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Zusammenfassung und wissenschaftlicher Erkenntnisgewinn 
 
Trotz massiven medizinischen Fortschritts und ausgiebigen Untersuchungen in der Krebsforschung 

repräsentieren maligne Tumore immer noch eines der größten globalen Gesundheitsprobleme. Daher liegt das 

Auslösen der Apoptose von Tumorzellen seit Jahren im Fokus der Forschung. Neben den klassischen Ansätzen, 

wie Operationen, Strahlen- und Radiotherapie, sowie Chemotherapie wurden neue Methoden zur Behandlung 

von Krebs entwickelt. Hierzu zählt das Konzept der zielgerichteten Therapie, für das monoklonale Antikörper ein 

prominentes Beispiel darstellen. Eine zusätzliche Komponente dieses Ansatzes stellen Antikörper-Wirkstoff-

Konjugate (ADCs) dar, die dem von Paul Ehrlich geprägten Konzept der „Zauberkugel“ entsprechen. Diese Klasse 

von Verbindungen zielen auf den ortspezifischen Transport und die Abgabe eines Zytostatikums an Zielzellen ab, 

die tumorspezifische Antigene exprimieren. Diese Konstrukte kombinieren die Bindungseigenschaften eines 

Antikörpers mit der Toxizität eines Zytostatikums und wurden in zahlreichen Ansätzen für die Krebstherapie 

eingesetzt. So wurden bis heute sechs ADCs kommerziell vermarktet und über 60 werden aktuell in klinischen 

Studien untersucht. Trotzdem besteht weiterhin ein gewisses Verbesserungspotential dieser potenten 

Verbindungen hinsichtlich ihrer Toxizität, Effizienz und pharmakokinetischen Eigenschaften. 

 

Die erste Untersuchung im Rahmen der hier vorliegenden, kumulativen Dissertation fokussierte sich auf die 

Generierung von ADCs, die ein hohes Wirkstoff-zu-Antikörper Verhältnis (DAR) aufweisen und deren Hydrophilie 

durch Anfügen von Zytotoxinen nicht beeinträchtigt wird. Da lediglich ein geringer Anteil des verabreichten ADCs 

tatsächlich die adressierten Zielzellen erreicht, sind entweder hochwirksame oder eine hohe Anzahl weniger 

potenter Zytotoxine unerlässlich, um die gewünschte Effektivität zu erzielen. In Anbetracht des hydrophoben 

Charakters der am häufigsten eingesetzten Zytotoxine weisen diese Konjugate jedoch häufig eine niedrige 

Hydrophilie auf, welche abhängig von der adressierten Konjugationsstelle, der Anzahl und dem Charakter der 

angewendeten Toxineinheiten ist. Folglich hat die Hydrophobizität der konjugierten Zytostatika einen großen 

Einfluss auf die Stabilität sowie die pharmakokinetischen Eigenschaften und bestimmt somit die Effizienz des 

ADCs. So wurde beispielsweise von Problemen bezüglich Aggregation, Erkennung durch multidrug resistance 

(MDR) Rezeptoren und erhöhter Clearance berichtet.  

In dieser Arbeit sollten diese Probleme durch das Design einer neuen Klasse von Hybrid-ADCs gelöst werden, die 

die Hydrophobizität der im Kontext von ADCs weithin genutzten Zytostatika mindern oder sogar gänzlich 

kompensieren kann und zusätzlich die Möglichkeit eröffnet, eine gewünschte Menge dieser potenten Toxine 

pro Antikörper zur Verfügung zu stellen. Zusätzlich sollte eine zukünftige Beladung mit weniger wirksamen und 

folglich weniger schädlichen Toxinen ermöglicht werden, bei denen die reduzierte Toxizität durch eine erhöhte 

Kopienzahl kompensiert wird. 

Dextran, ein von der FDA zugelassenes Polysaccharid, das aus α-1,6-verknüpften Oligoglukoseeinheiten besteht, 

wurde in dieser Arbeit als modulares, multivalenzgenerierendes Grundgerüst für die ortsspezifische Konjugation 

an Antikörper und für die Beladung mit einer gewünschten Anzahl an Zytostatika verwendet. Für die Konjugation 

dieses Glucans an Proteine wurde berichtet, dass sie die Halbwertszeit, die thermische Stabilität sowie die 

pharmakokinetischen Eigenschaften dieser verbessert und deren Immunogenität verringert. Weiterhin bietet 

sich die Möglichkeit, chemische Modifikationen an unterschiedlichen Stellen dieses Zuckermoleküls, zur 
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Einführung orthogonal adressierbarer Gruppen durchzuführen. So kann sowohl eine gewünschte Anzahl an 

Zytostatika an den Hydroxygruppen der Glukose-Wiederholungseinheiten als auch ein Erkennungsmotiv für die 

enzymatische Konjugation an ein Protein an das orthogonal adressierbare Aldehyd am reduzierenden Ende 

angebracht werden. In dieser Arbeit wurde zudem eine Synthesestrategie entwickelt, die es ermöglicht, Dextran, 

beladen mit einer gewünschten Anzahl orthogonal adressierbarer chemischer Gruppen zur Toxinkonjugation, 

mittels Enzymkatalyse ortsspezifisch an einen Antikörper zu konjugieren und anschließend mit Toxinen 

auszustatten. Diese Hybridverbindung ebnete den Weg zur Generierung neuer, vielversprechender hoch 

hydrophiler ADCs mit hohem Wirkstoff-zu-Antikörper Verhältnis. 

Synthetisch wurde hierfür eine reduktive Aminierung mit einem geschützten Diamin am reduzierenden Ende 

mit einer ortsspezifischen Carboxyethylierung an der C2-Position der Glukose-Wiederholungseinheiten 

verbunden, woraus ein Dextran mit zwei unterschiedlich adressierbaren reaktiven Gruppen resultierte. Dabei 

konnte eine gewünschte Anzahl der Carboxygruppen an den Glukose-Wiederholungseinheiten eingestellt 

werden. Anschließend wurden amintragende Azidlinker unter Bildung von Amidbindungen kovalent an den 

eingebauten Carboxygruppen der Glukose-Wiederholungseinheiten eingeführt, woraus ein Dextranrückgrat mit 

multiplen Azid-Funktionalitäten resultierte. Die Demaskierung des geschützten Amins am reduktiven Ende ergab 

schließlich dual adressierbare Polysaccharidgerüste mit multiplen „click“-baren Gruppen zur Konjugation der 

Zytostatika und einem primären Amin, mittels dessen eine enzymkatalysierte Konjugation an den Antikörper 

realisiert werden konnte. Trastuzumab, welcher genetisch mit einer Transglutaminase-Erkennungssequenz 

versehen wurde, diente hierbei als Modellantikörper. Die Konjugation des azidtragenden Dextrangerüsts an 

Trastuzumab unter Katalyse von mikrobieller Transglutaminase und die darauffolgende Konjugation eines 

potenten, sehr hydrophoben Zytoskelettinhibitors (Monomethylauristatin E (MMAE)), bildete ein neues 

Hybridkonstrukt. So wurde Dextran in dieser Arbeit zum ersten Mal ortsspezifisch an einen Antikörper gekoppelt 

und sukzessive mit einer gewünschten Anzahl an Zytostatika durch spannungskatalysierte Azid‐Alkin‐

Cycloaddition (SPAAC) beladen. Diese neuen, als Dextramabs bezeichneten Hybridkonstrukte erwiesen sich 

nicht nur als gut löslich in wässrigen Puffern, sondern auch als mindestens ebenso hydrophil wie der nicht 

modifizierte Trastuzumab, selbst wenn das Polysaccharid mit elf hydrophoben MMAEs beladen wurde. 

Weiterhin zeigten die generierten Konstrukte unveränderte Bindungseigenschaften und keinen 

Stabilitätsverlust (Trastuzumab: KD = 4.9 nM, Dextramab (DAR 8): KD = 5.9 nM). In Zellviabilitätstests zeigten die 

entwickelten Dextramabs potente, subnanomolare mittlere inhibitorische Konzentration (IC50 = 100 pM) auf 

HER2-positiven SK-BR-3 Brustkrebszellen in vitro, wohingegen keine Toxizität für HER2-negative Kontrollzellen 

gefunden wurde. Dextramabs stellen eine neue Strategie für die Generierung ortsspezifisch konjugierter hoch-

hydrophiler ADCs mit einem hohen DAR dar. Tierstudien werden zeigen, ob diese neue Klasse von ADCs ein 

vielversprechendes Konzept zur Generierung von ADCs mit hoher Wirksamkeit, geringer Immunogenität und 

erhöhter in vivo-Halbwertszeit repräsentiert. 

 

In der zweiten Untersuchung wurde die Modularität von Dextran als Träger für Apoptose-induzierende 

Moleküle, die sowohl intrazelluläre als auch Ziele auf der Zelloberfläche adressieren, untersucht. Im Zuge dessen 

wurde, im Gegensatz zum ersten Ansatz, Dextran als eine Plattform zur Multimerisierung von krebsspezifischen 

Liganden untersucht. Der extrazellulär exprimierte Death Rezeptor 5 (DR5) wurde hierfür als Modellziel gewählt, 
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welcher durch Aggregation beziehungsweise Multimerisierung aktiviert wird und eine Apoptose-induzierende 

Signal-Kaskade auslöst (death-inducing singal cascade, DISC). In dieser Arbeit wurde Dextran als Grundgerüst 

mit mehreren peptidischen Liganden (death receptor 5-targeting peptide, DR5TP) von DR5 bestückt und im 

Hinblick auf seine Apoptose-induzierende Wirkung untersucht. Hierbei sollte, im Gegensatz zu der ersten 

Untersuchung, der Zelltod durch Multimerisierung von Rezeptoren auf der Zelloberfläche induziert werden und 

nicht durch rezeptorvermittelte, endosomatische Aufnahme eines an den Antikörper gebundenen 

Zytostatikums. Hierfür wurde Dextran mit 11 respektive 13.4 DR5TP-Liganden beladen und auf seine Apoptose-

induzierende Wirkung untersucht. Die resultierenden multivalenten Dextrangerüste zeigten mit zweistellig 

nanomolaren EC50-Werten (halbmaximalen effektiven Konzentrationen) auf DR5-positiven COLO205-

Kolonzellen und Jurkat T-Lymphozyten eine potente Apoptose-induzierende Wirkung in vitro. Eine 

anschließende ortsspezifische Konjugation an Glutamin 295 eines aglykosylierten kristallisierbaren Fragments 

(Fragment, crystallizable, Fc) mittels mikrobieller Transglutaminase resultierte in Protein-Polysaccharid-

Konjugaten, die eine selektive DR5-Bindung in durchflusszytometrischer Analyse zeigten und die im Vergleich zu 

den nicht an ein Protein konjugierten DR5TP-Dextranen sogar niedrigere EC50-Werte aufwiesen 

(EC50 = 1.9 - 6.7 nM). Interessanterweise wurde die Bindung dieser Konjugate nicht durch den Antikörper, 

sondern durch das mit Liganden bestückte Dextran hervorgerufen. Dies ermöglicht die zukünftige Verwendung 

einer zweiten Bindungseinheit im Hinblick auf bispezifisches Targeting, beispielsweise durch die Konjugation an 

einen Vollängen Antikörper, wodurch eventuell eine höhere Sicherheit und Effizienz realisiert werden könnte. 

Weiterhin ermöglichten die hergestellten Konjugate, sowohl solitär als auch gebunden an das Fc-Fragment, 

durch die erhöhte Flexibilität des Dextranrückgrats die beschriebene distinkte räumliche Anordnung als 

unumgängliche Voraussetzung für effizientes Induzieren von Apoptose zu kompensieren. Dieser Ansatz 

untermauert die Modularität von Dextran als Träger für unterschiedlichste Beladungen, die verschiedene 

Zielstrukturen zur gezielten Auslösung von Apoptose von Tumorzellen adressieren. Zukünftig könnte dieser 

Ansatz einen Lösungsvorschlag für die berichtete Off-target Toxizität von multivalenten hochaffinen 

proteinischen Bindern, wie TAS266, darstellen, da hierin eine höhere Anzahl an Bindern mit niedriger Affinität 

verwendet wird. Dies könnte zu einer geringeren Retention auf gesunden Zellen mit geringerer DR5 

Expressionsdichte und somit einer höheren Verträglichkeit in vivo führen, die zusätzlich durch Einführung von 

Bispezifität erhöht werden könnte. 

 

Der dritte Teil dieser Arbeit sollte einen detaillierten Überblick über die enzymatische Generierung von ADCs 

mittels Transglutaminase geben. Trotz zahlreicher Publikation von Reviews zur Generierung von ADCs fehlt bis 

heute ein Überblick, der die Anwendung von Transglutaminase für diese Therapeutika detailliert beschreibt. Aus 

diesem Grund gibt der verfasste Review einen Überblick über die an dieser Thematik forschenden 

Arbeitsgruppen und Firmen, als auch eine gründliche Übersicht der eingesetzten Methoden, der adressierten 

Konjugationsstellen oder -motive, Linkern und verwendeten Zytostatika. Dieser Review beschreibt und 

diskutiert zukunftsweisende Syntheserouten und -techniken, die jüngsten Fortschritte sowie verbleibende 

Einschränkungen der mTG-unterstützten Generierung von ADCs. 

Zusätzlich wurde eine weitere Studie durchgeführt, die die Verwendung von Dextran als multivalentes 

Grundgerüst untermauert. Hierfür wurde eine vorläufige Studie zur Validierung von Dextran als Träger für 
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multiple chelatierende Komplexbildner, die Ionen für die Radiobildgebung oder -therapie komplexieren können, 

durchgeführt. Hierfür wurde Dextran mit einer gewünschten Anzahl an 1,4,7,10-Tetraazacyclododecan-1,4,7,10-

tetraessigsäure (DOTA) beladen. In einer photometrischen Analyse von komplexierten Cu2+-Ionen konnte 

gezeigt werden, dass die resultierenden DOTA-Dextrankonjugate 3.2 respektive 5.3 Metallionen pro 

Polysaccharidgerüst tragen. Zurzeit werden die hergestellten DOTA-Dextrankonjugate in Biodistributionsstudien 

in Mäusen untersucht. Diese Konzeptstudien werden zeigen, ob diese neuen Konstrukte für in vivo 

Anwendungen geeignet sind und ob eine Konjugation an derzeit verwendete spezielle Bindungsproteine 

(Affibodies), welche in radioaktiv markierter Form Probleme mit der Hydrophobizität und daher mit Solubilität, 

Aggregation und Präzipitation haben, vorteilhaft ist. Dieser Ansatz bestärkt die Vermutung, dass Dextran ein 

vielversprechendes Gerüst für die mehrwertige Befestigung und Anpassung verschiedener Liganden darstellt. 
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Scientific Novelty and Significance 
 

Despite impressive progress in medical care and extensive investigation in the field of human malignancies, 

cancer still represents a major global health issue, and triggering apoptosis of tumor cells has been in focus of 

cancer research for decades. In addition to classical attempts like surgery, radiotherapy, and chemotherapy, a 

number of novel methodologies have recently fallen in the limelight, with monoclonal antibodies being the most 

prominent actors at the therapeutic scene. With their introduction, the so-called targeted therapy has finally 

become achievable for the treatment of malignant tumors. Having evolved from Paul Ehrlich’s “Magic Bullet” 

concept that described directing a toxic compound exclusively to a disease-causing organism, antibody-drug 

conjugates (ADCs) were developed. This class of compounds is aimed at site-selective delivery of cytotoxic 

agents to target cells expressing a cancer-related antigen. Combining the targeting properties of an antibody 

with the killing properties of a potent cytotoxin, these constructs were applied in countless approaches 

intending to treat tumor patients. To date, six ADCs have been marketed and over 60 ones are currently in 

clinical trials. However, several issues still require improvement, among them toxicity, efficacy and 

pharmacokinetics. 

 

The first investigation in the context of the present cumulative study was focused on the generation of highly 

hydrophilic ADCs characterized by a high drug-to-antibody ratio (DAR). However, since only a limited number of 

the administered ADCs is reported to actually reach their cellular target, either highly potent toxins or a higher 

number of the less-potent ones are prerequisites of these compounds to reach efficacy. Considering the 

hydrophobic character of most commonly applied potent cytotoxins, these conjugates often suffer from poor 

hydrophilicity depending on the addressed conjugation site as well as the number and character of the applied 

toxin units. Further, hydrophobicity of ADCs was reported to raise problems due to aggregation and recognizing 

by multidrug resistance (MDR) transporters, thus the number, site, and hydrophobicity of the conjugated toxin 

strongly influences stability, pharmacokinetic properties and the efficacy of ADCs. In this work we addressed 

these issues simultaneously by designing a novel class of hybrid ADCs combining ability to balance and even 

recompense the hydrophobicity of commonly applied highly hydrophobic cytotoxins with an option for the 

attachment of multiple payloads, which may further enable the application of less potent, thus less harmful for 

the healthy tissues, cytotoxins. To that end, we applied dextran, an FDA-approved polysaccharide, consisting 

mainly of α-1,6-linked oligo-D-glucose units as multivalency-generating modular scaffold for payload 

attachment. This glucan, reported to enhance half-life, to improve thermal stability and pharmacokinetic 

properties, and to reduce immunogenicity of conjugated proteins, opens certain space for chemical 

modifications, namely conjugation of a) a desired number of payloads to the repeating glucose units at the 

respective hydroxy groups, and b) at the reducing end that comprises an orthogonally addressable aldehyde. In 

this work, a strategy to combine an enzyme-catalyzed site-specific conjugation of the dextran scaffold, equipped 

with multiple reactive moieties for payload loading, to antibodies was developed, resulting in promising 

constructs for the generation of high-DAR ADCs.  

Synthetically, a combination of reductive amination of dextran’s reducing end with a protected diamine followed 

by site-selective carboxyethylation at the C2-position of the glucose repeating units led to dextran bearing dually 
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addressable reactive moieties. Notably, our synthetic procedure allowed adjustment of the number of 

addressable sites at the repeating glucose monomers for toxin conjugation to the desired amount of copies. 

Subsequent conjugation of azide-bearing aliphatic amines at the repeating units upon amidation gave a scaffold 

comprising multiply addressable “click” sites. Demasking of the protected amine at the reducing end yielded a 

multivalent scaffold combining multiple and solitaire orthogonal addressable sites. Thus, at its amine site it could 

be easily conjugated to the protein of interest – in this particular case, to the therapeutic antibody trastuzumab – 

via enzymatic catalysis by microbial transglutaminase (mTG). For this purpose, trastuzumab was engineered to 

possess an adequate mTG recognition motif at the C-terminus of the heavy chain. The azides at the sugar 

monomers remained for the decoration with monomethyl auristatin E (MMAE) – a highly toxic and extraordinary 

hydrophobic compound. To conclude, for the first-time dextran was site-specifically conjugated to a functional 

antibody via its reducing end, leaving the polysaccharide backbone intact and subsequently equipped with 

multiple MMAEs by strain-promoted azide-alkyne cycloaddition (SPAAC) in a desired number of copies without 

corrupting the polysaccharide backbone. These hybrid constructs, called dextramabs, were found not only 

readily soluble in aqueous buffers, but at least as hydrophilic as the parental antibody trastuzumab, even when 

conjugated with eleven highly hydrophobic MMAE counterparts.  

The binding properties of all generated constructs were not affected, as demonstrated by comparable KD values 

on HER2-positive SK-BR-3 cells (unmodified trastuzumab: KD = 4.9 nM, dextramab (DAR 8): KD = 5.9 nM). Our 

synthetic dextramabs showed potent subnanomolar cytotoxicity (IC50 = 100 pM) in cell proliferation assays on 

HER2-positive SK-BR-3 breast cancer cells and no cytotoxicity on HER2-negative control cells in vitro. These site-

specifically assembled ADCs may combine the beneficial pharmacokinetic properties, as their protein 

counterparts are loaded with dextran, therefore possess higher hydrodynamic radius, with the possibility to 

attach a tailored number of payloads. Generally, our concept represents a promising approach for the 

generation of highly hydrophilic site-specific ADCs characterized by a high DAR. Follow-up animal studies will 

unveil if dextramabs hold promise for the novel class of ADCs with high potency, low immunogenicity and 

enhanced in vivo half-life. 

 

In the second investigation we studied applicability of dextran polysaccharide scaffold as carrier for apoptosis-

triggering payloads of diverse nature, which act by addressing distinct intra- or extracellular targets. Hence, 

additionally to the above-mentioned high-DAR ADCs we were focused at validating dextran as a platform for 

multimerization of cancer-relevant ligands.  

First, death receptor 5 (DR5) was chosen as a model target expressed on the cell surface. As it is activated by 

oligomerization/aggregation, we aimed at constructing a flexible scaffold able to bypass the reported need for 

spatial ligand orientation for efficient DR5-mediated cellular cytotoxicity. Thus, we designed a molecular 

architecture comprising a polysaccharide scaffold carrying the desired number of DR5 peptidic binders able to 

efficiently trigger apoptosis upon DR5 receptor clustering. Herein, apoptosis of cancer cells was mediated by 

multivalent binding to and clustering of a receptor located on the cell surface, which is in fact contrary to the 

first approach investigated in this work, which relied on a high number of a very potent cytotoxin that only upon 

internalization inhibits cell division by blocking the polymerization of tubulin. Thus, dextran was loaded with on 

average 11 or 13.4 peptidic binders, namely death receptor 5 targeting peptides (DR5TP). The resulting 
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constructs were found potent apoptosis-inducing conjugates possessing double-digit nanomolar half-maximal 

effective concentration (EC50) values on DR5-positive COLO205 colon cells and Jurkat T lymphocytes in vitro. 

Moreover, conjugation to glutamine 295 of an aglycosylated fragment crystallizable (Fc) fragment of a 

monoclonal antibody (mAb) by site-specific mTG-catalyzed conjugation resulted in constructs that showed 

selective DR5 binding upon flow cytometric analysis and further did not impair the potency of the generated 

multivalent scaffolds. In contrast, these protein-polysaccharide-peptide hybrids demonstrated higher potency 

in vitro (EC50 = 1.9 - 6.7 nM).  

Notably, in this approach binding is not mediated by the protein, but rather by the ligand-bearing dextran 

counterpart. Thus, addition of a second targeting moiety, e.g. application of a full-length antibody, would be an 

interesting prospective study that opens the possibility of bispecific targeting, which may result in enhanced 

safety and efficacy. Furthermore, the generated DR5TP-dextran and the Fc-bound counterparts were able to 

circumvent the mentioned need for spatial orientation of ligands due to additional flexibility provided by dextran 

scaffold. Our study further underlines the modularity of dextran as carrier for different payloads addressing 

various targets. In addition, this approach may help overcoming the reported off-target toxicity for multimeric 

high-affinity protein-based constructs, e.g. TAS266, by the application of low-affinity peptidic binders. This may 

lead to better tolerability in vivo, conditioned by lower retention on healthy cells expressing minor levels of DR5, 

which might be additionally improved by prospective bispecific targeting. 

 

The third part of this work was aimed at relieving the current lack of satisfactory overviews on mTG-mediated 

generation of homogeneous ADCs. Since most reviews dealing with ADCs cover a broad scope of topics, but 

usually very briefly, an in-depth comparative survey was highly required. However, a detailed overview of the 

factors influencing the resulting architectures in view of stability, potency, efficiency, etc. was still missing. A 

comprehensive summary of the reported strategies may enable tailoring of existing methods for mTG-promoted 

conjugation to the needs of particular research projects. On these grounds, the originated review was intended 

not only to enumerate the applied approaches for site-specific conjugation with respect to ADC assembly, but 

to map out the research groups and companies working on mTG-mediated generation of antibody-drug 

conjugates. Our review, gives a thorough overview of conjugation methodologies, addressed conjugation motifs 

or sites, applied cellular targets, linkers, and cytotoxic cargoes. Thus, it highlights pioneering routes and 

techniques, recent progress and remaining limitations of mTG-assisted assembly of ADCs. 

 

Furthermore, a study aimed at assessment of possibilities offered by dextran as a multivalency-promoting 

framework was performed. In a preliminary proof-of-concept study dextran was applied as a vehicle for multiple 

attachment of metal-chelating agents able to carrier valuable ions for radio-imaging or -therapy. Thus, dextran 

polymer was equipped with a desired number of a widely applied metal chelator 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The assembled DOTA-dextran conjugates were able to 

carry 3.2 or 5,3 metal ions per polysaccharide chain, respectively, as shown by photometric analysis of the 

formed complexes with Cu2+. In vivo biodistribution studies in mice are currently ongoing. This proof-of-concept 

study should answer the question, whether these novel molecular hybrids are suitable for in vivo applications 

and whether conjugation to commonly applied binders (affibodies) that suffer from hydrophobicity and in 
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consequence poor solubility, aggregation and precipitation, results in beneficial properties. This approach 

further strengthens the presumption that dextran represents a promising modular scaffold for multivalent 

attachment and tailoring of diverse payloads.  
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1. Introduction 

 

1.1. Cancer Treatment – A Brief Introduction 

Cancer comprises a group of diseases characterized by abnormal cell-division and -growth thus invading 

surrounding tissues and spreading around the body, which results in malignant neoplasia. Despite intensive 

research and obvious therapeutic progress, malignancies represent a major global health issue to date. Thus, 

cancer is ranked as the most crucial barrier to increase the life expectancy in every single country in the 21st 

century.[1] Furthermore, it represents the second leading cause of death in the United States with over 1.7 million 

new cases, over 600,000 new cancer-dependent deaths prognosed in 2019, and about 9.6 million deaths per 

year globally.[2, 3] 

In the beginning of the 1900s Paul Ehrlich introduced the concept of drugs to treat infectious diseases and the 

newly coined word “chemotherapy”, delineating it as the use of chemical compounds for disease treatment. 

Furthermore, he projected the idea of the “magic bullet” aimed at killing a harmful agent while leaving healthy 

tissues untouched.[4, 5] In the 1960s, combination of surgery and radiotherapy was acknowledged as standard 

cancer treatment.[4] However, only one third of treated patients were treated successfully as the applied 

therapies were not able to handle small metastases.[4] At that time, new research remarkably showed that a 

combination of classical methods with chemotherapy can lead to full cancer remission in patients with various 

tumors.[4] The first applied chemotherapeutic agents tested in humans comprised toxic nitrogen mustards, 

chlorambucil, and cyclophosphamide targeting DNA by alkylation (Figure 1).[6] Further, antifolates like 

methotrexate were introduced as higher proliferation rates for tumors treated with folic acid were observed.[6] 

Early in the following years chemotherapy became the predominant approach in tumor therapy.[6-8] Hence, a 

plethora of cancer targeting compounds was designed. Today, the majority of chemotherapeutics follow a non-

specific uptake through lipophilic interactions with the cell membrane of the tumor cell.[9] Usually, these 

compounds promote killing of rapidly dividing cells exhibiting higher proliferations rates.[6, 10] This is mediated 

by inhibiting microtubule function, DNA synthesis or protein function for example.[11] However, not only 

malignant cells are affected but numerous healthy ones, for example those from the epithelium, bone marrow 

and gastrointestinal tract.[6, 12] Additionally, DNA synthesis interfering nucleoside analogues (thioguanine, 

cytosine arabinoside), DNA interacting agents such as anthracyclines and actinomycin D, and tubulin targeting 

Vinca alkaloids derived from plants were utilized for cancer treatment (Figure 1).[6]  

Further, the combination of cytotoxins possessing different modes of action for tumor killing resulted in 

synergistic effects increasing the antitumoral efficacy while decreasing the overall cytotoxicity.[7, 8, 13] 

Additionally, generation of highly potent cytotoxins like DNA alkylators (e.g. pyrrolobenzodiazepine dimers, 

CC-1065, adozelesin) and tubulin inhibitors (e.g. dolastatin 10, dolastatin 15, maytansin, cryptophycins) evolved 

over the years.[6, 13] Unfortunately, these enormously potent cytotoxic agents lacked a sufficient therapeutic 

window conditioned by the development of resistance mechanisms and severe adverse effects caused by 

off-target toxicity due to the lack of selectivity.[6, 13-15] Furthermore, the discovery of oncogenes and 

tumor suppresser genes triggered the introduction of novel tumor-targeting drugs.[5, 16, 17] Being highly selective, 

these compounds target specific mutations originating from the cancerous cell.[5] By inhibiting kinases 
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responsible for proliferation or for blocking protein interactions, these agents led to severe improvements in 

selectivity.[5]  

 

 

Figure 1. Overview of chemotherapeutic agents. 

 



 

Introduction   3 

Additionally, highly selective therapeutic monoclonal antibodies (mAbs) have gained success for the treatment 

of cancer after the observation of tumor-specific antigens located on the cell surface.[18-20] Being either 

overexpressed, solitarily expressed or even mutated on the surface of tumor cells,[19] these antigens comprise 

e.g. cell-surface proteins, glycoproteins, or carbohydrates.[6] High specificity of antibodies combined with their 

affinity to tumor antigens makes this class of molecules less off-target toxic compared to their small molecule 

chemotherapeutic counterparts.[18] In the last two decades successful antibody-based therapies for the 

treatment of hematological malignancies and solid tumors were established.[19] Thus, over 50 mAbs are currently 

undergoing evaluation in late stages of the clinical trials and at least 6-9 mAbs per year are expected to be 

approved, and about 70 of them are predicted to be marketed by 2020.[21, 22] These compounds either act as 

agonists or antagonists when bound to surface-exposed cell receptors, though modulating receptor-mediated 

signaling as applied for the marketed antibodies cetuximab and trastuzumab.[19, 23, 24] Further, these kind of 

biomolecules trigger Fc-mediated immune response, e.g. complement-dependent cytotoxicity (CDC), antibody-

dependent cellular cytotoxicity (ADCC, rituximab) and regulation of T-cell functions,[19, 25] as well as depletion of 

circulating tumor cells, antibody-dependent phagocytosis and apoptosis leading to cell death.[6] Following the 

first success of this class of compounds, improvement of effector functions, pharmacokinetics and 

immunogenicity via application of chimeric, humanized and fully human antibodies has been achieved.[19]  

To enhance tumor selectivity of chemotherapeutics, thus widening of the therapeutic window, the concept of 

antibody-drug conjugates (ADCs) evolved based on furnishing a mAb with potent cytotoxins.[6, 26] These novel 

compounds combined targeting, pharmacokinetics, and suitable biodistribution properties of mAbs with the 

potency of the conjugated cytotoxic small molecule.[26, 27] Following the approval of brentuximab vedotin and 

trastuzumab emtansin, more than 60 ADCs have currently entered clinical trials.[27] Further, the number of mAbs 

in phase III clinical trials increased from 26 to 52 from 2010 to 2017; currently over 230 mAbs are in phase II 

clinically studies.[22]. Interestingly, only one bispecific mAb is currently investigated in phase III studies, while 

twelve are investigated in phase II and three are in phase I/II.[22] The structure and functions of antibodies and 

ADCs will be described in the sections 1.3 and 1.4. 

 

1.2. From Innate to Adaptive Immunity 

The immune system is the host defense against different types of infectious pathogens of microbial, fungal, 

parasitic or viral nature constantly attacking vertebrates. Thereby, the innate or unspecific immune system acts 

as the first-line defense by identifying and destroying infectious pathogens.[28] The innate immune system 

comprises mechanic physiological barriers, among them the skin, the gastrointestinal tract bearing gastric acid, 

epithelia, the blood-brain barrier, and the mucus layer. Further germline-encoded host sensors called pathogen 

recognition receptors (PRRs) like toll-like (TLRs), RIG-I-like (RLRs), NOD-like (NLRs) and DNA receptors play a key 

role by recognizing pathogen-associated molecular patterns (PAMPs), that are correlated with commonly 

microbial pathogens.[29-31] Hereby, each receptor is able to bind to a variety of molecules conditioned by a broad 

intrinsic specificity.[32] These PRRs are expressed on cells of the innate immune system, e.g. dendritic cells, 

macrophages, and neutrophils (Figure 2).[29] The recognized bacterial PAMPs are mainly parts of the bacterial 

cell wall being structurally lipoproteins, lipopolysaccharides, peptidoglycans, or lipoteichoic acids, whereas viral 
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targets of the innate immune system are solely represented by viral nucleic acids.[29, 30, 32] Therein, differentiation 

between viral, bacterial and self-DNA is possible due to chemical modifications and structural unique features 

of the DNA.[30, 32] Binding of PRRs triggers several antimicrobial immune responses, like release of inflammatory 

cytokines, among them tumour-necrosis factor (TNF), interleukin-1β (IL-1β), IL-2 and IL-6, chemokines and type I 

interferons.[29, 32]  

 

 

Figure 2. Hierarchy of the vertebrate immune system. The innate immune system comprises first-line mechanic barriers and 

second-line internal defenses. And the resulting adaptive immunity represented by highly specific immune responses, e.g. antibodies. 

 
Furthermore, the innate immune system triggers the initiation of the adaptive immunity representing the 

second barrier of immunity that enables a broader and more selective response to infectious pathogens (Figure 

2).[33] Thus, generation of highly pathogen-specific B and T lymphocytes takes place, which employs antigen 

receptors that are not encoded in the germline.[34] A clonally diverse repertoire of unique antigen receptors 

located on lymphocytes represents the main feature of the adaptive immunity.[35] The binding diversity of these 

receptors is generated by somatic recombination that is mediated by the recombination-activating gene (RAG)-

protein-mediated encoding genes for the variable and constant fragment.[30, 36]. Gene conversion and non-

templated nucleotide addition as well as, in the case of B cells, somatic hypermutation further enhances 

diversity.[30, 36]  

Pathogen recognition of the adaptive immune system is achieved by multiple receptors with large soluble 

proteins – antibodies – among them. After activation by the respective cells, among them the dendritic ones 

and T lymphocytes, B cells differentiate to plasma cells and produce antibodies as humoral immunity.[33, 37] 

Following receptor-mediated endocytosis and intracellular degradation, antigen peptide fragments are 
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presented on the surface of B lymphocytes bound to major histocompatibility complex (MHC) class II.[32, 38] 

Recognition of these antigenic peptides by T-cell receptors (TCRs) of activated CD4-positive T cells leads to the 

secretion of cytokines that induce proliferation and differentiation of B cells to plasma cells secreting 

antibodies.[32] Additionally, some microbial pathogens like microbial polysaccharides can activate B cells directly. 

However, somatic hypermutation and isotype switching is dependent on the interaction with CD4+ T cells 

resulting in a less variable repertoire of antibodies.[32] The generated immunoglobulins, immunoglobulin M (IgM) 

and IgD are presented on the surface of naïve B cells.[39] Hereby, IgM represents the first isotype produced before 

isotype switching.[40] IgM builds a pentameric form comprising ten potential binding sites. It is able to recognize 

several phylogenetically conserved structures like proteins, nucleic acids, lipids, and carbohydrates.[31, 41, 42] 

However, affinity of these naïve antibodies is rather low. Hence, stimulation with antigen results in class 

switching of B cells into plasma cells which enables the production of high-affinity IgG, IgA, IgE and IgD 

counterparts (Figure 3).[39, 40, 43]  

 

 

 

Figure 3. Antibody classes: (A) pentameric IgM, (B) dimeric IgA, (C), IgG, (D) IgE and (E) IgD. modified from News Medical Life Sciences[44] 

 
This switch occurs upon antigen binding by a mechanism called class switch recombination (CSR) in combination 

with activation-induced cytidine deaminase (AID).[39] AID converts cytosine in the switch region to uracil resulting 
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in removal by DNA repair mechanisms and double strand breaks. Finally, replacement of the µ and δ heavy chain 

constant regions with γ, ε or α heavy chain constant regions occurs.[39, 45] The structure and function of antibodies 

will be described in the following section. 

 

1.3. Antibodies 

1.3.1. Structure and Function 

Antibodies represent a key element of the human adaptive immune system. These proteins are present either 

in a membrane-bound form called surface immunoglobulin and being part of the B-cell receptor or in form of a 

secreted protein only differing in a small part of the C-terminus of the heavy chain constant domain.[32] Being 

produced as glycoproteins, these biomolecules are able to selectively bind a target antigen. The heterotrimeric 

glycoproteins are further divided in five classes, called IgA, IgD, IgE, IgG and IGM, which differ by the constant 

domain of the heavy chains (Figure 4).[43, 46] These five classes comprise glycoproteins composed of 82-96 % 

protein and 4-18 % carbohydrate.[46] 

Among immunoglobulins, IgG is the most prevalent species accounting for 10-20 % of plasma proteins and 

subdivided in the four subclasses IgG1, IgG2, IgG3 and IgG4.[40, 46] These subclasses possess more than 90 % 

sequence identity but differ in terms of antigen binding, immune complex formation, complement activation, 

effector cell triggering, half-life, and placental transport.[46] IgGs are large Y-shaped molecules consisting of three 

equal-sized parts connected via a flexible linker called hinge region.[32] These homodimeric molecules are 

composed of two identical light chains with a size of approximately 25 kDa, and two identical heavy chains of 

55 kDa each (Figure 4).[47] The heavy chains are linked by disulfide bonds in the flexible hinge region and by non-

covalent interactions of the constant domains (CH3).[46] Further, the heavy chains are connected with the light 

chain by an additional disulfide bond. Each of these light chains consists of a variable domain (VL) which is 

C-terminally bound to one constant domain (CL) which can either be a λ- or κ-chain. In addition, each heavy chain 

of the molecule consists of one variable domain (VH) C-terminally linked to the CH1 which is further connected to 

the CH2 and CH3.[46] These domains form a characteristic fold bearing two antiparallel β-sheets yielding a roughly 

barrel-shaped structure called β-barrel and consisting of four ~110 residue long folds.[32] Antibody molecules can 

be further divided in the fragment crystallizable (Fc) consisting of two CH2-CH3 heavy chain dimers and a structure 

composed of VH, VL, CH1 and CL called fragment antibody binding (Fab) (Figure 4).[46] Interestingly, these antibody 

molecules can be fragmented applying digestive proteases, e.g. papain or pepsin, especially cleaving in the 

flexible hinge region[48]  

The variable domains of an antibody form the paratope responsible for the binding properties, whereas the 

constant domains mediate the effector functions. Two identical antigen-binding sites are generated due to 

symmetric structure of immunoglobulins.[32]  
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Figure 4. Schematic structure of IgG1 antibodies (A) and ribbon representation (PDB: 1HZH) (B). The homodimeric antibody consists of 

two identical heavy and light chains. The light chain consists of the VL which is C-terminally connected with one constant CL. The heavy 

chain consists of the VH C-terminally linked to the CH1, which is further linked to CH2 and CH3. The molecule comprises one Fc-fragment 

bearing a N-glycosylation pattern and two Fab fragments bearing the paratope facilitating antigen binding of the antibody. The VH and 

the VL together form the variable fragment FV.  

 
Binding is enabled by the complementarity determining regions (CDRs) located in the N-terminal variable 

domains of the heavy and light chains of the Fab fragments, each possessing three hypervariable loops 

(CDR1, CDR2 and CDR3).[32] The CDRs point out of the antibody framework and are neighbored by relatively rigid 

regions called FR1, FR2, FR3 and FR4.[32] Notably, the antigen binding site is formed by CDRs of VH and VL, thus 

binding is mediated by a combination of heavy and light chain. Hereby, the surface formed by the CDRs of the 

heavy and light chains builds a site to which the complementary formed antigen can bind. Hence, small 

molecules bind in small pockets or junctions, whereas proteins are bound by the interfaces that involve all 

CDRs.[32] The resulting non-covalent reversible binding is mediated by electrostatic forces, hydrogen bonds, Van-

Der-Waals and hydrophobic interactions or the combination thereof. Diversity of CDRs is generated through 

differential assembly of the Variable, Diversity, and Joining gene segments, known as V(D)J-recombination 

accomplished by developing B lymphocytes.[49] However, the Diversity gene segment is only assembled in VH 

domain. Somatic mutations are an additional feature that further enhances diversity.[30]  

The Fc fragment formed by the lower hinge region and the CH2 and CH3 domains is responsible for the effector 

functions of the antibody.[46] The Fc comprises the intrinsic binding sites for the Fcγ receptor (FcγR) and the 

complement-activation protein (C1q) located proximal to the hinge region in the CH2 domain.[46, 50] Binding to 

C1q and FcγR mediates complement-dependent cytotoxicity (CDC) or antibody-dependent cytotoxicity (ADCC), 

respectively, representing the effector functions.[19, 25, 46] The binding properties of FcγR and C1q are different 

for each IgG subclass conditioned by a varying structure of the hinge region (length and flexibility) and number 

of disulfide bonds.[46] Thus, the relative binding to the IgG subclasses can be ordered 

as: IgG3>IgG1>IgG4>IgG2.[46] In addition, the Fc fragment comprises a binding site for the neonatal Fc receptor 

(FcRn) located at the interface between CH2 and CH3 distinct from the binding sites for the FcγR and C1q located 
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near the hinge region in the CH2 domain.[46, 51, 52] The FcRn is responsible for the recycling of IgGs extending its 

half-life by reducing lysosomally degradation in endothelial cells.[51] Furthermore, it enables placental passage 

and the transport to mucosal surfaces.[46] Additionally, the Fc fragment bears an N-glycosylation site at the 

interface of the CH2 and CH3 domain of the heavy chain whose glycans also play a key role in FcγR binding upon 

introducing changes in the quaternary structure of the antibody.[46] Hereby, asparagine 297 (N297) of the heavy 

chain serves as anchor point for N-glycosylation.[53] This biantennary glycan is composed of a heptasaccharide 

consisting of a chain of two N-acetylglucosamine (GlcNAc) residues as core, bound to branched mannose 

polysaccharides and an additional GlcNAc residue.[53] Further, variable addition of a fucose or an additional 

bisecting GlcNAc and up to two galactoses or two sialic acids results in heterogeneity.[53] Glycosylation of the Fc 

affects FcγR-binding as well as the stability of the Fc as the interaction of the N297 glycan with the protein 

backbone stabilizes the Fc.[46, 54] Notably, core fucosylation of the IgG1-Fc N-glycans plays a role in 

FcγR IIIa-binding as non-fucosylated antibodies show higher affinity, thus compromising higher ADCC activity.[55] 

These compounds possessing selective targeting properties, pharmacokinetic properties represent a promising 

molecular scaffold for the equipment with cytotoxic payloads. Thus, resulting ADCs are promising candidates to 

selectively deliver an apoptosis-inducing small molecule to a chosen cellular target. These architectures will be 

addressed in the following sections. 

 

1.4. Antibody-Drug Conjugates (ADCs) 

1.4.1. Mechanism of Action of ADCs 
 
ADCs are composed of antibodies loaded with cytotoxic compounds aimed at their specific delivery to targeted 

cells.[13, 56] In these architectures, the beneficial characteristics of the antibody and a cytotoxic compound are 

combined leading to an enhanced therapeutic window, thus safer and more patient-friendly treatment.[7, 12, 13] 

To join an antibody and a cytotoxic payload, a special linker is used, either a cleavable or a non-cleavable one. 

Having entered the tumor tissue from the vasculature, the ADC is able to recognize and specifically bind a tumor-

overexpressed antigen on the cell surface of malignant cells (Figure 5).[18] Upon internalization following the 

endosome-lysosome pathway, the payload is released either via cleavage of the linker, or upon the antibody’s 

degradation.[13] Subsequently, the cytotoxic cargo diffuses into the cytoplasm to reach and interact with its 

target, e.g. tubulin or DNA, ultimately resulting in apoptosis of the malignant cell (Figure 5).[13] Envisioned to 

overcome the shortcomings of both compound classes, this strategy allows for the selective delivery of a potent 

drug omitting severe dose-limiting toxicity.[57] Further, the rather low efficacy of solitary antitumor antibodies is 

enhanced by addition of the cytotoxic payload.[20] To conclude, this targeted approach results in an immense 

widening of the therapeutic index in comparison to commonly applied chemotherapeutics. In the following 

sections a brief history of ADC development will be given. 
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Figure 5. Mechanism of action of antibody-drug conjugates for triggering apoptosis of tumor cells. (see section 4.3)modified from 

Lambert et al.[13] 

 

1.4.1. ADCs: A Brief History  
 
Chemotherapeutics kill rapidly dividing cells by inhibiting microtubule function, DNA synthesis, or protein 

function resulting in a dose-dependent therapeutic window (Figure 6).[58] However, this addresses not only 

malignancies, but also numerous healthy cells leading to severe adverse effects. To improve the therapeutic 

window, a cytotoxin with higher potency can be applied resulting in a lower minimum effective dose (MED), or 

the selectivity of a toxic compound can be enhanced to increase the maximum tolerated dose.[6] Thus, to bypass 

the narrow therapeutic window, researches turned to antibody-drug conjugates (ADCs).[58] These evolved from 

Paul Ehrlichs “magic-bullet” concept[5, 59] of a compound that selectively targets a disease-causing organism 

while simultaneously delivering a toxin.[60] Thus, ADCs are part of the “targeted therapy” concept, based on 

specific interference with molecular targets and pathways that are important for proliferation of cancer cells.[6]  

 
The first ADCs arose from the need to selectively and site-specifically deliver toxins to the tumor cell.[6] However, 

in the first half of the twentieth century only little progress was achieved, attributed to the difficult isolation of 

antibodies from animal and human serum and the fact that it was nearly impossible to produce a sufficient 

amount.[61] However, in 1958 Mathé et al. reported selective antiproliferation activity of a methotrexate 

conjugated to an antileukemia 1210 antigen antibody on L1210 mouse lymphocytic leukemia cells.[62] In the early 

1970s covalent conjugation and the choice of ligation method were reported to play a key role for ADC 

activity.[61, 63] Initially, anticancer drugs methotrexate, vinblastine, doxorubicin, and melphalan were examined.[6] 
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Early clinic attempts utilized KS1/4 antibody-methotrexate conjugates against non-small cell lung cancer and 

BR96 antibody-doxorubicin ones against metastatic breast cancer.[58] However, being able to localize at the 

tumor site, they had lack in therapeutic effectivity, obviously due to low selectivity and immunogenicity.[58] 

Indeed, the targeted antigens KS1 and BR96 were expressed on both tumor cells and healthy tissues, and used 

antibodies were of chimeric or murine nature, which triggered immune response.[58, 64-66]  

 

 

Figure 6. ADCs expand the therapeutic window. Selective delivery increases the percentage of administered toxin reaching the tumor, 

which lowers the medium effective Dose. Further, the targeted delivery of the cytotoxin increases the maximum tolerated dose as 

normal healthy tissue is reached. modified from Panowski et al.[58] 

 

The hybridoma technology established by Köhler and Milstein in 1975 became a major breakthrough in the field 

of ADC assembly as it addressed early problems in antibody production and purification.[6, 61, 67] Furthermore, 

recombinant technologies for the production of chimeric and – later – humanized antibodies ensured access to 

ADCs with reduced immunogenicity. The identification of different biomarkers, e.g. HER2 or the vascular 

endothelial factor (VEGF), and understanding of protein uptake mechanisms further advanced the success of 

ADCs.[61] Intracellular drug release from the protein-drug conjugate was identified as a key element for the 

design of effective ADCs.[61] Thus, linkers providing different cleavage options, e.g. enzyme-catalyzed hydrolysis 

(by peptidases and esterases), acidolysis, or intracellular glutathione-promoted reduction evolved.[58, 61] Fast 

development of these novel techniques resulted in the first marketed ADC – gemtuzumab ozogamicin 

(Mylotarg®) introduced by Wyeth for the treatment of acute myeloid leukemia.[68-70] In this construct, an 

anti-CD33 antibody was linked to a potent calichemicin derivative. However, in 2010 it was voluntarily 

withdrawn from the market due to issues regarding clinical safety and benefit.[6, 61] Notwithstanding, in 2017 it 

was approved for the treatment of acute myeloid leukemia applying a different dosage.[71] 

As only a limited number of ADCs is able to reach their cellular target, second-generation ADCs were loaded with 

extremely potent tubulin inhibitors, e.g. monomethyl auristatin E (MMAE),[72] monomethyl auristatin F 

(MMAF)[73] and maytansinoids (DM1, DM4)[74], or with DNA-targeting agents, like calicheamicins.[73, 75] In 

addition, pyrrolobenzodiazepine[76] and indolinobenzodiazepine[77] were applied. Lessons learned from these 
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early approaches were considered upon design of the second-generation ADCs and, finally, six constructs have 

reached the market. These are: brentuximab vedotin (Adcetris®, Seattle Genetics)[78, 79], polatuzumab vedotin-

piiq (Polivy™, Genentech and Roche)[80], trastuzumab emtansin (Kadcyla®, Genentech and Roche)[81, 82], 

inotuzumab ozogamicin and gemtuzumab ozogamicin (Besponsa®, respectively Mylotarg®, Pfizer)[68, 71, 83, 84], as 

well as moxetumomab pasudotoxas (Lumoxiti™, Immunotoxin, AstraZeneca)[85] all targeting hematologic 

malignancies or solid tumors. In addition, more than 60 ADCs are currently in clinical trials.[27] Most of these 

second generation ADCs are assembled by addressing endogenous thiols liberated by reduction of interchain 

disulfides, or by coupling to primary amines of lysine side chains. Obviously, heterogeneity is the feature of these 

compounds assembled by stochastic conjugation technologies.[7, 13, 26, 73] For instance, Kadcyla® is assembled by 

addressing lysines of HER2-targeting antibody trastuzumab with tubulin inhibitor DM1. However, 70 out of 88 

native lysines are accessible for conjugation, which results in inhomogeneity of ADC species.[86] Contrary, 

Adcetris® is assembled by ligation to partially reduced interchain disulfides resulting in a maximal reachable DAR 

of eight leading to reduced heterogeneity. However, this still results in a number of species comprising different 

DARs.[87]  

Therefore, novel third-generation ADCs rely on site-specific conjugations resulting in homogeneous constructs. 

They will be discussed in section 1.4.3 in detail. To convey a better understanding of the individual components 

of an ADC, these will be addressed in the following section. 

 

1.4.2. The Three Pillars of an ADC 
 

An antibody, a linker, and a cytotoxic agent represent the three key elements of an ADC (Figure 7).[7] The targeted 

antigen determines the choice of antibody that should be highly selective against it. Recently, the broad 

spectrum of cellular targets was delineated by a systemic database search that identified 87 ADCs against a total 

of 59 unique targets across 60 tumor (sub)types evaluated in clinical trials in 2017.[57] These are, for example 

numerous clusters of differentiation (CD19, CD22,CD25 CD30, CD33 etc.), tyrosine-protein kinase Met (c-MET), 

epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and tumor-

associated calcium signal transducer 2 (TROP-2 known as TACSTD2).[57] By implication, antigens highly 

overexpressed on malignancies but almost absent on the surface of healthy cells are favored as they result in a 

broader therapeutic window. However, the fact that some addressed antigens are expressed on healthy cells 

results in on-target, but off-tumor toxicity leading to severe adverse effects.[88, 89] For example, the most 

common adverse effect of EGFR blockade is skin toxicity.[88] Exemplarily, unwanted side-effects were observed 

in 80 % of patients medicated with cetuximab, among them acne-like rush, xerosis cutis, paronychia and 

fissuring, hair changes and mucositis.[88] Thus, a careful adjustment of the binding properties of an antibody is a 

prerequisite to achieve a balance between efficacy and toxicity of an ADC, depending on the expression levels 

of the desired antigen on tumors and healthy cells.[89-91]  

The second key element of an ADC is a cytotoxic payload that is covalently bound to an antibody. Conditioned 

by the hydrophobic character of most commonly applied toxins, DAR of ADCs normally does not exceed 3-4.[6, 7, 

13] Thus, the payload needs to be highly cytotoxic to reach efficacy at the given intracellular concentrations.[7] 

For instance, it is reported that about 106 molecules/cell of a moderately cytotoxic compound are needed to 
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efficiently kill tumor cells.[6] However, typically only 105 antigen molecules are present on the surface of the cell 

and can be recognized by an ADC. Moreover, inefficient internalization of the formed antigen-antibody complex 

and intracellular trafficking may additionally decrease ADCs effectiveness.[6] Moreover, only a small portion of 

administered ADC was reported to reach the targeted tumor.[6, 92]  

 

Figure 7. Representative schema of an ADC. Brentuximab vedotin (Adcetris®) is depicted as example. 4 linker-payloads are attached per 

antibody. Malimidocaproyl is applied for attachment to reduced hinge cysteines of the brentuximab. Valine-citrulline-p-aminobenzyl 

carbamate (Val-Cit-PABC) serves as protease cleavable linker (cathepsin)[92] and monomethyl auristatin E (MMAE) is applied as potent 

antineoplastic agent. modified from ADC Review[93] 

 

In general, the applied payload should be readily chemically modified and stable in circulation without affecting 

solubility. Notably, the number and hydrophobicity of the payloads have a major effect on the pharmacokinetic 

properties as species with high DAR may be problematic upon manufacturing and formulation due to enhanced 

hydrophobicity and poor solubility of the assembled ADCs.[13, 93] Strategies aimed at overcoming this issue are 

discussed in section 1.4.3.  

Applied toxins comprise antimitotic drugs, e.g. maytansins and auristatins, and DNA-addressing agents, among 

them calicheamicins, duocarmycins, and camptothecins.[6] Antimitotic drugs trigger apoptosis by inhibiting 

tubulin polymerization. As the assembly of microtubule represents a key step during mitosis, this class of 

compounds preferably kills rapidly dividing cells.[94, 95] If tubulin is bound close to the vinca alkaloid binding site 

a suppression of microtubule dynamics is provoked, thus cells are arrested in the G2/M phase ultimately leading 

to apoptosis.[6] The marketed ADCs Adcetris® (Figure 7), Polivy™ and Kadcyla® bearing vedotin, vedotin-piiq, and 

emtansin, respectively, comprise this class of cytotoxins. In contrast, DNA agents work by intercalating, 

crosslinking or by alkylation of DNA. Hence, these compounds are able to kill proliferating and non-proliferating 

cells. Calicheamicins, for example, bind tightly to the minor groove resulting in DNA double-strand breaks that 

ultimately lead to cell death.[6, 96] In contrast, duocarmycins and indolinobenzodiazepine pseudodimers act by 
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alkylation of DNA, which also triggers cellular apoptosis.[77, 97] In contrast, dimers of pyrrolobenzodiazepines 

(PBD) crosslink DNAs.[76] The marketed ADCs Besponsa® and Mylotarg® are loaded with a calicheamicin 

derivative (ozogamicin) that primarily mediates double-strand breaks. 

The third vital component of an ADC is a linker. This structural element enables covalent attachment of an 

antibody to the cytotoxic compound with an option to be cleaved under particular conditions and also has a 

certain influence on the ADCs properties. First, the linker needs to be stable in plasma to omit premature release 

of cytotoxin, resulting in off-target toxicity and narrowing of the therapeutic window.[60] Second, the linker 

should if possible voluntarily release the payload after reaching the target cell.[60] As mentioned above, the 

applied payloads are as a rule highly hydrophobic, thus a linker of the same nature could further raise problems 

due to aggregation and recognition by multidrug resistance (MDR) transporters.[60]  

Applied linkers can be categorized in two classes: cleavable and non-cleavable linkers. The latter hold integrity 

under physiological conditions, therefore payload release depends on lysosomal degradation of the whole 

construct.[60, 98] As a result, an additional amino acid from the antibody is still connected with the toxin after 

degradation.[60] This type of linkers is used for the assembly of marketed ADC Kadcyla®.[60]  

The class of cleavable linkers comprises protease-, pH-, and redox-sensitive ones. For example, being 

overexpressed in various cancer cells, cysteine protease cathepsin B is able to readily cleave after a 

valine-citrulline (Val-Cit), phenylalanine-lysine (Phe-Lys), or valine-alanine (Val-Ala) motif.[11, 99] Among the 

cleavable linkers, the most successful one comprises a Val-Cit motif accompanied by a self-immolative spacer, 

for example p-aminobenzyl carbamate (PABC) to enable a traceless toxin release.[11] This linker is applied in 

marketed ADC Adcetris®.[78, 79] Additionally, β-glucuronide linkers are utilized for an ADC assembly.[98] Hereby, β-

glucuronidase present in lysosomes is responsible for toxin release. Thus, cleavage occurs by lysosomal 

processing followed by a 1,6-elimination of the spacer resulting in release of the free drug.[98, 100] A major 

advantage of this linker is its polarity that has benefits in terms of aggregation and solubility.[98]  

Acid-labile linkers, e. g. hydrazones, are readily cleaved after internalization following the endosome-lysosome 

pathway as lower pH of the endosome (pH 5-6) and lysosome (pH 4.8) is sufficient for effective toxin release.[11] 

This linker strategy is used for the marketed ADC Mylotarg®.[68-70] However, ADCs comprising this type of linkage 

bear the potential of undesired payload release under physiological conditions as hydazone hydrolysis has been 

reported already at pH 7.4 (37 °C).[101] In contrast, redox-sensitive linkers rely on higher cytoplasmic 

concentration of glutathione (up to 1000-fold) compared to the extracellular environment.[98] Thus, a disulfide 

bond is incorporated at the linker that is stable in circulation, but is broken after internalization.[60, 98] 

In addition, the attachment site of the cytotoxic compound is important for the pharmacokinetic properties, e.g. 

half-life, stability, clearance of an ADC. This issue will be discussed in the following sections. 

 

1.4.3. Site-Specific ADCs  
 
Site-specific conjugation methods were introduced to overcome heterogeneity of ADCs towards an improved 

therapeutic window compared to the classical statistically conjugated counterparts.[102] These methods led to 

more homogenous ADC, which not only simplified purification but paved the way for a better understanding of 

the effect of the conjugation site on overall ADC properties. Thus, most of the third-generation ADCs rely on 
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conjugation methods that address distinct ligation sites. These methods can be divided in two main classes, the 

chemical and the enzymatic ones. Numerous approaches were applied to introduce reactive moieties, among 

them glycoengineering,[103-108] incorporation of additional cysteine residues (e.g. Thiomab®, Figure 8),[109-112] 

selenocysteines[113], or non-natural amino acids,[114-116] re-bridging of natural thiols,[87, 117] metallopeptide-based 

catalysis,[118] redox-based methionine bioconjugation[119], as well as autocatalytic attachment of the toxin to a 

reactive antibody’s lysine.[120] Subsequently, the chemical handles can be addressed by different payloads 

following diverse procedures. For instance, the Thiomab® technology relies on two genetically introduced 

additional cysteine residues accessible for toxins equipped with a maleimide handle, thus leading to highly 

homogenous ADCs comprising a DAR of 2 (Figure 8).[11, 110] Further, genetic incorporation of a non-natural amino 

acid was applied to introduce carbonyl or azide moieties for subsequent reactions to form oxime- or triazole 

conjugates, respectively.[11] 

 

Figure 8. Scheme of Thiomab® ADCs. Additional genetically incorporated thiols are accessible reactive handles for conjugation of toxins 

equipped with maleimide moieties. 

 
Furthermore, site-specific conjugation applying numerous enzymes were utilized to equip an antibody with a 

chosen payload. These enzymes comprise tubulin tyrosine ligase (TTL),[10, 121] formylglycine-generating enzyme 

(FGE),[122, 123] SpyLigase,[124] phosphopantetheinyl transferase,[125] sortase A,[126-128] mushroom tyrosinase[129] and 

microbial transglutaminase (mTG).[130] The respective procedures rely on one-step enzymatic or two-step 

chemo-enzymatic approaches for ADC assembly. Hereby, genetically incorporated recognition motifs located at 

distinct sites of an antibody were site-specifically addressed by the respective enzyme of choice to introduce 

either a reactive handle or the cytotoxic payload directly. For instance, Sortase A is capable of catalyzing the 

ligation between an LPXTG recognition motif and an N-terminal oligoglycine substrate in the presence of calcium 
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ions.[126] Hence, incorporation of a short recognition motif, exemplary at the C-terminus of the heavy chain, 

results in an antibody that can be easily conjugated with a payload in a site-specific manner.  

All the above-mentioned approaches were successfully applied for ADC generation possess distinct advantages 

and certain drawbacks. Reviews delineating the current status of site-specific ADCs in detail can be found 

elsewhere.[10, 131] mTG-mediated conjugation relevant for this work will be discussed in the following sections in 

more detail. 

 

1.4.4. Transglutaminase  
 

Transglutaminases (TGs) belong to the class of protein γ-glutamyltransferases found in microorganisms, plants, 

invertebrates, amphibians, fish, and birds.[132] This enzyme facilitates pH-dependent formation of an isopeptide 

bond between a primary amine and a glutamine residue under release of ammonia resulting in γ-carboxamides 

(Figure 9).[130, 133] These two counterparts can be located both in a protein or a peptide.[132] In the first step, an 

active thioester is formed by reaction of the sulfhydryl group of the cysteine located in the active site of the 

transglutaminase and the acyl portion of the glutamine substrate. Subsequently, the acyl acceptor, which can 

either be water or a primary amine, reacts with the formed active thioester resulting in either deamidation or 

crosslinking (Crosslink I), respectively. In addition, reaction of the active thioester with a polyamine, e.g. 

spermine, or the ε-amino group of lysine generates a new primary amine bearing species that can be further 

crosslinked (Crosslink II) by TG.[132] Interestingly, TGases comprise an intrinsic specificity towards the applied 

glutamine residue, whereas a broad variety of amine-containing acyl-donors is accepted.[134] 

 

Figure 9. Mechanism of action of transglutaminases. The protein- or peptide-bond glutamine side-chain are covalently cross-linked to 

the lysine counterparts. The formation of an isopeptide bond is accomplished under the release of ammonia. modified from Schneider et al. see 

section 4.3 

 
In nature, this mechanism is used for the conjugation of the glutamine side chain as acyl donor and the ɛ-amino 

group of lysine as acyl acceptor, to intra- or intermolecularly crosslink proteins.[132] Further, in multicellular 

organisms the generated isopeptide bonds add strength to tissues and increase their resistance to 

degradation.[130, 132] To date, different mammalian transglutaminases (TGases) are known, among them blood 

coagulation factor XIIa, keratinocyte TGase, epidermal TGase, tissue TGase, prostate TGase, TGase X/Y/Z and 

transglutaminase 2 (TG2). TG2, for example, crosslinks proteins on the outer surface of the squamous 
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epithelium.[130, 132, 133] In contrast, blood coagulation factor XIIa catalyzes crosslinking of fibrin molecules during 

blood clotting.[133, 135] Furthermore, bacterial transglutaminases (mTGs) have been discovered by thorough 

screening of different microorganisms.[130] These transglutaminases catalyze the same reactions, even lacking 

sequential or structural homology.[130]  

However, not all of these TGases are suitable for biotechnological applications.[133] Thus, mTG derived from the 

Gram-positive actinobacterium Streptomyces mobaraensis comprising good reactivity combined with stability 

represents the most applied TGase.[133] Exemplarily, it is applied in food processing where it acts as natural glue 

to texture meat and dairy products, for half-life extension by PEGylation of protein drugs, surface immobilization 

of proteins, and to covalently attach nucleic acids to proteins (Figure 10).[136] 

 

 

Figure 10. Overview of biotechnological and industrial applications of microbial transglutaminase. adapted from Schneider et al. see section 4.3 

 

1.4.5. ADCs Assembled under mTG Catalysis 
 

The need for the generation of homogenous ADCs has placed mTG in the focus of intensive research. Thus, 

numerous approaches towards covalent attachment of a desired payload to an antibody were carried out. First 
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approaches aimed at modifying native antibodies resulted in poor modification of lysine residues with 

glutamine-containing peptides and nearly no modification when glutamine sites were addressed.[137] However, 

the observation that genetic aglycosylation significantly enhanced labeling paved the way for mTG-mediated 

assembly of ADCs.[137] Consequently, in the following years either genetically aglycosylated or enzymatically 

deglycosylated antibodies were applied to site-specific ligate different payloads (Figure 11). A second milestone 

is engineering towards incorporation of glutamine-bearing motifs that are specifically recognized by mTG. In 

comparison to Sortase A, these motifs can also be introduced at internal positions highlighting the flexibility of 

mTG-based approach.[138] Thus, the numerous internal or terminal positions were examined regarding stability, 

toxicity, and efficacy of the generated ADCs.[138] 

 

 

Figure 11. Transglutaminase-addressable antibodies. (top) Native, glycosylated antibodies are no substrate of mTG. (bottom) 

Strategies for transamidation: (left) genetic incorporation of specific recognition motif; (middle) genetic or enzymatic removal of the 

CH2 glycan moiety to expose Gln295; (right) engineering of reactive lysines in surface exposed areas or addition of C-terminal residues 

to prevent Lys447 from intracellular processing. modified from Schneider et al. see section 4.3 

 
Besides addressing native or engineered glutamine residues of the antibody, natural or engineered lysines were 

examined as conjugation site for the generation of ADCs.[139, 140] Hence, lysine-bearing recognition motifs or 

solitary lysines were genetically incorporated. Further, introduction of additional amino acids at the C-terminus 

enabled labeling at lysine 447 by preventing its intracellular enzymatic cleavage resulting in minimal mTG 

recognition tags.[139]  

Besides direct conjugation with a cytotoxic compound, chemo-enzymatic two-step procedures were 

investigated (Figure 12). Herein, in the first step amine-bearing chemical handles, like DBCO, BCN or azides were 

introduced and used for payload conjugation in the second step.[141-144] This procedure combining site-specificity 
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of mTG catalysis with orthogonal chemistry displays a modular and convenient method for the assembly of ADCs. 

These site-specific procedures not only result in homogeneous and reproduceable ADCs, but also permit to 

examine the influence of attachment site, linker and the payload itself.[138] Thus, numerous approaches applying 

ADCs assembled under mTG catalysis were reported, which were aimed at improving therapeutic properties of 

the generated ADCs. These are the increase of DAR, enhanced lysosomal trafficking, linker stability, and 

modulation of parental antibody affinity, for example. A more detailed insight into the current status of site-

specific ADCs assembled under mTG catalysis can be found in the review presented in the cumulative section 

(section 4.3).  

 

 

Figure 12. Exemplary chemoenzymatic two-step procedure for mTG-mediated ADC assembly. First, an amine-bearing chemical handle 

is introduced that is subsequently used for payload attachment.  

 

1.5. High-DAR ADCs 

As aforementioned, the applied cytotoxins in the context of ADCs need to be highly potent to be efficient at the 

given intracellular concentrations.[7] Further, inefficient internalization and intracellular trafficking additionally 

decrease efficacy of the ADC.[6] Thus, increasing cytotoxicity of the payload or arming the ADC with a higher 

number of toxins per antibody were the obvious choices to enhance efficacy of an ADC. Trial-and-error 

approaches over the last decade led to the conclusion that toxins with potencies in the sub-nanomolar range 

are required.[145] However, the majority of applied potent cytotoxic drugs is highly hydrophobic, which may 

promote aggregation and enhanced recognition by MDR transporters.[13, 60] As the number, site, and 

hydrophobicity of the conjugated toxin strongly influences stability, pharmacokinetic properties and efficacy of 

ADCs, a careful design is required to develop an effective ADC for tumor treatment.[102, 138]  

In a comparative study addressing potency and safety of conventional thiol-maleimide conjugates in 

dependence of their DAR, Hamblett et al. showed that a DAR 4 anti-CD30 ADC was superior to a DAR 2 and 

DAR 8 ADC if hydrophobic MMAE was used as a payload.[146] The DAR 8 ADC possessed poor pharmacokinetic 

properties, enhanced toxicity and displayed a lower therapeutic index in mice.[146] Thus, the authors concluded 

that drug loading is a key design parameter for ADCs and a drug loading of 2-4 may yield the optimal therapeutic 
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window. Further, Sun et al. concluded that very high-DAR, thus more hydrophobic, ADCs suffer from decreased 

efficacy likely due to faster liver-mediated clearance.[147] Therefore, maytansin-based ADCs comprising a DAR of 

3-4 were chosen for further clinical evaluation. However, higher-DAR ADCs were still considered for tumor 

antigens with low expression levels or inefficient intracellular processing.[147] DNA alkylating agents like 

pyrrolobenzodiazepines (PBDs) represent another class of clinically relevant toxins, found to be even more 

potent, which limits the typically DAR of ADCs comprising these class toxins[145, 148] In addition, high-DAR ADCs 

may enable the application of milder toxins.[145]  

Besides the obvious progress in the filed of ADCs, achieving a high DAR without affecting hydrophilicity is still a 

major challenge. To that end, several approaches relying on more hydrophilic payloads or linkers were applied, 

among them e.g. a short polyethylenglycol (PEG) chains. Using this strategy, two ADCs targeting either Trop-2 

(IMMU-132) or CEACAM5 (IMMU-130) were assembled bearing the hydrophobic DNA topoisomerase inhibitor 

SN-38 with an average DAR of 7.6 and 7.5, respectively. Hereby, conjugation proceeded by addressing reduced 

cysteine thiols of antibodies by maleimide-bearing payloads.[149, 150] Daiichi Sankyo reported an ADC where a 

toxic exatecan derivative was assembled with an antibody via an enzymatically cleavable peptide linker (GGFG) 

equipped with a self-immolative linker with an aminomethyl moiety and bearing at the C-terminus an additional 

hydrophilic group.[151, 152] A DAR 8 ADC targeting HER2 revealed excellent tumor activity against 

T-DM1-insensitive and in HER2-low expression models.[152]  

Researches from Seattle Genetics applied more hydrophilic polyethylene glycol- (PEG)-bearing branched linkers 

to generate DAR 8 ADCs with larger therapeutic index (TI).[153] Hereby, excess tris(2-carboxyethyl)phosphine) 

TCEP was applied to fully reduce hinge disulfides. This approach was further optimized by evaluating the length 

of different PEG chains, whereby ADCs comprising branched PEG12 linker arose as lead candidates.[154] In another 

approach addressing reduced interchain disulfides, Seattle Genetics developed ADCs carrying multiple payloads 

applying orthogonal cysteine protection and PEGylated linkers to site-specifically conjugate each drug.[155] This 

approach opens avenue for the screening of dual-drug ADCs and presumably may lead to synergistic effects, 

thus improved activity. Furthermore, Mendelsohn et al. from Agensys introduced more hydrophilic pyridine 

derivatives of auristatin, called MMAPYE. These were assembled to ADCs by maleimide conjugation to reduced 

interchain disulfides and may enable overcome known drawbacks of hydrophobic payloads.[156] A similar 

approach by Satomaa et al. made use of more hydrophilic auristatin glycoside payloads combined with 

conjugation to reduced interchain disulfides.[157] Obviously, auristatin-D-glucuronide (MMAU) represents a novel 

promising hydrophilic payload for the application in context of ADCs.  

Further, Sanofi reported PEG-containing multivalent drug linkers applying more hydrophilic MMAD (compared 

to MMAE) as payload to address reduced interchain disulfides resulting in potent ADCs comprising DARs of up 

to 10.8.[158] In addition, a novel approach by Gupta et al. relied on platinum(II)-based linker for efficient 

interchain cysteine re-bridging.[159] These linkers were found to improve stability compared to traditional 

maleimide-linked ADCs. Furthermore, they were equipped with PEG chains to reduce the overall hydrophobicity. 

Besides addressing reduced interchain disulfides, the introduction of site-specific conjugation methods enabled 

the decoration with payloads at a desired site of an ADC. Thus, a comparative study by researches from 

Pfizer/Rinat showed that high-DAR ADCs site-specifically assembled under mTG catalysis can overcome the 

previously reported limitations of conventionally assembled ADCs.[102] As a high number of hydrophobic 
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payloads in proximity showed lower in vivo exposure, the authors concluded that the conjugation site is a major 

influential factor for in vivo exposure.[102] A minimization of solvent accessibility of the hydrophobic payloads 

was recognized as key element in the assembly of ADCs.[102] Notably, even though all of these approaches yielded 

high-DAR ADCs, none was able to fully shield the hydrophobicity of the conjugated toxin resulting in an ADC at 

least as hydrophilic as the unmodified parental antibody. 

Moreover, numerous approaches emerged aimed at half-life extension and enhanced hydrophilicity of proteins, 

which apply both chemical methods and genetical engineering. PEGylation, conjugation to dextran 

polysaccharide or recombinant PEG mimetics like XTEN or PAS, HESylation, polysialylation, HAylation, N- and O-

glycosylation, lipidation, and fusion with albumin for enhanced FcRn-mediated recycling are only a few to be 

mentioned.[160] Despite the fact that not all of them were used for ADC assembly, various polymeric multivalent 

linker systems able to carry the desired number of payloads were introduced. In 2005, Yurkovetskiy et al. applied 

a degradable poly-1-hydroxymethylethylene hydroxymethyl-formal (PHF) as acyclic mimetic of polysaccharides 

and alternative to PEG.[161] These polyacetals comprise pH-sensitive acetal groups stable in the extracellular 

environment (pH 7-7.5), but cleavable at the acidic pH of the intracellular vesicular compartment.[161] PHF can 

be chemically assembled or accessed by complete lateral periodate-mediated cleavage of dextran B-512. 

Periodate oxidation of the 1-6 polyglycoside followed by borohydride reduction gave rise to polyals with pendant 

hydroxymethyl groups and vicinal glycol groups (Figure 13).[161-163]  

 

Figure 13. Fleximer ®. A Schematic representation of poly-1-hydroxymethylethylene hydroxymethyl formal (PHF) (A), PHF-glutaric acid 

(B) and PHF equipped with toxin and thiols for antibody conjugation (C).modified from Yurkovetskiy et al.[163] 
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Subsequently, decoration with glutaric acid through esterification gave rise to a polymer loaded with multiple 

moieties addressable towards amide-bond formation with the amine-bearing N-(3-hydroxypropyl)vindesine 

alanine (NH2-Ala-HPV ) and a bidentate linker bearing a protected thiol.[163] Both moieties were coupled 

stoichiometrically. After deprotection of the thiol, the Fleximer®-toxin conjugate was stoichiometrically coupled 

to either a maleimide-bearing trastuzumab or rituximab assembled by standard succinimidyl 4-(N-

maleimidomethyl)cyclohexane-1-carboxylate (SMCC) procedure. This procedure yielded ADCs comprising DARs 

of up to 20 and revealed single digit nanomolar IC50 on different HER2-positive cell lines and effective tumor 

growth inhibition in vivo using HER2(+++) NCI-N87 human gastric cancer and BT-474 breast cancer xenograft 

models.[163]  

The authors concluded that the high hydrophilicity and polyvalency of the polymer enabled the generation of 

high-DAR ADCs without compromising the physicochemical and pharmacokinetic properties. Notably, neither 

SDS-PAGE nor chromatographic analysis, e.g. hydrophobic interaction chromatography (HIC) or size-exclusion 

chromatography (SEC), elucidating hydrophilicity was performed in this study to confirm the success of two 

stoichiometrically controlled reactions. Notwithstanding, potent high-DAR ADCs were achieved paving the way 

for the application of milder toxins in a higher number. 

Furthermore, an additional improved polymer-based ADC based on Dolafelxin® platform was introduced by 

Mersana.[164] The assembled ADCs comprised a high load of auristatin F-hydroxypropyl amide (auristatin F-HPA), 

a synthetic analogue of dolastin 10, linked to the Fleximer® scaffold conjugated to a HER2-targeting antibody. 

Hereby, the ADC, called XMT-1267, was assembled by addressing reduced interchain cysteines resulting in less 

heterogeneity. However, incorporation of thiol groups onto Fleximer® was still performed in a stoichiometrical 

manner, thus yielding heterogenous species with different numbers of toxins and Fleximers® conjugated per 

antibody. Nevertheless, this procedure revealed a polymer-dependent stabilization of the reduced antibody 

which is achieved by formation of interchain bridges between the polymer backbone and the antibody’s 

thiols.[164] Furthermore, prolonged plasma half-life and tumor specific accumulation was reported for this ADC 

featuring a DAR of 20. In addition, tumor growth inhibition in BT-474 xenograft models was observed applying 

a low dose of 2 mg/kg.[164]  

In addition, N-(2-hydroxypropyl)methacrylamide (HPMA) was reported as polymeric scaffold for the generation 

of high-DAR ADCs. For instance, an approach by Zhang et al. based on rituximab (RTX) and HPMA copolymer-

epirubicin.[165] Hereby, epirubicin was incorporated onto HPMA by a controlled living polymerization resulting in 

a well-defined polymer-drug conjugate bearing a single maleimide for antibody conjugation. Thus, ADCs 

targeting CD20 were assembled by conjugation to reduced interchain cysteines of the parental antibody. 

Depending on the average number of conjugated polymers (3.1 - 6.5) the DAR of the generated ADCs varied 

from 20.6-42.9, respectively. Interestingly, even the ADCs comprising the highest DAR were found soluble in 

water and no aggregation was observed. However, assembled ADCs revealed a polymer ratio-dependent 

decrease of affinity. Thus, a conjugate equipped with an average of 3.1 polymers retained 50 % of parental 

binding affinity, whereas that equipped with an average of 6.5 only retained 30 % of binding affinity. In an in 

vivo Ramos xenograft model on CD20-positive NOD SCID mice the DAR 20 ADC was found superior compared to 

the combinations of rituximab with HPMA-epirubicin respectively solitary epirubicin. Furthermore, a non-

binding HPMA-epirubicin ADC was found non-toxic.[165]  
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1.6. Dextran 
 

Dextran is a naturally occurring polysaccharide. Today, different polymers of this class are used in biochemical 

applications. In recent years, numerous approaches applying polysaccharides like cellulose, starch, chitosan or 

dextran were developed. These natural polymers differ by the backbone sugar, linkage and the extent of 

branching within the polymer chain. Thus, cellulose is connected by β-D-glyosidic bonds of glucose, chitosan is 

composed of randomly distributed β-D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine, whereas 

dextran and starch are linked by α-D-glycosidic bonds of glucose. Due to the structure of these polysaccharides, 

chitosan, starch and cellulose are only poorly soluble in water. In cellulose and chitosan every sugar monomer 

is rotated by 180 ° with respect to its neighboring monomers promoting the formation of intra- and 

intermolecular hydrogen bridges and thus restricting water solubility. In contrast, starch consists of roughly 25 % 

of almost linear amylose and of 75 % highly branched amylopectin.[166] Hereby, the intrinsic branching results in 

week solubility in water. The mainly linear dextran polysaccharides with minimal branching ratio are good water-

soluble and rather homogen.  

Dextran was first studied a hundred years ago when its high viscosity caused trouble in the beet-sugar 

industries.[167] This α-glucan is mainly produced by bacteria belonging to the order of Lactobacteriaceae, family 

streptococcaceae, genus Leuconostoc, species L. mesenteroides (Betacoccus arabinosaceous) and L. dextranicum 

when cultured on sucrose as carbon source.[167-169] However, to some extent it is chemically synthesized from 

levoglucosan (1,6-anhydro-β-D-glucose) via a cationic ring-opening polymerization.[170, 171] The enzyme 

polymerizes the glucose moiety of sucrose to dextran under the release of the fructose monomer.[168, 172] The 

proposed mechanism for L. mesenteroides B-512 F is described as follows. In a first step dextransucrase bearing 

two sucrose binding sites and one acceptor binding site forms two covalent glucosyl-enzyme complexes (Figure 

14).[172] In the second step a nucleophilic attack of the hydroxyl group located at the non-reducing end of the 

acceptor to C-1 of one of the two glucosyl residues that are covalently bond to the enzyme takes place.[172] 

Several sugars, like maltose or isomaltose, can inhibit dextran synthesis and yield acceptor products (Figure 

14).[172] Repetition of step two leads to the formation of dextran polysaccharide. However, a complete 

knowledge of the actual structure of the active site is still missing, as no experiment could give evidence that a 

distinct acceptor binding site exists.[173]  
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Figure 14.Proposed mechanism for the enzymatic polymerization by dextransucrase from NRRL B.512F resulting in dextran with minimal 

α-1,3-branching.modified from Plou et al.[172] 
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The central structure of dextran consists of α-1,6-glycosidic linkage with some degree of branching.[174] For 

solubility of dextran the degree of branching is a key element as higher branched dextrans are poorly water-

soluble.[175] Therefore, dextran from Leuconostoc mesenteroides B-512 is of special interest, as it is characterized 

by a content of 95 % α-1,6-glycopyranosidic linkages and only 5 % of 1,3-linkages (Figure 15).[160, 174, 175] These 

1,3-linkages are attachment points for side chains. 85% of these comprise only one or two glucose residues, 

whereas the remaining 15% have an average length of 33 glucose units.[160, 174, 175] Other dextransucrases 

originating from different bacteria produce dextran with different percentages of branching. Exemplary, 

dextransucrase from L. mesenteroides B-1299 assembles dextran exhibiting a higher degree of branching and 

additional α-1,2 branching.[172] Additionally, dextran differs in the degree of polydispersity, which has severe 

effects on its behaviour in vivo.[175] However, today dextrans with a broad range of molecular weights and narrow 

polydispersity (PDI) are readily commercially available.  

 

 

Figure 15. Structure of dextran from Leuconostoc mesenteroides B512. (A) The repeating glucose units are mainly connected by α-1,6-

glycopyranosic linkages with 1,3-linkages as attachment points for branching. The degree of branching is approximately 5 %. Herein, 85 % 

of these branches comprise only one or two glucose residues, whereas the remaining 15 % have an average length of 33 glucose units. 

(B) Equilibrium of the reducing end of dextran allowing for addressing the orthogonal aldehyde moiety. 

 
The almost linear structure and its good water solubility makes dextran a promising scaffold for payload 

conjugation and linkage to the proteins of interest. Commercial dextran with a molecular weight of 70000 is 

applied in solution to restore and to maintain the blood volume for the treatment of shock, hemorrhage and 

burns.[174] Further, dextran 40000 is used to improve capillary flow and for the treatment of vascular 

occlusion.[174] In the United States it is clinically approved and used as 6 or 10 % aqueous solutions containing 

either 40000 or 70000 kDa dextran for blood-flow enhancement or as plasma-volume expander.[175] 

Additionally, the FDA has granted dextran the status GRAS meaning “generally regarded as safe”.[160]  
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Dextrans can be depolymerized by dextranases present in various organs of the body, among them spleen, 

kidney, liver, and the lower part of the gastrointestinal tract, with liver and spleen being the predominant 

locations.[174, 175] However, in vitro studies showed that modification of dextran reduced depolymerization.[174, 

176, 177] Furthermore, biodistribution studies with fluorescein-labeled dextran revealed that its tissue disposition 

depends on molecular weight. Thus, low-molecular-mass dextrans are excreted unchanged in the urine, whereas 

dextrans with higher molecular mass show accumulation in the liver and the spleen.[175, 178-180] It should be noted 

that although dextran-reactive antibodies have been involved in anaphylactoid reactions,[181-183] and antibodies 

against chicken serum albumin-dextran conjugates were generated in mice,[184] no reports of antibodies against 

dextran conjugates in humans have been published to date.[160] 

Offering certain space for modifications at numerous positions, dextran has come into the focus as viable carrier 

for diverse compounds.[160, 175] Historically, oxidation of glucose hydroxyls was chosen to generate reactive 

aldehydes that were subsequently addressed by a suitable nucleophile, e.g. primary amine (Figure 16). Thus, 

periodate-oxidized dextran bearing numerous aldehyde moieties was reacted with a primary amine resulting in 

a Schiff base. Subsequent reduction yielded stable protein- or drug-dextran conjugates. In general, periodate 

oxidation is a standard procedure towards linkage of polysaccharides and diverse biomacromolecules.[160, 175] For 

instance, soy trypsin inhibitor-[185] and uricase-dextran[186] conjugates were generated as well as a somatostatin-

dextran conjugate with low-nanomolar binding affinity, extended PK profile and prolonged half-life in mice.[187] 

A superoxide dismutase- (SOD)-dextran conjugate retained over 80 % activity when conjugated in average with 

4.4 dextran units per SOD, while the anti-inflammatory activity of SOD was doubled.[188] Additionally, the enzyme 

was found to be more resistant to H2O2-mediated inactivation and revealed a prolonged half life.[188] The 

prolonged half-life was conditioned by an enlarged hydrodynamic radius combined with the increased stability 

of the protein-dextran conjugates.[188] In additional studies, reduced immunogenicity of antibodies or Fabs 

bound to dextran scaffolds was revealed.[189, 190] However, the presence of numerous amine moieties on most 

proteins led to rather heterogenous dextran-protein conjugates and crosslinking of the proteins.[160] 

Other historical conjugation methods made use of phosgene activation or cyanogen halides.[160] However, the 

application of these methods has declined over the years. Moreover, carboxymethylation or the application of 

carbonyl diimidazole (CDI) as activating agent were used to address dextran’s hydroxy groups.[191, 192] The former 

methodology generates carboxymethyl dextran by utilizing bromoacetic acid under basic conditions, whereas 

the latter is applied to synthesize dextran equipped with multiple amine groups.[191, 192]. In a recent report, 

Richter et al. applied dextran for the covalent attachment of multiple BH3 peptides to effectively induce 

apoptosis by addressing the intracellular target Bcl-xl in a multivalent manner.[193] In this approach uptake was 

achieved by nucleofection or by application of cell penetrating peptides (CPPs), that were covalently attached 

to the dextran backbone. To this end, carboxyethylation was performed by a Michael-type addition of 

acrylamide under basic conditions followed by hydrolysis of the generated amide. Interestingly, 

carboxyethylation was observed solitarily at the position C2, as shown by 2D-NMR analysis of the resulting 

constructs. Subsequently, a thiol-bearing amine linker was incorporated at the dextran backbone upon 

formation of an amide bond. Conjugation of thiol-bearing Bid-BH3 gave rise to potent apoptosis-inducing 

constructs. Multivalent binding of Bid-BH3 peptides conjugated to dextran scaffold led to the replacement of 

Bac-protein, which triggers the formation of membrane pores by oligomerization.[193] In this approach either 
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nucleofection of the multivalent polysaccharide-peptide constructs or the application of CPPs conjugated to the 

scaffold both resulted in effective triggering of apoptosis.[193]  

The reducing end of dextran comprises one distinct aldehyde moiety due to equilibrium between the 

closed-chain (cyclic) and open-chain (acyclic) glucose forms (Figure 15). This solitary moiety opens space for 

modification with a primary amine by reductive amination, lactonization or oxime ligation. Thus, numerous 

approaches were reported to conjugate small molecules,[174] enzymes[194] or polymers[195, 196] to the reducing end 

of dextran. For instance, Valdivia et al. combined reductive amination of a diamine with mTG-catalyzed 

conjugation of the resulting amine-bearing dextran to catalase.[197] This approach yielded a more stable 

protein-dextran conjugate with increased catalase activity and improved pharmacokinetic properties as an 

increased plasma half-life and reduced total clearance in rats was observed.  

Since the early 1980s dextran has been applied as a multivalent scaffold for the generation of ADCs.[198-203] In 

these hybrid architectures, dextran was applied as a bridge between an antibody and cytotoxic payloads. 

Hurwitz et al. conjugated daunomycin and cytosine arabinoside to aldehydes of periodate-oxidized dextrans.[198] 

After the drugs had been attached, the antibody was bound to the remaining aldehydes via its lysines.[198] 

Consequently, the formed conjugates were stabilized by partial reduction either by sodium borohydride or 

sodium cyanoborohydride. In addition, adriamycin was conjugated by formation of a stable hydrazone between 

hydrazide groups located on dextran scaffolds and the keto group of the tetracycline side-chain. The antibodies 

were subsequently linked to this derivative via glutaraldehyde.  

 

 

Figure 16. Periodate oxidation of dextran resulting in aldehyde moieties and a corrupted glycoside backbone. Modified from Maia et al.[204] 

 
Periodate-oxidized 5-fluorouridine was coupled to dextran in a similar fashion. Both approaches applied sodium 

cyanoborohydride to stabilize the generated compounds. The dextran-bridged ADCs maintained high drug 

activity and only a 50 % loss of antibody activity was observed. Furthermore, two approaches applying the 

above-mentioned procedure were used to couple daunomycin to monoclonal mouse or polyclonal horse 

antibodies targeting rat α-fetoprotein (AFP).[201, 203] In another approach, Shih et al. conjugated methotrexate 

(MTX), to a monoclonal anti-carcinoembryonic antigen (CEA) antibody using an aminodextran carrier system.[200] 

To that end, dextran was partially oxidized and the resulting polyaldehyde was reacted with 

1,3-diamino-2-hydroxypropane yielding an amino-dextran after a reduction with sodium borohydride. MTX 

conjugation was attained by either utilizing N-hydroxysuccinimide(NHS)-activated MTX or by conjugation under 
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EDC activation. The MTX-dextran conjugate was linked to an oxidized IgG obtained by sodium periodate 

oxidation followed by a stabilizing reduction step. The generated DAR 30-50 molecules showed a significant 

retention of binding capacity and possessed improved pharmacokinetic properties in BALB/c mice and in 

hamsters. Further, these compounds demonstrated cytotoxicity against HT-29 or LoVo colon tumor cells in vitro. 

However, a lower cytotoxicity of dextran-bridged MTX-ADCs, compared to the solitary toxin, was found on LoVo 

cells. The authors attribute this observation to a different receptor-mediated uptake mechanism of the 

antibody-dextran conjugate which is dependent on efficacy of antibody internalization and receptor density. It 

should be noted that the extra amino groups on the dextran may confer the conjugate to non-target cells and 

may provoke aggregation with negatively charged antigens.[200] Furthermore, Oseroff et al. applied dextran to 

conjugate multiple chlorin e6 photosensitizer payloads to a monoclonal antibody.[199] Periodate-oxidized dextran 

was conjugated with ethylenediamine and with amine-modified chlorin e6 monoethylenediamine monoamide 

derivative to generate partially amine-modified dextran equipped with multiple photosensitizers. Subsequently 

conjugation to oxidized anti-T cell mAb anti-Leu-1 resulted in ADCs that exhibited DARs up to 36. The generated 

conjugates retained most of their binding activity, while the quantum efficiency of the bound chlorin e6 was not 

affected. Further, these ADCs revealed a light- and target-dependent photodestruction on HPB-ALL T-cell 

leukemia cells in vitro.[199] In general, being applied as cargoes in ADCs, photosensitizers can improve the 

performance of antibodies which possess certain off-target binding, as laser irradiation is needed to trigger their 

cytotoxicity, thus specifying and directing an application site. 

However, all the above-mentioned ADCs were conjugated stoichiometrically by addressing either the antibody’s 

lysines or the stoichiometrically generated aldehydes of an oxidized antibody, resulting in heterogenic ADCs. 

Furthermore, payload was conjugated to oxidized-dextran, which additionally results in heterogeneity of the 

corrupted polysaccharide.  

 

1.7. Multivalent Binding and Death Receptor 5 Clustering 
 
Multivalency is often used by nature to achieve strong interaction between different interfaces or molecules by 

magnification of the multiple weak forces (Figure 17).[205] Arctium, also known as burdock, is a prominent 

example of this effect. Its, seeds composed of thousands of miniature hooks and loops, can easily cling to and 

hold on fur of animals or clothes, though a single hook cannot.[206] Velcro-type releasable fasteners are an 

example of bioinspired applications proposed by the swiss engineer George de Mestrals after observing sticking 

burdock seeds.[207] Another example obtained from nature is the wing-locking device of beetles, which utilizes 

densely populated microtrichia on the cuticular surface to interlock their wings to maximize lateral adhesion 

and prevent lateral movement.[206, 208] 

In the immune system the first-line defense also takes advantage of multivalent binding. For instance, IgM that 

represents the first immunoglobulin produced after exposure to an antigen is secreted either in a pentameric 

form connected by a joining chain or as a hexamer lacking the joining chain comprising ten or twelve antigen-

binding sites, respectively.[209] IgM antibodies exhibit rather weak binding affinities compared to 

affinity-maturated IgGs. However, the multivalent binding of this immunoglobulin mediates an avidity-enhanced 

functional binding capacity. Notably, not all ten, respectively twelve, antigen-binding sites can bind 
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simultaneously due to steric hindrance. Furthermore, IgA representing the major class of antibodies present in 

mucosal secretions and being part of first-line defence against inhaled and ingested antigens is produced in a 

dimeric form.[210] Being synthesized locally at mucosal sites, it is transported across the epithelial cell boundary 

and out to secretion by interaction with the polymeric immunoglobulin receptor.[210] These dimers are linked by 

an end-to-end connection of the heavy chains, and stabilized by disulfide bridges and a joining chain (Figure 

3).[210] Additionally, IgA has been found in serum of many species acting as second-line defense against 

pathogens which have breached the mucosal surface.[210] In general, immunoglobulins possess at least two 

binding sites, thus demonstrating that multivalency is a useful tool to enhance binding. 

 

 

Figure 17. A multiple ligand-bearing scaffold enables multivalent binding to a cell surface. 

 
In recent years, besides the classical chemotherapy or targeted approaches, killing of tumor cells by activation 

of apoptosis-triggering cascades has become a promising field for investigations.[211] Herein, a major 

breakthrough was the discovery of the tumor necrosis factor (TNF) superfamily and TNF-related apoptosis-

inducing ligand (TRAIL).[211] TRAIL is a type 2 transmembrane protein naturally present as a trimer on the surface 

of activated immune cells (e.g. natural killer cells and CD8+ T cells).[211] The fact that TRAIL is capable of inducing 

programmed cell death of a wide range of cancer cells while leaving healthy cells untouched, made it a promising 

anticancer agent.[212, 213] Among the five known receptors of TRAIL, i.e. death receptor 4 (DR4), death receptor 5 

(DR5), TNF-related apoptosis-inducing ligand receptor 3 (DcR1), TNF-related apoptosis-inducing ligand receptor 

4 (DcR2), and osteoprotegerin (OPG), only DR4 and DR5 possess a functional ~90 amino acids stretch called death 

domain (DD) which is a prerequisite for efficient signaling leading to apoptosis.[211] Notably, OPG harbours a 

complete DD, but as it is expressed as soluble receptor, it is not able to trigger apoptosis.[211] Furthermore, DcR2 

possesses an intracellular domain but only a truncated DD.[211] Binding of timeric TRAIL leads to the 

oligomerization/aggregation of bound receptors, which is the first critical step for programmed cell death upon 

formation of the so-called death-inducing signaling complex (DISC) (Figure 18).[211] Subsequently, this binding 

allows for the recruitment of adapter Fas-associated protein with death domain (FADD) also possessing a DD, 

which constitutes the DISC. Further, recruitment of pro-caspase-8 and/or -10 and its interaction within the DISC 

complex allows for their activation and release in the cytosol resulting in apoptosis mediated by cleaving of 
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effector caspase-3 and/or-7.[213] An additional backup pathway proceeding via mitochondria is initiated by the 

cleavage of Bid. Subsequently, truncated Bid (tBid) translocates to mitochondria to induce the activation of Bax 

and/or Bak resulting in the release of cytochrome c, which triggers apoptosis by the activation of caspase-9.[213]  

 

 

 

Figure 18. Proposed mechanism for apoptosis triggering upon DR5 receptor-clustering.modified from Dubuisson et al.[211] 

 



 

Introduction   30 

DR4 and DR5 are often co-expressed on the same cell. However, DR5 seems to be more important for induction 

of apoptosis.[214] It is proposed that DR5 forms large clusters (~300-500 nm) within the membrane upon ligand 

binding, which are not the co-localizations in cholesterol-rich membrane domains as was believed for a long 

time.[215] Further, highly structured networks held together by receptor dimers were found, underlining that the 

formed clusters are not random aggregates of the receptors[215] However, the relationship of trans-membrane 

helix dimerization, receptor activity and membrane cholesterol is still too complex to be fully understood.[215] 

Therefore, it is not clear if the membrane itself plays an active role in these processes.[215] 

Due to their ability to trigger apoptosis, DR4 and DR5 became promising targets for tumor treatment. However, 

in clinical trails both soluble TRAIL and agonist antibodies targeting either DR4 or DR5 failed to demonstrate the 

desired efficacy.[213] Indeed, dulanermin developed by Genentech, a recombinant protein that encodes TRAIL 

from amino acid 114-281, did not show sufficient therapeutic activity.[216, 217] Additionally, TRAIL was found to 

suffer from resistance induced by decoy receptors and is likely to promote cell migration and metastasis.[218, 219] 

Furthermore, TRAIL-targeting antibodies, like mapatumumab[220] that combines selectivity with effector 

functions of the Fc of an antibody, were developed. However, though being well-tolerated, they often lack 

efficacy due to their bivalent architecture compared to trivalent natural TRAIL.[211] Novel TRAIL versions aimed 

at improved stability and half-life, relied on genetic fusion towards TRAIL single-chain trimers. The same genetic 

approach is used to fuse it with single-chain variable fragments (scFvs) and Fc fragments. In addition, conjugation 

with chemical drugs or nanoparticles and expression on the cell surface of delivery cells have been reported.[211] 

For instance, circularly permuted TRAIL (CPT),[221, 222] a recombinant mutant of human TRAIL introduced by 

Beijing Sunbio Biotech Co. Ltd., represents the best and most promising TRAIL derivative so far.[211] CPT exhibited 

better stability, half-life, and stronger antitumor activity compared to dulanermin and was found well-tolerated 

in early phase II clinical studies.[211, 221, 222] However, CPT is, like parent TRAIL, supposed to suffer from decoy 

receptors and is believed to promote migration and metastasis.[211]  

Considering the drawbacks of the mentioned compounds, researchers around the globe investigated novel 

TRAIL-inspired approaches that rely on multivalent derivatives of antibodies or peptidic binders, among them 

multimerization of small binding mimetics of antibodies, e.g. scFvs[223] or single-domain antibodies from sharks 

or camelids[224] (VNAR or VHH). Further, oligovalent binders based on IgM, frameworks relying on either 

adamantane[225, 226] or C4b-binding protein (C4BP)[227] have been currently reported. Interestingly, TAS266, a 

tetrameric nanobody linked by three 35 amino acid peptides each representing one of these highly potent 

binders, was found hepatotoxic, which may be attributed to its high potency, immunogenicity, and possibly 

increased DR5 expression on hepatocytes.[224]  

The peptide-based approaches rely on the death receptor 5 targeting peptide (DR5TP)[228] that solitarily was not 

capable of inducing apoptosis. However, upon multimerization on the mentioned scaffolds effective 

programmed cell-death was observed. Notably, the authors depicted a certain spatial orientation of the ligands 

as indispensable element for efficacy.[225, 227] A review giving a deeper insight into the current status of DR4 and 

DR5 targeting antibodies and derivatives can be found elsewhere.[211] 
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2. Objective 
 

This doctoral research was focused on application of dextran polysaccharide to tailor-made next-generation 

antibody-drug conjugates and other hybrid architectures. To that end, addressing several crucial issues for ADCs 

regarding their water solubility and multivalent applications should expand the scope of these biomolecules. In 

particular, the ultimate goal of this work was the development of a highly hydrophilic, modular and multivalent 

scaffold based on dextran polymer, that allows not only for multivalent presentation of desired payloads in a 

controlled fashion, but site-specific, orthogonal conjugation with a biomolecule of choice. 

 

The first part of this thesis was aimed at the generation of potent antibody-drug conjugates (ADCs) comprising 

a high drug-to-antibody ratio (DAR) and retaining a preferred hydrophilic profile. ADCs are multicomponent 

biomolecules that combine the targeting properties of an immunoglobulin with the cytotoxic potency of a 

covalently attached cargo. Since only a limited number of the administered ADCs is able to reach their cellular 

target, the cytotoxic payload they carry needs to be highly potent. That can be achieved by improving its potency 

or applying higher numbers of copies, thus making use of a multivalent organization. However, considering the 

fact that the majority of commonly used toxins are strongly hydrophobic compounds, highly loaded ADCs often 

suffer from poor solubility and unexpected aggregation, which can become crucial regarding pharmacokinetics, 

immunogenicity, and efficacy. Therefore, these architectures require careful design in terms of conjugation site 

and number of attached payloads. Indeed, the average DAR of most ADCs does not exceed 3-4, and generation 

of high-DAR hydrophilic ADCs is an important and challenging task.  

In the present work, this issue should be addressed by introducing a hydrophilic, modular scaffold enabling 

equipment of an antibody of choice with a potent cytotoxin in a desired number of copies. To that end, dextran 

should be used. It is an FDA-approved biocompatible polymer reported to enhance half-life, improve the thermal 

stability and pharmacokinetics, and reduce immunogenicity of conjugated proteins. Due to its structure 

comprising repeated sugar units, dextran bears multiply addressable functional groups. It should be investigated 

as modular hydrophilic carrier system. To that end, a viable synthetic approach to novel dextran-ADC constructs 

should be established providing a possibility for the tailoring of toxin loading. Subsequently, the question should 

be answered, if and how the polarity of a dextran scaffold is influenced upon loading with cargoes and 

conjugation to an antibody. For that purpose, dextran polysaccharide should be ligated with a commonly applied 

antibody site-specifically and subsequently equipped with multiple units of a highly potent hydrophobic payload. 

The resulting high-DAR ADC should be validated regarding its hydrophilic properties, binding capacity of the 

parental antibody and toxicity of a payload in vitro. 

 

In the second part of this doctoral study, the modularity of the novel multimerization scaffold should be 

validated by attaching multiple peptidic ligands. Death receptor 5-targeting peptide (DR5TP) should be applied 

as ligand for this proof-of-concept study. These ligands are known to trigger apoptosis of malignant tumor cells 

in the case when they adopt a special orientation. Hence, it should be investigated if the dextran backbone is 

suitable to provide enough variability to effectively bind and finally cluster death receptor 5 (DR5) which is 

known to trigger apoptosis when bound in a multivalent manner by tumor necrosis factor related apoptosis 
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ligand (TRAIL). This concept should overcome the need of spatial orientation as prerequisite for efficient 

multivalent receptor clustering that was previously reported. To that end, DR5TP should be attached to dextran 

backbone in multiple copies. On that account, the potential to trigger apoptosis should be visualized by cell 

proliferation assays on DR5-overexpressing cells in vitro. Furthermore, it should be elucidated if site-selective 

enzymatic conjugation to a protein of choice affects binding and/or potency of the generated hybrid 

compounds. Thus, dextran scaffold should be site-specifically conjugated to a fraction crystallizable (Fc) 

fragment of an antibody that is solitary not to able to target DR5-positive cells and the potency should be 

assessed in respective biologic assays in vitro 

 

Furthermore, an additional approach which substantiates the modularity of dextran as multivalent scaffold for 

payloads of diverse nature was performed. To that point dextran should be examined as a vehicle for multiple 

attachment of metal-chelating agents able to carry ions valuable for radio-imaging or -therapy. Therefore, 

dextran should be decorated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) which is a 

widely applied metal chelator. Furthermore, it should be validated if DOTA-loaded dextran is able to complex a 

non-radioactive metal as test substance. Furthermore, the biodistribution of DOTA-dextran compound should 

be investigated in a preliminary in vivo study. This study should answer the question if dextran represents a 

promising carrier for radio-imaging and -therapy. 

 

The third part of the thesis should delineate a detailed overview of ADC assembly applying microbial 

transglutaminase (mTG), as to date, notwithstanding numerous reviews of the field, a comprehensive view of 

application of transglutaminase for generation of therapeutics is missing. Thus, it intends to give a comparative 

survey that describes conjugation sites, motifs and procedures, as well as cellular targets, and applied linkers 

and toxins. Furthermore, this review should provide a thorough overview of research groups and companies 

working on ADCs assembled under mTG catalysis.  
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5. Additional Results 
 

To further test the modularity of dextran, we examined it as a carrier for multiple metal chelators. This concept 

may open space for attachment of a higher number of radioisotopes per targeting protein and improving 

pharmacokinetic properties of small targeting proteins like affibodies. For that purpose, we applied 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a well-known chelator for various metal ions. Dextran 

was equipped with a Boc-protected amine at the reducing end followed by carboxyethylation at the C-2 of the 

glucose repeating units. Subsequent, conjugation of an azide-bearing amine linker and deprotection of the 

reducing end to generate a free amine moiety was performed (Figure 19). Dextran was equipped with 4.2 or 7.5 

azide moieties which could be easily visualized by NMR analysis as previously described (see cumulative section 

1 and 2, Figure 20) 

 

Figure 19. Synthesis scheme for dextran bearing multiple azide moieties on the glucose repeating units and a Boc-protected 

cadaverine at the reducing end. 

 
Subsequent conjugation with BCN-DOTA purchased from Chematech (Dijon, France) followed by purification 

applying size-exclusion chromatography led to dextran bearing multiple DOTA (Figure 21). Hereby, SPAAC was 

performed as reported in the cumulative section regarding dextramabs. Briefly, dextran bearing multiple azide 

groups was dissolved in 1 × PBS and 2.5 eq of BCN-DOTA per azide moiety was added and the reaction mixture 

was shaken at 30 °C for 3 h. Pure product was isolated by PD-10 desalting columns and SEC on a BioSep-

SEC-s2000, 300 x 7080 mm, 5µM (Phenomenex) applying an isocratic procedure (40 min, water).  
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Figure 20. NMR spectra of azido-dextran cadaverine. (top) Dextran equipped with 4.2 azide moieties per dextran and dextran 

equipped with 7.5 azide moieties(bottom). 
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Figure 21. Scheme of dextran quipped with multiple DOTA 

 
The number of conjugated DOTA groups per dextran was assessed by the complexation of Cu2+ ions, which 

results in measurable absorption at 265 nm. In a first step a calibration curve for the Cu2+-complex of DOTA was 

generated to get access to the molar extinction coefficient of the formed complex. Therefore, a serial dilution 

bearing BCN-DOTA at different concentrations (0.01-0.2 mM) and CuSO4 (500 mM) was prepared. Photometric 

analysis revealed the molar extinction coefficient (4147 L·-1·cm) that was obtained by linear regression applying 

Beer–Lambert law. Subsequent, measurement of complexation of Cu2+ by DOTA-dextran-cadaverine constructs 

in three different concentrations indicated that in average 3.2 or 5.3 Cu2+-ions were complexed by DOTA-dextran 

conjugates, respectively. These measurements were performed in triplicates. To test the biodistribution of the 

assembled DOTA-dextran conjugates in vivo studies in mice are currently ongoing. In a prospective proof-of 

concept-study, DOTA-dextran conjugates should be linked to commonly applied targeting proteins e.g. 

affibodies, that suffer from poor solubility, aggregation and precipitation due to their intrinsic hydrophobic 

properties. 
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