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Abstract 

Background: The most severe bacterial disease of honeybees is American foulbrood (AFB). The epidemiology of 
AFB is driven by the extreme spore resilience, the difficulty of bees to remove these spores, and the considerable 
incidence of undetected spore-producing colonies. The honeybee collective defence mechanisms and their feedback 
on colony development, which involves a division of labour at multiple levels of colony organization, are difficult to 
model. To better predict disease outbreaks we need to understand the feedback between colony development and 
disease progression within the colony. We therefore developed Bayesian models with data from forty AFB-diseased 
colonies monitored over an entire foraging season to (i) investigate the relationship between spore production and 
symptoms, (ii) disentangle the feedback loops between AFB epidemiology and natural colony development, and (iii) 
discuss whether larger insect societies promote or limit within-colony disease transmission.

Results: Rather than identifying a fixed spore count threshold for clinical symptoms, we estimated the probabili-
ties around the relationship between spore counts and symptoms, taking into account modulators such as brood 
amount/number of bees and time post infection. We identified a decrease over time in the bees-to-brood ratio 
related to disease development, which should ultimately induce colony collapse. Lastly, two contrasting theories pre-
dict that larger colonies could promote either higher (classical epidemiological SIR-model) or lower (increasing spatial 
nest segregation and more effective pathogen removal) disease prevalence.

Conclusions: AFB followed the predictions of the SIR-model, partly because disease prevalence and brood removal 
are decoupled, with worker bees acting more as disease vectors, infecting new brood, than as agents of social immu-
nity, by removing infected brood. We therefore established a direct link between disease prevalence and social group 
size for a eusocial insect. We furthermore provide a probabilistic description of the relationship between AFB spore 
counts and symptoms, and how disease development and colony strength over a season modulate this relationship. 
These results help to better understand disease development within honeybee colonies, provide important estimates 
for further epidemiological modelling, and gained important insights into the optimal sampling strategy for practical 
beekeeping and honeybee research.
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Background
Honeybees are important pollinators in agricultural [1] 
and natural habitats [2]. The demand for managed pol-
linators in agriculture has steadily increased during 
the past decades due to changing diets and an alarming 
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decrease in natural pollinators in cultivated landscapes 
[3]. At the same time, beekeepers worldwide are experi-
encing increased winter and seasonal colony losses [4–7]. 
Such losses stem from a combination of parasites and 
diseases, poor nutrition, inadequate beekeeping manage-
ment practices and pesticide exposure; both individually 
and synergistically [8–16].

One of the major threats to colony health and beekeep-
ing viability is American foulbrood (AFB); a contagious, 
lethal bacterial disease of honeybee brood that is widely 
distributed across the world. The disease causes great 
economic losses during outbreaks due to reduced pro-
ductivity and material turnover [17–20]. American foul-
brood is caused by Paenibacillus larvae, a spore-forming 
bacterium that produces extremely resilient spores which 
can remain viable for decades [21]. Within a colony, P. 
larvae spores are spread by nurse bees performing in-
hive tasks, such as cleaning, but especially through the 
feeding of young larvae with spore-contaminated food 
[22]. Billions of spores are produced in the dying lar-
vae [20]. The dried larval remains (scales) are difficult 
to remove by workers and are a continuous source of 
infection for new brood. The lethality and epidemiology 
of AFB are driven by the resilience of the spores and the 
fact that the removal of diseased brood, a communal bee 
hygienic behaviour [23, 24], is not sufficient to remove 
this source of infection [20, 25]. The spores are distrib-
uted between colonies by swarming, robbing and in 
particular by beekeepers moving contaminated material 
between colonies [26, 27].

One major problem for the control of American foul-
brood is that even though clinical symptoms are highly 
characteristic for the disease, they tend to appear late 
during the epidemic, when the colony’s hygienic behav-
iour to remove infected larvae before they produce 
spores, can no longer keep up with the epidemic. Estima-
tions have been made that as much as 25% of spore-pro-
ducing colonies remain undetected [28]. Infections are 
therefore enzootic, since they remain in the population 
without external inputs [29], and occult, since they are 
present but largely visually undetected [27]. Colonies can 
produce large amounts of infectious P. larvae spores with 
relatively few cases of symptomatic brood, thus escap-
ing detection during routine beekeeper inspections while 
continuing to be a source of infection both within a bee-
keeping operation, between beekeepers (through sale of 
bees and equipment) and to feral and managed colonies 
within flight range through drifting and robbing [30].

One way to address the risk of pre-clinical infectious 
colonies for epidemic spread at multiple scales (local, 
regional, national) is to determine this risk directly from 
P. larvae spore levels in material sampled from the col-
ony, thereby unambiguously identifying all infectious 

colonies rather than just those presenting detectable 
symptoms. It has been shown that adult bees provide 
most reliable samples for relating P. larvae spore levels to 
AFB symptoms, superior to either colony debris or honey 
samples [28, 31–33]. The spore load of individual bees is 
positively correlated to the likelihood of clinical symp-
toms [31, 34]. Since the spores are heavily concentrated 
in the brood frames and hive material, beekeepers can 
remove much of the colony-level spore burden by shak-
ing the adult bees and queen into new, clean hives and 
frames with fresh wax foundation [35]. Attempts have 
been made previously to predict clinical symptoms from 
the number of spores in a colony [36, 37]. However these 
attempts lacked two important elements for improving 
the reliability of such a calibration curve, namely an esti-
mation of uncertainty and the usage of the recommended 
standardised grading of the severity of AFB symptoms.

We therefore included standardised AFB symptom 
grading scales [38] and multilevel Bayesian linear models 
to rectify these deficiencies, in order to identify more reli-
ably the probability of AFB symptoms given a particular 
spore count. The results obtained are therefore directly 
applicable to practical beekeeping, as well as to research 
and epidemiological modelling. For example, the results 
can be used to parameterize other Bayesian models, by 
using the posterior probability predicted by these models 
as prior probability estimates for other Bayesian analy-
ses, e.g. for predicting or analysing AFB transmission, 
infectivity, epidemiology, or symptoms in various actual 
or theoretical scenarios. Predicting AFB symptoms from 
spore counts follows a causational logic. However, from 
a practical perspective it would also be useful to explore 
the reverse relationship, i.e. to predict the colony spore 
levels from observed symptoms since the primary data 
obtained from colony inspections is the presence and 
severity of symptoms, which are then followed up with 
laboratory spore analyses of adult bee samples. This fur-
thermore also serves as a quality control of the standard-
ised AFB symptom grading system.

Our second objective was to disentangle the natural 
colony development and the colony-level disease devel-
opment over a season. While both the development of 
P. larvae infection in larvae [20], and AFB disease epi-
demiology between colonies using colony infection data 
[18, 27] have been described, the factors shaping AFB 
virulence at the colony level are still largely unknown. 
We focused on the onset and the development of the dis-
ease, which are the most relevant disease stages from a 
practical as well as an epidemiological perspective. AFB 
can kill a colony within a single season, which in temper-
ate regions of the northern hemisphere ranges from the 
beginning of April to end of September. Although one 
previous attempt at modelling AFB development suggests 
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that the onset of symptoms is rather sudden [39], there 
has been no controlled study to evaluate the time course 
of AFB progression during a full season. In addition, hon-
eybee colonies are complex entities (super-organisms) 
where most of the colony dynamics are driven by social 
interactions and decision making between its members, 
based on sensory input from within the colony and the 
environment, which makes it very difficult to predict the 
course of any disease [26]. Particularly collective defence 
components, such as hygienic behaviour, and its feedback 
on colony development are difficult to model reliably, 
since it involves both brood and adult bees and affects 
role allocation and decision making at multiple levels in 
colony organization [24, 40].

Our last objective concerned whether larger honeybee 
colonies limit or accelerate the epidemiology of AFB. For 
example colonies that have naturally adapted to survive 
uncontrolled Varroa destructor infestation display unique 
and characteristic colony development traits, including 
smaller overall size, reduced drone brood production 
and lower brood-to-adult bee ratios, all of which are pre-
dicted to limit the reproductive potential for this mite 
[41]. The classical deterministic epidemiological model, 
based on Susceptible, Infected and Resistant Hosts (the 
SIR-model [42]) would predict that larger colonies (more 
brood) should increase the spread of disease. However, 
living in social groups is clearly beneficial with regard to 
predation risk [43] and social hygiene, which may out-
weigh the higher infection risks [44]. For eusocial insect 
societies in particular, larger colonies may be more able 
than smaller colonies to deploy counter measures to epi-
demic disease spread, such as removing diseased brood 
(hygienic behaviour) [45]. Additionally, the increased 
spatial separation in larger colonies may delay the spread 
of infection [40]. Considerable research has been con-
ducted to understand how larger social groups cope with 
higher infection risk, and factors such as genetic diversity 
[46], group size [47, 48] and the structure of the social 
network [49] have been shown to be important for affect-
ing the colony-level effects of infection and disease. Most 
of these studies aim at the mechanisms social animals use 
to minimize infection risk (e.g. the ability to detect and 
remove fungal diseases [50] or the effectiveness of cuticu-
lar antimicrobial defences in relation to colony size [51]). 
However, such an approach is contingent on the assump-
tions related to these biological mechanisms. Here we 
approach the relationships between disease severity 
and colony size directly, and therefore independent of 
mechanistic assumptions. For example the variation in 
the number of susceptible hosts (i.e. the amount of larval 
brood, for AFB) over a season depends on many intrinsic 
and external factors [52, 53]. Since American foulbrood 
kills the brood, a shift in the brood-to-worker ratio can 

be expected, but it is unclear whether larger honeybee 
colonies are better than smaller colonies at handling such 
a shift. In this study we will therefore attempt to describe 
how AFB affects colony strength parameters (amount of 
brood and number of adult bees) and how these parame-
ters feed back to the epidemiology in the colony, in order 
to understand the relevance of colony size itself, inde-
pendent of colony-level mechanisms, on disease spread.

Results
The results describe the importance of a particular pre-
dictor for predicting a response variable, the direction 
of the predicted effect on the response variable, and the 
extent to which the primary relationship is modulated by 
secondary and tertiary predictors. Within each figure, the 
central subfigure shows the relationship between the pri-
mary predictor and the response variable if the influence 
of the other two secondary predictors (top and right) is 
neutral. Because these secondary predictors mostly co-
vary (i.e. Fig. 1: Brood 80 at Time 20 is more likely than 
Brood 200 at Time 20) the three subfigures on the lead-
ing diagonal are the most likely outcomes, while the 
remaining six subfigures are primarily for explaining and 
understanding the interactions. A summary of the origi-
nal data can be found in Additional file 1: (Figure S1 and 
Table  S1). Throughout the results variables have capital 
letters.

Predicting clinical symptoms from spore counts
All response variables were relevant for predicting 
Symptoms (Table  2: P[effect > 0] = 100% for all predic-
tors). Spores were a strong predictor of the Symptoms 
in all four models, both directly and through its inter-
action with the other variables (Table  1: M1–M4), and 
because subtracting the effect of secondary predic-
tors from the Spores predictor left a high probability of 
an effect size larger than zero (Table  2: Spores-Brood 
P[effect > 0] = 91.3%; Spores-Time P[effect > 0] = 94.3%). 
Brood and Time were equally predictive for Symptoms 
(Table 2: Brood-Time P[effect > 0] = 55.6%), though much 
less so than Spores. The Symptoms increased first slightly 
and then strongly with increasing Spores, regardless of 
the time and brood (Fig. 1: Time 50/Brood 130). Symp-
toms increased over Time, both in absolute terms and in 
relation to a given spore count level (see also Additional 
file  2: Figure S2), and Symptoms also increased with 
increasing Brood (see also Additional file 2: Figure S3). 

Brood was a stronger modulator of the Spores-Symp-
toms relationship than Time since the Spores × Brood 
interaction received more weight than the Spores × Time 
interaction (Table  1: M2 includes Spores × Brood and 
not Spores × Time). This is also illustrated by a stronger 



Page 4 of 14Stephan et al. BMC Ecol           (2020) 20:15 

change of the Spores-Symptoms relationship along Brood 
than along Time (Fig. 1).

Lastly we calculated the probability of encountering 
Symptoms if no Spores are detected in an adult bee sam-
ple (Spores = 0), which resulted in a probability around 
0.22.

Predicting spore counts from clinical Symptoms
All response variables were relevant for predicting Spores 
(Table  2). Symptoms were the strongest predictors of 
Spores, both directly and through its many significant 
interactions with other predictors; three out of the four 
selected models (Table  1), and since subtracting the 
effects of secondary predictors from symptoms left a high 
probability of an effect size larger than zero (Table  2). 

Bees seemed more important than Time for predicting 
Spores (Table 2).

Regardless of Time and Bees, Spores increased with 
increasing clinical symptoms (Fig. 2: Time 50/Bees 9; see 
also Additional file 2: Figure S4 for the full range of spore 
counts). In general though, Spores decreased over Time, 
as is illustrated by the decrease over Time for any given 
level of Symptoms (see also Additional file 2: Figure S5). 
Spores also decreased with increasing Bees irrespective 
of Time or Symptoms (Additional file 2: Figure S6). How-
ever, early in the season Spores increased with increasing 
number of bees.

Time was a stronger modulator of the Symptoms-
Spores relationship than number of bees, since the model 
including only the Symptoms × Time interaction received 
50% of the Akaike weight (Table 1). This is illustrated by 

Fig. 1 Clinical symptoms depending on spore counts, time of the season, and brood size within the colony. Shown are median (with 97, 89, 
and 67% credible intervals) posterior distributions along the full range of observed spore counts. The remaining continuous predictors are held 
approximately at their mean (brood: 132.6; time: 48.4), their 1st quantile (brood: 78; time: 21), and their 3rd quantile (brood: 191; time: 79)
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a greater change in the slope of the Symptoms-Spores 
relationship in relation to Time than in relation to Bees 
(Fig. 2, Additional file 2: Figure S4).

We furthermore estimated the number of expected 
spores in an adult bee sample if symptoms are at level 
zero or level one, which resulted in around 158 and 228 
spores, respectively. Lastly, we calculated the posterior of 
the difference for extreme and likely values of Spores in 
order to investigate a dilution effect of sampling 100 bees 
while colony size differed (see Additional file 2).

Predicting the effect of AFB disease on colony strength
All response variables were relevant for predicting the 
first variable of colony size, the number of adult bees 

(Table 2). Brood was the strongest predictor of Bees, as 
revealed by the importance of its interactions with the 
other variables in all four selected models (Table 1). This 
importance is further illustrated by the high probability 
of an effect larger than zero after subtracting the effect of 
Spores or Time as a co-predictor. The time post-infection 
seemed to be a much more important co-predictor of the 
number of bees than the number of spores (Table 2).

Regardless of Time or Brood the number of bees 
increased with increasing spore numbers (Fig.  3: Time 
50/Brood 130). Similarly, regardless of Spores and Brood, 
Bees increased with Time (Fig. 3: see at zero spore count 
and in Additional file 2: Figure S7 at Spores 850) and Bees 
increase with increasing Brood if the other predictors 

Table 1 Models used to average posteriors by multiplication with the model weight

Shown are effective Number of Parameters (pWAIC), Widely Applicable Information Criterion (WAIC), standard error of WAIC estimate (SE), and Akaike weight based on 
WAIC (weight). Remaining models (with different combinations of interactions; not shown) received lower weights and were not used for model averaging

Response Model Explanatory pWAIC WAIC SE weight

Symptoms M1 Spores, Time, Brood
Spores × Time
Spores × Brood
Time × Brood
Spores × Time × Brood

62.6 481.6 34.12 0.51

M2 Spores, Time, Brood
Spores × Brood

62.4 483.3 34.22 0.23

M3 Spores, Time, Brood
Spores × Brood, Time × Brood

63.1 483.8 34.18 0.18

M4 Spores, Time, Brood
Spores × Time, Spores × Brood Time × Brood

63.3 485.4 34.42 0.08

Spores M5 Symptoms, Time, Bees
Symptoms × Time

118.4 2330.6 59.81 0.50

M6 Symptoms, Time, Bees
Symptoms × Time Symptoms × Bees, Time × Bees 

Symptoms × Time × Bees

118.7 2332.4 59.23 0.20

M7 Symptoms, Time, Bees
Time × Bees

118.6 2332.7 59.56 0.18

M8 Symptoms, Time, Bees
Symptoms × Bees, Time × Bees

119.3 2333.4 59.51 0.12

Bees M9 Spores, Time, Brood
Spores × Time, Spores × Brood, Time × Brood
Spores × Time × Brood

78.2 1453.5 30.69 0.54

M10 Spores, Time, Brood
Spores × Time, Time × Brood

81.0 1454.6 28.60 0.30

M11 Spores, Time, Brood
Spores × Brood

80.3 1457.2 29.16 0.08

M12 Spores, Time, Brood
Spores × Time, Spores × Brood

78.4 1457.4 30.95 0.08

Brood M13 Symptoms, Time, Bees
Symptoms × Bees

141.6 1950.5 15.27 0.997

M14 Symptoms, Time, Bees
Symptoms × Time

144.8 1962.8 12.60 0.002

M15 Symptoms, Time, Bees
Symptoms × Time, Symptoms × Bees

146.2 1965.3 12.34 0.0006

M16 Symptoms, Time, Bees
Symptoms × Time, Time × Bees

146.6 1966.0 13.00 0.0004
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are held at their mean/median values (Fig. 3: zero Time 
point; Additional file 2: Figure S8: Spores 850).

Time was a stronger modulator of the Bees-Spores rela-
tionship in the colonies than Brood as the model with the 
Spores × Time interaction was ranked higher than the 
model including the Spores × Brood interaction (Table 1). 
This is illustrated by the strong change over Time in the 
slope, from a positive to a negative relationship, while the 
changes with respect to Brood are less prominent (Fig. 3).

Regarding the second measure of colony strength, i.e. 
the amount of brood, we saw that all response variables 
were relevant for predicting brood amount (Table  2). 
The number of bees was by far the strongest predictor of 
brood amount in the first model, which included only the 
Symptoms × Bees interaction, and received 99% of all the 
predictors’ weight (Table 1). Therefore, here we only used 
M13 for the predictions instead of a weighted combina-
tion of all 4 models.

The importance of Bees for predicting the amount of 
brood is further illustrated by the high portability of an 
effect larger than zero after subtracting the co-predictor 
symptoms or time. Symptoms seemed more important 
than Time for predicting Brood (Table 2).

Regardless of Time and Bees, the Brood increased with 
increasing Symptoms (Fig. 3: Time 50/Bees 9). Similarly, 
Brood decreased with Time irrespective of the Symp-
toms and Bees (Fig. 4 and Additional file 2: Figure S9, any 
symptom score). Brood also increases with Bees (Fig. 4), 
although at very high symptoms, more bees did not lead 
to more brood anymore.

Bees was an overwhelmingly stronger modulator of 
the Brood-Symptoms relationship relative to Time since 
Symptoms × Bees was the only relevant interaction 
(Table 1). This is illustrated by the strong change in the 
slope of the brood-symptoms relationship in relation to 
the number of Bees, relative to the slope in relation to 
Time (Fig. 4).

Discussion
The primary objective of our study was to determine the 
probability distribution for encountering colony-level 
AFB symptoms from P. larvae spore counts, as a superior 
approach to identifying a threshold. By taking a proba-
bilistic approach, other factors affecting the relationship 
between spore counts and symptoms, such as colony size, 
brood availability and stage of the infection process were 
explicitly accounted for, something which is not possible 
with simple threshold values.

While we could describe the relationship between 
spore levels and symptom independent of the effects of 
time of the season and the amount of brood (by keep-
ing these at their mean value), questions remain about 
the generality of the results. Other possible factors that 
may change the spore-symptom relationship are vari-
ability in bacterial virulence (an innate genetic prop-
erty of different P. larvae strains [54]), colony genetics 
[46], resistance against P. larvae [55], and hygienic 
behaviour [23]. All colonies in the study were placed 
in the same isolated apiary and were experimentally 
infected with sufficient Paenibacillus larvae spores to 
precipitate AFB disease. All colonies were therefore 
under the same infection pressure. This means that 

Table 2 Posterior distributions for  the  main parameters 
on original scale

Show are mean ± standard deviation (with 97% credibility intervals) of the 
main effects and the effect probability. Posteriors are weighted based on the 
four selected models (except for brood as response variable, see Table 1 and 
text). Italic rows specify the importance of one predictor in relation to another 
(posterior distribution of one parameter minus the other). We also show 
posteriors for specific values (Spores/Symptoms = 0; Symptoms = 1; see text for 
further explanations)

Response Parameter Posterior distribution P[effect > 0]

Symptoms Intercept 0.29 ± 0.06 (0.16, 0.43) 100

Spores 2.13 ± 0.33 (1.47, 2.91) 100

Time 1.58 ± 0.15 (1.26, 1.91) 100

Brood 1.61 ± 0.19 (1.28, 2.10) 100

Spores-Brood 0.51 ± 0.40 (− 0.26, 1.45) 91.3

Brood-Time 0.03 ± 0.22 (− 0.46, 0.52) 55.6

Spores-Time 0.55 ± 0.39 (− 0.24, 1.4) 94.3

Spores = 0 0.22 ± 0.05 (0.12, 0.34) 100

Spores Intercept 286.08 ± 65.68 (159.83, 432.0) 100

Symptoms 3.51 ± 0.68 (2.20, 5.06) 100

Time 0.63 ± 0.08 (0.46, 0.81) 100

Bees 1.08 ± 0.15 (0.78, 1.46) 100

Symptoms-Bees 2.43 ± 0.74 (0.97, 4.17) 100

Bee-time 0.45 ± 0.19 (0.04, 0.87) 99.5

Symptoms-Time 2.88 ± 0.71 (1.57, 4.49) 100

Symptoms = 0 158.26 ± 36.58 (92.63, 241.76) 100

Symptoms = 1 228.13 ± 53.04 (123.54, 349.12) 100

Bees Intercept 17.27 ± 0.40 (16.41, 18.08) 100

Spores 1.04 ± 0.02 (0.99, 1.10) 100

Time 1.13 ± 0.01 (1.10, 1.17) 100

Brood 1.25 ± 0.01 (1.21, 1.29) 100

Brood-Spores 0.20 ± 0.03 (0.13,0.29) 100

Brood-Time 0.11 ± 0.02 (0.06, 0.15) 100

Time-Spores 0.09 ± 0.03 (0.02,0.166) 99.7

Brood Intercept 88.11 ± 17.36 (58.69, 127.88) 100

Symptoms 1.30 ± 0.10 (1.10, 1.59) 100

Time 0.52 ± 0.03 (0.44, 0.61) 100

Bees 1.89 ± 0.15 (1.60, 2.29) 100

Bees-Symptoms 0.58 ± 0.19 (0.16, 1.02) 99.9

Bee-Time 1.37 ± 0.16 (0.97, 1.71) 100

Symptoms-Time 0.78 ± 0.12 (0.53, 1.07) 100
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any additional contagion contributed by bees drifting 
between the colonies will be miniscule compared to the 
contagion developed within each colony, and will not 
have affected the results. Although proximity and con-
nectedness (beekeeping and geolocation) are important 
determinants of the disease pressure in a colony [27] 
this is not applicable to the current study which was 
conducted in complete isolation from other beekeeping 
operations, as required by sanitary regulations.

From an applied perspective, it may be more interest-
ing to get an idea of the spore counts given a symptom 
score. We found even for colony symptom scores of 
0 (i.e. no disease), there is a 100% probability that the 
spore count is larger than zero, averaging around 158 
Spores per bee (Table  2: Symptoms = 0). Symptomatic 

colonies with an AFB score of 1 corresponded to 
around 228 Spores per bee (Table  2: Symptoms = 1). 
This is considerably lower than the previously esti-
mated threshold of 3000 spores per bee for AFB symp-
toms [37], but higher than the estimate of Lindström 
[36].

Scoring clinical symptoms may be biased given that 
symptoms may not be visible at an early stage of infec-
tion [56] and that symptoms in larger colonies with 
many brood frames to inspect may be underestimated by 
human eye [57, 58]. Regardless of the season or the spore 
levels, clinical symptoms increased with brood size in our 
study. It remains unclear if, and to what extent, the pre-
cision of the prediction of AFB symptoms suffers from 
increasing colony size. However, the AFB disease scoring 

Fig. 2 Spore counts depending on clinical symptoms, time of the season, and number of bees within the colony. Shown are median (with 97, 
89, and 67% credible intervals) posterior distributions along the full range of observed AFB scores, but only until a maximum of 3000 Spores (see 
Additional file 2: Figure S4 for whole range of observed spore counts). The remaining continuous predictors are held approximately at their mean 
(Bees: 9.2; Time: 48.4), their 1st quantile (Bees: 6.0; Time: 21), and their 3rd quantile (Bees: 12.0; Time: 79)
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is very sensitive at the lower range and any number of 
diseased cells above 100 corresponds the highest AFB 
symptom score, which would probably guard against 
such overestimation. Another result of our probabilistic 
approach is evidence that the AFB scoring method seems 
not to produce false positives, since for a spore count 
of 0, the probabilistic estimate for AFB symptoms does 
not reach 1, which is the minimum AFB-positive score 
(Table 2: Spores = 0: 0.22 ± 0.05). This confirms the accu-
racy of the scoring scale and previous findings that high 
spore levels will be detected in symptomatic colonies 
[28].

Our second objective was to clarify the interactive rela-
tionship between colony development and disease devel-
opment. Brood amount and the time post infection were 
similarly important secondary predictive factors affecting 

the relationship between spore counts and symptoms. 
Both are important for the epidemiology of the disease: 
the amount of brood representing new, uninfected hosts 
and time being an obvious important factor in any epi-
demiological disease progression. Symptoms increased 
slowly with increasing brood size and over time. Includ-
ing data from symptomatic colonies only would have 
shown a faster increase. However, we were also interested 
in predicting from the spore counts the probability of 
symptoms developing in colonies that passed visual AFB 
inspection. The presented models therefore investigated 
the disease development in infected colonies, rather than 
just in symptomatic colonies.

AFB kills progressively more brood as the epidemic 
intensifies, and the consequent shortage of new adult 
bees leads to progressive dwindling and eventual demise 

Fig. 3 Colony size depending on spore count, time of the season, and brood size. Shown are median (with 97, 89, and 67% credible intervals) 
posterior distributions along the full range of observed spore counts. The remaining continuous predictors are held approximately at their mean 
(Brood: 132.6; Time: 48.4), their 1st quantile (Brood: 78; Time: 21), and their 3rd quantile (Brood: 191; Time: 79)
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of the colony. This study describes this process in greater 
detail, including the behavioural responses of the col-
ony. During normal colony development, and as long as 
there is forage available, more brood leads to more adult 
bees, which then leads to more brood and so on. In these 
experiments however, the amount of brood decreased 
throughout the entire season, rather than being restricted 
to the autumn (which is when the colonies normally 
transition to broodless winter colonies [59]). Admittedly 
we did not had uninfected control colonies the develop-
ment of the brood could be compared to, which would 
have enabled us to estimate the brood loss over the sea-
son entirely attributed to AFB. Nevertheless, since no 
swarming occurred in these colonies during the season, 
we believe this decrease could therefore be (mostly) 

attributed to AFB. However, early in the season the col-
onies responded to AFB symptoms by increasing their 
brood production, shown by a greater increase in smaller 
colonies than in larger colonies (Fig.  4: steeper slope at 
Bees 6 than Bees 12). Nevertheless, later in the season 
this compensation attempt failed and the number of bees 
decreased with increasing bacterial spore levels (Fig. 3). 
This decrease may have been partly overestimated, due 
to the dilution effect in larger colonies, where the spore 
count per adult bee sample is shared between larger 
numbers of adult bees (see Additional file  2 for more 
explanations and implications for sampling strategy). 
The compensation failure can be seen more clearly by 
slower increase in brood amount with increasing symp-
toms severity (Fig.  4). Larger amounts of brood fail to 

Fig. 4 Brood size depending on spore count, time of the season, and colony size. Shown are median (with 97, 89, and 67% credible intervals) 
posterior distributions along the full range of observed clinical symptoms. The remaining continuous predictors are held approximately at their 
mean (Bees: 9.2; Time: 48.4), their 1st quantile (Bees: 6.0; Time: 21), and their 3rd quantile (Bees: 12.0; Time: 79)
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hatch into adult workers, which is most clearly illustrated 
by the brood-to-bee ratio. At later time points, the same 
brood amount predicts a larger number of bees (Addi-
tional file 2: Figure S8) and the same number of bees pre-
dicts less brood (Additional file 2: Figure S10).

The observed increase in the amount of brood in 
response to a stressor has previously been described for 
Varroa destructor infested colonies [14], where larger 
colonies in the autumn were more likely to die the fol-
lowing year. A bee colony is an adaptable unit that uses 
brood rearing as one of the mechanisms to respond to 
external and internal stimuli, through both positive and 
negative feedback loops [60]. A (perceived) deficit in 
either adults or healthy brood can be one of such inter-
nal stimuli, resulting in an elevated brood rearing effort 
in smaller colonies, and thus an elevated brood-to-adult 
ratio. We observed such a compensation attempt, at the 
most relevant time point of the life cycle for the colony 
development (spring), and we could show that this effect 
subsequently carried over to the adult (worker) bee stage. 
Although external factors such as foraging availability 
and quality, determined by the surrounding landscape, 
are also highly influential for brood rearing and overall 
colony strength [61, 62], all colonies in this study were 
located in the same apiary and therefore exposed to the 
same landscape and foraging conditions. Since the num-
ber of bees declined due to the disease we can also expect 
a feedback of lower food intake to further increase dis-
ease prevalence that creates a cycle of stress [63].

Our final objective was to investigate the epidemio-
logical aspect of AFB. In these experiments we verify the 
expectation of the SIR model of epidemiology, but also 
identified peculiarities for the spread of AFB within a 
colony. The epidemic potential (given by the reproductive 
number  R0) of a disease increases with increasing trans-
mission rates and number of susceptible hosts [42]. The 
particularities of disease epidemiology in social animals 
was reviewed recently [45]. One theoretical prediction is 
that, contrary to the SIR model, disease prevalence may 
decrease with increasing group size, if the behavioural 
responses limiting disease prevalence or transmission 
become more effective with increasing group size, such 
as grooming behaviour in termites [64]. The hygienic 
behaviour of honeybees that involves detecting and 
removing infected and asymptomatic brood would also 
affect the SIR model [56], since it systematically reduces 
the amount of infectious material in the colony, while the 
disappearance of brood would of itself act as a stimulus 
for rearing new (uninfected) brood, both of which are 
important parameters for the SIR model. In these experi-
ments, clinical symptoms always increased with brood 
size (Additional file  2: Figure S3), thus favouring the 
traditional SIR model of epidemiology as explanation. 

Although small colony size due to poor nutrition may 
amplify disease susceptibility [63], we do expect that the 
disease will be more severe and increase more over the 
season in larger colonies. This would mean larger colo-
nies are not more resilient against AFB and will decrease 
in size stronger than smaller ones. Smaller colonies have 
lower expected overwintering survival [65] which could 
lead to an additional colony loss in the next spring.

Contrary to the positive effects of hygienic grooming 
behaviour on disease in termites, our study found a posi-
tive relationship between colony size and disease symp-
toms, implying the hygienic behaviour of brood removal 
is perhaps ineffective at breaking this relationship. In 
fact, the adults carry bacterial spores and serve as vec-
tors infecting new brood. The broader implication here 
is whether group size facilitates or hinders disease trans-
mission in social animals will depend on what life stage 
is affected by the disease and how this effect translates 
to the other life stages or affect the task allocation [66] 
within eusocial insects.

Conclusions
We provide a novel, and potentially more reliable method 
for quantifying the relationship between P. larvae spore 
counts and AFB symptoms. Furthermore, we showed how 
AFB-caused brood mortality led to progressively fewer 
adult worker bees, eventually tipping the colony into a 
deadly negative spiral from which it could not escape. We 
identified that AFB disease epidemiology in honeybees 
follows the more traditional SIR model of epidemiology. 
We found little evidence of any beneficial effects of the 
hygienic behaviour of brood removal on containing the 
epidemic, especially since adult bees simultaneously also 
act as vectors of the disease. We extend the discussion fur-
ther to larger eusocial societies exhibiting stronger social 
immunity by showing this seems not to apply for American 
foulbrood in honeybees as workers are removing diseased 
brood but also vectoring the disease. The study therefore 
emphasizes to consider how certain defence strategies 
will manifest themselves in other life stages of the eusocial 
society and shows the direct feedbacks between the epi-
demic over a season and the colony size.

Methods
Experimental design
On March 24th 2014, forty honeybee colonies located in 
an isolated apiary with a history of AFB in Beltsville, MD, 
USA were selected for the experiment (colonies owned 
by USDA-ARS Bee Research Lab). The experiment was 
originally designed to test the efficacy of a commercial 
honeybee specific lactic acid bacteria preparation against 
AFB relative to two negative controls (a placebo prepara-
tion and a no treatment control) and a positive control 
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(the antibiotic Tylosin) (Additional file 3, [67]). The colo-
nies were arranged in four rows of ten colonies each, with 
1.5  m distance between individual colonies in each row 
and 1.5 m distance between rows and all entrances facing 
the same direction [68]. All colonies were experimentally 
inoculated with the same dose of Paenibacillus larvae 
spores at to precipitate AFB epidemics with the four treat-
ment groups distributed randomly among the 40 colonies. 
Although no active measures were taken to prevent drift-
ing between the 40 colonies, the uniform inoculation of 
all colonies in the apiary and the spatial randomization of 
the treatment groups means that the effect of drifting bees 
on the AFB development in colonies is both minimal, and 
randomly distributed between the treatment groups. The 
randomization also means that any potential variability in 
the data caused by the treatment groups can be accounted 
for statistically in our modelling (Additional file  2). The 
colonies were assessed and adult bees sampled on April 
23rd, and then 21, 37, 51, 79, and 105 days after the first 
assessment. On each sampling occasion approximately 
200 adult bees were collected from the brood chamber per 
colony and the samples were stored at − 20 °C until spore 
estimation in the lab.

Colony assessments, AFB scoring, and spore counting
On each of the six sampling occasions, total colony size, 
the amount of brood and the severity of AFB symptoms 
were evaluated using standard protocols. Colony size 
(hereafter: Bees; with capital first letter) was estimated 
by a cumulative score of the proportion of each frame 
side that was occupied by adult bees [69]. The amount 
of brood in the colony (hereafter: Brood) was estimated 
by a cumulative score of the number of 5 × 5 cm squares 
on each frame that were occupied by brood [70]. The 
colony-level severity of AFB (hereafter: Symptoms) was 
estimated by a cumulative score of the visual inspection 
of each brood frame for signs of the disease [38, 71]. Each 
frame was rated using the recommended scale of 0 (no 
visible signs), 1 (fewer than 10 diseased cells), 2 (11–100 
diseased cells), and 3 (more than 100 diseased cells). Sam-
ples of diseased cells were tested in the laboratory to con-
firm the diagnoses. The spore levels (hereafter: Spores) 
were determined from samples of 100 adult worker bees, 
as described previously [32, 38]. The raw data consisted 
of P. larvae colony forming units (CFU) and the data are 
presented as CFU per bee (see also Additional file 3). The 
effect of colony or disease development during the sea-
son is represented in the models by Time.

Data modelling
The data was obtained from 40 colonies, sampled once 
a month for 6  months during a single bee season (see 
Additional file 1 for original data overview). A Bayesian 

approach was used for the statistical modelling and anal-
yses [72–74]. All variables were continuous counts and 
the analysis is similar to a multiple regression. The mod-
els were constructed in two steps (see Additional file  3: 
Model building and validation). First, two similar mod-
els with different random structures were compared. In 
step two, we compared eight models for each of the four 
response variables. Each model included the three main 
effects and all combinations of their interactions. The 
four most important models from step two were then 
used in the analysis by weighting the predictions in order 
to include modulations of one predictor by the other 
two predictors. To understand the effect of each predic-
tor we calculated the posterior of the response variable 
along the full observed range of one explanatory variable 
while keeping the remaining two explanatory variables 
constant, conventionally at their mean/median value. 
For a better understanding of the complex interaction 
between the three continuous predictors two additional 
values were selected for each of the 4 models to investi-
gate interactive effects. For example approximately the 
mean (132.6), 1st (78) and 3rd (191) quantile were used 
for brood (hereafter: Brood 130, Brood 80, Brood 200, 
respectively; see also Additional file  3: Model building 
and validation). Furthermore we selected specific val-
ues of a predictor and summarized the posterior of the 
response variable in order to answer specific questions 
(e.g.: Table 2: Symptoms at Spores level zero: Spores = 0). 
We also calculated three scenarios (Extreme dilution, 
Likely dilution 1, and Likely dilution 2) by subtracting 
the posterior of one set of values from the posterior of 
another set. The resulting posteriors can be seen as pair-
wise comparisons among these sets. In order to further 
investigate the predictiveness of each main effect com-
pared to the other we subtracted the posteriors from 
each other [72]. The posterior of each main effect was 
weighted the same way as for the predictions and the 
smaller was subtracted from the larger in order to calcu-
late the posterior of the difference. In all models we used 
minimal informative priors and the posterior was gener-
ated as a Monte Carlo sample (2000 iterations; Hamilton 
Monte Carlo; 1000 warm up, 1000 sampling the chains) 
using STAN [75] handled from R [76] using function 
from McElreath [73].
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