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Abstract The Pacific oyster,Magallana gigas, is an

extremely successful invader with established popu-

lations in marine and estuarine habitats almost all over

the world. Ecological implications of the introduction

of this species to indigenous communities are well

documented. However, the processes by which this

species successfully establishes in a recipient com-

munity is still insufficiently understood. The early

detection of the oyster at the island of Helgoland

(North Sea) provided the ideal opportunity to inves-

tigate whether physical mechanisms, such as wave-

exposure, influence their successful colonisation. We

hypothesized that oyster colonisation benefits from

wave-protected conditions. For this purpose, we

evaluated colonisation success of M. gigas among

wave-protected sites and wave-exposed sites along the

island’s pier system. The densities of M. gigas were

significantly higher at wave-protected sites than at

wave-exposed sites, and the frequency distributions of

oyster lengths indicated better growth and higher

survival rates in the harbours. This higher colonisation

success at wave-protected sites may be explained by

the relative retention time of water masses in the

harbours, probably resulting in both reduced larval

drift and lower energy demands for secretion forma-

tion (i.e. firmer binding to the substrate). The fact that

the density of M. gigas can vary greatly on small

spatial scales depending on exposure corroborates a

multiple exposure sampling approach to monitor

oyster populations in order to avoid potential overes-

timations of population sizes in given areas.

Keywords Magallana gigas � Wave exposure �
North sea � Abundance � Length frequency

distribution � Neobiota
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Introduction

Globalisation and climate change have accelerated the

spread of non-indigenous species (NIS) in the world‘s

oceans in the last decades (e.g. Bellard et al. 2013;

Hulme 2017). Invasive species can lead to significant

changes in communities or even entire ecosystems, e.g.

through loss of biodiversity and changes in ecosystem

functions and services (e.g. Sala et al. 2000;

Butchart et al. 2010). The colonisation success of NIS

depends on several factors, which fall broadly into two

categories: (1) the species’ autecological characteristics

and competitive strength in coping with environmental

conditions (Byers 2002; Stachowicz et al. 2002), and

(2) interspecific interactions in the newly introduced

area (Kennedy et al. 2002; Meiners et al. 2004).

The Pacific oyster Magallana gigas (formerly

Crassostrea gigas; Salvi and Mariottini 2016; Bayne

et al. 2017) is one of the most successful marine

invaders with established populations beyond its

natural range (see Ruesink et al. 2005 and references

therein). Pacific oysters are well established in differ-

ent habitat types from sandy and muddy tidal flats,

where they preferably attach to the blue mussel or to

each other (Diederich 2005), to rocky shores (Ruesink

2007) and artificial hard substrates such as rocky dikes

and harbour facilities (Smaal et al. 2009).

The species had been introduced to various local-

ities along the North Sea coast during past decades for

aquaculture activities (e.g. Oosterschelde estuary,

1964; North Frisian Wadden Sea near the island of

Sylt, 1986; see Reise 1998; Wehrmann et al. 2000). Its

successful reproduction and the recruitment of oysters

outside of the aquaculture facilities on intertidal

mussel beds and artificial hard substrates led to their

spread in theWadden Sea until juvenile Pacific oysters

were found for the first time in the centre of the

German Bight, i.e. at the island of Helgoland in 2003

(Franke and Gutow 2004).

The changes caused by the introduction of the

Pacific oyster on native assemblages are well docu-

mented (e.g. Ruesink et al. 2005; Green and Growe

2014). However, less effort has been devoted to

understand the underlying processes by which the

oysters successfully establish within recipient assem-

blages. The timely discovery of the invader at

Helgoland created the ideal opportunity to study how

densities of Pacific oysters in a new area vary on small

spatial scales (hundreds of metres to few kilometres)

and whether physical mechanisms, such as wave-

exposure, affect successful establishment.

As recruitment of Pacific oysters seems to be

enhanced in wave-protected conditions (Robinson

et al. 2005; Ruesink 2007), we tested if wave-

protected artificial harbours provide particularly ben-

eficial conditions for the species. For this purpose, we

compared the abundances and length-frequency dis-

tributions of M. gigas between wave-protected sites

and wave-exposed sites along the pier system around

the island of Helgoland.

Material and methods

Study sites

Seven wave-protected sites (i.e. in the two harbours of

the island) and seven wave-exposed sites (i.e. outside

the harbours) were randomly chosen. The 14 sites

were distributed along the almost 6000 m long pier

system of the island of Helgoland in the German

Bight, North Sea (54� 110 N, 7� 530 E; Fig. 1). The
maximum water velocity (as an indication of expo-

sure) at the wave-exposed sites of Helgoland was more

than two times higher than at the wave-protected sites

(Molis et al. 2015). Species assemblages did not differ

among study sites, being predominantly a mosaic of

barnacles, green algae (Ulva spp.) and red seaweeds

(Porphyra spp., Mastocarpus stellatus, Chondrus

crispus) in the mid-to-low intertidal. Ten replicate

quadrats (0.25 m2) were placed at the vertical pier

walls at each site by SCUBA divers. In each replicate

quadrat, all oysters were counted and measured

(maximum shell length, to the nearest 1.0 mm) in

2005 and 2006. This procedure was repeated in 2012.

Each of the three sampling campaigns took place in

late spring or summer months. In total, 140 quadrats

were sampled for the two different degrees of expo-

sure per year (10 replicates 9 7 sites 9 2 expo-

sures = 140). Further details of the sampling

campaigns are shown in the Supplement (see Tab. S1).

Data analysis

The effect of wave exposure on the abundance of

Magallana gigas over time was tested with a repeated-

measures ANOVA using the seven replicate sites for

each wave exposure. The ten sampling quadrats
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were averaged for each site. Time (factor levels:

‘2005’, ‘2006’, ‘2012’) was treated as repeated

measures within-subject factor, and the wave exposure

(2 factor levels: ’protected’, ’exposed’) was a

between-subject factor. Prior to ANOVA, the data

were tested for homogeneity of variances using

Cochran’s C test. In case of heteroscedasticity, the

data were log (x ? 1)-transformed.

The analysis of the different size classes ofM. gigas

was conducted by comparing the medians of frequen-

cies via Kruskal–Wallis according to Sokal and Rohlf

(1995).

All tests were performed with the software package

Statistica Version 10.0 MR1 (StatSoft Inc., Tulsa,

Oklahoma, USA).

Results

The abundances of Magallana gigas were signifi-

cantly higher at wave-protected sites than at wave-

exposed sites (F1,12 = 69.17, p\ 0.001) (Fig. 2). This

pattern was consistent throughout time—oyster indi-

viduals were significantly more abundant at wave-

protected than at wave-exposed sites in 2005

(p\ 0.05) and 2006 (p\ 0.05) as well as in 2012

(p\ 0.001). At the same time, oyster abundances at

both wave-protected and wave-exposed sites

increased distinctly between 2005/2006 and 2012

(more than 15 and 10 times respectively).

The length-frequency distributions of oysters at

wave-protected sites revealed a similar pattern each

year, with most individuals in the 10–20 mm size class

(2005:HK–W = 76.53, p\ 0.001; 2006: HK–W = 75.91,

p\ 0.001; 2012: HK–W = 58.81, p\ 0.001) (Fig. 3).

Larger individuals (50 mm and larger) increased

slightly over the years, and individuals larger than

80 mm were not found until 2012. In 2005, no

individuals were detected at wave-exposed sites

(Fig. 3). In the following year, most individuals were

again found in the 10–20 mm size class as at the wave-

protected sites (HK–W = 43.87, p\ 0.001). In 2012, the

500 m

M
ain island

Dune

H
elgoland

Roads

South
Harbour

Helgoland

wave-exposed sites
wave-protected sites

Fig. 1 Map of Helgoland and its location in the German Bight, North Sea (bottom right corner). Symbols indicate the positions of the

wave-exposed (asterisks) and wave-protected sites (circles). (Modified from Beermann 2014)
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first two size classes (i.e. 0–10 and 10–20 mm) differed

significantly from the other size classes (HK–W = 91.00,

p\ 0.001), where only very few individuals per class

were found.

Discussion

Abundances

Higher abundances ofMagallana gigaswere observed

at wave-protected sites. This contradicts common

distribution patterns of sessile filter-feeders, mainly

mytilids, barnacles and tubeworms, which are known

to predominate especially wave-exposed areas caused

by an increased replenishment of food, higher oxy-

genation inputs and/or decreased predator pressure

due to wave shock (e.g. Scrosati and Heaven 2008;

Arribas et al. 2014).

Oysters seem to be an exception to the general

pattern of filter feeders. An increased occurrence of

M. gigas and other oyster species under sheltered

conditions has been reported, for example, from

coastal marine (Ruesink 2007) and estuarine areas

(Robinson et al. 2005) as well as from harbour sites

(Blockley and Chapman 2008). The success of oyster

colonisation at wave-protected sites may be explained

by (1) the relative retention of water masses in the

harbours and the associated reduced drift of the larvae

and (2) the reduced whiplash effect on newly settled

larvae, i.e. their removal by wave-induced movement

of algal thalli (e.g. Leonard 1999; Beermann et al.

2013). This may also explain that it obviously took

longer for oysters to settle at exposed sites, as no

oysters were found here in 2005, while a few

individuals (up to 11 individuals/0.25 m2) were found

at all wave-protected sites.

Length frequency distributions

The observed patterns in length frequency distribu-

tions indicated better growth and higher survival rates

at wave-protected sites, i.e. larger individuals of

M. gigas occurred almost exclusively in the harbours.

This is in contrast to some previous findings, which

demonstrated high growth potential of oysters (e.g.

Brown 1988; Campbell and Hall 2019) and other

bivalves (Bayne and Newell and references therein

1983) primarily through increased food supply more

likely to be found in habitats exposed to waves and

currents. Large oysters, however, have also been

detected in sheltered waters with relatively low food

supply associated with a decoupling of shell and

somatic growth, i.e. good shell growth, but underde-

veloped somatic growth (e.g. Brown and Hartwick

1988; Chávez-Villalba et al. 2010). Furthermore, a

high wave load at the exposed sites may have resulted

in reallocation of energy from shell/soft tissue growth

into secretion formation—for a firmer binding to the

substrate—as shown for other bivalves, e.g. Mytilus

galloprovincialis and the black-lip pearl oyster, Pinc-

tada margaritifera (e.g. Babarro and Carrington 2011;

Kishore et al. 2014).

A seemingly increased mortality rate ofM. gigas at

wave-exposed sites appears to be primarily caused by

processes directly related to wave exposure, such as

detachment/dislodgment from the substrate (e.g.

Alvarado and Castilla 1996). Different predation

mortality between the two different exposure levels

is rather unlikely, as in the North Sea a generally low

pressure by the main benthic predators, the starfish

Asterias rubens and the shore crab Carcinus maenas,

which prefer blue mussels to oysters, is reported

(Diederich 2005).

In conclusion, oyster populations of Magallana

gigas are characterized by large variation on small

spatial scales in non-native habitats. Wave exposure
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Fig. 2 Effect of wave exposure on abundance of Magallana

gigas through time. Error bars are standard deviation among

replicated sites. Student–Newman–Keuls (SNK) post hoc test

was run for wave exposure and year combinations. Different

letters indicate statistically significant differences (p\ 0.001)

between means of replicated sites per exposure per year (n = 7).

Please note that no individuals were detected at wave-exposed

sites in 2005
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seems to have a profound impact on colonisation, and

thus, establishment success. Artificial harbours that

are largely protected from wave load, can serve as a

preferred oyster habitat. Consequently, monitoring

programmes that aim at capturing NIS must be

carefully evaluated, as surveys are often restricted to

harbours and marinas (e.g. Rohde et al. 2017; Kraus

et al. 2019).We argue that potential overestimations of

local oyster populations can be avoided by a multiple-

exposure sampling approach.
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