let us consider

the cycle with the smallest number of nodes. Let ψ be such number. From

what we just said, it must be that ψ ≤ M − 1. Let i be any of the states

in the considered cycle. We denote with Ψ(m) ≥ 1 the set of states that

are accessible from state i in m steps. Using mathematical notations, this is

equivalent to:

Ψ(m) =
{
j : Pm

ij > 0
}
. (3.14)

Since we have a cycle, we have that Pψ
ii > 0. Then it is possible to construct

an m+ ψ walk from i to j, joining a ψ step walk from i to i with an m step

walk from i to j. We have that

Ψ(m) ⊆ Ψ(m+ ψ). (3.15)

We denote the singleton {i} as Ψ(0). We set m = 0 in (3.15) and we iterate

to obtain:

Ψ(0) ⊆ Ψ(ψ) ⊆ Ψ(2ψ) ⊆ ... ⊆ Ψ(nψ) ⊆ ... (3.16)

Now we want to show that if one inclusion is satis�ed with an equality, then

the subsequent inclusions are all equalities. More generally, we want to show

that for some given m ≥ 0 and s ≥ 1:

if Ψ(m) = Ψ(m+ s), then Ψ(n) = Ψ(n+ s) for all n ≥ m. (3.17)

By de�nition, Ψ(m + 1) is the set of states that can be reached in one step

from the states in Ψ(m), while Ψ(m + s + 1) is the set of states reachable

from Ψ(m+ s) in one step. By hypotheses, we have that Ψ(m) = Ψ(m+ s),

so we can conclude that Ψ(m+ 1) = Ψ(m + s + 1). By iteration, we obtain

(3.17). The set Ψ can have at maximum M members. Therefore, in (3.16)

we can have at most M − 1 strict inclusions. So, we have that

Ψ((M − 1)ψ) = Ψ(nψ) for all integers n ≥M − 1.
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Setting k = (M − 1)ψ, the previous equality can be rewritten as

Ψ(k) = Ψ(k + jψ) for all j ≥ 1. (3.18)

So we have that Ψ(k) consists of all M nodes of the chain. We now want to

show that Ψ(k) = Ψ(k+ 1). Let us consider an integer t such that t 6= ψ and

P t
ii > 0. We rewrite (3.15) using k instead of m and t instead of ψ:

Ψ(k) ⊆ Ψ(k + t) ⊆ Ψ(k + 2t) ⊆ ... ⊆ Ψ(k + ψt) (3.19)

Since Ψ(k) = Ψ(k + ψt), we obtain that

Ψ(t) = Ψ(k + t). (3.20)

Let us de�ne s as the smallest integer such that

Ψ(k) = Ψ(k + s). (3.21)

We want to show that s = 1 using the indirect proof. Let's suppose s 6= 1.

We know that s = ψ, so we must have 1 < s ≤ ψ. Since the chain is ergodic,

which implies that it is also aperiodic, it exists t such that s does not divide

t and P t
ij > 0. We can write t = js+ l, where 1 ≤ l < s and j ≥ 0. We use

iteration on (3.21) to get Ψ(k) = Ψ(k + js). We then apply (3.17) to this,

Ψ(k + l) = Ψ(k + js+ l)

= Ψ(k + t)

= Ψ(k).

(3.22)

We have used that t = js+l followed by (3.20). Here we have a contradiction,

since l < s. Thus s = 1 and Ψ(k) = Ψ(k + 1). Iterating this,

Ψ(k) = Ψ(k + n) for all n ≥ 0. (3.23)

Since in an ergodic chain it is possible to go from every state to every other
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state, each state j continues to be accessible after k steps. Therefore it must

be that, for every state j, j ∈ Ψ(k + n). Since from (3.22) Ψ(k + n) = Ψ(k),

this implies that j ∈ Ψ(k). This holds for ∀j, so we must have that Ψ(k)

must be the entire set of states. Thus, P n
ij > 0 ∀n and ∀j.

This same argument can be applied to any state i on the given cycle with ψ

nodes.

Any state m not on this cycle has a path to the cycle using at most M − ψ
steps. This path can be used to reach a node i on the cycle. We connect this

walk this with all the walks from i of length k = (M − 1)ψ. We have that:

P
M−ψ+(M−1)ψ
mj > 0 for all j, m. (3.24)

The proof is complete, since M − ψ + (M − 1)ψ ≤ (M − 1)2 + 1 for all

ψ, 1 ≤ ψ ≤M − 1, with equality when ψ = M − 1.

If [P ] is the matrix of an M state ergodic Markov chain, the previous theorem

implies that for each h such that h ≥ (M − 1)2 + 1, [P h] is a positive matrix.

We choose h = (M − 1)2 + 1, so that we can apply theorem (3.3) to [P h].

So, from equation (3.9) of theorem (3.2), it holds that:

lim
n→∞

max
l
P hm
lj = lim

n→∞
min
l
P hm
lj = πj > 0

Let γ ∈ N such that γ ≥ 1 and β = mini,j P
h
ij, then:

max
i
P
h(γ+1)
ij −min

i
P
h(γ+1)
ij ≤ (max

l
P hγ
lj −min

l
Pljhγ)(1− 2β) (3.25)

(max
l
P hγ
lj −min

l
P hγ
lj ) ≤ (1− 2β)γ (3.26)

lim
γ→∞

max
l
P hγ
lj = lim

γ→∞
min
l
P hγ
lj > 0. (3.27)

But what about the values of n that are not multiples of h? We want to
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write equation (3.27) with the limit in n rather than in γ. We can do such a

replacement thanks to lemma (3.1). Since maxi P
n
ij is non-increasing in n, we

have that it must have the same limit as maxi P
hγ
ij . Similarly, mini P

n
ij must

have the same limit as maxi P
hγ
ij . In particular, setting n = hγ, then (3.26)

and (3.27) become:

(max
l
P n
lj −min

l
P n
lj) ≤ (1− 2β)n/h

lim
n→∞

max
l
P n
lj = lim

n→∞
min
l
P n
lj > 0.

We de�ne ~π > 0 such that for each column j of ~π we have:

πj = lim
n→∞

max
l
P n
lj = lim

n→∞
min
l
P n
lj

We see that πj is independent from both n and the rows of the jth column

of [P ], so we can simply write:

πj = lim
n→∞

P n
lj for each l, j.

We can now state the following theorem:

Theorem 3.5. Let [P ] be the matrix of an ergodic �nite state Markov chain.

Than there is a unique steady state vector ~π, which is positive and it is such

that:

πj = lim
n→∞

P n
lj for each l, j

and, given ~e = [1, 1, 1, ..., 1]T

lim
n→∞

P n = ~e ~π =


1

1

...

1

 ∗ [π1, π2, ..., πM ] =


π1 π2 ... πM

π1 π2 ... πM

... ... ... ...

π1 π2 ... πM


Proof: We have to prove the uniqueness of such limit. Let ~µ be another
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steady state vector. Therefore ~µ must be such that ~µ = ~µ[P ] and for all

n > 1 it must hold that ~µ = ~µ[P n]. Taking the limit, we obtain:

~µ = ~µ lim
n→∞

P n = ~µ ~e ~π = ~π.

3.3 Ergodic unichains

We just saw that for ergodic chains, limn→∞ P
n
lj = πj for all i, where ~π is a

probability vector. Moreover, ~π is a steady-state vector and unique solution

to ~π[P ] = ~π (theorem (3.5)).

This result can be extended to ergodic unichains, which are ergodic Markov

chains with the addition of some transient states (de�nition (3.4)).

Figure 3.5: The transition matrix of an ergodic unichain. [PR] is the matrix
associated with the ergodic class, while [PT ] is the one associated with the
transient class. Notice that the matrix [P ] has a block of zeros, since we do
not go from a recurrent class to a transient one.

First, suppose that there is one transient class that contains just one state.

If a state is in a singleton transient class, then there is a �xed probability,

say α, of leaving the class at each step. The probability of remaining in the

class for more than n steps in (1− α)n, where (1− α) < 1.
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As n grows larger, we see that it is very unlikely to remain in the transient

state since limn→∞(1− α)n = 0.

Now we extend the same reasoning also to the case of not just a singleton

transient state but of a set of transient states. Notice that each transient

state has at least one path to a recurrent state and is very likely that one of

those paths will be taken. Also in this scenario, the probability of remaining

in a set of transient states goes to 0 as n goes to in�nity.

Since we are dealing with ergodic unichains, this means that the ergodic

class will be reached. From then on, we have already shown the results

about convergence.

For every state i then,

lim
n→∞

max
i
P n
ij = lim

n→∞
min
i
P n
ij = πj

where πj = 0 for each transient state and πj > 0 for each recurrent state.

Let T denote the set of transient states and assume that these states are

numbered 1, 2, ..., t. Let R denote the recurrent class, whose states are num-

bered t+ 1, ..., t+ r. As we will now show, there is a tendency to move from

the transient to the recurrent states. Thus,

lim
n→∞

P n
ij = 0 for i, j ∈ T. (3.28)

For each transient state, there must be a walk to a recurrent state. Since

there are only t transient states, the longest path from a transient state

to a recurrent one must have at most t steps. Each path has a positive

probability, thus for each i ∈ T ,
∑

j∈R P
t
ij > 0. This implies that for each

i ∈ T ,
∑

j∈T P
t
ij < 1. Let γ denote the maximum of these probabilities over

i ∈ T . In other terms, let γ = maxi∈T
∑

i∈T P
t
ij < 1.

Lemma 3.6. Let [P ] be the transition matrix of a unichain with a set T of
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t transient states. Then

max
l∈T

∑
j∈T

P n
lj ≤ γn/t. (3.29)

Proof : For each integer δt multiple of t and each i ∈ T :

∑
j∈T

P
(δ+1)t
ij =

∑
k∈T

P t
ik

∑
j∈T

P δt
kj ≤

∑
k∈T

P t
ik max

l∈T

∑
j∈T

P δt
lj ≤ γmax

l∈T

∑
j∈T

P δt
lj .

This is valid for all i ∈ T , which includes also the maximum over i. Thus, it

holds:

max
l∈T

∑
j∈T

P t
lj ≤ γ (3.30)

Iterating (3.29), we obtain:

max
l∈T

∑
j∈T

P δt
lj ≤ γδ.

Setting n = δt and recalling that the maximum in non-increasing in n, (3.28)

follows.

We now deal with the case in which the initial state in i ∈ T and the �nal

state is j ∈ R. Let us de�ne m = n/2. For each i ∈ T and j ∈ R, the

Chapman-Kolmogorov equation says that:

P n
ij =

∑
k∈T

Pm
ik P

n−m
kj +

∑
k∈R

Pm
ik P

n−m
kj .

From what we proved in section 3.2, for every j ∈ R it exists πj = limn→∞ P
n
kj.

Thus, for each i ∈ T , it holds that:

|P n
ij = πj| = |

∑
k∈T

Pm
ik (P n−m

kj − πj) +
∑
k∈R

Pm
ik (P n−m

kj − πj)|

≤
∑
k∈T

Pm
ik |P n−m

kj − πj|+
∑
k∈R

Pm
ik |P n−m

kj − πj|
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≤
∑
k∈T

Pm
ik +

∑
k∈R

Pm
ik |P n−m

kj − πj|. (3.31)

We can take the limit of n to in�nity in both sides of equation (3.31) and we

obtained the desired result.

This is summarized by the following theorem:

Theorem 3.7. Let [P ] be the matrix of an ergodic �nite state unichain.

Then limn→∞[P n] = ~e ~π, where ~e = [1, 1, 1, ..., 1]T and ~π is the steady-

state vector with entries zero for each transient state and πj for each recurrent

state.

3.4 Other �nite state Markov chains

First consider a Markov chain with several ergodic classes, C1, ..., Cm. The

classes don't communicate and should be considered separately.

If this is the case, [P ] will have m independent steady state vectors, one

nonzero on each class. [P n] will then converge, but the rows will not be all

the same.

There will be m sets of rows, one for each class, and the row for class k will

be nonzero for the elements of that class. So the steady-state vector will be

in blocks.

Next consider a periodic recurrent chain of period d. This can be sepa-

rated into d subclasses with a cyclic rotation between them.

If we look at [P d], we see that each subclass becomes an ergodic class, say

C1, , ..., Cd. Thus, limn→∞[P nd] exists.

A steady state is reached within each subclass, but the chain rotates from

one subclass to another.
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4 Applications

Markov chains are widely used to model many real-world situations that

involve randomness. They are a tool for a variety of di�erent �elds, that

range from search engines' page ranking to the study of genes in biology.

In economics and �nance, they are often used to model randomness and to

predict the value of assets and the evolution of macroeconomic situations,

such as cycles between recession and expansion.

4.1 Markov chains to predict stock market trends

I am going to �nd a model to predict stock market �uctuations using Markov

chains. I start by giving a brief insight to �nancial markets and I continue by

using some data provided by Borsa Italiana to apply the theoretical model.

A stock is the ownership of a corporation indicated by shares, which repre-

sent a piece of the corporation's assets and earnings.

The are di�erent stock indexes that track a portfolio of stocks.

I am going to consider FTSE MIB Index. It is �the primary benchmark

Index for the Italian equity markets. Capturing approximately 80% of the

domestic market capitalization, the Index is comprised of highly liquid, lead-

ing companies across ICB sectors in Italy. The FTSE MIB Index measures

the performance of 40 Italian equities and seeks to replicate the broad sector

weights of the Italian stock market� 2.

As stock prices increase and decrease, �nancial markets trends can iden-

ti�ed. They can be grouped into three categories:

1. Bull markets: are characterized by a general rise of prices of �nancial

activities and by optimistic expectations.

2Borsa Italiana
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Figure 4.1: FTSE-MIB Index graph on August the 1st, 2019

2. Bear markets: are characterized by a decline in prices and by a pes-

simistic view of the future.

3. Stagnant markets: are characterized by neither a decline nor rise in

general prices.

Normally, it is assumed that all the actors in stock markets have access to

the same information and that prices �uctuate randomly. For this particular

model, I am going to make some further assumptions:

1. The trend of a certain stock today depends only the state of the stock

on the day before yesterday. It has little to do with the past. I make

this assumption so that I can apply the Markov property.

2. The probability of a stock to go from state i to state j has nothing to

do with the time at which we consider state i. This assumption makes

it possible to use homogeneous Markov chains.

4.1.1 Empirical analysis

In order to develop this model, I am going to divide each day's closing price

of each considered stock into three states: up, down and zero. The up state
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corresponds to a positive increase of the price from the day before yesterday

to today's price. The down state corresponds to a decrease in price and the

zero state corresponds neither to an increase nor a decrease.

I use the following notation: x1 = up, x2 = down, x3 = zero. I denote with

ηi = [p1, p2, p3] the vector of probabilities at time i = 0, 1, 2, ..., n. Then

I proceed by determining the probability of each state.

From table 1, we see that: x1 = 9, x2 = 29, x3 = 2. Thus, the initial state

distribution is: p1 = 9/40 ≈ 0.225, p2 = 29/40 ≈ 0.725, p3 = 2/40 ≈ 0.005

and the initial state distribution vector is: ~η0 = [0.225, 0.725, 0.005].

Now I want to establish the transition probability matrix. For this purpose,

I use table 2, that contains variations of prices of the stocks in the Index on

July the 31st. In order to �nd Pij for i, j=1, 2, 3, I need to count how many

times the stocks in the basket change from up to down, from up to zero, from

up to up, from down to up, ... and so on. Then I divide each sum by the

values of x1, x2 and x3 previously found. So I �nd that:

P11 = 3/9 ≈ 0.333, P12 = 5/9 ≈ 0.555, P13 = 1/9 ≈ 0.111,

P21 = 20/29 ≈ 0.690, P22 = 9/29 ≈ 0.310, P23 = 0/29 = 0,

P31 = 2/2 = 1, P32 = 0/2 = 0, P33 = 0/2 = 0.

Thus, the transition matrix is: P =

0.333 0.555 0.111

0.690 0.310 0

1 0 0

.
Notice that we have a stochastic matrix since the entries of each row sum up

to 1.

Moreover, the associated chain is ergodic since there is just one class, whose

states are recurrent and aperiodic, as it is made clear by the graphical model

of �gure (4.2). Thus, it exists the steady-state vector.

Now I calculate the state of the Index in the future, using the following

equation:

~ηi+1 = ~ηi ∗ P, where i ∈ N. (4.1)
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Figure 4.2: Graphical model

Using data from tables 1 and 2 in equation (4.1), I get:

~η1 = ~η0∗P = [0.225, 0.725, 0.005]∗

0.333 0.555 0.111

0.690 0.310 0

1 0 0

 = [0.58, 0.35, 0.025]

As we saw during the previous sections, under the hypothesis of stable condi-

tions, the state probability vector is independent from the initial distribution

as n grows larger.

So, iterating equation (4.1) over i, I �nd that:

~η2 = ~η1∗P = [0.58, 0.35, 0.025]∗

0.333 0.555 0.111

0.690 0.310 0

1 0 0

 = [0.460, 0.431, 0.064]

and so on.

I used the following Python code in order to calculate ~ηn with a large n = 100:

n = 1

e = [0.225, 0.725, 0.005]

while n < 101:

a = e[0]

b = e[1]

c = e[2]

e[0] = a * (1/3) + b * (20/29) + c * 1
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e[1] = a * (5/9) + b * (9/29) + c * 0

e[2]= a * (1/9) + b * 0 + c * 0

n = n + 1

print(e)

After the code run, Python found the solution vector: [0.498, 0.401, 0.055].

Thus I can conclude that the predictions for the future are optimistic, since

the probability of stocks in the Index is up for 49.8% of cases. However the

probability of a decrease in prices is also quite high and it is equal to 40.1%.

4.1.2 Comments

Are predictions reliable? On the second of August we have that prices de-

creased. Thus, predictions were not very reliable.

There are many factors that I did not take into account while developing this

model. It does account for the magnitude of price changes and it does not

consider possible market caps or market �oors.

Moreover, the main di�culty for building a decent model lies on the fact that

stock prices are really volatile. They change every day as a result of market

forces. If the demand for a certain stock rises, then the price moves up. On

the contrary, if supply increases because investors want to sell a stock, the

price falls. The primary challenge is to understand why people want to buy

or sell a stock. The main theory is that prices re�ect how investors perceive

the worth of the company that issues those stocks. Not only the current

value of the company is taken into account, but also how investors expect

the company to grow in the future.

The value of a company is a�ected mostly by its earnings. Public companies,

which are companies whose securities can be bought by the general public,

are required to report their earnings four times a year. If a company's report

is better than expected, the price of its stock rises. On the other side, if earn-

ings are not as high as prospected, the price of stocks falls down. Thus, in

this model, the matrix P should be changed every quarter of a year to re�ect

the e�ects of the disclosure of companies' earnings. Moreover, good or bad
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news about a company immediately in�uence the price of its stocks. Thus,

the matrix P should also be modi�ed every time some information about

the companies in the Index or about the general sociopolitical economical

situation is made public. However, this would still not be enough to face the

complexity of the real world. As it happened with �nancial bubbles, earn-

ings and expectations are not enough to predict the behavior of investors.

Hundreds of variables, ratios and indicators have been developed in order to

predict �uctuations. Still, some believe that it is impossible to make forcasts.
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5 Tables with data

Table 1: FTSE-MIB from Borsa Italiana on July the 29th, 2019. In the

row 'Number', each entry corresponds to one of the companies that compose

the basket of the Index. To each company, it is associated a state (up, zero

or down) and the magnitude of the change in percentage points.
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Table 2: FTSE-MIB from Borsa Italiana on July the 31st, 2019.



39

Figure 5.1: List of companies used in the FTSE-MIB Index
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6 First Appendix

Lemma 6.1. If a, b ∈ N \ {0} are relatively prime, then

ax+ by = ab− a− b (6.1)

has no solutions x, y ∈ N.

Proof Equation (6.1) can be rewritten as:

b(y + 1) = a(b− 1− x) (6.2)

or

a(x+ 1) = b(a− 1− y). (6.3)

Considering equation (6.2), since a and b have no common factor, it exists

k ∈ N, k ≥ 1 such that: y+ 1 = ka and b− 1−x = kb. This is equivalent to

y + 1 = ka (6.4)

and

x+ 1 = b(1− k). (6.5)

Equation (6.5) can hold only if k = 0. In this such case, equation (6.4) is

equivalent to y = −1, so we found a contradiction.

Starting from equation (6.3), similar steps also lead to a contradiction.

Lemma 6.2. (Euclidean Algorithm). If a, b ∈ N \ {0}, then ∃x, y ∈ Z such

that ax+ by = 1.

Proof We set a = a0 > b = a1 and we perform the division with reminder.

Thus, we obtain: a0 = a1q1+a2, where a1, a2 ∈ N and 0 ≤ a2 < a1. Iterating

this, we obtain that: aj−1 = ajqj + aj+1. For a certain j = n, one will have
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that an+1 = 0. If q ∈ N \ {0} divides an then, iterating backward, it divides

an−1, an−2, ..., a1 = b, a0 = a. Thus, an = 1, since G.D.C.(a,b)=1.

Thus, we have that:

a0 = a1q1 + a2

a1 = a2q2 + a3

...

an−2 = an−1qn−1 + 1

⇔



1 = an−2 − an−1qn−1
an−1 = an−3 − an−2qn−2
...

a3 = a1 − a2q2
a2 = a0 − a1q1

Starting from the bottom and substituting in the equation above, induc-

tively, we see that we have a linear combination of a0 = a and a1 = b with

integer coe�cients.

Let's observe that the same argument shows, more generally, that G.D.C.(a,b)=ax+by

∃x, y ∈ Z.

Theorem 6.3. Let a, b ∈ N such that the greatest common divisor between

a and b is 1, i.e. G.D.C.(a, b) = 1.

If m ∈ N, m ≥ ab − a − b + 1, then ∃x, y ∈ N such that m = ax + by and

there are no x, y ∈ N such that ax− by = ab− a− b.

Proof Lemma (6.1) proves the last assertion in the statement.

By lemma (6.2), there are x′, y′ ∈ Z such that 1 = ax′ + by′. Clearly x′

and y′ have opposite signs and we can assume that 1 = ax1 − by1, with

x1, y1 ∈ N \ {0}. For a certain j ∈ Z and a certain n ∈ N \ {0}, we have

that: 0 < n = anx1 − bny1 = anx1 + jab− bny1 − jab = axn − byn

with

xn = nx1 + jb

yn = ny1 + ja.

We can �nd j so that it holds:

anx1 + jab > 0

bny1 + jab < ab.

Let's consider the minimal j ∈ Z with the property that anx1 + jab > 0.

Then anx1 + jab ≤ ab, so that bny1 + jab < anx1 + jab < ab. Thus xn ≥ 1

and yn ≤ a− 1.

Finally, it holds that: b(a− 1− yn) + a(xn − 1) = ba− b− a+ axn − byn =
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ba−b−a+n = m. If we choose n = m−(ba−b−a) ≥ 1, which is a consequence

of the hypothesis. The theorem is proved because y = a − 1 − yn ≥ 0 and

x = xn − 1 ≥ 0.
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