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Just remember that you’re standing on a planet that’s evolving
And revolving at 900 miles an hour.

It’s orbiting at 19 miles a second, so it’s reckoned,
The sun that is the source of all our power.

– Eric Idle
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Abstract

Complex biological systems can only be analysed by utilizing computational
and mathematical methods. They are essential for studying the interactions be-
tween the components of biological systems and generating an understanding how
these interactions give rise to biological functions and mechanisms of cellular sig-
nalling networks.
In this work, I provide three examples on how the analysis of single cell data de-
rived from live-cell time-lapse microscopy of fluorescent reporter systems benefits
from the use of several approaches that originate from computer sciences.
The analysis of single cell data faces several challenges ranging from extracting
single cell time series from the raw imaging data, identifying signalling classes to
the identification of distinct patterns in single cell trajectories. Several methods
were introduced in the course of this work to handle the experimental data ap-
propriately.
For the extraction of single cell time series, a novel method to track cells in the
imaging data based on Coherent Point Drift was introduced. The tracking benefits
from the features of the Coherent Point Drift method that correspond to cellular
motility patterns. The motion coherence constrain of the Coherent Point Drift
mimics the observation that cells do not move independently; they are embedded
in a neighbourhood that constrains their freedom of movement.
The Dynamic Time Warping framework was established as a useful approach to
tackle several issues in the analysis of biological data. The opportunity to quantify
the similarity of dynamics granted a new view on single cell data. While calcu-
lating the optimal alignment between two single cell trajectories their similarity
can be quantified. Dynamic Time Warping was modified so that it constrains the
flexibility of the alignment making the alignment more biological relevant. Based
on Dynamic Time Warping estimated similarities among individual signalling dy-
namics distinct signalling classes could be identified in the datasets analysed.
Dynamic Time Warping was as well utilized for multivariate time series. This
allowed the comparison of single cells while taking the dependence of dynamics
of several signalling components within a pathway into account. This gives a new
way on the comparison of pathway activity among individual cells.
Different signalling pathways exhibit different signalling dynamics. Therefore, two
feature detection methods were proposed that aim to quantify signalling dynamics
from different angles. The Dynamic Time Warping framework was used to develop
a feature detection method that identifies patterns in the time series flexible in
the time domain and independent of the scaling. If dynamics lack repetitive pat-
terns dynamics have to be quantified in a different way. Therefore, to identify
global dynamics a supervised learning method was developed that reduces the
dimensionality of the time series data and identifies fundamental dynamics that
compose the observed individual dynamics.
To understand how cells, encode the extracellular input and transmit its informa-
tion to elicit appropriate responses, quantitative time-resolved measurements of
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pathway activation at the single-cell level was acquired for all three scenarios.
The application of the introduced set of tools provided new insight into funda-
mental biological questions. On the level of the raw imaging data the cell tracking
step does only differ slightly between the three biological examples. On the sin-
gle cell level the three signalling pathways studied exhibit different dynamics and
demand therefore different requirements on the analysis.
The TGFβ pathway is a multi-functional signalling system regulating cellular pro-
cesses ranging from proliferation and migration to differentiation and cell death.
Alterations in the cellular response to TGFβ are involved in severe human dis-
eases. It was revealed that the response to a given dose of TGFβ is determined
cell specifically by the levels of defined signalling proteins and that the observed
heterogeneity in signalling protein expression leads to decomposition of cells into
classes with qualitatively distinct signalling dynamic. How the dynamics differ
among the signalling classes could be quantified using the supervised learning ap-
proach.
Studies have shown the beneficial effects of hyperthermic treatment during
radiation- or chemotherapy of cancers. I aimed to understand how p53 dynamics
after genotoxic stress are modulated by temperature across a physiological rele-
vant range. In the range of 33◦C to 39◦C, pulsatile p53 accumulation dynamics
are modulated in frequency. Above 40◦C, a temperature that corresponds to mild
hyperthermia in the clinical setting, a reversible phase transition towards sus-
tained hyperaccumulation was observed. This disrupts the canonical p53 response
to DNA double strand breaks. Above 40◦C mild hyperthermia alone was sufficient
to induce a p53 response.
The view onto the p53 signalling was extended by simultaneously measurement of
an additional pathway component. p21 as an inhibitor of cyclin-dependent kinases
is the mediator of p53 in growth suppression and a marker of cellular senescence.
p53 signalling encodes information about signal intensity, duration and identity in
complex dynamics. I studied how these p53 dynamics are related to p21 dynamics
in the same cell. It could be shown that p53 and p21 dynamics were not indepen-
dent and that distinct signalling dynamic shape population response dynamics
after application of genotoxic stress. This was shown by using clustering based on
multivariate Dynamic Time Warping similarity estimates. Signalling classes and
dynamics were connected to cell cycle state.
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Zusammenfassung

Komplexe biologische Systeme können nur mit rechnerischen und mathematis-
chen Methoden analysiert werden. Sie sind unerlässlich, um die Wechselwirkungen
zwischen den Komponenten biologischer Systeme zu untersuchen. Sie erzeugen
ein Verständnis dafür, wie die Wechselwirkungen zwischen zellulären Signalnet-
zwerken bestimmte biologische Funktionen und Verhaltensweisen hervorrufen und
steuern.
In dieser Arbeit stelle ich drei Beispiele vor, wie die Analyse von Einzelzell-
daten aus der Zeitraffermikroskopie fluoreszierender Reporterzelllinien, von der
Verwendung verschiedener Ansätze aus den Computerwissenschaften profitiert.
Die Analyse von Einzelzelldaten ist eine Herausforderung, die von der Extraktion
von Einzelzell-Zeitreihen aus den rohen Bilddaten, über die Identifizierung von
Signalklassen, bis hin zur Identifizierung unterschiedlicher Muster in Einzelzell-
Trajektorien reicht.
Es wurden verschiedene Methoden eingeführt, um die entsprechenden experi-
mentellen Daten zu verarbeiten. Zur Extraktion von Einzelzell-Zeitreihen wurde
ein neuartiges Tracking, basierend auf der Coherent Point Drift Methode, en-
twickelt. Die Eigenschaften der Coherent Point Drift Methode entsprechen den
Charakteristiken der Zellbewegung. Der Motion Coherence Constrain der Coher-
ent Point Drift Methode spiegelt die Beobachtung das Zellen sich nicht unabhängig
voneinander bewegen; sie sind eingebunden in einen Zellverbund welcher ihre Be-
wegungsfreiheit beschneidet.
Das Dynamic Time Warping Framework ist ein nützlicher Ansatz, um mehrere
biologische Prozesse zu untersuchen. Durch die Möglichkeit die Ähnlichkeit von
Dynamiken zu quantifizieren wird ein neuer Blick auf Einzelzelldaten gewährt.
Mittels der Berechnung eines optimalen Alignements zwischen zwei Einzelzelltra-
jektorien kann deren Ähnlichkeit quantifiziert werden. Dynamic Time Warping
wurde so verändert, dass es die Flexibilität des Alignments eingeschränkt wird,
wodurch dieses biologisch relevanter wird.
Basierend auf den berechneten Ähnlichkeiten zwischen einzelnen Signaldynamiken
konnten Signalklassen in den untersuchten Daten identifiziert werden. Dynamic
Time Warping wurde des Weiteren für multivariate Zeitreihen verwendet, was es
erlaubt, die Ähnlichkeit zweier Zellen in Abhängigkeit gleichzeitiger Dynamiken
verschiedener Signalwegkomponenten zu quantifizieren. Dies erlaubt den Ver-
gleich der Signalwegenaktivität zwischen Zellen unter Berücksichtigung der gleich-
zeitigen Dynamiken verschiedener Komponenten des untersuchten Signalweges.
Unterschiedliche Signalwege weisen eine unterschiedliche Signaldynamik auf. Da-
her wurden zwei Methoden zur Erkennung vorgeschlagen, die darauf abzielen, die
Signaldynamik aus verschiedenen Blickwinkeln zu quantifizieren. Das Dynamic
Time Warping Framework wurde genutzt, um eine Feature Detection Methode zu
entwickeln, welches Muster in der Zeitreihe flexibel im Zeitbereich und unabhängig
von der Skalierung identifiziert. Um globale Dynamiken zu identifizieren, wird ein
überwachtes Lernverfahren eingeführt, dass die Dimensionalität der Zeitreihen-
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daten reduzieren und grundlegende Dynamiken identifizieren kann, aus denen
sich die beobachtete individuelle Dynamik zusammensetzt.
Um zu verstehen, wie Zellen den extrazellulären Input kodieren und Informa-
tionen übertragen, um angemessene Antworten zu erhalten, wurden für alle
drei Szenarien quantitative, zeitaufgelöste Messungen der Signalwegaktivität auf
Einzelzellebene erfasst. Die Anwendung der vorgestellten Tools bot einen neuen
Einblick in grundlegende biologische Fragen. Auf der Ebene der rohen Bild-
daten unterscheidet sich das Zelltracking zwischen den drei biologischen Beispielen
kaum. Auf Einzelzellebene weisen die drei untersuchten Signalwege eine unter-
schiedliche Dynamik auf und stellen daher unterschiedliche Anforderungen an die
Analyse.
Der TGFβ-Signalweg ist ein multifunktionales Signalsystem, das zelluläre Prozesse
im Bereich von Proliferation und Migration bis hin zu Differenzierung und Zelltod
reguliert. Störungen der Zellantwort auf TGFβ sind an schweren Erkrankungen
des Menschen beteiligt. Es wurde gezeigt, dass die Reaktion auf eine gegebene Do-
sis von TGFβ zellspezifisch durch die Konzentration der relevanten Signalproteine
bestimmt wird und dass die beobachtete Heterogenität bei der Signalproteinex-
pression zur Aufspaltung der Zellen in Klassen mit qualitativ unterschiedlicher
Signaldynamik führt. Wie sich die Dynamik zwischen den Signalklassen unter-
scheidet, ließ sich mithilfe des Ansatzes des überwachten Lernverfahrens quan-
tifizieren.
Studien haben die positive Wirkung einer hyperthermischen Behandlung in Kom-
bination mit Bestrahlung oder Chemotherapie bei Krebs gezeigt. Ich wollte verste-
hen, wie die Dynamik von p53 nach genotoxischem Stress durch die Temperatur
über einen physiologisch relevanten Bereich moduliert wird. Im Bereich von 33◦C
bis 39◦C wird die pulsierende p53-Akkumulationsdynamik in der Frequenz mod-
uliert. Die in einem klinischen Umfeld eingesetzte leichte Hyperthermie oberhalb
von 40◦C wurde simuliert und dabei konnte ein reversibler Phasenübergang in
Richtung einer anhaltenden Hyperakkumulation beobachtet werden. Dies stört
die kanonische p53-Antwort auf DNA-Doppelstrangbrüche.
Der Blick auf p53 wurde erweiterte um die gleichzeitige Betrachtung einer weiteren
Komponente des Signalweges. p21, ein Inhibitor von Cyclin-abhängigen Kinasen,
ist der Mediator von p53 in der Wachstumssuppression und ein Marker der zel-
lulären Seneszenz. Das p53 Signal kodiert Informationen über Signalintensität,
-dauer und -identität in komplexer Dynamik. Ich habe untersucht, wie diese Dy-
namik mit der Dynamik von p21 in derselben Zelle zusammenhängt. Es konnte
gezeigt werden, dass die p53- und p21-Dynamik nicht unabhängig voneinander
sind und dass bestimmte dynamische Muster die dynamische Antwort auf geno-
toxischen Stress die Populationsdynamik bestimmen. Dies wurde durch die Klas-
sifikation der Dynamiken basierend auf multivariaten Dynamic Time Warping
gezeigt. Signalklassen und -dynamik waren mit dem Zellzyklusstatus verbunden.
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Signalling in Cells

Cells permanently respond to changes in their immediate environment. They sense
these changes by receiving multiple simultaneous signals that originate from the
extrinsic physical environment and internal biological processes. To respond ade-
quately cells integrate and process incoming signals by multiple signalling path-
ways that control the flow of information within the cell [7]. These pathways form
a complex molecular network that controls the dynamics of the signalling pro-
teins. Thus requires investigators to consider multiple time points when analysing
pathway activity [324].
The dynamics of the signalling proteins induce and regulate gene expression pro-
grams that modulate the cellular response to altering environmental conditions
[275]. Analysing signalling pathway components with high temporal and spatial
resolution is essential for understanding of the dynamic and specific regulation of
cellular processes. Roughly, cellular signalling can be classified into different bi-
ological mechanisms, the processing of extrinsic signals e.g. cell-to-cell signalling
as well as sensing and responding to changes in the extracellular environment and
intrinsic signals e.g. cellular DNA damage or metabolic state.
To enable the processing of extrinsic signals from their surrounding environment,
cells bear specific membrane receptors on their surface that can sense different
input types. These receptors initiate a quantitative cellular response by transmit-
ting the information through signalling pathways to the nucleus [326], for example,
during development, when morphogens precisely determine cell fates according to
spatial localization [122].
Additionally, intracellular receptors are proteins found inside of the cell, typically
in the cytoplasm or nucleus. In most cases, the ligands of intracellular receptors
are small, hydrophobic molecules, since they must be able to cross the plasma
membrane in order to reach their receptors. For example, estrogen and androgen
receptors are located in the cytosol and upon activation translocate into the nu-
cleus there they bind to DNA and regulate the activity of a specific set of target
genes [76].
Both, the extra- and intracellular receptors trigger the intracellular machinery
that initiate the cellular response. They are capable of and flexible as well as
adaptive in binding one or more ligand. The receptors pass the information pro-
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vided by the ligand thought the membrane by a conformational change that can
be detected by intracellular proteins. Many of the membrane bound receptors
oligomerize through lateral diffusion during signalling. These multi-pass receptors
control cellular metabolism or cell migration by promoting for example immedi-
ate and reversible changes in pH, membrane polarity, calcium flux [44]. In general
kinase domains of the intracellular machinery that responds to the activated re-
ceptor complex become activated upon ligand binding. Cellular signalling enables
the cells to adjust their fate and function in accordance to the variable envi-
ronmental context, steering diverse processes that range from guiding embryonic
development to maintenance of adult tissue homoeostasis.
Sensing and processing of internal signals initiate a quantitative cellular response
in a similar way. For example, DNA damage triggers recruitment of multipro-
tein complexes (sensors) that then activate the transducers ataxia telangiecte-
sia mutated (ATM) and ATR (ATM and Rad3 related), which belong to the
phosphoinositide 3-kinase–like kinase family [15]. Once activated, ATM and ATR
phosphorylate a bunch of substrates, initiating a cascade that results in cell cycle
arrest and DNA repair [384, 25].
Cellular signalling is characterized by gradual on-turning/off-turning mechanisms
that regulate ongoing signal stability and strength on a spatial and tempo-
ral scale [202]. Multiple processes e.g. molecular interactions, chemical modifi-
cations, conformational changes, stability alterations, confined localization and
time-dependent availability of co-factors [202] regulate this on-turning/off-turning
mechanisms.
Transcriptional networks are essential for complex biological systems. The gene
expression is primarily controlled by interaction of the transcriptional machin-
ery with regulatory modules and induced changes within the chromatin structure
[124, 191, 273]. To maintain cellular integrity cytoplasmic intracellular signalling
is highly organized in space and time.
In the last years, system biology has provided profound insight into cellular sig-
nalling processes [44]. The growing understanding of cellular signalling networks
could be achieved due to application of continued advances in biological, technical
and computational methods for data acquisition and analysis.
In the course of the work, the focus will be set on the computational analysis
of imaging data acquired using high-resolution time-lapse live-cell imaging of flu-
orescent reporter systems. The combination of fluorescent reporter systems and
time-lapse microscopy enables quantitative time-resolved measurements of path-
way activity at the single-cell level and may contribute as a cornerstone to com-
plete the picture of cellular signalling mechanisms and to the elucidation of the
spatial and temporal aspects that dynamically shape signalling at the single cell
level.
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1.1 Molecular dynamics encode cellular information flow

Multiple signalling pathways in a diverse set of organisms use dynamics to dic-
tate distinct outcomes [262]. The cellular response to extrinsic or intrinsic signals
is intrinsically encoded by the single-cell expression of the pathway components.
A controlled equilibrium in which degradation, production and stability of the
signalling pathways components is highly regulated is essential for responding ap-
propriately to altering environmental conditions. Shifts in the equilibrium of the
signalling chain, caused by e.g. mutations, can lead to serious malfunctions of
living cells.
The study of signalling pathways on the single cell level has revealed important
role of dynamics in regulating the fate of the cell [27, 274]. The information of
the signal is encoded in the dynamics of quantity, localization and activity of
signalling proteins. These encoding modulates several features of temporal sig-
nal characteristics like frequency, amplitude or duration. Complex negative and
positive molecular regulatory mechanisms act on all levels of signalling pathways
and provide instruments for a tightly temporal and spatial orchestrated flow of
information intra and inter cells. Undisturbed procession and integration of inter-
and intracellular information guarantees appropriate context dependent cell fate
decisions. Inter- and intracellular information includes among others such diverse
features like cell cycle status, activity of the multiple signalling pathways, cellular
neighbourhood, electrolyte concentration or temperature [314]. As a consequence,
genetic identical cells will not react homogeneous to a fix stimulus due to the
heterogeneous inter- and intracellular context [326] they are embedded in.
Many chemotherapeutic drugs kill only a fraction of cancer cells even in a popula-
tion of essentially identical cells. Studding the variation in the signalling dynamics
of p53 in single cells to explain the heterogeneity in cellular response to drugs and
other external stimuli [262] has revealed that several factors contribute to the
heterogeneous response. Pro- and anti-apoptotic pathways are upregulated by the
same stimulus and balanced out so that an isogenic populations exhibit a mixture
of different outcomes.
Sequence specific transcription factors (TFs) steer the expression of target genes
dynamically through the interaction with cis-regulatory TFs [155]. It has been
shown that for severe pathways TGFβ, p53, TNF-α, and NF-κB signalling, that
non-genetic heterogeneity shapes the signalling dynamics of individual cell and
determine the prototypic response to extracellular stimulation [112, 13, 319, 332,
274, 188, 326]. Non-genetic heterogeneity in a genetically identical population of
cells emerges from several sources that range from cell cycle state, the local envi-
ronment to the state of the components of the signalling pathways.
The dynamic and heterogeneous cellular responses to external stimuli is in essence
a description of the life process itself [44].
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The central hub of the stress response p53

p53 was discovered in the late 70s by five independent groups studying SV40-
derived tumour antigens. In 1979 five independent groups published similar find-
ings, a complex between the SV40 large T-antigen and a non-viral 53 kDa protein
[193, 184, 198, 173, 222, 312]. It was identified as an oncogene because it was
detected in transformed cancer cells but not in healthy cells [72, 286]. Supported
was the role of p53 as an oncogene by transducing p53 cDNA into normal cells
inducing transformation into cancerous cells [90, 156]. The name p53 for this non-
viral 53 kDa protein was established in 1983 during a Workshop in Oxted, UK.
The name p53 is based on the estimated mass of 53 kDa. However, the actual
weight of the human p53 protein is only 43.7 kDa.
In the late 80s evidences emerged that in contrast to previous indications, p53 is
a tumour suppressor. For example, it was found that in the human leukaemia-
derived cell line HL60 the coding sequence of p53 was virtually deleted [365]. At
the same time a p53 cDNA clone was generated that was unable to reproduce the
transforming effects observed with the earlier clones [193]. When comparing se-
quences of p53 (encoded by TP53) cDNA from different sources, published at this
time, it became obvious that none of the published p53 sequences which originated
from cancer cells were identical and carried mutations in the coding sequence.
In the early 90s it was shown that wtp53 effectively repressed the transforma-
tion [89, 97] while p53 mutants indeed possess attributes of oncogenes [19, 18].
Furthermore, humans carrying germ line mutations have an increased cancer pre-
disposition e.g. Li-Fraumeni syndrome [213] and p53 knockouts in animal models
develop cancer with a very high penetrance [82]. p53 become undoubtedly the
most extensively studied gene and protein.
In this forty years that have passed since p53 was discovered it has made its way
from just another interesting protein to one of the most extensively studied genes
and proteins, from an oncogene to a tumour suppressor, unveiling its standing as
the central hub of the cellular stress response [193].
By which means p53 regulates the mechanisms that allow p53 the suppression of
tumours was enlightened in the following years.
Hence, p53 is a role model of a tumour suppressor with the central property of p53
to act as a transcription factor (TF). It controls among other biological processes
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the fate of a cell in response to stress, steers cell cycle arrest [228], apoptosis [376]
and senescence [371].
p53 plays a central role in the development of cancer. A great fraction of all
tumours harbour a loss of p53 function either directly through mutation or indi-
rectly through disturbances in several mechanisms that control the p53 response
[44]. The fundamental function of p53 as tumour suppressor can be emphasised
by the fact that it is the most commonly mutated gene in cancer with over 50 %
of tumours expressing a mutant variant [318, 115]. 74% of the mutations occur
in the central DNA binding domain of p53 with a significant accumulation at six
hot spot codons [318]. If the function of p53 is not directly disturbed through
mutation many cancer types bear indirect disturbances in other mechanisms that
control the p53 response [44]. In this context, key components of the p53 network
like Mouse double minute 2 homolog (MDM2), and the upstream kinase regulators
Checkpoint kinase 2 (Chk2) and ATM are among the most frequently mutated
genes in cancer [44].
In recent years, the interplay with metabolic pathways, cytokines required for
embryo implantation [193] and the cross play with other signalling pathways has
become of emerging interest. The focus on the tumour suppressor role ’guardian
of the genome’ has shifted towards the role of p53 as the central hub of the cellular
stress response (Fig. 2.1). The p53 network is activated by several different dis-
tinct mechanisms [303] and orchestrates the response to various sources of stress
ranging from DNA damage, hypoxia, nitric oxide to depletion of glucose and other
nutrients [349].
The p53 protein is steady expressed and normally directly degraded so that it
is present at low levels in unstressed cells. In response to stress it accumulates
in the nucleus and binds to DNA sequences specific. The DNA damage response
(DDR) is one of most intense studied activators of the tumour suppressor p53.
DDR activation can induce transient cell cycle arrest in G1 or G2 or terminal cell
fates, such as senescence and apoptosis [164].
Upstream kinases of the damage response activate p53 and induce specific expres-
sion patterns of p53 target genes[280]. The p53 response is remarkably flexible
and depends on the cell type, its differentiation state, stress conditions, and col-
laborating environmental signals [164, 262].
Due to alternative splicing and alternative transcriptional initiation the TP53
gene encodes nine known different isoforms observed in different tissues and dur-
ing different stages of development. The precise roles of each of the reported p53
isoforms remain largely unknown [193, 42].

2.1 The master regulator of the cellular stress response

The tumour suppressor gene p53, ’the guardian of the genome’, has an outstanding
role in preventing malignant transformation by maintaining the genetic integrity
of proliferating cells [348, 183, 193]. The TP53 gene encodes among other isoforms
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Fig. 2.1. Several sources of stress induce a p53 response

Multiple different stress stimuli trigger the p53 response. The biological outcomes of the
response, that alters the gene expression of dozens of genes, depends on the cell type
and the type, intensity and duration of the activating stress. Stress events that induce
the p53 DDR pathways are arranged on the top left. The figure is inspired by a review
from Meek [221].

a full length polypeptide with a length of 393 amino acids. The p53 sequence is
divided in three functional domains: An N-terminal transactivation domain that
interacts with several transcription factors and MDM2, the DNA binding core
domain and the C-terminal domain that contains the tetramerization and regula-
tory function as well as nuclear localization and export signals [40]. p53 functions
primarily as a tightly regulated homotetrameric transcription factor (TF) that
encompasses both activation and transrepression activities.
p53 is part of a protective system that prevents cells from acquiring cancerous
properties. The potency of p53 as a tumour suppressor is partially grounded on
its ability to arrest or eliminate cells after DNA damage [200] and to halt the
proliferation in response to aberrant oncogene expression [205]. Activation of p53
reduces the risk of propagating DNA damage by elimination or repair of damaged
cells [364]. Elimination is driven by DDR kinases phosphorylating p53, driving
cell-cycle arrest, senescence or apoptosis. p53 stimulates DNA repair by activating
target genes that encode components of the DNA repair machinery. The tumour
suppressor function of p53 is crucial for maintaining genomic integrity and con-
trolled cell growth[192, 23, 104]. In response to a wide range of different stress
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stimuli (Fig. 2.1), p53 is induced essentially by blocking its degradation, leading to
an increase in its cellular levels [221]. Changes in the p53 levels alter, in a context-
dependent manner, the outcome of several biological processes. Independent from
its role as ’guardian of the genome’, p53 regulates a range of genes essential for a
variety of cellular processes, often when present at basal non-induced levels [221].
So for example, p53 regulates the proliferation and differentiation of stem cells
[9, 316] or is able to restrict cellular longevity by promoting the ageing process
[212, 340].
Mutated p53 can promote tumorigenesis due to a loss off, gain off or altered func-
tion [348, 115, 260] and changed regulation of hundreds of genes that are direct
targets for p53-mediated trans-activation [225]. p53 activity has broadly diverse
consequences and its activation is regulated in a context dependent manner [44].
Thus, activity of p53 must be tightly orchestrated.
p53 possesses two functional trans-activation domains [387] and it can bind to
specific DNA sequences [88, 168]. This target response element (RE) sequences
are central for the function of p53. The responsiveness of REs to p53 is dependent
on several factors like sequence specificity [155], p53 level and cofactors[40, 269],
thus yields a large variation in p53-dependent expression profiles [93, 134, 329].
p53 and other TFs can be in competition for neighbouring binding sites [139, 380]
but also can cooperate having negative or positive effects on transactivation. In-
teractions of p53 and other TFs are reported e.g. for SMADs[67, 363] and NFκB
[147, 356]. Depending on the interaction with TFs and cofactors, p53 either acti-
vates or represses target gene expression [177].
The set of cofactors that interact with p53 can dependent on the level of stress,
for example cofactors that stimulate apoptotic genes (e.g. PIN1, ASPP1, ASPP2
[214, 34, 292]), cooperate with p53 in the case of high stress levels as irreparable
damage while low levels of damage induces interaction with co-factors that influ-
ence cell cycle arrest (e.g. iASPP, HZF, MUC1 [214, 33, 70, 142]).
p53 is not limited to its function as a TF. p53 interacts with apoptosis related
proteins of the BCL-2-like proteins that regulate the mitochondrial release of cy-
tochrom c [256, 94]. Cytochrom c contributes to the apoptotic dismantling of the
cell [111].
The human p53 gene is located at chromosome 17p13.1. It is composed of 19.198
nucleotides arranged in 11 exons[31]. Splicing isoforms of p53 can act as tran-
scription factors, repressors of transcription and differ in stability of the Protein
and DNA binding [269, 373, 223, 233, 43]. The N-terminal transactivation domain
of p53 has 3 possible phosphorylation sites[2]. Phosphorylation patterns influence
the affinity for binding of proteins like MDM2[297], CBP[334] or p300[186] that
regulate the activity of p53. CBP and p300 are histone acetyltransferases that
acetylate lysine residues of histones and thereby relax the chromatin [269].
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Fig. 2.2. DDR p53 network

After double strand breaks upstream kinases activate p53. P53 activation prevents p53
from proteasomal degradation promoted by MDM2, hence p53 can accumulate. The
two negative feedback loops MDM2 and Wip1 shape the p53 response dynamics. The
figure is based on a figure from [98].

2.2 p53 is the central hub in a broad and flexible network

To understand the biological properties of p53 and its surrounding regulatory net-
work, it is crucial to explore its interaction partners.
In 1992 the MDM2 protein, probably the major negative regulator and gate-
keeper of p53, was found to bind p53 and inhibit its activity [234, 193]. In the
canonical model of the network p53 is kept at low levels in healthy cells by its
counterpart MDM2 [265]. In absence of stress the p53-specific E3 ubiquitin ligase
MDM2 ubiquitinates p53, thus initiating promote the proteasomal degradation of
p53 [133, 178, 143]. Also, MDM2 binding blocks the trans-activation domain of
p53 inhibiting its function. Upon exposure to stress p53, gets phosphorylated by
different kinases within the N-terminal domain. These phosphorylation disrupt
the interaction between p53 and MDM2 so that the proteasomal degradation
is stopped and p53 is activated and can accumulate within the nucleus. Higher
levels of p53 in the nucleus can unfold the central property to act as a TF by
binding to target gene promotors. Homotetrameric complexes of p53 encompass
both transactivation and transrepression activities by binding to sequence-specific
gene promoters [177].
Most of the regulation of the p53 activity goes through the MDM2 protein inter-
action with other p53 network components like AKT-1, AMP kinase, ARF and
cyclin D-PP2A [31, 129]. Activity of MDM2 is dependent on its cellular level,
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p53 binding affinity and E3 ligase efficiency[193]. Exemplary, ARF activates p53
by binding MDM2 and promoting its rapid degradation [383]. The stress de-
pendent switch-like activation of p53 is guaranteed substantially by MDM2. p53
stabilization happens immediately after exposure to various cellular stresses[227],
including DNA damage and replication stress produced by deregulated oncogenes.
Stress can have several faces, especially risk for the genome integrity.
This activation is accompanied by an increase in a variety of post-translational
modifications of p53 and MDM2 ranging from acetylation, phosphorylation and
methylation to poly(ADP-ribosyl)ation, neddylation, sumoylation, and non-proteolytic
monoubiquitylation [336, 40, 258]. Mechanisms leading to p53 activation can be
stimulus dependent. These post-translational modifications that can alter p53
affinity for different target genes and influence target gene bias [179]. These modi-
fications are catalysed by a large number of enzymes; e.g. at least a dozen different
kinases ensure p53 phosphorylation on at least 18 different residues[258]. Several of
these modifications prevent the p53 and MDM2 interaction and promote nuclear
p53 accumulation. Hence, DNA damage promotes p53 phosphorylation, blocking
its MDM2-mediated degradation [307], whereas oncogenic signalling induces the
tumour suppressor ARF to inhibit MDM2 [271, 276, 383].
The interaction of the p53 trans-activation domain and the MDM2 binding domain
is essential for functional tumour suppression [2]. Furthermore, MDM2 is a direct
transcriptional target of p53 forming a negative feedback loop. p53 induces MDM2
promoting consequently its own deactivation and degradation [22, 368, 267].
The kinases ATM, ATR and DNA-PK have been shown to phosphorylate p53 and
MDM2, leading to stabilization of the p53 protein [220, 56]. Also the checkpoint
kinases Chk1 and Chk2 are activated by ATM and ATR [177]. Chk1 and Chk2
phosphorylate p53 at multiple DNA damage-inducible sites regulating stability
and function of the protein [306]. The variation in DNA repair efficiencies and
ATM activities can explain the dynamical space of p53 across cell lines[324].
The MDM2 feedback is not sufficient to explain the complex p53 dynamics ob-
served. An additional feedback loop was found between wild-type p53-induced
phosphatase 1 (Wip1) and p53. The expression Wip1 is controlled by p53. Wip1
modulates several components of the p53 network as it is dephosphorylating p53
by PI3K-like kinases [207], inhibits p53 phosphorylation by MEK [125], dephos-
phorylates ATM [310] and Chk2 [106, 257]. The schema of the p53 network is
shown in Fig. 2.2.
The cross play of p53 and its negative regulators induces several context-dependent
p53 dynamics. For example, ionizing radiation (IR) induces repeated p53 accumu-
lation in pulses of uniform amplitude [26, 203, 274] and duration and ultraviolet
radiation (UV) triggers single sustained pulses with dose-dependent amplitude
and duration [27].
Recent studies indicate that p53 itself is not only responsible for the regulation
of transcription, while p21 is required for the indirect down regulation of genes
induced by p53 [102].
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Fig. 2.3. Top p53 target genes proposed by Fischer and their biological function

From the top 116 genes identified as p53 targets in at least 6 out of 16 genome-wide
data sets listed in Fischer [100] the functional annotation according to Gene Ontology
[14] is shown for target genes that have at least 3 known biological functions.

2.3 p53 target genes

How the p53 tumour suppressor function, primary mediated by its primary role
as a TF, is guaranteed by steering the expression profile of its target genes by
dynamic rewiring of the p53 network is essential for the understanding of can-
cer development. Its various functions are based on controlling the expression of
distinct sets of its target genes. In his 2017 review Fischer identifies 3661 (319
from individual gene studies and 3509 from high-throughput data sets) proposed
p53 target genes involved in multiple cellular responses, including cell cycle ar-
rest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation, feedback
mechanisms [100] repression of pluripotency, cellular plasticity and ferroptosis [16].
It is quite likely that there are many false positive findings among these 3661 po-
tential p53 target genes. Likely the real number of target genes does not exceed a
few hundred [101] (Fig. 2.3). Fischer found limited reproducibility and numerous
contradictions in the different data sets. p53 target genes can be divided in genes
that are activated and genes that are repressed by p53. The sequence specific TF
p53 controls various distinct transcriptional programs.
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p53 can induce or repress the expression of its target genes[138, 370]. Frequently
encountered p53 target genes encode proteins that are involved in apoptosis, cell
cycle control [225] and growth arrest. Cell cycle progression is controlled by p53
among others by the trans-activation of the cyclin-dependent kinase inhibitor p21
[87]. Target genes of special importance for the proapoptotic function of p53 are
PUMA, NOXA (BH-3 only members of the BCL-2 family) and BAX [269, 231].
Cell stress induces p53 activation, for example, DNA damage initialises p53 target
gene activation through a series of p53 pulses that encode the specific response
[28]. p53 activates target genes by binding to p53 specific response elements (REs).
There are canonical p53 REs, that are formed by two separated decameric half-
sites with the consensus sequence RRRCWWGYYY (R = Purine, W = A—T
and Y = Pyrimidine) [88], and non-canonical REs [333]. These p53 binding sides
are independent of cell type and treatment [342].
In recently proposed models down regulation, of target genes in response to p53
is indirect, mainly directed through the cyclin-dependent kinase inhibitor 1A
(CDKN1A) [102]. The gene CDKN1A encodes one of the main effectors of the
p53 DDR p21. Best known in this context is the down regulation of numerous
cell cycle genes by the p53-p21 pathway[201, 330, 337, 299, 169, 385]. Cell cycle
transition from G1 to S and G2 to mitosis is regulated by cyclin-dependent kinase
(CDK) family of proteins that are activated by cyclins [343] and inhibited by p21.
Induction of p21 by p53 after exposure to stress prevents cell cycle progression.
p21 is essential for the cell cycle arrest at transition from G1 to the S phase by in-
hibition of CDK2/4 [74] and contributes to G2 arrest by inhibition of CDK1 [48].
p21 was also reported to inhibit DNA synthesis and DNA repair and to promote
apoptosis [303].
As mentioned before among the different targets genes of p53 is a group of p53
pathway regulators involved in negative feedback loops in particular MDM2 and
Wip1.

2.4 Dynamic rewiring of the p53 network

Recent studies have reported that pulsatile p53 dynamics trigger the expression
of genes involved in DNA repair and cell-cycle arrest, while sustained p53 ac-
cumulation initiates activation of senescence and apoptotic genes [27, 274]. The
dynamic patters exhibited by p53 in response to radiation, UV, hypoxia or onco-
genes induces different biological effects. p53 is the central hub of the molecular
network which is dynamically steering the cellular response to stress. A funda-
mental question is what mechanisms contribute to the cell-to-cell variability in
the stress dependent p53 activation.
Like several signalling pathways (nuclear factor kappa-light-chain-enhancer of ac-
tivated B cells (NF-κB), nuclear factor of activated T cells (NFAT), and extracel-
lular signal–regulated kinase (ERK) or Transforming growth factor beta (TGFβ)
[64, 375, 21, 326] ) the p53 signalling uses complex dynamics to encode informa-
tion about signal intensity, duration and identity. The different dynamics observed
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for p53 after exposure to stress are associated with the crosstalk between p53
and separate inputs and outputs of other cellular signalling cascades. P53 mod-
ulates stress driven cell fate by controlling and balancing out different biological
responses. Its embedded in a densely populated and interconnected network of
regulators and effectors. The crossplay between the different biological processes
triggers context dependent the biological outcome. For example, alterations in
p53 control of metabolism undoubtedly contribute to apoptosis, autophagy, and
ferroptosis [110]. Autophagy delays apoptosis by p53 induced reduction of PUMA
[335].
In response to double-strand breaks, feedback loops cause p53 to oscillate [180,
274] triggering a cascade of transcription enforcing cell cycle arrest and, if the
damage is severe enough, committing the cell to a terminal fate. Pulsatile dynam-
ics either result in resumption of proliferation or in permanent arrest if oscillations
persist [324]. Sustained p53 accumulation in the nucleus is associated with per-
manent cell cycle arrest [57].
Stewart-Ornstein and Lahav [324] have shown that small-molecule inhibition
of ATM converted sustained p53 signalling to the classical pulsatile behaviour,
whereas inhibitors of DNA repair, or compounds that increase ATM activity, pro-
moted sustained signalling. They could also show that small-molecule inhibitors
of mTOR, CDK, and PARP also altered p53 response dynamic.
Biological information is not only encoded in the structural components of a cell,
but also in the dynamics of signalling molecules [29]. P53 is a well embedded in
the regulation of genes and pathways that contribute to the cellular homeostasis.
For example, the uptake of Glucose, a key nutrient, into the cytosol is decreased
by p53 directly by downregulating the gene expression of glucose transporters
GLUT1 and GLUT4 [298]

2.5 Temperature effects on the p53 network

It is known that p53 plays often a central role in the development of cancer and
that a combinational treatment of hyperthermia together with radiation and an-
ticancer agents has been used clinically where it has shown to be beneficial to
the treatment outcome [6]. It is known that several elements of the p53 pathway
as well as other proteins that interact with p53 are modulated by temperature
[120]. However, the underlying mechanism of signal transduction and set of genes
involved in this process are still poorly understood. How are the single cell dy-
namics of the guardian of the genome p53 upon genotoxic stress modulated by
the temperature of the surrounding environment?
Cancer treatment concepts aim to destroy neoplastic cells. The straightforward
approach, surgical operations, aims to directly remove the cancerous tissue. Other
more sophisticated methods focus on putting to death cancer cells in situ while
avoiding so much harm as possible to healthy cells. Non-invasive methods range
from the widely used radiation therapy and chemotherapy to novel approaches,
such as immunotherapy, monoclonal antibodies or stem cell transplants. In addi-
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tion, adjuvant therapies like hormone therapy or hyperthermia are used to improve
the effectiveness of radiation therapy or chemotherapy. Hyperthermia is a proce-
dure which elevates the temperature of tumour-loaded tissue to 39.5–43◦C and
is generally applied as an additive treatment to established non-surgical cancer
treatments [60]. The elevation of the local or whole body temperature is achieved
by different methods, as superficial hyperthermia, regional hyperthermia, inter-
stitial hyperthermia, whole body hyperthermia and hyperthermic isolated limb
perfusion [369].
In several countries authorities accept adjuvant hyperthermia for radiotherapy
and chemotherapy as regular treatment for distinct cancer indications[295]. For
example, the Charité - Universitätsmedizin Berlin is treating patients with radio-
therapy and chemotherapy and adjuvant hyperthermia for more than two decades.
An increasing number of phase II and III clinical trials have shown the effective-
ness of a combined cancer therapy approach [71, 208, 54]. It has been hypothesized
that cytotoxicity induced by chemo- and radiotherapy is enhanced by hyperther-
mia (‘thermal chemosensitization’, ‘thermal radiosensitization’) [137, 54].
Temperature has a direct influence on the tumour microenvironment and changes
the blood flow as well as oxygen and nutrient distribution in the tumour tissue
[215]. Direct cell killing effects have been shown to be markedly enhanced at tem-
peratures above 43◦C [79, 137].
The underlying molecular mechanisms of hyperthermia are investigated since
decades. Temperature affects biological processes directly by changing the speed
of enzyme-catalysed reactions. The Arrhenius equation states that the speed of
a biochemical reaction doubles when the temperature rises by 10◦C. This holds
until the proteins intimately involved in the reaction denaturize [140]. Further-
more, increased temperature affects several molecular functions of proteins not
just by denaturing also by inducting protein misfolding. The environmental tem-
perature affects fluidity and stability of cellular membranes and induces changes
of cytoskeletal organization (cell shape, mitotic apparatus, intracytoplasmic mem-
branes such as endoplasmic reticulum and lysosomes) [137].
Hyperthermia modulates the activity of several pathways with different function.
For example, hyperthermia can induce the expression of heat shock proteins, ac-
tivate the immune response, activate apoptosis pathways or alter cell cycle regu-
latory signalling pathways [215].
Radiation therapy and chemotherapeutics targets rapidly dividing cancer cells by
directly or indirectly inducing DNA damage [366]. Hyperthermia interferes with
DNA repair pathways [162] thus DNA damage-based treatment modalities benefit
from adjuvant heat application. It has been proposed that hyperthermia sensitizes
cells to agents that interfere with cell cycle checkpoints [255].
Several processes involved in the cellular DDR or connected to the p53 signalling
cascade are known to be heat sensitive. Direct effects of hyperthermia, that af-
fect DNA integrity, are the induction of DNA lesions (SSBs and DSBs), promoting
the formation of γH2AX foci and the autophosphorylation and activation of ATM
[215]. DNA replication and repair is as well decelerated by reduced DNA poly-
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merase and DNA topoisomerase activity. The pathway orchestrated by ATM and
ATR is the central regulator of the DDR network. Cell cycle checkpoint activation
in response to DNA damage is managed by ATM and ATR [390, 187]. ATM and
ATR are two kinases that directly interact with p53 and steer p53 dynamics. ATM
directly phosphorylates Chk2 in response to heat [230, 339]. ATR and Chk1 are as
well heat activated [339, 108]. The degree of thermosensitivity is dependent on the
cell cycle phase [360, 137]. Mre11, Rad50 and Nbs1 (MRN) form tight complexes
which after irradiation rapidly form foci at sides of DSBs [300]. In general, the
MRN complex is required in the initial processing of DSBs by the activation of
ATM [341]. After cellular exposure to heat the MRN complex does not bind any
longer to due to the activity of HSP70 [300]. The expression of members of the
family of heat shock proteins (HSPs)is elevated after heat exposure and controlled
by members of the protein family heat shock factors (HSF1-4). HSPs are the ma-
jor molecular chaperones. During synthesis HSPs assist in proper protein folding,
and during proteotoxic stress HSPs protect stress-labile proteins and contribute
to proteolysis of damaged proteins [361].
The most frequently mutated gene in human cancer is p53. A clear appreciation,
how spatial and temporal cellular context drives p53 diverse effects remains miss-
ing [164]. The kinases ATM and ATR trigger activation and accumulation of p53
[12, 308]. It had been shown that implicated activation of ATM and a subset
of its downstream targets, including p53, is independent of the MRN complex
[149, 230]. p53 is as well activated by the thioredoxin-dependent redox state and
modulation of checkpoint regulators Gadd45a and Cdc2 at 41◦C [160]. The proper
functioning of p53 is affected by HSPs by balancing p53 synthesis, degradation
and its nuclear translocation [361]. Binding of HSP90 to p53 makes p53 resistant
to ubiquitination and degradation mediated by MDM2 and enhances the binding
of p53 to the p21/WAF1 promoter. It has also been shown that Hsp70 and Hsp40
are involved in stabilization of p53-DNA complexes [351, 391].
Hyperthermia is not only an artificial issue the human body is dealing with. As
homoeothermic animals, humans exhibit a stable core temperature of 37◦C. At the
periphery, especially at the extremities the temperature can be much lower and
is depending on the environmental temperature[328, 114]. Not only the ambient
temperature is a cause of deviating body temperature. To name a few age, time
of day, sex and reproductive status have influence as well [250, 49]. Especially, the
activity level has substantial impact. During physical exertion, the body core tem-
peratures can reach above 40◦C [197]. Altered temperature is as well observed in
pathological context, associated with several diseases ranging from vascular issues
where the blood flow associated heat dissipation is perturbed to fever, which is
induced by multiple sources (infections, autoimmune issues) [121] or cancer [211].
Studies indicate that longer deviations in human core temperature of more than
4◦C can result in physiological impairments and fatality [236].
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Pathways in TGFβ signalling network

The transforming growth factor β (TGFβ) superfamily is comprised of over 30
different secreted factors [358]. Ligands of the TGFβ superfamily bind to ser-
ine/threonine kinase receptors that activate SMAD proteins. Activated SMAD
proteins accumulate in the nucleus and regulate the gene expression. Beside the
canonical signal transduction utilizing SMAD proteins other pathways are also
employed in a cell-specific manner.
The TGFβ superfamily can be classified in two functional groups: the TGFβ like
family members consisting of TGFβ 1-3, Activin and Nodal and the Bone Mor-
phogenetic Proteins (BMP) like family members consisting BMP, Growth and
Differentiation Factors (GDF) and anti-Müllerianhormone (AMH). The groups
differ in their ligand structure, downstream SMADS, activation and induced sig-
nalling cascade [145].
TGFβ induced signalling is one of the most investigated signalling cascades [58].
Its key function is the maintenance of the tissue homoeostasis by regulating
the transcriptions of genes responsible for proliferation, survival and cytostasis
[135, 358]. TGFβ is a pleiotropic cytokine responsible for regulating a myriad
diverse cellular processes, including differentiation, apoptosis, adhesion, motility,
tissue regeneration, immune responses, tumorigenesis, embryonic development,
adult tissue homeostasis and cellular microenvironment in nearly every human
cell type [92, 218, 78, 91, 150, 305, 311, 36, 135, 289, 296, 135].
A disturbed information flow in the TGFβ pathway can change the cellular re-
sponse to TGFβ ligand and cause severe human health defects like cancer, fibrosis,
vascular disorders and autoimmune diseases [37, 218, 117]. In the canonical TGFβ
signalling the essential step is the translocation of the active SMAD transcription
factor complex from the cytosol to the nucleus, where it can control the rate of
transcription of its target genes.
TGFβ has a complex dual role in cancer and can act as a tumour suppressor
by inhibiting the uncontrolled growth of tissue especially epithelial cells by in-
ducing cell cycle arrest and promoting apoptosis or act as a tumour promotor
by inducing growth, survival, motility, invasion, and metastasis [150, 36, 218].
Multiple alterations in components of the TGFβ signalling pathways are likely
to be found in human cancer cells [218, 150, 194]. In early stages of tumourige-
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Fig. 3.1. Canonical pathways in TGFβ signalling network

After ligand binding to TGFβ Type II receptor the active peptide recruits a TGFβ
Type I receptor and forms a complex. The active complex then phosphorylates receptor-
associated SMAD proteins (R-SMADs), including SMAD2/3. Activation of SMAD2/3
leads to formation of complexes with SMAD4. This complex shuttles into the nucleus
and regulates the expression of specific target genes. Among the target genes is SMAD7
that has the role of a negative feedback loop in the pathway. SMAD7 inhibits TGFβ
prevents the formation of SMAD2/SMAD4 complexes, the activation of SMAD2 by
TGFβ type I receptor by enhanced SMURF2 activity. SMAD7 inhibits TGFβ signalling
by preventing the formation of SMAD2/4 complexes and the interaction of SMAD2
with the type I receptor. Additionally, SMAD7 can activate SMURF1/2, which induces
degradation of receptors and SMAD7 via proteasomal and lysosomal pathways. Figure
inspired by schema published in [291, 325]

nesis by evading the tumor-suppressive, cell cycle inhibitory role of TGFβ and
in late stages [218, 91, 150, 283, 226, 151] by the induction of transcriptional
transition that induces epithelial-to-mesenchymal transition (EMT)[116, 77, 218].
EMT is a physiological process, thus acquire cells to lose epithelial properties and
gain characteristics of mesenchymal cells[378], a conversion from adherent cellular
characteristic to migratory cellular behaviour. How the molecular switch between
adherent cellular characteristic and EMT is triggered by TGFβ is under debate.
Changes in the expression of different genes [243, 268] or pathway dynamics may
cause the transition [253].
TGFβ alters gene expression of target cells mainly by propagating the signalling
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downstream through canonical signal transduction utilizing SMAD proteins [358].
TGFβ furthermore regulates non-canonical SMAD independent pathways such as
JNK/p38, Ras-ERK, PI3K/AKT and small GTPases like RhoA [78, 378, 240].
Crosstalk between SMAD dependent and SMAD independent TGFβ regulated
pathways and other physiological pathways shape TGFβ signalling context spe-
cific [78, 92]. The combined interplay of the canonical and the non-canonical sig-
nalling pathways with other signalling cascades triggers the conclusive outcome
of the cellular response to TGFβ. The TGFβ signalling is dynamically shaped
by the activation state of the receptor complex[378]. TGFβ signalling is tightly
regulated and conducted by post-translational modifications of the pathway com-
ponents, that guide the spatial and temporal activity the of signal [240]. Mutation
of TGFβR or SMADs are responsible TGFβ signalling perturbation [218, 117].
TGF-β signal transduction is controlled by multiple mechanisms and proteins,
not only at the receptor level. Remarkable is the key negative regulator SMAD7
[264, 202, 153]. It was also proposed that SMAD7 plays an outstanding role as
a cross-talk mediator between TGFβ signalling and other signal transduction
processes[372].

3.1 The TGFβ network - SMAD-mediated canonical
pathways
Three TGFβ (TGFβ1, TGFβ2, TGFβ3) isoforms have been identified in mam-
mals [282, 321]. They are encoded from individual genes located on different chro-
mosomes. TGFβ isoforms display similar, although not identical, biological activ-
ity and differential tissue expression [224]. TGFβ1 is the prototypical ligand of
the TGFβ superfamily. TGFβ is secreted from cells in a large complex that is
cleaved into mature TGFβ and latency-associated protein (LAP) [11, 39].
Canonical TGFβ signal transduction is ensured by transmembrane type I and
type II serine/threonine kinase receptors (TGFβRI and TGFβRII), downstream
SMAD proteins and other signalling mediators.
Upon ligand binding to the TGFβRII, two TGFβRII form a heterotetrameric
complex with two TGFβRI. Within the active complex the TGFβRII autophos-
phorylates and catalyses the transphosphorylation of TGFβRI [305], thus acti-
vating TGFβRI kinase [96]. The activated TGFβRI then propagates signals to
members of the SMAD family by phosphorylation of their C-terminal tails [75].
SMADs are transcription factors that constantly shuttle between the cytoplasm
and the nucleus [219, 96, 296]. In most vertebrates eight SMADs are found
[148]. SMADs are classified in three groups. Receptor regulated (R-) SMADs
(SMAD1, SMAD2, SMAD3, SMAD5, SMAD9) that interact directly with the
ligand-receptor complex. (Co-)SMADs (SMAD4) that partnering R-SMADs. In-
hibiting (I-)SMADs (SMAD6, SMAD7) that suppress the activity of R-SMADs
and Co-SMADs. The BMP-like subfamily activates SMAD1, SMAD5, SMAD9
and TGFβ-like subfamily activates SMAD2, SMAD3. The TGFβRI phosphory-
lated R-SMADs SMAD2 and SMAD3, heterotrimerize with (Co-)SMAD4 and
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translocate to the nucleus, where they bind to specific promoter sites and reg-
ulate the expression of target genes in collaboration with other co-activators or
co-repressor [96, 284].
The Ub-proteasome machinery regulates stability and amounts of R-SMADs
and Co-SMADs at steady state and during the active TGFβ signalling cascade
[202]. Lysosomal depletion of extracellular TGFβ due to internalization of re-
ceptor–ligand complexes [62, 388] and the associated temporal removal of the
heterotetrameric receptor complex from the membrane [347] shapes the TGFβ
response.
The expression of SMAD7, one of the negative feedback loops of the canoni-
cal TGFβ pathway, is increased after TGFβ exposure. SMAD7 is an important
crosstalk mediator of TGFβ signalling with other signalling pathways. Stability
and function of SMAD7 is regulated by a balance of acetylation (p300), deacety-
lation (SIRT1, HDAC1), methylation (PRMT1), phosphorylation (MPK38) and
ubiquitination (SMURF1, Arkadia together with Axin) [372]. Also other transcrip-
tion targets can effectively inhibit the signalling progresses, for example SMURF1
or SMURF2 [166, 246, 84] that are directly induced by activated Smad2/3/4 com-
plexes. TGFβ dependent SMAD7 and SMURF1 or SMURF2 induction sustains
and increases their cellular levels so that they can inhibit effectively the signalling
progresses [202]. The (I-) SMAD7 binds to the activated TGFβR complex and
competes with SMAD2 and SMAD3, thus prevents their phosphorylation [386].
The TGFβ induced targets SIK1 and SMAD7 target together TGFβRI for fa-
cilitate proteasomal degradation[172]. SMURF2 induces degradation of receptors
and SMAD7 via proteasomal and lysosomal pathways [166]. SMAD7 activity is
also tightly regulated for example by adaptor proteins like STRAP that stabilizes
SMAD7/TGFβR complexes formation or SMURF1 that ubiquitinates SMAD7
[84, 166, 118]. SMAD7 competes with SMAD2 and SMAD3 for binding to acti-
vated type I TGFβR [135, 136, 218] and induces type I TGFβR degradation by
interacting with SMURF1 and SMURF2 [84, 386]. SMAD7 also recruits E3 ubiq-
uitin (Ub) ligases together with corresponding co-factors to receptor complexes
and to the other SMADS [153, 154] inducing degradation by the proteasomal ma-
chinery. SMAD7 can also act as disruptor of R-SMADs and Co-SMAD or between
R-SMADs and type I receptors interactions[153]. Altered SMAD7 expression can
have serious consequences like cancer, tissue fibrosis and inflammatory diseases
[372].
SMAD anchor for receptor activation (SARA) is known as a SMAD cofactor that
interacts directly with SMAD2/3 and functions to recruit SMAD2/3 to the TGFβ
receptor. SARA plays an essential role in TGFβ-induced SMAD2 activation and it
may modulate TGFβ signalling through regulating the balance between SMAD2
and SMAD3. SARA also functions as an anchor for catalytic subunit of protein
phosphatase 1 (PP1c) and maybe involved in the dephosphorylation of TGFβ
type I receptor mediated by SMAD7. The expression of SARA changes as the
development of epithelial to mesenchymal transition (EMT) and fibrosis and it
plays a critical role in the maintenance of epithelial cell phenotype. Modulation
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of SARA may provide a new therapeutic approach to TGFβ-mediated EMT and
fibrosis [331].
Among the targets that are under transcriptional regulation of the active SMAD2
and SMAD3 complex are epithelial and cell cycle genes that are downregulated
and mesenchymal marker and negative feedback regulators of the pathway that are
upregulated [219]. TGFβ pathway activity can be modulated by different means as
posttranslational modification of the SMAD proteins or the receptors[96, 367, 202].
Modification in conjunction with other transcription factors to coordinate the
transcription induced by TGFβ. The canonical pathway is schematically shown
in Fig. 3.1.

3.2 The TGFβ network - Non-SMAD pathways

Besides to the here presented protagonists in the TGFβ pathway many other sig-
nalling molecules and signalling adaptors have been identified that interact with
the TGFβ receptor complex [24]. The diversity of TGFβ signalling responses is
triggered by interaction of the ’core’ (SMAD-dependent) with other pathways and
the ability of TGFβ receptors to activate other signalling cascades [78, 238].
Non-canonical TGFβ pathways, activated by the TGF-β receptors through ei-
ther phosphorylation or direct interaction, include several limbs of MAP kinase
(MAPK) pathways, GTPase signalling pathways (Rho, Ras, Cdc42), phosphatases
PP2A and Shc and PI3K/AKT pathway [378, 202].
Phosphorylation of cytoplasmic tyrosine residues of type I, type II serine/threonine
kinase receptors and Shc is induced by TGFβ [185, 188]. This enables the binding
of Grb2 [109] and the recruitment of SOS [188]. SOS then activates membrane
bound RAS and in the following RAS activates RAF [359]. RAF phosphory-
lates MAP kinase kinases (MKKs) MEK1 and MEK2 leading to an activation
of ERK1 and ERK2 [50]. ERKs regulate many transcription factors, e.g. NFκB,
c-Myc, ELK1, SMAD1, SMAD2 and SMAD3 [377]. By phosphorylation of acti-
vated SMADs, ERK is able to inhibit SMAD activity[174, 175, 107]. Transcription
factors regulated by TGFβ-stimulated ERK control several genes involved in cell-
matrix interaction, cell motility, and endocytosis.
Another branch of MAPK pathways activated by TGFβ is the JNK and p38
MAPK signalling cascades that activates the transcription factors c-Jun and c-
Fos of the AP1 complex. JNK and p38 get activated by the secondary layer, the
MKKs MKK4 and MKK3/6 of the MAPK pathway. MKK4 and MKK3/6 are acti-
vated by the MKKK TAK1. MKKs get activated by MKKKs. In the JNK and p38
MAPK branch one MKKK responsible for the activation of MKK4 and MKK3/6
is TAK1. The activation of TAK1 by TGFβ is not well understood. Experiments
have shown that TAK1 is activated through the catalytic activation of TRAF6
by TGFβ [182]. TRAF6 gets triggered by the TGFβ induced oligomerization of
the type I/II receptor complex. Differentiation, cell survival and inflammatory
responses are regulated by TAK1 through its activity on p38 and JNK by the
induction of pro-survival gene transcription by components of the NFκB pathway
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[4, 113, 281, 350]. It has been proposed that the MKKKs MEKK1 and MLK3 can
as well activate JNK and p38 in a TGFβ dependent manner [382, 170].
SMAD7 associates with TAK1, MKK3, and p38 [85, 135, 182] modulating the
activity of the JNK and p38 pathway. SMAD7 functions as an adaptor protein,
underpinning non-SMAD signalling pathways activation involving TAK1, p38 and
JNK MAPK pathways [240]. SMAD7 can also bind on key player of the Wnt
signalling pathway, β-catenin [86]. SMAD7 is an important crosstalk mediator
between canonical and non-canonical TGFβ signalling and connects TGFβ sig-
nalling with other signalling pathways.
TGFβ induces the activation PI3K/mTOR/AKT pathway in a non-SMAD sig-
nalling manner. The activation of PI3K leads to a phosphorylation of AKT by
PIP3 and PDPK1[20, 309, 345, 362, 181, 86]. Type I/II TGFβR are required for
the activation of the (PI3K)-AKT signalling pathway. The interaction is mediated
by receptor associated p85 [374], a regulatory subunit of PI3K. TGFβ mediated
EMT is also supported by the PI3K/Akt pathway by contributing to actin fila-
ment organisation and cell migration. AKT induces activation of mTor[378] and
its downstream targets S6k and 4E-BP1 [181]. TGFβ induced cellular response
by PI3k/AKT activation plays often a counterpart to the canonical SMAD effects
[309, 55, 317]. This antagonistic effects are for example borne by interaction of
SMAD3 and AKT [279, 65] there AKT prevents Type I TGFβR driven phospho-
rylation and subsequent cytosolic-nuclear translocation of Smad3.
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Experimental techniques and data acquisition

The acquisition of large amounts of data to understand biological relationships
and systems has become in the recent years state of the art in modern biology. In
the course of this work several biological datasets that aim to illuminate different
biological aspects will be examined. By combining fluorescent reporter cell lines
with live-cell time-lapse microscopy data could be acquired, that allows the si-
multaneous quantification of signalling dynamics with high temporal and spatial
resolution in thousands of individual cells. This enables the characterization of
long-term dynamics of signalling in individual cells over several hours up to days.

4.1 Fluorescent reporter cell lines

To measure signalling dynamics and follow pathway activity in single cells the
location and abundance of signalling proteins was monitored with high spatial
and temporal resolution. In the chapters of the result section in the experiments
carried different cellular fluorescent reporter systems were used.
The reporter system are shown schematic in Fig. 4.1.

Fluorescent reporter system to measure SMAD signalling dynamics

To monitor SMAD2 translocation data of a live-cell reporter system was used,
that was based on the breast epithelial cell line MCF10A. MCF10A cells are an
established model for TGFβ signalling [381]. The used MCF10A SMAD2-YFP
reporter cell line has been described before [326, 325].
As cell reporter system a clonal cell line expressing a YFP-SMAD2 fusion protein
under the control of a constitutive promoter (UbCp) and histone H2B-CFP as a
nuclear marker was established. That the SMAD2-YFP fusion protein expression
corresponds to approximately 50% of the endogenous SMAD2 protein was shown
with western blot analysis. It was as well shown that this over expression does not
disturb the SMAD2 signalling dynamics and that the expression of TGFβ target
genes is unaffected [326].
To study the feedback in TGFβ signalling, a SMAD7 knock out MCF10A cell line
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Fig. 4.1. Schematic fluorescent endogenous reporter systems

A - Fluorescent reporter system to measure SMAD signalling dynamics in individual
cells. SMAD2 was fused to the yellow fluorescent protein mVenus (YFP). As nuclear
marker, the constitutively expressed histone 2B (H2B) was fused to the cyan fluorescent
protein mCerulean (CFP).
B - Fluorescent reporter system to measure p53 signalling dynamics in individual cells.
p53 was fused to the yellow fluorescent protein mVenus (YFP). As nuclear marker, his-
tone 2B (H2B) was fused to the cyan fluorescent protein mCerulean (CFP).
C - Fluorescent reporter system to measure simultaneous p53 and p21 signalling dynam-
ics in individual cells. p53 was fused to the yellow fluorescent protein mVenus (YFP).
CDKN1A was fused to the yellow fluorescent protein mCherry (RFP). CDKN1A encodes
p21. As nuclear marker, CBX5 was fused to the cyan fluorescent protein mCerulean
(CFP).

was created utilizing the CRISPR/Cas9 system. In the clonal SMAD2-YFP Cas9
reporter cell line knockout of SMAD7 affects both alleles of the gene to ensure a
complete loss of the corresponding protein.
The cell lines were generated by Jette Strasen at the MDC Berlin. A detailed
picture of the cell lines is given in her PhD thesis [325]. An example of images
acquired with this cell line is given in Fig. 4.2.

Fluorescent reporter system to measure p53 signalling dynamics

To monitor p53 dynamics, a clonal A549 lung carcinoma cell line stably express-
ing p53 fused to the yellow fluorescent protein mVenus and the nuclear marker
H2B fused to a cyan fluorescent protein (mCerulean) was employed. The A549
p53-Venus reporter cell line has been described before [98, 99].
In brief, it expresses a p53 cDNA fused to the mVenus coding sequence under
the control of the human EF1A promoter as well as a histone H2B cDNA fused
to the mCerulean coding sequence under the control of the human Ubiquitin C
promoter.
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Fig. 4.2. Fluorescent reporter system to measure SMAD signalling

Live-cell time-lapse microscopy images of MCF10A cells expressing SMAD2-YFP fol-
lowing treatment with 100 pM TGFβ1. White circles indicate the segmented nucleus,
and the estimated cytoplasmic area is represented by red annuli. Image taken from [326].

An example of images acquired with this cell line is given in Fig. 4.3.

Fluorescent reporter system to measure simultaneous p53 and p21
signalling dynamics
To simultaneously monitor p53 and p21 dynamics, a clonal MCF10A breast ep-
ithelial cell line stably expressing p53 fused to the yellow fluorescent protein
mVenus, p21 fused to the red fluorescent protein mCherry and the nuclear marker
CBX5 fused to a cyan fluorescent protein (mCerulean) was employed. CBX5 is a
highly conserved non-histone protein, which is a member of the heterochromatin
protein family. The MCF10A p53/p21-Venus reporter cell line has been described
before [304, 303]. The cell lines were generated by Caibin Sheng at the TU Darm-
stadt. A detailed picture of the cell line is given in his PhD thesis [303].

4.2 Live-cell time-lapse microscopy

Fluorescence time-lapse microscopy opened new frontiers in biology research by
accessing spatial and temporal dynamics of fluorescence signals. The fluorescence
signals are identified with the proteins of interest labelled in the reporter cell lines.
To study biological processes in-vivo high-throughput time-lapse fluorescence mi-
croscopy is used to image cells. Long-term imaging studies of cellular dynamics
increase the understanding of molecular functions in developmental and cell biol-
ogy [17].
With molecular florescence labelling of specific components signalling pathways
dynamics were monitored. The molecular dynamics can be investigated over sev-
eral hours up to days. Cells were imaged at regular intervals of several minutes.
Looking at the sequence of acquired images makes time appear to be moving faster
and lapsing compared to the sequence played at real time. Therefore, biological
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Fig. 4.3. Combination of time-lapse microscopy and fluorescence reporter system

A - Time-lapse microscopy images of an individual cell irradiated with 10Gy to demon-
strate the p53 fluorescence reporter system. P53 is fused to the yellow fluorescence
protein mVenus (YFP) and stably expressed under the control of the EF1A promoter.
To mark the nucleus H2B is fused with mCerulean (CFP). P53 is shown in red and the
H2B in green.
B - Time resolved median nuclear p53 level for the cell shown above.
C - With the combination of time-lapse microscopy and fluorescence reporter system
one could quantify the response of several thousand cells simultaneously. To demon-
strate the heterogeneity of the cellular response 20 randomly selected trajectories of the
median nuclear p53 level after stimulation with 10 Gy ionizing radiation were plotted.
D - The p53 response on the population level (black: non-irradiated control cells; blue:
cells irradiated with 10 Gy). Bold lines indicate median p53 levels, shaded areas reflect
the inter-quantile range between the 0.25 and 0.75 quantile.

processes that take severalty minutes or hours can be monitored. Time-lapse mi-
croscopy generates large amounts of image data files.

4.3 From live-cell time-lapse microscopy to time series

From the raw imaging data, the signalling dynamics hundreds of individual cells
were extracted using automated image analysis. The steps necessary to extract
single cell time series that keep track of cellular features over time are described
in the sections 6.1, 6.2 and 6.3. Time series is a common type of dynamic data
that naturally arises in many different scenarios. Time series data is in general
connected with characteristics of large size and high dimensionality. The dimen-
sionality of a time series data object can be commonly associated with its sam-
pling rate and length [5] and in the case of multivariate time-series with the set
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of features measured over the course of time. The sampling rate determines the
temporal resolution of features that can be detected [254].





5

Specific Aims

Cellular information processing from exterior sources involves sensing mecha-
nisms like cell-surface receptors and signalling pathways that steer the stream
of the information into the nucleus. Cellular signalling pathways are made up of a
highly connected network that regulates multiple functions in a context dependent
manner [159]. This enables cells to quantitatively respond sensitive and sensitive
to fine-grained inputs. How these signalling pathways transmit the information
through the different components of the network is roughly understood and un-
der debate. Recently, dynamics of pathway activity could be identified as a link
between external stimuli and cellular responses[274].
Imaging of fluorescent reporters in living cells to quantify activity of cellular sig-
nalling pathway has proven to be a powerful tool due to high temporal and spatial
resolution on the level isogenetic individual cell [320]. Monitoring of thousands of
genetically identical cells cancels out heterogeneity in pathway activity due to
genetic differences.
Heterogeneity in pathway responsiveness of isogenetic cells has multiple molecular
sources. This sources range from internal sources like the stage of the cell cycle
or stochastic intracellular processes like the degradation of molecules to external
sources that form the environment the cell faces [204, 314]. Internal stochastic
processes lead to cell-to-cell variability in the concentrations of signalling proteins
[95].
Different signalling pathways were investigated in the course of this work to quan-
tify the distinct dynamics they exhibit. To study the interactions between the
components of biological systems and generate an understanding how these inter-
actions give rise to biological functions and mechanisms within cellular signalling
network it is necessary to employ computational methods. To this end, a set of
novel computational tools was developed that provided new insights and perspec-
tives onto fundamental biological questions regarding the studied pathways.
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5.1 Computational methods to examine cellular signalling
networks

Dealing with live-cell time-lapse microscopy data requires a considerably amount
of computational effort. First the raw imaging data must be processed to extract
data at the single cell level. Followed by the analysis of the single cell data so that
relevant biological questions can be illuminated to answer questions relevant for
the data studied.
A complete framework was established that allows the extraction of single cell
data from the raw imaging data and as well grants a set of methods that can
be used to quantify single cell time series. A non-rigid method point cloud regis-
tration, Coherent Point Drift [249], was introduced into the field of cell tracking.
The method exhibits several features that fit to the problem of tracking cells over
time. The framework enables the extraction of single cell time series of features
like the nuclear level of one of the labelled proteins.
Another crucial question tackled was how can similarity between the measured
signalling dynamics be quantified. To this end, the concept of Dynamic Time
Warping (DTW) was introduced to quantify similarity. The opportunity to quan-
tify the similarity of dynamics grand a new view on single cell data. The flexibility
in time domain made DTW the method of choice.
Based on the quantification of similarity it was studied how single cell data can
be classified. Clustering identified distinct signalling dynamics that contribute to
the shape average dynamic of a population of cells.
The DTW concept is additionally used to quantify similarity among multivariate
time series. Hence, similarity among cells can be quantified among cells where
simultaneous measurements of several pathway components are given.
To describe time series distinct features are taken into account. This features can
be dynamical patterns in the time series like pulses or long lasting effects like a
constant change in the level of the investigated protein. Therefore, the problem of
feature detection in single cell data was tackled from two different sides. An ap-
proach is proposed that is based on DTW that is able to detect repetitive patterns
in the data. The repetitive features will be found independent to disturbances in
the time domain or the scaling. The other approach proposed tackles the feature
detection problem from the global point of view. Using the concept of Principal
Components Analysis (PCA), a supervised learning approach was established that
identifies a set global patterns that can describe the underlying dynamics in a set
time series.
Time-lapse microscopy data suffers to some extend by the strong variability mea-
sured while repeating the same experiments. The dynamics are reproducible but
the measured florescence intensities vary due to technical noise. To reduce the
technical noise a novel normalization method is proposed, that overcomes this
problem.
To demonstrate the potential of the proposed methods their performance was
studies in three different real world scenarios which require different analytic
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strategies.

5.2 Temporal dynamics of SMAD signalling
It has been proposed that TGFβ controls cell fate by transmitting signal duration
and magnitude faithfully into the nucleus in a dose dependent manner [296].
It was examined, how the cytokine TGFβ induces individual cell responses. Will
the response be homogeneous or exhibit a wide range of dynamics that might be
based on distinct signalling classes? Hence to some extent, how the signalling net-
work underneath shapes the dynamic responses observed so that external signals
are processed in such a way that the appropriate cellular responses is initiated.
Monitoring pathway activity with quantitative time-resolved single cell measure-
ments enables the comparison of signalling dynamics of thousands of individual
cells. To quantify the similarity of the pathway activity dynamics among different
cells the Dynamic Time Warping framework, introduced in chapter (7), provided
the necessary set of methods. The combinational approach of experimental and
computational methods, granted the capability to decompose the population into
distinct classes with qualitatively different signalling dynamics. If such signalling
classes could be identified can they be linked to the phenotypic outcome induced
by the TGFβ stimulation?
Most studies that quantitatively describe TGFβ induced SMAD signalling investi-
gate this process on the cell population level by quantifying the average behaviour
at fixed time points. This simplification will be overcome by combining live-cell
imaging with automated image analyses, that provides the spatial and temporal
resolution to generate a much more precise picture. Combination of live-cell imag-
ing of fluorescent SMAD2 fusion proteins with automated image analyses provides
the tools that permit monitoring of TGFβ long-term signalling dynamics on the
single cell level. To systematically characterize TGFβ signalling dynamics on the
single-cell level it is essential to integrate experimental measurements with com-
putational approaches, that connect response dynamics either in a cell-specific or
concentration-dependent manner.
The methods introduced chapter 7 was used to characterize the SMAD2 signalling
dynamics in response to vary doses of TGFβ. It will be studied what causes the
individual response of a cell. The findings were validated, in silico and experimen-
tally, with a knock-out of SMAD7. SMAD7 is considered to be the main feedback
regulators of TGFβ-induced signalling and acts at the level of TGFβ receptors
[239].

5.3 Effect of temperature on p53
In relation to the scientific effort put on the understanding of p53 and its role as
nature’s safeguard against cancer the amount of studies that investigate the effect
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of hyperthermia on the p53 response is underrepresented. This is even more sur-
prising having in mind the beneficial effects of hyperthermia on cancer treatment.
Especially, on the single cell level the dependence of p53 dynamics on the temper-
ature has not been studied yet. This work will aim to fill this gap by studying how
temperature influences p53 dynamics, particular in the context of hyperthermia.
This will provide new insights and maybe give a new perspective on the biological
processes that a combinational treatment of hyperthermia together with radiation
and anticancer agents modulates.
Understanding the diversity and dependences of dynamics is crucial to predict
potential toxicities in the body and which tumours may be sensitive to certain
time scales of treatments [324]. Is the transmission of information about DNA
damage to the main human tumour suppressor buffered against the environmen-
tal temperature changes or are p53 signalling dynamics temperature sensitive? To
this end, p53 signalling dynamics were monitored in thousands of cells in a range
from 33◦C to 41◦C with or without radiation induced DNA damage.
A common problem while working with time-lapse microscopy data is bringing
together different experiments that were acquired on different microscopes, by
different experimentalists, on different days. To overcome this problem a normal-
ization method was developed that reduces the inter-experimental deviation by
fitting a set of experiments to one reference experiment.

5.4 p53/p21 pathway

Studying only a single protein of interest at the time is a very simplified per-
spective on how information flows within cells. Cellular signalling pathways are
composed of several network components, that change dynamically. This flexi-
bility enables the cell to make appropriate context dependent cell fate decisions.
Having an extended view at more than one of the network component, will pro-
vide a better understanding how information flows and is processed in a signalling
pathway.
The view onto the p53 signalling will be extended by investigating an additional
pathway component. To analyse the interaction of two network components, an
endogenous reporter system will be utilized that simultaneously provides mea-
surements of the nuclear levels of p53 and p21 within the same cells.
Mutations in the p53 gene have a prominent role in the formation of cancer cells.
p53 is embedded as central hub in a molecular network that steers several biolog-
ical functionalities ranging from cell division, cell death, senescence, angiogenesis,
differentiation and DNA metabolism. One prominent member of the network com-
ponents is p21.
Cell cycle transition from G1 to S and G2 to mitosis is regulated by cyclin-
dependent kinase (CDK) family of proteins that are activated by cyclins [343] and
inhibited by p21. p21 is essential among others for the cell cycle arrest at transition
from G1 to the S phase by inhibition of CDK2/4 [74] and contributes to G2 arrest
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by inhibition of CDK1 [48]. Also, it is required for proper cell cycle progression,
contributes to cell death program, DNA repair, senescence, aging and the induc-
tion of pluripotent stem cell reprogramming [161]. The central stress signalling
hub p53 directly regulates gene expression of multiple target genes by binding to
p53 REs [87, 100]. The p53 target p21 promoter contains two highly conserved
p53-RE. The cellular sensor p53 is induced by various extrinsic stresses, including
DNA damage and oxidative stress, triggers the transcriptional upregulation of
p21 [161] in dependence of the cell cycle position [323, 206, 53]. Cyclin-dependent
kinase inhibitor p21 is both necessary and sufficient for the downregulation of
known p53-repression targets, including survivin, CDC25C, and CDC25B in re-
sponse to p53 induction [32].
It will be examined how the DDR, induced by DNA double strand breaks (DSBs)
as a consequence of exposure to ionized radiation, steers the fate of cells by trigger-
ing transient cell cycle arrest in the G1 or G2 phase or pushes cells into senescence
or apoptosis. To this end, the dynamic nuclear accumulation of p53 and its target
gene p21 is studied while exposed to genotoxic stress. This relation is crucial for
arresting the cells at G1 to S phase transition through CDK2/4 [74] inhibition
and likely promotes cell cycle arrest in G2 by inhibiting CDK1 [48] as a response
to genotoxic stress.
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Time-lapse microscopy image analysis

Time-lapse microscopy enables to address questions on the single cell level in situ,
that are otherwise unattainable, then studying a bulk population of cells. Due to
heterogeneity in the behaviour observed in eukaryotic cell populations, the anal-
ysis of thousands of simultaneous monitored individual cell is necessary to study
biological processes and reveal new mechanisms [10]. The simultaneous monitor-
ing and analysis of genetically identical cells enables the study of the individual
dynamic response to intrinsic and extrinsic changes that shape the composition of
the cell population. To measure these dynamics within cellular signalling, live-cell
time-lapse microscopy of fluorescent reporters emerged as a powerful approach
[320]. Analysis and quantification of imaging data depends on the given compu-
tational methods that extract the single cell data of interest and provide the tools
to study them subsequent. The processing and analysis requires a not negligible
technological and computational effort.
The raw data of a time-lapse microscopy experiment is made up of several thou-
sand images. For each time point cells studied in this work were monitor at several
field of views at the emission wavelengths of the excited fluorescent proteins used
for labelling separately. Exemplary, if given a 24 h experiment with a temporal
resolution of 5 min and 60 different field of views (each with 1608x1608 pxl), yields
17280 images Each of the images has a size of 4.9 MB, which makes 84672 MB
in total for each of the fluorescent labelled proteins separately. This amounts of
data cannot require automated imaging analysis.
In Fig. 6.1, one complete field of view is shown for the nuclear marker labels (A)
and for one simultaneous acquired protein of interest (B) that is predominately
located in cytoplasm in this example. To uniformly stain the nuclei a stably ex-
press protein fused to a fluorophore only present in the nucleus can be used as
nuclear marker e.g. histones. In general, in the course of a study several dozens
of experiments are carried out. While having this large amount of data it is ob-
vious that methods, algorithms and computational frameworks are required that
automatize the repetitive and computational intense steps of the raw data pro-
cessing. The aim is to extract a simplification of the experimentally acquired data
that is more meaningful and easier to analyse, while reducing complexity and
maintaining information. The requirements range from the identification of the
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nuclei in the images, the tracking of these nuclei overtime to the extraction of
time series that record a distinct cellular characteristic or feature as well as the
computational and statistical analysis of the extracted data from the time-lapse
imaging.
In this chapter, an overview is given on how raw microscopy data is processed
within the in this thesis proposed workflow, so that the study of single cell sig-
nalling dynamics is enabled. Initially, the workflow changes the representation of
raw data into a set of trajectories that characterize individual phenotypic features
of a cell over time. While the workflow is presented, a new cell tracking method
based on the non-rigid point set registration algorithm proposed by Myronenko
and Song [248, 249] is introduced. The workflow described enables, together with
the time-lapse fluorescence microscopy for the data acquisition, the opportunity
to analyse and study thousands of cells with high temporal and spatial resolution
and precession for up to several dozens of hours.
Raw time-lapse image series were processed using custom-written Matlab (Math-
works) framework based initially on code developed by the Alon lab [63] and the
free, open-source software for quantitative analysis of biological images CellPro-
filer [51]. The framework provides several functionalities to analyse and manipulate
image data, ranging from simple filters to object measuring tools and segmenta-
tion methods.

6.1 Processing of time-lapse microscopy images

Before working with the data the raw images acquired experimentally need to
be normalized. To this end flat field correction and background subtraction is
used. This pre-processing step removes errors due to technical illumination arte-
facts from the camera and normalize local differences of fluorescence measurement
within the field of view. Flat field correction removes artefacts from microscopy
images that are caused by variations in the pxl-to-pxl sensitivity within recorded
focal plane. Calibration images were acquired by imaging resuspension medium
with increasing exposure times, starting with 0 ms, until the signal saturated. The
auto-fluorescent cell culture medium provides a strong auto-fluorescence signal at
all wavelength due to the high concentration of horse serum [41]. The offset and
gain for every pixel were calculated on the basis of the calibration images. This
information is then used to correct the images, which were taken during time lapse
experiments. The flat field correction assures that the background is removed by
taking into account that the background noise is not evenly distributed over focal
plane.
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A C

B D

Fig. 6.1. Example of data acquired by fluorescence microscopy (SMAD reporter system
introduced in 4.1)

A – Example of a complete field of view. The channel intensities acquire for the labelled
nuclear marker are shown.
B - The same field of view as shown in (A). The fluorescence measures for one protein
of interest are shown. In this example the protein of interest is SMAD2. SMAD2 is
predominantly distributed in the cytoplasm.
C - A snippet marked in the frame shown in (A) as a white rectangle.
D - The segmentation of the snippet shown in (C). The segmentation automatically
identifies the nuclei that persist in an image. The segmentation computes a partitioning
of the image into disjoint regions by automatic thresholding and seeded watershed. The
regions correspond to nuclei(white) or the background(black).

6.2 Segmentation of individual nuclei and the surrounding
cytoplasm
To analyse time-lapse microscopy data, the initial corner stone is the identification
of nuclei of the cells present in each field of view (Fig. 6.1 (A)), that are labelled
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with a specific florescence marker (4.1). The segmentation problem aims at parti-
tioning an image into disjoint regions. These regions label areas in the image that
can be linked to distinct objects. The segmentation task is the essential initial
step that grants the spatial single cell resolution by changing the representation
of an image into a set of objects (the nuclei) easier to study.
The segmentation procedure applied to identify the individual nuclei in the im-
ages where the nuclear marker is monitored uses Otsu’s method that performs
automatic image thresholding [302] and seeded watershed algorithms [63, 98].
The watershed framework provides a very powerful tool for image segmentation.
Seeded watersheds have shown to be useful for object detection in images of cells
[270]. These methods assume the image as a topographic surface of hills, valleys,
mountains and plains. The inverted pxl-intensities correspond to the altitude. Pxls
with the highest gradient magnitude intensities represent the region boundaries
that enclose a ’basins’ (which represent the disjoint segments) with a central com-
mon local intensity minimum. In Fig. 6.1 (C, D), a snippet of a microscopy image
and the corresponding segmentation calculated using automatic thresholding and
seeded watershed is shown.
As shown in Fig. 6.1 (B) the protein of interest is not always located in the nu-
cleus. Therefore, an identification of the cytoplasm around the nuclei is necessary.
As were is no fluorescence marker for the cytoplasm a direct segmentation cytosol
is not possible. The identified nuclei can be used to heuristically determine the cy-
toplasm of each individual cell. This can be achieved by generating a ring around
each nucleus while taking care that the individual rings do not overlap. In Fig.
4.2 several examples of such ring around each nucleus are shown. By applying the
morphological image processing operations erosion and dilation these rings can
be efficiently computed. To minimize the error for the cytoplasmic measurements
by accidentally covering nuclear areas, some space between the rings and the seg-
mented nuclei is left.
Based on the segmentations of the images several features of the measured fluo-
rescence labelled proteins can be quantified. Within the area of each segmented
object, nucleus or cytoplasm, the different fluorescence intensities of the proteins
correspond to their local abundance. Several statistical readouts are stored, like
median, mean, variance or quantiles, for each cell. In addition, also spatial fea-
tures, unrelated to the labelled protein, like the size of the nucleus or the position
are extracted.
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6.3 Tracking of cells in time-lapse microscopy data

Time-lapse microscopy data exhibits complex spatial and temporal information of
individual cells on features as the abundance of the fluorescent labelled proteins,
morphology and motility. To extract trajectories of the phenotypic features of in-
terest from the imaging data two challenging tasks have to be solved beforehand.
The previous described segmentation problem that allows the automatic identi-
fication of the objects of interest in the images and the tracking problem that
enables to follow these distinct object over the course of the experiment in the
series of microscopy images. The objects of interest in the imaging data are the
cell nuclei in the channel that monitors the emission wavelength emitted by the
excited nuclear fluorescence marker. The two problems can be treated separately
or synergistic. The synergistic approach connects both steps so that the tracking
improves the segmentation and vice versa iteratively.
The presented approach starts with an initial segmentation generated as described
in the previous section for all images in a time-lapse series. After the segmenta-
tion step, a greedy match approach tries to find the corresponding nuclei in the
temporal adjacent images primarily on their spatial properties. Greedy algorithms
are simple heuristic top down algorithms, that implement take the optimal option
and repeat.
The registration of the corresponding segmented nuclei in following images is de-
termined either in a rigid or a non-rigid way. The difference between the two
tracking approached are elaborate and discussed in the next section.
The non-rigid tracking method, proposed represents a novel way to solve the cell
tracking problem. The non-rigid approach fit to several assumptions as observa-
tions that cells do not move independently but rather in clusters of neighbouring
cells. Exemplary this is shown in Fig. 6.2 (C).
The described tracking method uses a synergistic approach where inconsistent
merging or splitting of nuclei emerging in tracks due to segmentation errors are
identified and used to refine the segmentation. In Fig. 6.2 (A,B) the common ob-
served inconsistencies are shown. For example, if two tracks merge into one and at
a later time point split again into two it is likely that this originates from an under-
segmentation error in the initial segmentation where two neighbouring nuclei are
accidently merged. If an inconsistency is detected the segmentation is redone for
the images at the time points and at the location where the inconsistency was
detected with altered parameters and variations of watershed algorithms [326]
according to the identified problem in the tracking. If the mis-segmentation is
resolved the tracks are rebuild using the same greedy match algorithm as before,
else the track is removed from further analysis.

6.3.1 Rigid vs. non-rigid point cloud registration

In computer vision, image analysis and pattern recognition the point cloud reg-
istration problem is one essential task [46, 210, 209]. The problem tackled is the
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A

B C

C

Fig. 6.2. Tracking errors may be linked to errors in the segmentation and cells do no
move independently

A - Merging error, where two tracks merge into one and split again into two at later
time points, indicates a potential under-segmentation.
B - Splitting error, where one track splits into two and merge again into one at later
time points, indicates a potential over-segmentation.
C - Cells do not move independently. The neighbouring cells form clusters that move
together due to physical restrictions. In this figure the locations of the cells are shown
over fifty time points. The progress in time is colour coded. The more time has passed
the lighter the blue. One can observe that neighbouring cells exhibit similar temporal
and spatial motility patterns.

finding of the optimal spatial alignment of two set of points. The spatial alignment
is based on estimating an underlying spatial transformation that optimally maps
two point sets onto each other. Optimality is estimated with respect to set off
allowed transformations. In our case these points are in particular the coordinates
of the cells. The dimensionality can be extended apart from spatial information
by adding additional phenotypic features like the mean nuclear fluorescence level
of one of the labelled proteins or the size of the nucleus. If additional features are
taken into account, they have to be scaled properly. For simplification only the
spatial location of the nuclei is taken into account while introducing the approach
in this section.
Given two finite point sets {P} and {Q} in a d dimensional space IRd of size p
and q. It is reasonable and desired in many applications to find a mapping K and
the corresponding transformation {P’} of {P} onto {Q}, which optimally aligns
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the two point sets. Optimality is defined as the minimum of some distance, dis-
similarity or in short cost function dist(P ′, Q) between two point sets. A simple
approach is find a mapping that minimizes the sum of all pairwise Euclidean dis-

tances between the points sets, dist(P ′, Q) =
∑
∀a∈P ′

∑
∀b∈Q

√√√√ d∑
k=1

(a(k)− b(k))2. In the

practice more robust cost functions like an M − estimator are used [242].
There are two distinct classes of registration algorithms based on the allowed
transformations. The set of computational less complex rigid and the more so-
phisticated non-rigid algorithms. In the rigid case the transformation does not
change the proportion of all the pairwise-distances between the points. This is
achieved by applying only linear transformations like scaling, rotations and trans-
lations [103]. In real world applications this holds for registration problems where
the points have a fix spatial relation to another and cannot move freely. A simple
example would be a set of points that outlines a bone. This is necessary for many
navigated surgical procedures, where precise registration of preoperative data sets
with bones of the patient is an important requisite [45]. This is for the most ap-
plication a much to simple assumption. In the most scenarios, non-rigid trans-
formations are experienced in nature. Non-rigid registration algorithms exhibit
higher degrees of freedom and make use of non-rigid, non-linear transformations.
That makes non-rigid registration more difficult because the true underlying non-
rigid transformations are in general unknown and modelling them is a challenging
task [59]. The increase in complexity requires greater computational effort. Rigid
transformations may be sufficient for one bone, but if the two bones are connected
by a joint or the bone breaks, non-rigid registration methods are necessary.
There exists a bunch of different algorithms for the rigid and non-rigid point set
registration. Non-rigid registration methods typically reckon the alignment of two
point clouds as a probability density estimation problem and use Gaussian Mix-
ture Models [248, 144]. An overview and a discussion of these methods is beyond
the scope of this work.
The tracking method presented in the following section, makes use of the Coher-
ent Point Drift method [248, 249], a state of the art method for either rigid or
non-rigid point cloud registration that makes use of a probabilistic framework.
Coherent Point Drift carries out several features that fit the requirements to find
an optimal mapping of cell correspondences among adjacent microscopy images.

6.3.2 Novel cell tracking method based on probabilistic point set
registration

Coherent Point Drift proposed by Myronenko and Song in 2007 [248, 249] is a
probabilistic method for either rigid or non-rigid point cloud registration. The
method is robust to noise, outliers and missing points and one of the current
state-of-the-art point set registration algorithms. The algorithm makes the rea-
sonable assumption that points from one cloud are normally distributed around
points belonging to the other cloud. As a consequence, the alignment problem can
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A

 B C D

C D

Fig. 6.3. Cell tracking benefits from the application of non-rigid point cloud registration

A - An example of two small points clouds. The black point set is a slightly rotated,
shifted version of the red point cloud and as well randomly disturbed in the location of
the individual points.
B - By applying Coherent Point Drift one can find a non-rigid registration of the dis-
turbed black point cloud onto the red shown in (A). The rotation, shifting and random
displacement are nearly completely removed.
C - Location of cells from cells segmented at two adjacent time points in one field of
view. To mimic a technical error caused by a shift in the position of the field of view
the red cell point set is also shifted north and east by 50 pxl.
D - By applying Coherent Point Drift one can find a non-rigid registration of black set
of cell locations onto the red set shown in (C).

be reformulated into estimating the parameters of a mixture distribution [209].
One of the central contributions of the Coherent Point Drift algorithm is the
formulation of the motion coherence constrain in the non-rigid scenario. This con-
strain preserves the topological structure by forcing points to move as a group. To
find the point-to-point correspondence it assumes that the approximate arrange-
ment of a point cloud is preserved.
Cells do not move independently; they are embedded in a neighbourhood that
constrains their freedom of movement. If the rough topological structure is not
preserved and the points are placed random it is very unlikely to find the correct
correspondence. Like raisins in a growing yeast dough that are not moving inde-
pendently due to physical constraints. Similar motility patterns are observed in
microscopy imaging data (Fig. 6.2 (C)). This gives the impression of a coordinated
motion of neighbouring cells grouped in clusters. For example, cells from highly
crowded areas tend to move to less densely populated areas.
An additional advantage of Coherent Point Drift that fits our cell tracking prob-
lem is the robust procession of unequal number of objects in the two different
point set clouds that have to be aligned. In general, there will not be the same
number of cells in two temporal and spatial adjacent microscopy images. This is
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either due to biological reasons like cell death or divisions or has non-biological
origin such as cells that evade or invade into the area observed under the micro-
scope or due to erroneous segmentation.
Coherent Point Drift treats the alignment of two point sets as a probability density
estimation problem, where one point cloud represents the Gaussian Mixture Model
centroids, and the other one represents the data points [248, 249]. By maximizing
the likelihood, the Gaussian Mixture Model centroids are fitted to the data while
preserving the topological structure of the point sets by forcing the Gaussian Mix-
ture Model centroids to move coherently as a group. The Gaussian Mixture Model
centroids were fitted iteratively by maximizing the likelihood and finding the pos-
terior probabilities of centroids, which provide the correspondence probability.
Myronenko and Song provide a Matlab implementation of the Coherent Point
Drift available at https : //sites.google.com/site/myronenko/research/cpd. In
the following, a tracking method that makes use of Coherent Point Drift and its
advantages is proposed.
In Fig. 6.3 (A,B) a simple example is presented. Coherent Point Drift can compen-
sate rotations, shifts and random deviations. In Fig. 6.3 (C,D) an additional real
world example is shown. The method aligns the cell populations monitored at two
different time points in the presence of dividing cells and is able to compensate
technical errors like the shift in the position of the field of view.
The tracking procedure starts with the calculation of the initial segmentation of
the nuclei using Otsu’s automatic threshold method and seeded watershed algo-
rithms for all images in the microscopy image stack that contains all images from
one point of view. The segmentation is done on the image data from the channel
that monitors the labelled marker protein in the nucleus as shown in Fig. 6.1
(A). For each time-lapse microscopy image a point cloud is generated based on
the coordinates of the centre of mass of each segmented nucleus and optional as
an additional dimension the mean fluorescence of the marker in the segmented
area. If the mean fluorescence of the marker is used the values are scaled so that
they contribute 20% of spatial information. In the next step the temporal adja-
cent point clouds are registered onto another using Coherent Point Drift. For each
point cloud, except the first and the last, two alignments were generated that con-
tain the correspondence between the nuclei in the current frame with either the
nuclei from the previous or the next. To this end, the transformed coordinates of
the nuclei from the previous or next frame onto the current frame, generated by
Coherent Point Drift registration, were used to map the nuclei from the current
frame onto the nuclei in the temporal adjacent frames in a heuristic manner. The
heuristic greedy match algorithm used always aligns the closest points with each
other so that for the all nuclei from the previous, current and next frame a cor-
respondence in the temporally adjacent frame is calculated. A nucleus can have
therefore afterwards multiple correspondences. The correspondences were filtered
by restricting the moved distance of the nuclei from one frame to the other. To
this end, the distances from the untransformed positions of the nuclei are used.
Once, all the correspondences are generated, the tracks were checked for incon-
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sistencies (see section above). If an inconsistency is detected the segmentation is
redone for the images at the time points and at the location where the inconsis-
tency was detected with altered parameters and variations of watershed algorithms
[326] according to the identified problem in the tracking (Fig. 6.2(A,B)). If the
inconsistencies could be resolved by re-segmenting, the correspondences are re-
computed and the tracks are rebuilt.
Finally, the tracks were filtered based on criteria, that depend on the actual re-
quirements. For most analyses presented in the results sections, tracks that will
reach from the first till the last frame and use only one daughter after a cell
division are extracted. For the analysis of the relation among sister cells, after
division both offspring were tracked under the assumption that the initial mother
cell is present in the first frame and all tracked offspring are present in the last. As
a consequence, trajectories of sister cells built upon the tracking information are
identical at time points before division. In the end, the tracks are used to generate
single cell trajectories of phenotypic features that are used for the further analysis
of the feature of interest over time.
To speed up the computation time the framework can easily be parallelized. Com-
monly in a time-lapse microscopy experiment several field of views are monitored
simultaneously. The data of each field of view can be processed separately without
interfering with other processing of raw data.

6.3.3 Generation of single cell time series

After computing the correspondences of cells in the time-lapse image series and
having extracted the related tracks the next task is to read out the time series
interest. In the common scenario, one fluorescence channel where the labelled
nuclear marker is measured and one or two additional channels of different wave-
length where the labelled proteins of interest there monitored (4.1) are given. The
segmentation of the nuclei and the temporal correspondence calculated in the
tracking is used to generate the single cell trajectories of different phenotypic cel-
lular features. In general, the extracted trajectories monitor the dynamical changes
of distinct statistical characteristics of cellular features over time. The statistical
characteristics are computed for all the given channels and for each tracked cell
using the measured intensities within the segmented area of the nucleus. Also
trajectories of spatial and geometrical characteristics like the nuclear area or the
position of the nucleus are extracted from the cell tracks. This is of importance
as for example that grants access to studies of the motility of a cell population.
In the addition to keeping track of nuclear measurements also cytoplasmic changes
in the abundance in the proteins of interest are of importance for further analysis.
To this end, the heuristic estimated non-overlapping rings around the segmented
nuclei, that mimic the cytoplasm, allow the read-out of statistical characteristics
of the protein of interest within the cytoplasm. Because lacking a cytosolic marker,
it is not guarantee that the ring only covers cytoplasmic areas.
Features linked to motility over time can be accessed directly from the change in
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Fig. 6.4. Monitoring cellular motility over time

A -Three randomly moving objects. The average speed of objects is the same as the
average speed in the plot below with the same colour code. All have the same starting
coordinate.
B - Change of direction of randomly moving cells. Random moving objects change their
direction uniformly distributed.
C - Motility over time of three randomly selected tracked cells. The tracks are normalized
to the starting position so that all three start at the same spot.
D - Change of direction observed in tracked cells. Cells move far beyond from random.
In general, they keep their direction ±30◦.

the position of a cell in adjacent time frames. The positions of a cell over time en-
codes several features. In Fig. 6.4 the motility between randomly moving objects
and cells monitored is compared. Roughly, locomotion can be largely summarized
by the distribution of speed and direction change. Especially the distribution of
direction change will give valuable information on how ordered cells move.
The cellular density was estimated with respect to all segmented cells in each
frame of the time series of microscopy images. Around the position of each seg-
mented cell all neighbouring cells in a radius of 640 µm were identified. To get an
estimate for the local cell density each of the neighbours were weighted according
to the distance to the analysed cell and these weights were summed up (Fig. 6.5).
Cells that are closer then 320 µm to the rim of microscopy image are excluded
because they will disturb the density measure. In Fig. 6.5 the density estimate is
shown for one set of identified cells in a microscopy image.
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Fig. 6.5. Example of the density estimate for two field of views at a fixed time point.

Measuring local cell density by live-cell imaging. Local cell density is measured in a
200px radius around each cell for each time point by applying a bell shaped kernel
to obtain a weighted sum of all neighbouring cells. The resulting density scores are
demonstrated using a randomly chosen time point. Red circles indicate the centroid of
cells identified. Warmer colours indicate higher density scores.
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Quantification of similarity among single cell
signalling dynamics

Based on the tracking of individual cells, dynamic cellular features (e. g. inten-
sity, size, speed) can be successively measured over a time interval in an unbiased
manner. These calculated time series enable deep insights into cell-to-cell variabil-
ity that otherwise cannot be investigated by other experimental approaches. The
temporally and spatially resolved data can be a potential cornerstone to illuminate
and characterize dynamic changes of biological processes in different genetically
identical individuals and populations across different conditions.
To reveal how dynamic changes in biological processes depend on, for example,
conditional perturbations or individual phenotypic differences, time series need
to be compared in a precise and robust, quantitative and qualitative way. Ob-
servations that unfold over time represent valuable information subject to anal-
ysis, classification, indexing, prediction, or interpretation of biological processes
[163, 126, 196, 105]. One possible way to answer, if cell-to-cell variability is related
or grounded on distinct dynamics, is by applying clustering techniques. To this
end, measurements that estimate pairwise distance or dissimilarity among two
trajectories, quantifying the degree to which a given time series resembles another
are required. Even, if there is an increasing interest in time series clustering [196]
in various application domains, little effort is carried out on transferring existing
methods into the context of single cell data [146]. In general, single cell data is
classified and analysed mainly on the level of extracted features and not on basis
of the complete measured time series [235, 288].
To apply techniques like clustering on the level of single cell time series a pairwise
dissimilarity or distance measure that incorporates the whole trajectories must
be employed. Dissimilarity and distance measures differ essentially in their char-
acteristics. Dissimilarity measures are less restricted. Distance measures have to
fulfil the triangle inequality, while this is not true for dissimilarity measurements.
The triangle inequality states: given three point A, B and C, the distance from
A to C cannot be longer than the distance from A to B plus the distance from
B to C. Four commonly used methods in the field of single cell data analysis are
the Euclidean distance, Fourier coefficients, auto-regressive models and correla-
tion [301]. They suffer from several weaknesses and limitations that make them
an inappropriate choice as measurement for the similarity among single cell dy-
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namics of biological processes. The weaknesses will be discussed in the following.
To overcome the limitations an alternative methodology is introduced, to quantify
the similarity between single cell trajectories independent of non-linear variations
in the time domain.
In this chapter, the concept of Dynamic Time Warping (DTW) [290] will be in-
troduced into the field of single cell time series analysis. DTW will be used to
quantify dynamical differences among single cell trajectories. It has been shown
that DTW is found to be superior to other methods estimating similarity among
time series in various scientific domains [353].
DTW has several advantages compared to other methods like the Euclidean dis-
tance, especially because it is able to compensate temporal shifts, variations and
deviations in the observed cellular dynamics. After the introduction of DTW a
novel constrained version of DTW approach (cDTW) will be proposed is later
used for the comparison of a huge dataset of single cell time series based on the
dynamics observed. The modifications of the classic DTW improves its applica-
bility to biological systems, by introducing an elastic constrain that mimics the
elasticity of a spring. cDTW constrains the flexibility in the time domain by the
introduction of an additional parameter. To illustrate the performance of cDTW
and analyse its precision and robustness, the method was tested in different arti-
ficial scenarios.
Based on cDTW, in the course of this work a clustering framework for single cell
trajectories is established that enables new mechanistic insights into the under-
lying individual molecular dynamical patterns that shape the cell composition of
the population in the given data set.

7.1 Measuring cell-to-cell distance among trajectories
The fundamental part in many analysis of large time series datasets is provid-
ing a quantification of the similarity between two-time series. The simplest way
to estimate the dissimilarity between two different time series is to use any Ln

norm. The l1 and the l2 vector norms, also known as Manhattan and Euclidean
distance, are used in general to measure distances between objects and are the ap-
propriate choice in many scenarios. The Manhattan distance between two points
is given as the sum of the absolute differences of their Cartesian coordinates and
the Euclidean distance is length of the direct connection between two points in
Euclidean space. All lp vector norms are metrics. Hence, they satisfy 4 properties:
non-negativity, identity of indiscernibles, symmetry and triangle inequality [52].
The Pythagorean formula for the Euclidean distance for two points p and q is in

l dimensions is given by dist(p, q) = (
l∑

i=1
(p(i)− q(i))n)1/n with n = 2.

In the context of two different time series t and s of length n the Euclidean dis-
tance is the area between the two trajectories.
It is obvious that the temporal order of the measurements in the trajectories does
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not play any role. Therefore, the order of the measurements can be shuffled and
the result remains the same. The same is also true for correlation, Fourier coeffi-
cients and auto-regressive.
So, the employment of such a method to compare time series is accompanied by
losing the ’essential’ - the temporal information that structures and shapes the
dynamics present in the data. For example, that means that given two periodic sig-
nals of the same frequency and amplitude already a small temporal shift changes
the result of the Euclidean distance drastically. Euclidean distance does not mea-
sure more than the sum the total difference in the amplitude of two trajectories
no matter of their temporal order. Also, any ln norm is sensitive to noise, scale
and time shifts [294]. Methods like correlation suffer from the same weaknesses
but are more robust to scaling. From this point of view, a method that takes into
account the temporal aspect while comparing time series would be desirable.
Several shape-based similarity measures have been proposed in the past decades
in order to overcome the limitations of the vector norms. Methods available are
for example: global alignment kernel distance [68], Soft DTW [69] or shape-based
distance used in k-Shape clustering [263] to name a few. Reviewing them all was
beyond the scope of this work as the focus was on establishing of the Dynamic
Time Warping framework into the field of single cell analysis.

7.2 Application of Dynamic Time Warping on single cell
time series
DTW is a class of dynamic programming based algorithms for comparing time se-
ries with each other and it is the standard method to address temporal alignment
problems [290, 35, 167]. DTW overcomes the known weakness of the Euclidean
distance and other rigid methods like correlation, especially due to the sensitivity
to distortion in time axis and by respecting the temporal order of the measure-
ments. The method was originally developed for application in the field of speech
recognition [277]. The DTW method is based on the dynamic programming ap-
proach proposed by Bellman [30] in the middle of the last century. This approach
has proven to be of great benefit to several fields of application. Just to name two
of the most popular application in life science, the Needleman-Wunsch algorithm
[252] for comparing protein or nucleotide sequences and the Dijkstra’s algorithm
[81] to solve the shortest path problem are based on dynamic programming. The
idea is to solve a complex problem by breaking it apart into simpler sub-problems.
By solving the simple sub-problems in a recursive manner one gets access to the
solution of the initial complex problem.
DTW calculates an optimal alignment between two time-dependent sequences
X := (x1, x2, . . . xn) of length N ∈ IN and Y := (y1, y2, . . . ym) of length M ∈ IN,
while stretching or compressing them locally in the time domain to compensate
time deformations and different speeds [241]. A pairwise alignment of two se-
quences tries to find the most likely correspondence of the measurements given
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in X and Y . The correspondence reflects the dynamic relation of the two trajec-
tories to another. To this end, the trajectories are warped to match each other.
DTW takes into account that distinct patterns and features within trajectories
may differ in scaling, frequency or length and this affects their shape in the time
domain. The non-linear mapping between the two trajectories is found by warping
the time axes.
In the following, the notation from Mueller will be used [241]. Let F denote a
feature space so that xn, ym ∈ F for n ∈ [1 : N ] and m ∈ [1 : M ] To compare
instances within the feature space F a distance or cost function is needed, which
is defined as a function c : F × F → IR≥0. In general, c(x, y) is small if the two
feature characteristics are similar and increases with fading similarity. A set of
such functions, as discussed in the previous section, are the Ln vector norms like
the Euclidean distance. By computing each pair of elements of the sequences X
and Y , one obtains the cost matrix C ∈ IRN×M defined by C(n,m) := c(xn, ym).
The alignment desired runs in a warping path along a “valley” of low cost in the
cost matrix C from the lower right to the upper left corner. Such a warping path
is a sequence p = (p1, . . . , pl) with pl = (nl,ml) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : L]
that can be defined using 3 simple rules:

(i) Boundary condition: p1 = (1, 1) and pl = (N,M) so that the first
elements and last element of X and Y are
aligned to each other.

(ii) Monotonicity condition: n1 ≤ n2 ≤ . . . nL and m1 ≤ m2 ≤ . . .mL

guarantees that the order of the elements in of X
and Y is conserved in the alignment.

(iii) Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L− 1]
works as a continuity condition that prevents
omitting of elements of X or Y and repeating
elements in the alignment.

The total cost of a warping path p between the two sequences X and Y is

defined as the sum of all cost along the path: cp(X, Y ) :=
L∑

l=1
c(xp(l,1), yp(l,2)). A

specific warping path is of special interested, the optimal warping path p∗ be-
tween X and Y with the lowest cost among all possible warping paths. DTW is
the method, that based on dynamic programming can compute the cost of the
optimal path p∗, DTW (X, Y ) := cp∗(X, Y ). If needed the warping path p∗ itself is
easily accessible. The optimal path is not necessary unique, there may be several
paths of equal cost.
The cost of optimal warping path p∗ can be interpreted as an estimate of the sim-
ilarity of two different time series. All pairwise costs of the optimal warping paths
calculated by DTW for a set of trajectories does not exhibit a metric. The method
satisfies only 3 of the properties that frame a metric: non-negativity, identity of
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indiscernibles and symmetry. The 4th feature of an metric d, the triangle inequal-
ity assuming that a metric fulfils d(x, z) ≤ d(x, z) + d(y, z), cannot be guaranteed
by DTW.
As stated before the algorithm to compute the optimal warping path is based
on dynamic programming. The heart of dynamic programming is the idea to
disassemble the big problem into simple sub problems. Let D be a N × M
matrix defined by D(n,m) := DTW (X(1 : n), Y (1 : m)) for trajectories
X(1 : n) := (x1, x2, . . . xn) and Y (1 : m) := (y1, y2, . . . ym) . From the step size
condition it is known that pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L − 1].
This indicates that the entries of the matrix D can be calculated recursively by
D(n,m) = min {D(n− 1,m), D(n,m− 1), D(n− 1,m− 1)}+ c(xn, ym).

Pseudo code: constrained DTW using Sakoe-Chiba band
double cDTW(X:array[0 . . . n-1], Y:array[0 . . . n-1], malus:double, band-
Width:int)

// Init
D = array[0 . . . n, 0 . . . n] % init zero matrix of size N x N
D[1:n,0] = Inf
D[0,1:n] = Inf
B = array[0 . . . n, 0 . . . n] % init zero matrix of size N x N
B[0:n,0] = Inf
B[0,1:n] = Inf
C = c(X, Y ) % distance between each pair of observations in X and Y
sC = quantile(C(:) ,malus)
// Recurrence
for i = 0:n-1

for j = max(i-bandWidth,1):min(i+bandwidth,n)

h =
D[i, j]
D[i+ 1, j] +max(0, sC ∗B(i+ 1, j))
D[i, j + 1]−min(0, sC ∗B(i, j + 1))


D[i+1,j+1] = min(h)+C(i,j)
idx = arg min (h)

B[i+1,j+1] =


0 idx == 0
max(B[i+ 1, j] + 1, 1) idx == 1
min(B[i, j + 1]− 1, 1) else

end
return D(n, n)

end
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Fig. 7.1. Recursive filling of the dynamic programming matrix by Dynamic Time Warp-
ing

A - DTW calculates an optimal match between two sequences with certain constrains
by calculating the distance between each point of the two sequences and finding the
optimal match between them. The two sequences are shown left and at the bottom of
the matrix. After initialisation by assigning infinity to the top row and leftmost column
and setting the top left entry of the matrix to zero the matrix is filled recursive. The
arrows indicate if a stretch or directs match was obtained. The DTW similarity score can
be found in the lower right corner of the dynamic programming matrix. Backtracking
(red arrows) all the way back to the top upper corner allows to extract the alignment
between the two sequences. These backtrack corresponds to the alignment.
B - The trajectories used in the illustration above and corresponding alignment obtained
by DTW. The mapping calculated in the alignment is shown in black.

At each step, the algorithm finds the direction in which the cost increases the
least under the chosen constraints. In the end, one can read off the dissimilarity
measurement, the cost of the optimal path p∗, between the two trajectories X
and Y from the matrix entry D(n,m) The computational effort of the central
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recursion of the DTW algorithm has a quadratic complexity of O(NM).
If the optimal path itself is of interest, not just its cost, an additional step to
the computation is necessary. There are two distinct ways to estimate the optimal
alignment path. Either, the arg min {D(n− 1,m), D(n,m− 1), D(n− 1,m− 1)}
are stored during the execution of the recursion in an additional matrix B and
tracing back from B(n,m) returns the optimal alignment or the optimal align-
ment is extracted by starting at D(N,M) by computing pl−1 := arg min
{D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)}.
One drawback of the standard DTW is that it does not constrain directly the
flexibility of the alignment. That means for example, that a pattern that occurs
in both time series can be aligned onto another no matter how much time has
passed between their occurrence or that a pattern that appears in both trajecto-
ries differently stretched is aligned onto another no matter how the position or
the length of the patterns differs. While working with real world data this is an
inappropriate feature that contradicts the biological reasoning. The advantages of
an elastic constrain for DTW is that, due to the penalization of longer stretching,
it avoids inappropriate time shifts in the alignment. So that the method avoids
to align substantial different temporal occurrences of patterns. The pseudo code
of the adjusted DTW method is given in the box above. The parameter malus
controls the ’stiffness’ of the alignment and is explained later in this section.
In Fig. 7.1 (A) an example is given how the dynamic programming matrix com-
puted by DTW is filled for a pair of short trajectories (B). After the initialisation
of the left column and the top row the matrix is filled starting from the upper left
corner. The entry D(i, j) is introducing a stretch if it originates from one of the
entries D(i−1, j) D(i, j−1) or a match if it originates from the entry D(i−1, j−1)
into the alignment in recursive fashion. From the rightmost corner of the matrix
one can read of the similarity score. Backtracking from the rightmost corner yields
the optimal warping path.

In Fig. 7.2 the advance made by the use of DTW is shown in comparison to
the Euclidean distance. In this example DTW outperforms Euclidean distance.
While the Euclidean distance cannot compensate temporal deviations, one can-
not prevent that dynamics that are obviously similar are in the framework of
the Euclidean distance less similar than completely unrelated trajectories. This
limitation of the Euclidean distance will make it inappropriate for the detailed
analysis of dynamics and promotes the employment of the DTW framework.
To set the parameter malus that controls the ’stiffness’ of the cDTW approach
two different experiments with artificial time series were carried out. In both ex-
periments, it was studied how the parameter malus controls the behaviour of
cDTW with respect to deviations in the time domain. Initially, a time series was
generated were a pulse of length 4 h is embedded at the begin with a equidistant
temporal resolution of 5 min (Fig. 7.3). To determine a valid value the pulse was
either shifted (7.3)(A)) or stretched (7.3)(A)) to generate a set of artificial time
series.
Using a malus of zero corresponds to classic DTW scenario, even temporally dis-
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Fig. 7.2. Measuring dissimilarity between time series with the temporal rigid Euclidean
distance vs. non-rigid DTW

A - Example of three artificial trajectories and the Euclidean distances between them.
The red trajectory is a warped and disturbed progeny of the blue trajectory. Due to the
stiffness in the temporal domain the distance of the black trajectory to the red and the
blue is smaller than the distance between the red and the blue even if the red and the
blue share a similar temporal dynamic.
B - The DTW dissimilarity score of the same three artificial trajectories and the align-
ment of the red and the blue trajectory. DTW can compensate shifts and warps. That
enables DTW to compare trajectories with respect to their dynamical patterns.

tant or highly distorted features were aligned, leading to similar low cDTW scores
as for only slightly changed time series. The ability of aligning features depends
on the value of malus. If malus is set to 0.25, patterns shifted by more than 6h
were no longer aligned and the cDTW scores was close to the simple Euclidean
distance. In the second experiment were stretching is investigated this time frame
is slightly longer. The shift/stretch induced in the time series had a direct im-
pact on the cDTW score. cDTW scores increased with increasing shift/stretch.
The analysis of how the parameter malus influences the capability of cDTW to
compensate temporal deviations yields a reasoning for the choice for the value of
malus used in chapter 11. In the following applications of cDTW the malus was
set to 0.25 [326].
Next, the question of how robust the cDTW method is to experimental noise will
be answered. For this end, a noise titration on a real data set was employed and
the impact of the noise onto the cDTW measurements was analysed (Fig. 7.4 (A)).
It could be shown that cDTW is very robust to noise. Even at high signal-to-noise
ratios (SNR) the cDTW scores do not differ substantially from the undisturbed
result.
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Fig. 7.3. cDTW can adjust the strength of the compensation of disturbances in the
time domain.

A - The parametermalus gives control to which extend cDTW can compensate temporal
shifts. An artificial trajectory with one single pulse was generated and this pulse was
shifted in his timing (left panel). The impact of this shift was calculated for the Euclidean
(middle panel, dashed line) and the cDTW measure (middle panel, solid line, malus =
.25) With increasing shifts the cDTW score grows gradual until it reaches values similar
to the Euclidean distance at around 50 time points (this corresponds to around 4 h if
the temporal resolution is 5 minutes).
B - The parametermalus gives control to which extend cDTW can compensate temporal
stretches. An artificial trajectory with one single pulse was generated and this pulse
was stretched in time (left panel). The impact of this stretching was calculated for the
Euclidean (middle panel, dashed line) and the cDTW measure (middle panel, solid line,
malus = 0.25) With larger stretches the Euclidean distance grows gradually in contrast
to shifts without reaching a maximum. The DTW score grows much slower for a certain
lag time. After the lag the value reached values similar to the Euclidean distance fast.
This lag phase is for a malus of 0.25 approximately double the time observed for shifts.
The parameter malus allows to adjust the stiffness of cDTW between the performance
of the standard DTW method (malus = 0) and the Euclidean distance (malus = 1).

SNR is a measure that compares the level of an original signal to the level of
background noise. For SNR the definition SNR = mean(Signal2)/σ2

N with σ2
N

the variance of the background noise was used. In section 9.2.3 a detailed view on
the SNR range one can expect to face in real world imaging data is given.
DTW has a quadratic running time of O(NM). If each pairwise DTW for set a
of K time series is computed, a total running time of O(K2NM) is necessary.
This demands a huge computational effort for big data sets. One simple way to
reduce the effort is to constrain the DTW calculation. A common DTW variant
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Fig. 7.4. cDTW is robust to noise and its computation can be speeded up using a
simple band constrain.

A - cDTW scores are robust to noise. From a set of single cell measurement two cells were
randomly picked and white noise was added according to the indicated SNR. cDTW
scores between undisturbed and disturbed trajectories were calculated and normalized
to the cDTW score of the two undisturbed trajectories. This was done for 2500 distinct
pairs of trajectories for each SNR level.
B - Simple example of a Sakoe-Chiba band to constrain the computational effort of
DTW. The entries of the dynamic programming matrix are only calculated within the
red area.
C - Using backtracking and the same SMAD dataset as in (A) it was measured which
entries of the dynamic programming matrix are used for the alignment based on the
optimal warping path. The observations assure what the use of the Sakoe-Chiba band
has no real effect on the cDTW score.

that constrains the admissible warping paths uses a Sakoe-Chiba band[290] (Fig.
7.4 (B)). The Sakoe-Chiba band restricts how much the warping path can deviate
from the main diagonal of the matrix D. This global constrain added to DTW
does not only reduce the computational effort. It also gives control to prevent
unreasonable alignments by preventing extreme temporal warping. To find a bi-
ological reasonable width of the Sakoe-Chiba band, a real data set was used, to
measure how much deviation from the main diagonal, one can expect from the
warping paths (Fig. 7.4 (C)). In general, a “time warp” of less than 75 minutes
(mean: 46 min) was observed. To avoid bias because only one data set was used
a band width of around 4 h was used. For trajectories of length 24 h this reduces
the computational effort to 1/6.
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Fig. 7.5. DTW can easily be extended to multidimensional measures.

A - Two artificial multidimensional measures of two ’proteins’ (solid and dashed line)
over time and two ’cells’ (blue and red).
B - Alignment of the two ’cells’ shown on the right.

7.3 Extensions of Dynamic Time Warping for multivariate
time series

Single cell measurements are not restricted to only one single features single fea-
ture as multivariate time series can have several time-dependent variables. It is
likely that the variables depend not only on their past values but also have some
dependencies among each other. The single cell time series data sets are composed
of several measurements over time. For each cell tracked there are for each time
point a collection of measurements monitoring several phenotypic characteristics.
Specifically, if more than one protein of interest was labelled, it would be desirable
to quantify the similarity between cellular dynamics while looking at the labelled
proteins simultaneously.
The DTW framework can be uncomplicated extended for the application in

the multivariate time series scenario by adjusting the cost function c(x, y) ac-
cordingly. The cost function used so far in the DTW was the Euclidean dis-
tance, c(xi, yj) = ((xi − yj)2)1/2. There is no need to change the cost function.
It must only be incorporate that a multivariate measurement d is given, so that
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X := (x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d) and Y := (y1,1, . . . , y1,d, . . . , ym,1, . . . , ym,d).
Therefore, the Pythagorean formula of the Euclidean cost function over all vari-

ables c(xi, yj) = c(xi,:, yj,:) = (
d∑

k=1
(xi,k − yj,k)2)1/2 with i ∈ 1, .., n and j ∈ 1, ..,m

is applied. In Fig. 7.5 an example for a set of multivariate artificial trajectories is
given.
If multivariate DTW is applied the different variables need to be scaled using ap-
propriate normalization methods such as min-max normalization to weight each
variable equally.



8

Using similarity measures to classify single cell
trajectories

Cluster analysis methods are widely used exploratory data mining techniques
that can provide starting points for other analyses. Cluster analysis is a technique
based on unsupervised learning which characterizes objects by their properties
and features and classifies them into groups. These clusters and their characteris-
tics are created by the clustering analysis itself. The whole set of the data objects
is divided into multiple clusters, where the assignment relies on their distance or
similarity. The initial essence of clustering, was describing spatial characteristics
of the objects of concern. However, from social to biological studies, researcher’s
interests in temporal characteristics often rival their interests in spatial features
[146].
Clustering relies on functions that measure the pairwise distance/dissimilarity
among data objects. To cluster single cell time series a shape-based time series
clustering based on DTW dissimilarity measures was employed. The in the follow-
ing proposed single cell time series clustering approach identifies different groups
of distinct behaviours that exist within the given single cell data based on the pre-
viously introduced dissimilarity measure. The framework assures that each single
cell trajectory is allocated to the appropriate cluster. Clustering can identify pat-
terns in the data that cannot investigated or identified manually.

8.1 Clustering methodology

Various clustering algorithms have been proposed that differ on how they handle
the data and how the groups are created [294]. The prevalent clustering methods
are connectivity models (e.g. hierarchical clustering) and centroid models (e.g.
k-means) that will be discussed in the next sections. Less common are based on
distribution models (based on the probability the objects in the same cluster came
from the same distribution e.g. expectation maximization algorithm [73]) or den-
sity model (assumes that objects from the same cluster came from areas of similar
density e.g. DBSCAN [94]).
The connectivity model assumes that to some extend all data objects within a
data set pertain to the same cluster [247]. Most common is the agglomerative bot-
tom up clustering approach, where in the beginning each object is its own cluster.
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A B C 

Fig. 8.1. Example of the clustering methodology

A - A test dataset was generated with points that there drawn from five different normal
distributions.
B - Based on the coordinates of the points from (A) a distance matrix was calculated
using the Euclidean distance.
C - Based on the distance matrix shown in (B) the Ward method for hierarchical
clustering was applied to identify the random generators that produced the points in
(A). The dendrogram shown indicates that the points can be grouped in five clusters.

In Fig. 8.1 an example of hierarchical clustering is given. The pairwise distance
between objects is used to merge the most similar together. The technique cre-
ates a hierarchy of the objects in which, with increasing level in the hierarchy,
clusters are created by merging the clusters from the next lower level, such that
an ordered sequence of groupings is obtained [130]. This merging is done in ag-
glomerative clustering until all objects are linked into one huge cluster. Different
approaches have been proposed varying in the linkage criterion. The linkage crite-
rion decides how merging is performed based on a specified inter-cluster distance
measure. Several algorithms [322] for computing the distance between clusters
have been proposed. As an example, WPGMA (Weighted Pair Group Method
with Arithmetic Mean) linkage uses the average distance between all pairs of ob-
jects in any two clusters. The alternative opposite top down divisive technique is
rarely used. The divisive method starts with all objects in one cluster and splits
until each objects is his own cluster.
A hierarchical binary cluster tree called dendrogram (Fig. 8.1 (C)) is used to il-
lustrate the linkage of the objects. In the dendrogram U-shaped lines connect the
leafs. Each of leafs corresponds to one data points[322]. The height of each node is
proportional to the value of the intergroup dissimilarity between its two daughter
nodes[130]. It can be a useful tool for identifying the distinct number of clusters
that may exist within a dataset by implying cuts in the dendrogram that push
the result in the desired clustering. The cuts are placed ideally at the height of
the dendrogram where the largest dissimilarity increase occurs.
The idea of the clustering methods based on a centroid model employs a differ-
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ent strategy. It is based on an optimization problem that tries to maximize the
intra-cluster similarity and the inter-cluster dissimilarity. In general, finding the
global optimum requires the enumeration of all permutations of object to cluster
mappings. Therefore, iterative methods are used that converge to a local optimum
in a subset of mappings.
Commonly the centroid model driven clustering starts with choosing an appro-
priate number of clusters k. Next, k centroids are randomly assigned, usually by
choosing k objects from the dataset. These centroids are the initial centre of each
of the k clusters. Based on these centroids each object is assigned to the cluster
that corresponds to the centroid closest to the object. After assigning each object
the centroids get newly calculated based on the objects that are included in a
certain cluster.
The centroid update function differs among the different centroid based methods.
For example, the k−means algorithm uses as new centroid of a cluster the object
within a cluster that has on average the lowest inter-cluster dissimilarity. The
steps of assigning objects to the clusters using the current centroids and updat-
ing the centroids are repeated iteratively until a certain number of iterations is
reached or the method converges and the object assignment to clusters does not
change.
Due to the random start the results of centroid model cluster methods are stochas-
tic. Therefore, several local optima are estimated using different initial centroids
and the best is chosen. Centroid model driven methods are heuristic algorithms
that only guarantee to find local optima. Finding the global optima remains a
computational difficult NP-hard problem [8].
The two discussed clustering approaches differ in their computational complex-
ity. The hierarchical approach has time and memory complexity of O(N2) for a
dataset of size N , because all pairwise similarities between the data objects are
necessary for the sequential grouping or splitting of the data objects. Partitional
clustering has a lower linear complexity of O(N) because at each iteration the
similarities of each objects to the k centroids have to be estimated.
Both discussed clustering models have their advantages and disadvantages. The
choice of the algorithm that fits best mainly depends on the particular applica-
tion. Partitional clustering can deal with big data but assumes that the shape
of the clusters is hyper spherical and produces several different results depending
on the randomly selected initial centroids. Hierarchical clustering is deterministic
and reproducible. In addition, one requires prior knowledge about the number
of clusters you expect the data is grounded on in the centroid model, while you
can create any number of clusters by interpreting the dendrogram in hierarchical
clustering.
In the course of this work a two staged clustering approach is used. The method-
ology is based on an initial hierarchical clustering step followed by a centroid
model based refinement step. For hierarchical clustering the agglomerative Ward’s
method[354] is used. Ward’s method minimizes the within cluster variance based
on the sum of squares between two clusters. The advantage of Ward’s method
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is that it yields very homogeneous clusters. Next, the initial clustering is refined
with a centroid model based algorithm utilizing the Hausdorff distance [119]. The
Hausdorff distance measures how far two subsets of a metric space are from each
other. Iteratively, the Hausdorff distance is calculated for each trajectory to the
different distinct clusters and the trajectory is assigned to its closest cluster. This
was repeated until an optimal assignments or the maximal number of allowed it-
erations was reached. The second refinement step is introduced as a sanity check
based on the assumption, that the number of iterations is low if the Ward’s method
classified the data well. For the data presented in the following chapters 11 and
13, a single iteration was sufficient, after which more than 95% of the trajectories
remained assigned to their initial cluster.

8.2 Cluster Validation

A validation criterion for number of assumed clusters and object allocation is nec-
essary. Several methods that address these issues have been proposed.
All validation techniques suffer from specific weaknesses due to the complex inter-
action of clustering algorithms, validation measures and underlying data. Results
should be double-checked using alternative validation approaches [127].
The jump method [327] was used to identify the reasonable unbiased choice for the
number of clusters and the silhouette method [287] to access allocation quality.
Both methods use intrinsic information within the data to assess the quality of
the clustering.
The Jump method uses the sum of square errors as a measure of intra-cluster
dispersion. This value is computed by dk = ∑k

j=1
∑o∈Cj

i=1 dist(oi, Cj) for different
number of clusters k. The largest jump Jk = dk − d(k − 1) is an indicator for the
number of clusters that exist in the underlying dataset.
The silhouette method provides a measure how well each objects lies within its
own cluster and a simple graphical representation to assess the allocation quality.
Given the matrix D ∈ IRN×N defined by D(i, j) := c(xi, xj) for i = 1, ..., n and
j = 1, ..., n , the function c measures the distance/dissimilarity among two ob-
jects. Let a(i) = 1

|Ci|−1
∑

j∈Ci,i 6=j D(i, j) be an estimator for the assignment quality
of each i ∈ Ci to the cluster Ci. The smaller a(i) the better the assignment. Let
b(i) = mink 6=i

1
|Ck|

∑
j∈Ck

D(i, j) be an estimate for each i ∈ Ci best alternative
assignment to one of the other clusters. The silhouette coefficient is defined as
s(i) = b(i)−a(i)

max(a(i),b(i)) . The silhouette coefficients range from -1 to 1. The closer the
coefficient is to 1 the better is the assignment and vice versa.



9

Non-rigid feature detection based on Dynamic
Time Warping

Feature detection or pattern recognition aims to find certain features or patterns
within the given data. The field of searching for patterns is concerned with the
automatic discovery of regularities in the data through the use of computer algo-
rithms. With the use of these regularities actions such as classifying the data into
different categories [38] are taken.
Feature detection problems can be found in nearly all scientific realms. And as
wide as its application domains is the variety of methods and concepts used. The
detection of nuclei in the imaging data is an example already discussed in a pre-
vious chapter. To go deeper into this matter is beyond the scope of this work. For
a general overview the book of Bishop [38] can recommend.
What constitutes a feature depends on the actual problem and the type of data
given. Therefore, the feature detection method used also depend on the scenario
one faces when analysing data. The patterns of interested in the course of this
work will be temporally connected measurements within the time series that dif-
fer from the background like e.g. pulses or sustained changes in the amplitude.
Even such a simple feature as a pulse may have many different characteristics and
features in the time domain, so that two different pulses may have very different
lengths, amplitudes, slopes or min and max values. The feature detection methods
used must be therefore selected in a way that fits the characteristic of the pattern
one aims to detect in the given time series. In the course of this work, I was in-
terested in features associated with the dynamics of the protein of interest (p53
or SMADs), the detection of cell division events or features in the data linked to
errors in the tracking.
This section, starts with the simple problem of detecting cell division events in the
trajectories. Afterwards, a novel feature detection method is proposed grounded
on the application of DTW. The DTW framework provides the features necessary
for dealing more complex problems.
The DTW framework, will equip us with the amount of flexibility necessary in
the time domain to find disturbed instances of a specific patterns. This means,
it is sufficient to define a pattern primarily by its shape without paying much
attention on other characteristics of the feature like amplitude and length. By us-
ing DTW one can detect locally connected areas in the time series that exhibit a
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certain shape. The different characteristics of this areas can be used to access how
a certain stimulus can alter the temporal dynamics of the protein of interest on
the single cell level. In this chapter a benchmark is performed on how the novel
feature detection approach performs in different scenarios and the potential in
real world applications demonstrated with examples dealing with measured time
series of nuclear p53 level.

9.1 Detection of cell division events

One potential source of cell-to-cell variability is the cellular state. The cellular
state can be directly linked to cell division events. In the imaging data it can
be observed that as cells divide the nuclear envelope breaks down during mitosis
and two new daughter cells emerge with much smaller nuclei [326]. This drop in

Fig. 9.1. Use of FIR to detect cell division events

A - FIR kernel used to amplify rapid changes in the time series.
B - Example of two detected divisions. The red line displays the size of the normalized
nuclear area and the blue line the integrated nuclear measures of the marker over time.
The black line is a combination of the normalized nuclear size and integrated marker
intensity and is filtered by the kernel on the left. The yellow line shows the result of the
FIR. The two dashed lines correspond to the automatically determined thresholds for
cell division events (green) and segmentation or tracking errors (red). The cell shown
undergoes two divisions during the time of the tracking.
C - Example of an erroneous track. This cell gets excluded from the further analyses,
because an unreasonable increase in the size of the nucleus is detectable.
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the size of the nucleus can be directly observed in the data as a sudden decrease
in trajectories that keep track of the nuclear size and the integrated fluorescence
intensity of the nuclear marker. This observation is used to identify the cell division
events in the data (Fig. 9.1). To identify cell divisions in the time series the
measurements of the integrated intensities of the nuclear marker and the size of
the nucleus is utilized. In a first step both time series are normalized by their
respective mean and are combined by averaging. A finite impulse response (FIR)
filer that mimics a 1D Prewitt filter was applied [199] onto the combined time
series to amplify discontinuities, a drop in the size of the nucleus, that correspond
to cell division. The window length of the filter was set to 75 minutes. A threshold
based on the standard deviation of the values generated by the FIR was used
to detect the events of interest. The threshold was set to 4 times the distance
of the observed standard deviation from the observed mean. The threshold was
confirmed on a set of several hundred established cell divisions identified visually
in a set of real data. For the cell divisions identified visually both sensitive and
specific there found to be beyond 99%. The pattern that encodes a cell division
event in the data is of very low complexity so this simple approach presented is
already sensitive and specific enough to produce results of high quality. This is
caused by the fact that the event the approach aims to detect is very short and
homogeneous in the time domain.
In addition to the detection of the cell division events this method also can be
used to improve the quality of the data. This approach can also identify errors
caused by faulty segmentation and tracking. A massive increase, the opposite of
what is expected in the case of a cell division, in the combined time series, cannot
be linked to biological events. Such events can occur in the data if a faulty merging
of two nuclei in the segmentation procedure happened. This kind of event can also
be easily accessed by applying the FIR. Time series where such kind of error was
observed were excluded from further analyses. In Fig. 9.1 all these different steps
are shown. The method has proven to be robust and valuable tool within our lab.
Also the detected cell division event itself can help to improve data quality. As the
nuclear envelop breaks down during mitosis and morphological changes lead to
increased auto-fluorescence, signals measured during cell division were disregarded
and removed from the trajectories by interpolation.

9.2 Feature detection based on local Dynamic Time
Warping

The type of filtering and feature detection presented in the previous section based
on signal amplification using FIR is simple and straightforward but suffers from
lack of flexibility the time domain. The pattern aimed to detect in the data was
short and could not differ in its shape. For the most applications the features of
interest in the data are much more complex.
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Fig. 9.2. Local DTW is able to detect patterns independent of the time domain

To detect the simple pattern of a pulse shown at the top in the trajectory displayed
on the left a matrix is filled as described at the next page of this section using a
dynamic programming approach. The trajectory in which the pulse has to be detected
is composed of several pulses of decreasing length. The backtracks that correspond to
detected features are shown in the dynamic programming matrix. The backtracks start
at local minima that corresponds with the endpoint of a feature in the rightmost column.
The detected features are displayed in different colour code. Feature detection based on
local DTW has the ability of stretching and squeezing the pattern. This allows the
detection of variable temporal disturbed occurrences of the pattern in the trajectory of
interest.

A method that is based on the concept of FIR but has flexibility in the time
and frequency domain is the wavelet transformation, a general tool for pattern
recognition. A peak detection framework based on wavelets for the analysis of
p53 dynamics from single cell measurements with respect of inevitable noise was
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previously proposed [235]. Similar approaches exist for mass spectra [83] or EEG
analysis [272]. In the course of my work on the topic of feature detection in single
cell time series also wavelets had been taken into account. But the results had
not convincing me. Therefore, the perspective was changed towards a novel way
to detect features in time series.
The idea is that the strength of the Dynamic Time Warping approach might
transfer the freedom and flexibility on the time domain to develop a novel fea-
ture detection approach. The idea is inspired by the dynamic programming based
Smith-Waterman algorithm [313] that performs local sequence alignments. The
Smith-Waterman algorithm is a variation of the Needleman-Wunsch algorithm
[252] for global sequence alignments. The Needleman-Wunsch algorithm and DTW
differ only slightly in their implementation. Historically DTW was derived from
the Needleman-Wunsch algorithm. A basic assumption of DTW is, that one se-
quence is a time-warped version of the other, so that one of the sequences is either
stretched (one-to-many), condensed (many-to-one), or fix (one-to-one) onto the
time points of the other sequence. The Needleman-Wunsch uses gaps, where one
or more elements in one sequence are not matched by any elements in the other
sequence (one-to-none or none-to-one alignment). So the Needleman-Wunsch is
appropriate for discrete sequences like DNA sequences and DTW has its applica-
tion if you can assume contiguous signal that are discretized like our single cell
time series. A local version of the DTW algorithm will inherit the characteristics
of the Smith-Waterman algorithm.

Pseudo code: local Dynamic Time Warping
double localDTW(X:array[0 . . . n-1], pattern:array[0 . . . m-1])

// Init
D = array[0 . . . n, 0 . . . m] % init zero matrix of size N x M
D[0,1:m] = Inf
B = array[0 . . . n-1, 0 . . . m-1] % init zero matrix of size N-1 x M-1
C = c(X, pattern) % pairwise distances between observations and the pattern
// Recurrence
for i = 0:n-1

for j = 0:m-1

h =
D[i, j]
D[i+ 1, j]
D[i, j + 1]


D[i+1,j+1] = min(h)+C(i,j)
B(i,j) = arg min (h)

end
end
return D B

Based on this assumptions DTW will be adjusted so that it performs a local
alignment similar to the Smith-Waterman algorithm. The algorithm aims to find
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the occurrences of short given pattern in a longer time series. Therefore, the DTW
algorithm is altered in a way that the pattern sequence can start and end any-
where in the time series in those the occurrences of a pattern should be detected.
The pseudocode of the method is given at the bottom of the previous page.
The pseudo code of the local DTW differs mainly from the pseudocode presented
in section 7.2 in the initialisation of the dynamic programming matrix D. After
the programming matrix is filled the occurrences of the pattern could be found
by backtracking from the local minima in the rightmost column of the dynamic
programming matrix. The local minima refer to the ends of local alignments be-
tween the pattern and subsequences of given trajectory. So the backtracking to
the start of the local alignment gives the potential occurrence of the pattern. In
Fig. 9.2 an example of a filled dynamic programming matrix is shown together
with the backtracks that refer to the occurrences of the pattern hidden in the
artificial trajectory composed of patterns of different length. Next, the behaviour
of the local DTW approach for the feature detection is studied given different
lengths and amplitudes of the pattern and with respect to noise.

9.2.1 Local Dynamic Time Warping - Robustness to disturbances in
the time domain

The expectation that reasoned the transfer of the DTW framework to the field
of pattern recognition was, that the novel method will inherit the advantage of
flexibility in the time domain. To study if the characteristic is preserved and if the
local DTW is capable of detecting a given pattern p in a trajectory independent
of the length a time series t was generated that contained n distinct occurrences
q1, ..., qn of the pattern. Each of the occurrences q1, ..., qn has a different lengths
that is increasing with the position in t. The pattern had a fixed length of 21 time
points while the length of the pattern in the trajectory ranges from 7 for the first
occurrence to 2323 time points for the last occurrence in t. In this experiment
effects of noise or scaling are not taken into account.
In Fig. 9.2 the results partially are shown for occurrences of patterns q in the
range of 39 to 157 time points. Local DTW detects all the occurrences q of a pat-
tern p within the artificial time series t no matter the length, if the occurrences
q have the same scaling as the pattern p and no noise is applied. As expected
the characteristic of the Smith-Waterman algorithm could be transferred to the
DTW framework.

9.2.2 Local Dynamic Time Warping - Robustness to different scaling
of the amplitude

While it has been shown that local DTW gives us the flexibility in the time do-
main, the next thing to investigate was the scaling problem. Can the given pattern
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A B

C D

Fig. 9.3. Detection of features by local DTW is sensitive to differences in the amplitude
of the pattern and the feature of interest. A normalization step that uses a band around
the trajectory can overcome this issue.

A - A pulsatile trajectory with pulses of decreasing strength of amplitude. If the feature
detection is applied as shown in the previous figure local DTW fails to identify the
pulses correctly. Detected features are shown with different colour code.
B - Estimated upper and lower bound computed mainly on the basis of the local maxima
and minima. This bound form a band around the trajectory.
C - With the band from (B) the trajectory can be normalized and eliminate the local
differences in the amplitude. The normalized trajectory can be used for the estimation
of the occurrence of a pattern in the trajectory.
D - The pulses are correctly detected using the band filter normalized trajectory.

be detected in a trajectory no matter the differences in the amplitude of the oc-
currences q and the pattern p in the trajectory.
To study this issue, an artificial trajectory t was generated that mimics this ques-
tion. After applying local DTW on this artificial data (9.3 (A)), it was shown that
local DTW itself cannot detect the occurrences q in the trajectory independent of
the scaling.
To overcome the scaling issue the local DTW approach was extended by an addi-
tional step to bring the pattern and the occurrences of the pattern in the trajec-
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tory onto the same scale. While the occurrences of the pattern may have different
amplitudes within the trajectory a global scaling of the trajectory could not be
appropriate choice. The idea is to generate a band which encloses the trajectory
by using a lower and an upper band that incorporates the local minima and max-
ima of the trajectory. The ’band normalization’ computes at the begin constants
based on the time series that are used for generating a band around each tra-
jectory. These constants define different attributes of the bands like the width,
a maximum value for the lower bound and a minimal level of the upper bound.
Using these constants and anchors for the past and the future, for each trajectory
an individual band was generated. The anchors for the past and the future are
extensions of the given time series based on the average start and end value of
the time series 9.5(B). The anchors smooth the band while having equal starts
for all trajectories. The upper and the lower band are used to scale the trajectory
locally.
Examples of such normalization bands are shown in Fig. 9.3 (B) for the artificial
trajectory and in Fig. 9.5(B) for a real world example.
The band is used to perform a local min-max normalization and transform the
original trajectory into a range between 0 and 1. Therefore, while the normal-
ization transforms the trajectory into a range between 0 and 1 the pattern itself
must fall in the same range. These normalized transformed trajectory is shown in
9.3 (C) for the artificial trajectory and in 9.5(C) for a real world example.
Applying local DTW onto the transformed trajectory returns all the occurrences
q of the pattern p. After the positions of the pattern occurrences have been found
the positions can be mapped onto the untransformed trajectory as shown in Fig.
9.5(D).
Local DTW alone cannot detect pattern completely independent of the ampli-
tudes, but with the introduction of the additional normalization step the scaling
issue can be solved.

9.2.3 Local Dynamic Time Warping - Robustness to different levels of
noise

After having studied the behaviour of the local DTW pattern recognition approach
in the context of temporal disturbances and scaling and also having extended the
framework by an additional ’band normalization’ step, it was analysed how robust
the method performs while different levels of noise are applied.
To study the influence of noise, a simple time series with 100 pulses was generated
and titrated with different levels of noise. The SNR used ranged from the signal
10-fold the noise to the signalling and noise of equal strength. For each of the SNR
levels the positions of the 100 occurrences of the pattern was estimated using local
DTW. This was done for each of the SNR levels a thousand times with random
noise of fixed strength (Fig. 9.4 (A,B,C)).
SNR was defined by the mean of the trajectory x2 divided by σ2 of the added white
noise. The results are presented in Fig. 9.4 (D). The method started to produce
errors if the SNR is below 1.5. But the error rate is very low at in this noise range
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so that in less than 5% of the trajectories one extra occurrence is detected, so
99% of the features are still correctly detected. The error rate increases with the
decrease in the SNR level. If the signal has the same level as the noise it is not
likely that all features are correctly detected.
While studying the imaging data a SNR of 0.59 ± 0.05 can be estimated for the
nuclear marker. Therefore, it can be assumed that the SNR in the extracted time
series is much lower because the time series are a simplification of the original data.
This could be shown for the p53 data in Fig. 9.5 (E). The average SNR measured
was beyond 30. In this SNR range the impact of noise on the performance of local
DTW is negligible.
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Fig. 9.4. Local DTW is robust to noise

A - An artificial time series with 100 pulses was generated and different levels of noise
there added. At the top a subsequence of this trajectory which contains 12 pulses is
shown. The same subsequence is shown in the middle with a signal-to-noise ratio of 5
and at the bottom of 2. The SNR was defined by the mean of the clean trajectory x2

divided by σ2 of the added white noise.
B - The undisturbed trajectory with 100 pulse shown in (A) was titrated with different
levels of noise in the range from 9.35 till 0.93 and aimed to detected the 100 pulses.
In different colour code the deviation in the number of detected pulses is shown. As
long as the noise is not greater that the signal the local DTW approach for the feature
detection identifies all artificial pulses.
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9.3 Use case: detecting p53 pulses with local dynamic time
warping

To demonstrate the potential of the workflow a real world example of a p53 tra-
jectory is revised. In p53 trajectories the main interest is the detection of pulses.
To quantify the characteristics of the identified pulses different features can be
extracted (Fig. 9.5 (A)).
That enables the comparison of dynamics among different single cells and differ-
ent experimental conditions.
As described before for each trajectory a band was calculated that normalizes
each trajectory individually while incorporating the temporal order of the mea-
surements (Fig. 9.5 (B,C)). One important aspect in the generation of the ’band’
is the use of anchors into the past and the future of each trajectory based on the
starting and end values of all trajectories in the data set. The anchors are used to
elongate each trajectory and therefore increase the quality of the estimated band
that encloses a trajectory. The ’band normalization’ step ensures that local DTW
detects disturbed occurrences of a pattern that differ in length and amplitude as
shown in Fig. 9.5 (D).
Local DTW in combination with local ’band’ normalization gives a novel, robust
and flexible tool for the pattern recognition problem. Especially the flexibility in
the time domain makes it a promising approach for the analysis of single cell data.
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A B C

D E 

Fig. 9.5. Feature detection based on local DTW works on non-artificial data

A - Example of a trajectory with detected features and a schematic representation of
feature characteristic readouts.
B - The feature detection method based on local DTW generates initially a band around
the input trajectory to level local amplitude differences. In addition to local minima and
maxima anchors into the past and future are added based on the average initial and
final intensities of the population the cell was drawn from.
C - The band normalized trajectory shown in (B). The upper and lower bound of the
band are used to normalize the original trajectory into a fix range between 0 and 1.
D - The detected features in the trajectory already used in (B) and (C). Pulses are
detected independent of their dynamic, length or amplitude.
E - SNR approximation estimated from non-artificial trajectories of p53 labelled cells.
The standard deviation of non-irradiated cells is used as a model for the noise and the
mean of the quadric minimum normalized intensity of irradiated cells as a model for the
signal (mean(irradiated2)/std(non − irradiated)). The SNR levels estimated fall in a
range there the local DTW feature detection approach should work proper.
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Detecting global patterns in single cell
trajectory datasets

In the previous section a method was proposed that is able to detect local patterns
in the single cell trajectories. The local DTW method is appropriate for p53
time series data, where the detection of pulses is of main interest. For SMAD2
trajectories this is not that simple. SMAD2 dynamics are composed out of a great
variety of single patters ranging from simple pulses, sustained plateaus to complex
shifts in the SMAD2 nuc/cyt ratio. Therefore, the problem of quantifying SMAD
dynamics will be tackled from a global point of view.
In this chapter, it is demonstrated how principal component analysis (PCA) might
contribute to change the perspective from distinct features within a trajectory to
a global view where the individual dynamic of a single cell is composed of fixed
proportions of underlying dynamics. Based on the observations in the context
of PCA the focus will be shifted from the unsupervised learning procedure to a
supervised that incorporates the knowledge gathered while working with the data.
The framework presented will exhibit several new ways to gather insights into the
structure of the single cell data.

10.1 Principal component analysis for single cell time
series

PCA is a commonly used statistical algorithm that reduces the dimensionality
of the data, while retaining most of its variation [1]. This is achieved by finding
principal components which contribute the most to the variation in the data. PCA
uses orthogonally transformation to change a set of observations into a new data
set of linearly uncorrelated vectors of variables called principal components. The
variables that constitute an observation or trajectory in our single cell data are
the measurements at the different time points. The transformations are defined in
the way that the first component has maximal variance and the other components
have the maximal variance under the constrain that they are orthogonal to the
previously determined component.
In the actual scenario the principal component are fundamental trajectories, which
can describe underlying dynamics present in the single cell data. PCA will be used
to identify some set trajectories, the principal components, whose weighted linear
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Fig. 10.1. Unsupervised learning for time series data: Principal component analysis
(PCA) provides a dimensional approximation that can be used to reduce the dimen-
sionality of the data

A – The dataset of SMAD2 labelled cells stimulated with 100 pM TGFβ (352 cells)
used to illustrate the PCA. The different colour coded lines represent the quantiles p in
the interval from 0 to 1 with steps of size 0.05. Hence the most yellowish outer lines are
identified as the min and max observed at the certain time points.
B - Cumulative sum of the percentage of variance explained by the first 20 temporal
principal components. PCA enables us to reduce the dimensionality of the original data
set shown in (A) Nine principal components are able reproduce already more than 99%
of the original dataset.
C - Patters of the first 5 temporal principal components.
D - Data reconstructed with the first 5 principal components. The reconstructed data
is smoother than the original data.

combination will reconstruct the original trajectories. The PCA implementation
provided by Matlabs Statistics and Machine Learning Toolbox [322] was used.
Given a single cell time series data matrix D for N cells (the observations) and
T time points (the variables). The rows correspond to the cells and the columns
to the time points. The in general applied first step of PCA of subtracting the
mean of each variable from the dataset to centre the data around the origin is
skipped. The function [C,L] = pca(D) returns two matrices C and L. The T by
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Fig. 10.2. The loadings estimated for temporal principal component can be used to
quantify the different behavioural subgroups in data sets.

A - Based on the estimated loadings of the temporal principal components that allow
the reconstruction of the original data set (see previous figure) signalling classes can be
identified in the data. Hierarchical clustering was used on the loadings of the first five
components except the first to identify three distinct behavioural patterns in the original
dataset. Show are the weights of the loadings with respect to the clusters identified.
B - Dendrogram generated using ’Wards’ method for hierarchical clustering on basis of
the loadings of the first 5 components except the first estimated for the reconstruction
of the original data set.
C - Median trajectories of the three identified signalling classes (cluster 1 - 60 cells,
cluster 2 - 185 cells, cluster 3 - 107 cells) in the data set of cells stimulated with 100
pM TGFβ. The dashed lines indicate the 25% and 75% quantile.

T matrix C where each column contains coefficients for one principal component
with columns in descending order in terms of the explained variance and the N
times T principal component loadings matrix L, which is the representation of
D in the principal component space. Because the first step of centring the data
around the origin is skipped D can be reconstructed by LC ′. For deeper insight
into this topic the book from Bishop [38] is recommended.
In Fig. 10.1 an example is given on how PCA works on real dataset of single cell
trajectories. The data contributes the nuclear to cytoplasmic SMAD2 ratio of 352
cells stimulated with 100 pM TGFβ. To reduce the dimensionality of the data one
can make use of the order of the principal component in the matrix C. In Fig.
10.1 (B) it is shown how many principal components are necessary to explain a
certain amount of the variance in the data and vice versa and to allow the recon-
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struction of the original data with respective precision. In the example presented
a dimensionality of five is sufficient to reconstruct nearly 98% of the data. So,
L(:, 1 : 5)C(1 : 5)′ will give us a very a good approximation of the original data
D. Consequently, each original trajectory can be approximated by a weighted
linear combination of the top five principal components where the weights differ
among the different trajectories. In Fig. 10.1 (C) the shape of the first 5 principal
components is presented. One can interpret these principal components as ’fun-
damental’ dynamics that shape the dynamic of the population of cells studied.
As has been shown, one does not only access the shape of the ’fundamental’ com-
ponents C, but also an estimate L to which extend each component contributes
to the single cell trajectories is available. These loadings can be used to identify
classes of signalling dynamics that contribute to the composition of the cell pop-
ulation. In Fig. 10.2 the loadings of the top five principal components except the
first of each cell are used to cluster the population into three distinct groups. The
first principal component can be associated with the mean and the approach aims
to enhance less obvious dynamics. With the loadings one can embed each single
cell trajectory into a five dimensional space where each dimension corresponds to
the loading of the top five principal components. As the principal components are
sorted by the variance they explain the impact of the first principal components
for the clustering is much larger than for the later. This can be seen in the box-
plots that show the contribution of each component to the cluster (Fig. 10.2(A)).
Hence, the 5th component does only have minor impact on the clustering.
PCA can provide a useful toolbox while working with single cell time series data.
While working with this framework two drawbacks were identified that restricts
the usability. First, the method is unsupervised and therefore the interpretation
of the principal components and the corresponding loadings is not always clear.
Second, there is no fixed range for the values the principal components and the
loadings can attain. This makes the interpretation as well complicated. To over-
come these problems but keep the advantages of the PCA, in the next section
a supervised learning method is introduced into the analysis of single cell time
series.

10.2 Supervised identification of fundamental patterns in
the single cell time series data

In this section, an alternative approach is introduced to quantify single cell dy-
namics that incorporates experience and knowledge gathered while studying the
data and biological background. Based on artificially constructed trajectories, that
are expected to encode the underlying dynamics of the data it aims to find a di-
mensionality reduction that allows the reconstruction of the original data to a
certain degree. The knowledge driven constructed trajectories will be named in
the following as fundamental patterns. The fundamental patterns will all have
only values in the range from 0 to 1.
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Fig. 10.3. Supervised learning for time series data: Identifying fundamental temporal
components based on knowledge

A - Starting with the construction of the fundamental patterns one expect to find in
the data. Each of the component describes a distinct feature in the data like the initial
response or a late plateau.
B - While using the initial knowledge driven components, only around 34% of the orig-
inal variance in the data could be explained. Shown is the distribution of the distance
of the reconstructed data set to the original data set.
C - Using a constrained non-linear programming solver one can fit the fundamental pat-
terns based on our initial guess so that the explained variance in the data is increased.
After the fit the estimated temporal fundamental components explain more than 99%
of the variance of the original data set.
D - The distribution of the distance of the reconstructed data using the fitted compo-
nents set to the original data set.
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A B

C D

Fig. 10.4. Supervised learning for time series data: Identifying fundamental temporal
components based on knowledge

A - As in the previous figure the loadings can be used to identify distinct behavioural
classes in the 100 pM dataset (cluster 1 - 60 cells, cluster 2 - 185 cells, cluster 3 - 107
cells).
B - The weights of the fundamental patterns describe the dynamics of the clusters shown
in (E).
C - The 100 pM data set is a taken from a larger experiment with six different condition
(control - 358 cells, 1 pM TGFβ - 395 cells, 2.5 pM TGFβ - 314 cells, 5 pM TGFβ - 295
cells, 25 pM TGFβ - 351 cells, 100 pM TGFβ - 352 cells). Using the fitted components
more than 97% of the variance of the complete data set is reproduce, while the initial
components only reproduce 22% of the variance. D - The loadings of the fundamental
patterns with respect to the condition reconstructed.
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Given as before a single cell time series data matrix D for N cells (the observa-
tions) and T time points (the variables). Based on experience gained while working
with the data one constructs M different fundamental patterns stored in a T by
M matrix C where each column of contains coefficients for one fundamental pat-
tern. It is of interest to identify a N times M loading matrix L so that the origin
D can be reconstructed by LC ′. L can be estimated by solving the linear equation
CL = D′ for L. Shown in Fig. 10.3 (A) are six fundamental patterns constructed
for data that contributes the dynamics of the nuclear cytoplasmic SMAD2 ratio
after stimulation with 100 pM TGFβ over a period of 24 h. The different distinct
fundamental patterns mimic several aspects of the dynamics that were observed in
the data. With the estimated weight of each of the corresponding loadings L one
can try to reconstruct the original data matrix D with the fundamental patterns.
As shown in Fig. 10.3 (B) this simple approach can only explain a little less than
34% of the original data. This is far beyond the precision required.
To improve the precision constrained non-linear multivariable function is mini-
mized and the fundamental patterns are fitted so that the variance explained is
maximized. The function to minimize is ∑(D − (C\D′) ∗ D′) where L = C\D′
solves the system of linear equations CL = D′. The system is constrained so
that C can only utilize values in the range from 0 to 1. To minimize and fit the
fundamental patterns onto the original data the function fmincon from Matlabs
Optimization Toolbox [259] was used. After the fitting of the fundamental pat-
terns 10.3 (C,D) 99% of the original data could be reconstructed. This is slightly
better than the same number of principal components for the test data (Fig. 10.1
(B)). The fitted fundamental patterns inherit basal characteristic from the initial
trajectories that where constructed using existing knowledge.
This alternative supervised learning framework exhibits the advantages of the
PCA analysis. As in the section before, one can use the loadings L to identify
signalling classes that contribute to the composition of the cell population (Fig.
10.4 (A, B)). The supervised approach has the advance that in contrast to the
PCA the components are not ordered by the variance they explain. Therefore, the
fundamental components do not naturally differ in the amount of variance they
explain. While comparing the loadings with respect to the clustering between
PCA and the supervised approach it is clear that the several fundamental pat-
terns contribute much more equally to the classification in contrast to PCA where
the differences among the loadings of the principal components came mainly from
the first few. In the PCA the 5th used component only explains less than 0.5%
of the variance, therefore the influence on the classification is only minor. The
fundamental patterns are also easier to interpret than the principal components
while they fall all in the range between 0 and 1 and they already incorporate
expectations generated by experience.
To test the potential of new approach for the analysis and quantification of single
cell time series it was studied to which extend the estimated fundamental patterns
can explain additional data. The data D used in the example to fit the funda-
mental patterns ((Fig. 10.1 (A)) and 10.1 (C))) is only a subset of a bigger data
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set that incorporates six different conditions in total. The conditions differ in the
TGFβ stimulus strength that ranges from 0 to 100 pM. How much of the variance
of the total dataset can be explained with the fundamental pattern fitted only
onto the 100 pM conditions? With the initial unfitted only 22% can explain, with
the principal components extracted from the 100 pM conditions close to 94% and
with the fitted fundamental patterns one can reconstruct more than 97% of the
complete data (Fig. 10.4 (C, D)).
The concept that allows the use of the fitted fundamental components to compute
loadings and reconstruct data that was not used in the fitting process can also be
used to map new trajectories onto already existing classifications. This classifica-
tion must not originate from the loadings. New trajectories can also be mapped
on clusters estimated using other methods like DTW.



Part IV

Heterogeneity in canonical TGFβ signalling is
grounded on distinct signalling classes





11

Cell-specific TGFβ signalling

With a combination of time-resolved monitoring of the nuclear to cytoplasmic
SMAD2 translocation at the single cell level and quantitative mathematical mod-
elling, cell-specific long-term dynamics of SMAD mediated signalling will be anal-
ysed and it will be studied how phenotypic responses of epithelial cells are mod-
ulated by the strength of TGFβ stimulation.
The following chapter is based on previously published data [326, 325]. The exper-
iments used in the following sections were carry out Henriette Strasen at the Max
Delbrück Center for Molecular Medicine and Stefan Bohn at the TU Darmstadt.

11.1 Heterogeneity in SMAD dynamics

Canonical TGFβ signalling processes the external information by ligand bind-
ing to transmembrane TGFβ type II receptor (TGFβR2) followed by bridging of
TGFβR2 and TGFβ type II receptor (TGFβR1) dimers [217]. TGFβR2 undergoes
autophosphorylation and catalyses transphosphorylation TGFβR1 within the ac-
tivated heterotetrameric receptor complex [96]. The activated receptor complex
phosphorylate SMAD2/3, which then heterotrimerize with SMAD4 and translo-
cate to the nucleus and where is binds to target gene promoters and regulates tran-
scription. Recent studies revealed that nuclear translocation of SMAD2-SMAD4
occur with pronounced cell-to-cell variability [355, 389]. To analyse TGFβ path-
way activity the translocation of the SMAD complexes was monitored in individ-
ual cells using time-lapse imaging and the live-cell reporter system, introduced in
section 4.1. Imaging data was acquired over a time period of 24 h with temporal
resolution of 5 min.
As an estimate for the shuttling of SMADs between the cytoplasm and the nucleus
the ration between the average cytoplasmic and nuclear level of SMAD2 was used.
The cytoplasmic measurements were accessed heuristically as described in section
6.2. In brief, for all identified nuclei non-overlapping rings of fixed size around
the segmented nucleus were generated. In the area of the rings the cytoplasmic
abundance of SMAD2 was estimated.

Initially, the SMAD translocation after stimulating the cells with a high dose of
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Fig. 11.1. Time-resolved analysis of TGFβ induced SMAD2 nuclear to cytoplasmic
translocalization for stimulus levels in the range from 0 pM (black, 358 cells) and 100
pM (blue, 352 cells). Nuc/cyt SMAD2 ratios for six individual cells are shown. The
median is shown a bold line and the 25% and 75% is represented by the coloured area.

100pM TGFβ was studied in relation to unstimulated cells (Fig. 11.1). In unstim-
ulated cells the SMAD2 equilibrium is shifted primarily to the cytoplasmic side
and only very low levels of SMAD can be found in the nucleus. The population
dynamic observed, after stimulation with 100 pM TGFβ, is that the equilibrium
turns massively towards the nuclear side, so that SMAD2 accumulates in the nu-
cleus within the first two hours after stimulation until it reaches its maximum.
The fast increase is followed by a slower re-shuttling of SMAD2 to the cytosol for
the next three to four hours. After around five hours the population average level
of SMAD2 stays elevated for the period measured during the experiment.
While investigating the single cell dynamics of several hundred of cells, stimulated
with 100 pM TGFβ, a substantial heterogeneity in the translocation dynamics of
SMAD2 could be observed (Fig. 11.2). Cells differ in their amplitudes of the direct
response of nuclear SMAD2 accumulation and in their late phase dynamics. In
the later elevated plateau phase, cells differ substantially in their nuc/cyt SMAD2
ratio or exhibit additional periods of SMAD2 accumulation and asynchronous fluc-
tuations could be observed while in the state of the equilibrium.
On the average level the results fit to previous studies done with populations of
cells [152, 62, 388, 347], but they deliver a more fine grained picture of signalling
dynamics due to the single cell level analysis. The simplified view on the cell pop-
ulation masks the majority of the dynamics and gives only a poor representation
of the pathway activity.
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Fig. 11.2. Heterogeneity of TGFβ induced SMAD2 nuclear to cytoplasmic translocal-
ization for stimulus levels in the range from 0 pM and 100 pM. For each indicated doses
of TGFβ six randomly chosen single cell trajectories of the nuc/cyt SMAD2 are shown.

To validate our reporter system several experiments were carried out [326, 325].
Western blot analysis revealed that the amount of SMAD2-YFP fusion protein
corresponds to approximately 50% of the endogenous SMAD2 protein. By moni-
toring TGFβ-induced dynamics of phosphorylation of endogenous SMAD2 in the
parental and reporter cell lines it could be shown that the induced overexpres-
sion did not disturb SMAD translocation dynamics. The expression of SMAD
target genes SMAD7, SnoN and PAI-1 upon stimulation with 100pM TGFβ in
parental and the reporter cell lines remained unchanged. It also was shown, that
the translocation of the SMAD complex into the nucleus is fully dependent on
the activity of the TGFβ type I receptor [326]. Canonical TGFβ was prevented
by or directly terminated after the application of the inhibitor SB431542 [152]
independent of the time passed since stimulation. In an ongoing response SMAD2
was imminently removed from the nucleus and shuttled back to the cytoplasm.
After it was ensured that the reporter system is a suitable tool to quantify TGFβ
signalling dynamics, it was studied if and how the strength of the stimulus is re-
flected by SMAD translocation dynamics. To this end, the initial experiment was
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Fig. 11.3. Time-resolved analysis of TGFβ induced SMAD2 nuclear to cytoplasmic
trans-localization for varying TGFβ stimulus levels.

A-F - Median nuc/cyt SMAD2 ratio of cells stimulated with varying concentrations of
TGFβ over 24 h. The shaded area represents the 25% to 75% quantile range. (total
2065 cells, control - 358 cells, 1 pM TGFβ - 395 cells, 2.5 pM TGFβ - 314 cells, 5 pM
TGFβ - 295 cells, 25 pM TGFβ - 351 cells, 100 pM TGFβ - 352 cells)

repeated with varying doses of TGFβ. In Fig. 11.3 (A-E) the response on the level
of the population is shown by the median and the 25% and 75% inter-quantile
range of the nuc/cyt. The spread of the inter-quantile range is an indicator for the
heterogeneity of the pathway activity. Heterogeneity increases with the stimulus
strength. The increase in heterogeneity starts at low doses in the temporal range
of the direct SMAD response and with increasing doses spreads out to later time
points. The time dependent inter-quantile ranges of the obtained ratios overlap
among the different conditions. From the population perspective, the strength of
the initial response as well as the strength and length of the secondary response
are directly determined by the strength of the extracellular stimulus.
To quantify the direct response to the TGFβ stimulation, the average of the
greater half of ratio measurements within the first 4 h of the experimental course
(Fig. 11.4 (A)) is plotted. This measurement was chosen to compensate lags in
the timing of the direct response. A steady increase could be observed until higher
doses are reached. The strength of the direct response becomes independent at
doses greater than 25 pM TGFβ. With increasing stimulus strength, the variabil-
ity of the first response is increased but at higher doses also the strength of the
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A B C

D E F

Fig. 11.4. Time-resolved analysis of TGFβ induced phenotypic responses for varying
TGFβ stimulus levels.

A - Average nuc/cyt ratio of values greater than the median within the first 4 h with
respect to varying concentrations of TGFβ.
B - Cumulative probability of the occurrences of a cell division event with respect to
varying concentrations of TGFβ.
C - Cumulative average distance moved (pxl) over the course of the experiment with
respect to varying concentrations of TGFβ. A pxl has the size of 1.6 µm.
D - Change of direction with respect to varying concentrations of TGFβ.
E - Moved distance in relation to direction of the movement with respect to varying
concentrations of TGFβ.
F - Density of cells over the course of the 24 h of the experiment with respect to varying
concentrations of TGFβ.

first response obtained to low doses could be detected.
At the single cell level, the picture is much more delicate and complex. Again
variability in the signalling dynamics induced by a fixed stimuli (Fig. 11.2) could
be observed. The strength and the variability of the initial response is positively
correlated with the stimulus strength. Also the responsiveness itself is connected
to the stimulus strength, as at low doses, only a small fraction of cells shows a
direct response. The number of the responding cells increases with the strength
of the stimulation. Additional later translocation events occur as well more often
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at higher TGFβ doses and are mostly absent at low stimulus concentrations. At
all doses one can observe outliers, that behave beyond the expectations as shown
in Fig. 11.2 for the 1 pM condition.
How is the extracellular concentration of the ligand TGFβ connected to the phe-
notypic responses? From the microscopy data several phenotypic features like cell
division events, quantity and quality of the cellular motility or the local cell den-
sity could be quantified. While looking at the motility, special attention was paid
onto how directed cells move by investigating the distribution of speed and direc-
tion change [141]. The cellular density was estimated with respect to all segmented
cells in each frame of the time series of microscopy images. In Fig. 6.5 the density
estimates are shown for cells identified in a microscopy image. The methods to
identify cell division events and estimate the local density and the motility are
described in detail in chapter 6.
Only a minor correlation between the TGFβ dose and the phenotypic readouts
could be observed. Roughly, unstimulated and cells exposed to low extracellular
doses of ligand divide a little more frequent, move a little slower and less directed
and grow to a denser population (Fig. 11.4 (B-F)).
The central observation is that signalling dynamics upon different stimulation
doses overlap among different conditions. So that trajectories with similar dy-
namical patterns could be found in populations stimulated with different doses
of the ligand. If dynamical similarities could be quantified it should be possible
to sort cells according to their dynamic response independent from the condition.
This might give an alternative view to quantify and understand the observed
heterogeneity in the response dynamics given a fixed TGFβ stimulation dose.
Based on these findings the conclusion is that the strength of the TGFβ stimu-
lus determines only partially the dynamical response and the phenotypic outcome.

11.2 Signalling classes decompose the heterogeneous
SMAD pathway activity into distinct dynamics

Signalling dynamics upon different stimulation doses overlap among different con-
ditions so that the strength of the TGFβ stimulus determines only partially the
phenotypic response. This raises the question, whether the observed dynamics
of SMAD2 translocation predict the phenotypic responses more precise than the
extracellular concentration of the ligand. To test this hypothesis, the similarity
among SMAD dynamics needs to be quantified. To describe the whole population
of cells quantitatively the similarity estimate could be used to identify classes of
signalling dynamics. This gives the opportunity to link signalling dynamics inde-
pendent of the stimulus strength to phenotypic characteristics.
To shed light on this question, the constrained dynamic time warping (cDTW)
approach, introduced in section 7.2 is employed. With cDTW, it is possible to
compare SMAD dynamics across multiple stimulation regimes. cDTW is adjusted
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A B

Fig. 11.5. SMAD2 dynamics induced by varying TGFβ can be classified based on
pairwise cDTW dissimilarity estimates

A – To determine a good choice for the number of clusters the Jump method can be
used. For different cluster numbers, the jump size is calculated using sum of square
errors as a measure of intra cluster dispersion. Jump size reaches maxima at 3 and 6
clusters.
B - Heatmap of single cell time courses sorted according to hierarchical clustering. The
corresponding dendrogram is shown on top. The colour code is linked to the individual
clusters (red - cluster 1, red - cluster 2, cyan - cluster 3, purple - cluster 3, green - cluster
4, yellow - cluster 5, blue - cluster 6).

to biologically relevant boundaries. The concept of comparing signalling dynamics
utilizing cDTW assumes that temporal shifts and stretches of dynamical signalling
patterns found in the trajectories have to be compensated. The classification of
single cell trajectories relies on the calculation of a dissimilarity matrix (Fig.
11.6 (C)) that contains all the pairwise cDTW dissimilarity measurements among
nuc/cyt ratio trajectories for the cells (Fig. 11.3 (A-F)) stimulated with different
extracellular concentration of TGFβ.
Using the pairwise cDTW similarity measurements hierarchical clustering based
on the ’Ward’ method [354] was applied as described in section 8.1. The resulting
dendrogram, together with the accordingly sorted heatmap of the data, is shown in
Fig. 11.5. Six signalling response clusters could be identified. The six clusters can
be characterizing roughly by three features. Cluster 1 contains cells that show no
or only a minimal response, Cluster 2 and 3 cells are characterized by a transient
response and cells from cluster 3, 4 and 5 exhibit sustained signalling dynamics.
The number of the clusters is assigned according to the sorted value of the average
cumulative nuc/cyt SMAD2 ratio. Clusters that show similar characteristics differ
in length and level of the initial and late response phase.
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Fig. 11.6. Cells that share the same signalling classes are more similar than cells
stimulated with the same concentration of TGFβ

A and B - Silhouette plots of cells sorted according to TGFβ concentration (B) or
cluster(C) provide a graphical representation of the classification based on the cDTW
similarity score. Positive silhouette scores indicate that SMAD2 responses are more sim-
ilar to the own group, while negative scores signify that the corresponding trajectory is
closer to any of the other groups. In general, signalling classes provide better classifica-
tion than sorting to the level of stimulus.
C - Dissimilarity matrix calculated pairwise by cDTW of single cell trajectories treated
with varying TGFβ doses. The matrix is sorted with according to dendrogram shown
in Fig. 11.5 (B).
D - Distributions of signalling classes depending on TGFβ dose.
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A B C 

D E F 

Fig. 11.7. SMAD dynamics observed after stimulation with varying doses of TGFβ
decompose into distinct signalling classes.

A-F - Individual cells were clustered into six signalling classes according to their time-
resolved nuc/cyt SMAD2 ratio using cDTW. Each line represents the median over all
cells of the indicated cluster. Cells stimulated with varying TGFβ concentrations as
indicated in the previous figure were included in the analysis. The shaded are represents
the 25% to 75% quantile range. (Total – 2065 cells, Cluster 1 - 946 cells, Cluster 2 -
340 cells, Cluster 3 - 200 cells, Cluster 4 - 278 cells, Cluster 5 - 218 cells, Cluster 6 - 83
cells).

It could be shown, with respect to the cDTW scores, that the partitioning of
the data into the six signalling classes groups the observed dynamics better than
the strength of the applied TGFβ stimulus by the calculation of the silhouette
coefficients (Fig. 11.6 A,B). The silhouette coefficient [287] indicates how similar
an object is to objects of its own cluster compared to objects from other clusters.
The value of the coefficient ranges from minus 1 to 1. The closer the value is to
1 the more similar the element is to the other elements of its own cluster, while
lower values indicate the opposite. The silhouette coefficients provide a visual op-
portunity to inspect the quality of the clustering. The silhouette coefficients were
estimated on the pairwise cDTW similarity measurements.
The decision for six clusters was based on the results of the ’jump method’ (8.2),
that is based on measuring the average distance, per dimension, between each
observation and its closest cluster center [327]. The results (Fig. 11.5 (A)) of
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Fig. 11.8. Relation of the identified classes of signalling dynamics and phenotypic
responses.

A - Average nuc/cyt ratio of values greater than the median within the first 4 h with
respect to the six signalling classes.
B - Cumulative probability of the occurrence of a cell division event with respect to the
six signalling classes.
C - Cumulative average distance moved (pxl) over the course of the experiment with
respect to the six signalling classes.
D - Change of direction with respect to the six signalling classes.
E - Movement distance in relation to direction of the movements with respect to the six
signalling classes.
F - Density of cells over the course of the 24 h of the experiment with respect to the six
signalling classes.

the ’jump’ method suggested a classification either into three or six clusters. Six
clusters were chosen, to gain a more precise picture of the underlying signalling
dynamics of interest. Three clusters would have split the dynamics into the sig-
nalling classes non-, transient- and sustained-responders.
In Fig. 11.7 (A-F) the median time courses, together with the inter-quantile
range, of the identified response classes of signalling dynamics are shown. The
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estimated signalling classes exhibit distinct dynamic patterns. With increasing
level of the extracellular ligand the distribution of the signalling classes shifts
from non-responders to more transient and at higher doses primary towards sus-
tained dynamics.
The clusters represent signalling classes that are not evenly distributed over the
different conditions (Fig. 11.6 (D)). Hence, observed pathway activity dynamics
form a continuum of patterns, where the transition from one cluster to another
cluster is smooth. For example, cluster 2 and 4 differ mainly in the level of the
plateau after the initial response. While the nuc/cyt SMAD2 ratio of cluster 4
cells remains elevated it returns to basal levels in cluster 2 cells. The overlap of
inter-quantile ranges obtained for the clusters is much lower than obtained for the
conditions. Also the signalling dynamics are much more distinct compared to the
conditions. For example, the cluster 3 allows the conclusion that a very strong
first response leads to no sustained later dynamics.
When comparing the phenotypic readouts (Fig. 11.8) according to the signalling
classes with results for the conditions (Fig. 11.4), the relation of the phenotypic
features and the signalling classes does not produce a clearer result. Minor trends
in motility could be observed so that cells from lower cluster id move a little less
and a little less directed, but no direct effects on proliferation (Fig. 11.3 (B-F))
could be observed. That confirms the finding that the stimulation dose of TGFβ
does not have a strong impact on the studied phenotypic responses. Neither the
strength of the stimulus nor the observed dynamics trigger the outcome.
It’s not surprising that greatest difference is observed on the level of the dynamics.
For example the strength of the direct response (Fig. 11.8 (A)). The distribution
for non-responders from cluster 1 does overlap less than the same readout for
untreated cells and cells treated with low doses of TGFβ.
The initial question, if dynamics dictate the phenotypic response, remains unclear.
Maybe because the time window of 24 h studied was too short to observe a change
in the phenotypic characteristics or other factors like the state of the cell play a
role. The fraction of cells that were assigned to signalling classes is correlated to
the dose of TGFβ applied. The distribution of the signalling classes according to a
fixed stimulus mirrors the observed heterogeneity. The signalling classes describe
the spectrum of dynamics within the studied population.

11.3 SMAD dynamics can be decomposed into
fundamental sub-patterns

While analysing single cell trajectories, one is in general interested in the occur-
rence and characteristics of certain temporal dynamic features like pulses. These
patterns can differ in their length and amplitude but do exhibit a similarity in
the shape. What kind of features are expected to occur in nuc/cyt SMAD2 ratio
time series, that are connected to TGFβ signalling dynamics?
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The SMAD2 dynamics are mostly composed of an initial first response and later
responses that are characterized either by stochastic fluctuations or an elevated
sustained plateaus of vary length. As SMAD2 dynamics do not exhibit uniquely
shaped repetitive patterns, the point of view is changed to a global perspective,
that incorporates the whole length of the trajectories. The resulting of features
will be called fundamental components in the following. A feature or fundamental
component is from this point of view a trajectory, that contributes to a certain
degree to a distinct time series. A linear combination of these fundamental com-
ponents will be able to reproduce the whole original time series with only a small
error. To this end, the framework introduced in section 10.2 will be applied. To
study the signalling dynamics of a whole population of cells fundamental compo-
nents will be identified in the time series in a supervised fashion. The fundamental
components give a reduction in the data dimensionality and grand an alternative
view on the observed signalling dynamics.
The supervised fundamental component framework will be applied on the same
TGFβ titration dataset D of SMAD2 dynamics used in the previous section. Ini-
tially seven patterns or components C were constructed, based on the experience
gained while working with single cell SMAD2 signalling dynamics (Fig. 11.9). The
initial artificial components characterize different distinct features, that are ex-
pected to describe the observed dynamics in the data well. For example, the first
initial artificial component characterizes the direct response, the second a long
sustained response after the initial pulse, the third an influx of SMAD2 into the
nucleus in the last 10 h, the forth an elevated level of SMAD in the middle of the
experimental course and so on. With the initial hand-made components not even
30 % of the titration dataset could be reproduced. The initial components C were
fitted iteratively so that, the difference D−((C \D′)′∗C ′) is minimized, where the
operator \ used solves the linear equation Cx = D. After the fitting the yielded
fundamental components finally reproduce more than 99 % of the experimental
data. The fitted fundamental components are shown in Fig. 11.10 (A).
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Fig. 11.10. Fundamental temporal components quantify the observed SMAD2 dynam-
ics

A - Fitted fundamental temporal components of the titration data set.
B - Proportion of the first component to the total observed ratio within each of the
distinct sub-population of cells. At the bottom, with respect to varying concentrations
of TGFβ. At the top, with respect to the classification. The proportion is determined
much more if one looks at the signalling classes.
C - Portion of the other components to the total observed ration within the sub-
population of cells with respect to varying concentrations of TGFβ.
D - Portion of the other components to the total observed ration within the sub-
population of cells with respect to the classification. The different components have
a more distinct influence on the clusters than on the conditions.

In Fig. 11.10 the portion each of the fundamental components contributes on av-
erage to the cells treated with a certain level of ligand or to cells that belong
to one of the distinct signalling classes is shown. How much each fundamental
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Fig. 11.11. Distribution of loadings of the fundamental components obtained for single
cell trajectories with respect to condition or signalling class.

A - The distribution of the component loading with respect to the condition. The
heterogeneity rises with increasing stimulation strength.
B - The loading of the components with respect to the signalling classes. The range of the
weights is greater within the components of a cluster than compared to the conditions.

component contributes to a trajectory is encoded in the loadings of each of the
components. Not surprisingly, the distributions of loadings of the different fun-
damental components are more heterogeneous among the signalling classes than
among cells that came from different conditions. This could be expected because
the classification of signalling dynamics as well as the fundamental components
aim to emphasize distinct dynamics within the time series.
For the first component we see the clearest trend. In the range from 0 pM to 25
pM the higher the dose the more the first component contributes to the observed
dynamics (Fig. 11.10 (B)). The trend observed for the conditions, is due to the
changing mixture of cells from signalling classes in the different conditions. At
the level of signalling classes four average levels of weights with a greater spread
(Fig. 11.10 (C)) could be found for the first component. In cluster two, three and
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six the first component contributes equally to the dynamics. The second compo-
nents, that is responsible for the late sustained response, contributes mostly to
cells from the sixth cluster. Else the second components act as counterpart to the
third component that plays mainly the role in the late plateau level (prominent in
the 5 pM TGFβ condition and in cells from cluster two) or the two components
work synergistically as for 100pM or cluster six. The other components contribute
mainly to the length and shape of the late response phase.
While investigating the loadings with respect to the conditions or clusters clear
trends in their weights could be quantified (Fig. 11.11 ). The clusters differ in
general to a greater extend in their setup of the loadings associated to the funda-
mental component that shape to the signalling dynamics.
The fundamental components give a new tool to access how dynamics are com-
posed and generated by simpler dynamics underneath. As a prove of concept it
was shown in section 10.2, that the subset of the cells stimulated with 100 pM
TGFβ was sufficient to create a fit that explains around 97 % of the complete
titration dataset. The loadings that determine this contribution can be used to
map new data sets onto the six identified signalling classes. This feature will be
used in the following sections. This mapping can be done with the freedom of
allocating new data with different temporal resolution or different length onto
an existing classification. It is only necessary to have an overlapping window of
measurements within the data acquisition.

11.4 Dynamics of SMAD signalling drive phenotypic
cellular features with temporal delay

Are the effects of TGFβ signalling on proliferation and motility more prominent
at later time points compared to the previously studied 24 h dataset? Does the cell
cycle state or the local cell density influence the dynamics observed? The second
question also addresses two potential sources of heterogeneity in signalling dynam-
ics: the cell cycle and state local density [204, 314]. To this end, two additional
microscopy experiments are included in this study. A 60 h long experiment with a
resolution of 15 minutes and the stimulus set at the beginning of the experiment
and an experiment of 36 h length with a temporal resolution of 10 minutes where
the stimulus was set after the first 24 h have passed.
The results of the supervised learning method from the previous section are used
to map the six signalling classes identified so far onto the new data. This approach
uses the dynamics that made up a response to map a given classification onto new
data based on overlapping observation times.
In the previous section, the concept of fundamental components was applied to
reduce the dimensionality of the data. Now the previously identified signalling
classes are mapped onto the new datasets with the identified fundamental compo-
nents based on estimates of the corresponding loadings for each of the trajectories
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Fig. 11.12. Effect of TGFβ dynamics on the cellular motility enfolds at later time
points

A - Cells were imaged for 60 h with varying TGFβ concentrations (5935 cells, control
- 1442 cells, 1pM TGFβ 948 cells, 2.5pM TGFβ 776 cells, 5pM TGFβ 813 cells, 25pM
TGFβ 1024 cells, 100pM TGFβ 932 cells). The median and the 25% and 75% quantile
nuc/cyt SMAD2 ratios for the conditions are shown.
B - Mapping of SMAD2 trans-location dynamics of the cells in individual cells shown
in (A) to previously identified signalling classes (see Fig. 13.3). For each trajectory,
the most similar signalling class was determined using the loadings of the fundamental
temporal components. The median and the 25% and 75% quantile nuc/cyt SMAD2
ratios for resulting mapped sub-populations (Cluster 1 - 2493 cells, Cluster 2 - 875 cells,
Cluster 3 - 327 cells, Cluster 4 - 1579 cells, Cluster 5 - 460 cells, Cluster 6 - 201 cells)
are shown.
C, D - Change of direction with respect to different TGFβ doses for the first 30 hours
(C) and the hours 31 to 60 (D) of the experiment.
E, F - Change of direction with respect to the six signalling classes for the first 30 hours
(E) and the hours 31 to 60 (F) of the experiment.
G, H - Average movement in pxl according to the change of direction with respect to
different TGFβ doses for the first 30 hours (G) and the hours 31 to 60 (H) of the
experiment.
I, J - Average movement in pxl according to the change of direction with respect to
the six signalling classes for the first 30 hours (I) and the hours 31 to 60 (J) of the
experiment.
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Fig. 11.13. Connection of the SMAD2 dynamics to the cell cycle

A - Cells were imaged 24h before stimulation with varying TGFβ concentrations. The
effect on the SMAD2 dynamics was monitored for additional 12 h (3575 cells, control -
671 cells, 1 pM TGFβ1 - 282 cells, 2.5 pM TGFβ1 - 697 cells, 5 pM TGFβ1 - 602 cells,
25 pM TGFβ1 - 810 cells, 100 pM TGFβ1 - 513 cells). The median and the 25% and
75% quantile nuc/cyt SMAD2 ratios for the conditions are shown.
B - Mapping of SMAD2 trans-location dynamics of the cells in individual cells shown
in (A) to previously identified signalling classes (see Fig. 13.3). For each trajectory,
the most similar signalling class was determined using the loadings of the fundamental
components. The median and the 25% and 75% quantile nuc/cyt SMAD2 ratios for
resulting mapped sub-populations (cluster 1 - 1608 cells, cluster 2 - 435 cells, cluster 3
- 386 cells, cluster 4 - 589 cells, cluster 5 - 445 cells, cluster 6 - 112 cells) are shown.
C - Distributions of signalling classes shown in (B) in dependence to the applied TGFβ
dose for the cells shown in (A).
D - Cumulative probability of the occurrence of a cell division event with respect to
varying concentrations of TGFβ.
E - Cumulative probability of the occurrence of a cell division event with respect to the
six signalling classes.
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in the new datasets. The trajectories of the new dataset are mapped onto the
signalling class with the setup of loadings that reflects the loadings of the new
trajectory the most.
Special attention was paid to the different temporal resolutions among the exper-
iments. The length of the fundamental components identified in section 11.3 must
also be kept in mind. To adjust different temporal resolution levels spline inter-
polation was applied. For the 60 h dataset, only the first 24 h of the dataset were
used. For the 36 h dataset only the first 12 h from the fundamental components
were aligned to the last 12 h of the dataset.
The distribution of the signalling classes estimated for the new datasets with re-
spect to the applied stimulus does reproduce the distribution found in the initial
24 h titration dataset. This is shown for the 36 h dataset in Fig. 11.13 (C). To
avoid redundancy this is not shown for the 60 h experiment but the numbers are
given in the caption of Fig. 11.12.
In the 60 h long experiment the main interest was, if a stronger effect on the
motility at later time points could be detected. The results are shown in Fig.
11.12. As expected the effects on the motility were lower for the first 24 h af-

Fig. 11.14. Effect of the cell cycle and the local density before the stimulation

A - Time passed since the last cell division before stimulus for each signalling class.
Distributions are overlapping. There is no significant effect of cell division time is ob-
servable.
B - Cell density before stimulus for the signalling classes. Density scores represent a
weighted sum of all neighbouring cells within 640 µm distance. Distributions are over-
lapping. There is no significant effect of cell division time is observable.
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ter stimulation, than for the second half of the experiment. Over the whole time
course the motility drops, likely due to an increase in the local cell density. But,
a clear difference among cells treated with different doses or even stronger among
cells that were assigned to different signalling classes could be detected at later
time points. While investigating the dose effect on the motility a clear correlation
between how fast and how directed cells move could be detected. Cells stimulated
with low doses move less and more undirected at later time points compared to
cells from higher TGFβ doses. The picture is similar but simpler for the signalling
classes. Non-responders move slow and undirected while responders move faster
and directed. This changes the perspective on the dose dependence. Changes in
the motility correlated to the ligand dose are most likely connected to the decreas-
ing number of non-responders with increasing stimulus strength. The difference
among the signalling classes is less strong than the difference among the cells
with respect to the applied dose of TGFβ. Both transient and sustained SMAD
signalling classes have similar effects on the motility. For the late motility it is
sufficient to distinguish between responders and non-responders and the detailed
shape of the dynamics plays a less important role.
In the 36 hour dataset (11.13(A)), cells were monitored before and after the stim-
ulus to answer two questions. The impact of the cell division and the local cell
density on the observed signalling dynamics is studied in this dataset. The time
passed since the last division before the stimulus was used as estimate for the
cell cycle state. Cells that have divided shortly before the stimulus was set are
likely in G1. The cell cycle stage does not have any detectable influence on the
signalling dynamics 11.14 (A). No relation could be found between the time of
division before the stimulation and the mapping of the new trajectories onto the
six signalling classes (11.13(B,C)) . Neither the responsiveness nor the strength
of the response could be connected to the local cell density or the cell cycle state
before the stimulus is applied. The same is true for the local cell density. The local
cell density measures how crowded the neighbourhood of a cell is with other cells.
While investigating the impact of the local cell density onto the formation of the
signalling classes 11.14 (B) there could also no relation be detected. At least for
the signalling classes an effect on the proliferation could be found (11.13(D,E)).
Cells from the sixth cluster nearly stopped proliferating after the TGFβ stimula-
tion.
In general, the signalling classes give a better correlation to some of the pheno-
typic readouts compared to the TGFβ doses. Cellular behaviour is partially more
driven by the dynamics of the signalling than from the strength of the applied
stimulus. The signalling classes explain to some extend the heterogeneity in the
phenotypic responses to a fixed stimulus.



114 11 Cell-specific TGFβ signalling

Fig. 11.15. Sister cells analysis

Analysis of SMAD2 trans-location dynamics in sister cells. SMAD2 trans-location dy-
namics in sister cells after division and unrelated cell pairs with the same nuc/cyt
SMAD2 ratio were compared using cDTW. Resulting similarity scores were aligned
in time and compared to those from randomly selected cell pairs. Effect size (solid
lines) and 95% confidence intervals (shaded areas) were estimated by bootstrapping.
The analysis shows that recently divided cells are more similar than control cell pairs
and remain correlated over time, indicating that heterogeneity arise from differences in
cellular state.

11.5 Dynamics of SMAD signalling are determined by the
state of the individual cell

How is the information encoded in the TGFβ dose processed by a cell, so that
a population of cells build-up by different fractions of entities from the distinct
signalling classes is generated? As potential sources of heterogeneity the cell cycle
state, local density and variable cellular protein composition were identified in
previous studies[204, 314] . The analysis of the 36 h dataset showed that the cell
cycle state before the stimulus as well as the local density could not be correlated
with the assignment of trajectories to the signalling classes (Fig. 11.14 and 11.13).
Neither the cell cycle state nor the local density can predict the signalling class
or fate of a cell.
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One remaining origin of the heterogeneity observed is the internal protein com-
position of the cell. This aspect cannot be studied directly from the phenotypic
read-outs of the data. The use of sister cell analysis has proven to be a helpful tool
to analyse characteristics of signalling pathways [112, 319, 293]. The assumption is
that sister cells are more similar in their molecular setup than a randomly picked
pair of cells. Hence, to investigate the influence of the variable protein composi-
tion of cells, recently divided cells were compared with randomly picked cells. The
approach will show if the observed heterogeneity is due to stochastic fluctuations
or based on the internal state of the cell, defined by the cellular molecular setup.
Therefore, it could be assumed that heterogeneity is linked to the cellular state,
if it could be shown that the signalling dynamics of sister cells are more similar
over a longer period of time compared to dynamics of randomly selected cells.
To make the analysis more sustained in addition ‘artificial sister cells’ are intro-
duced. As ‘artificial sister cell’ cells, cells were labelled that coincidentally shared
the same nuc/cyt SMAD2 ratio at a certain time point (‘artificial divisions’).
These set was used to exclude that the observed effect for sister cells is not just
due to the same ratio at the moment of division.
To measure how sister cells, differ from ‘artificial sister cells’ and randomly picked
cells, again the DTW framework is applied. The similarity of SMAD2 dynamics
was estimated for a longer period of time after the cell division or a ‘artificial
divisions’ was obtained in the pair of cells analysed.
To compare the dynamics of sisters with other cells, data from 11 different ex-
perimental replicates of cells stimulated with 100 pM TGFβ was combined. In all
the experiments the cells were imaged for 24 h with a temporal resolution of 5
minutes. In total, an initial population of about 6000 cells was used, giving rise
to 13.000 cells after 24 h as the result of about 7000 recorded cell division events.
DTW was applied within a sliding window of 4 h length. By sliding the window
along the time axis a series of similarity measurements s was generated staring
from the time of division i by s(j − i+ 1) = dtw(t1(j : j + 48), t2(j : j + 48)) for
j = i : i+ n. By t1 and t2 a pair of sister cell trajectories is identified.
To answer the initial question, sisters and ‘artificial sisters’ were compared with
randomly selected cells from the non-sister sub population. Bootstrapping was
used to estimate the effect size and the corresponding confidence intervals. The
results are shown in Fig. 11.15. This method yields an estimate on the divergence
of sister cells in a time-dependent manner.
The results show much more correlated and similar response dynamics among
sister cells, while the similarity between the control ‘artificial sister cells’ drop
very fast within 4 h to levels undistinguishable from randomly picked cells. The
similarity between sisters decreases much slower for the first 6 h and remains
significantly elevated over the time period of 12 h that has been investigated by
shifting the sliding window. Similar temporal patterns were proposed in previous
studies [112, 319].
The results indicate that a primary source of heterogeneity of the signalling re-
sponse dynamic is linked to the cellular state and is not intrinsically unpredictable
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and stochastic. The cellular state drives the signalling dynamics to a certain de-
gree.

11.6 Negative feedback regulator SMAD7 knock-out
explains heterogenity partially

Sister cell analysis has shown that TGFβ signalling dynamics are driven by the
molecular setup of the cell. Hence, heterogeneity in SMAD signalling arises from
varying levels of signalling proteins. In cellular signalling pathways it is assumed
that dynamics are as well driven by the availability of the extracellular ligand
that undergoes steady decay and the activity of transcriptional negative feedback
loops [326]. To investigate how the negative feedback loop modulates the signalling
dynamics, the effect of SMAD7 gene knock-out is studied. SMAD7 is considered
to be one of the main feedback regulators of TGFβ-induced signalling and acts
at the level of TGFβ receptors [239]. The analysis of the impact of the SMAD7
knock-out can confirm the hypothesis that variable cellular protein composition
is the main source of heterogeneity detected in the analysed data of TGFβ sig-
nalling dynamics. Will there be a shift in the signalling dynamics, if the negative
feedback in the reporter cell system is turned off?
The hypothesis was tested in SMAD2 reporter cells using Cas9-mediated gene
knock-out of the prominent feedback regulator of the TGFβ pathway SMAD7.
With these cell line, the initial titration experiment was repeated for the parental
and the SMAD7 knock-out. The results are shown in Fig. 11.16 and Fig. 11.17.
The dynamics of the parental cell line (Fig. 11.16 (A)) differ to some extend
from the previously used titration dataset. Using the fundamental components,
the signalling classes have been mapped onto the datasets introduced in this sec-
tion as in section 11.4. The distribution off the signalling classes estimated in the
dataset of the parental cell line (Fig. 11.17 (A)) does not to a full extent repro-
duce what was initially found (Fig. 11.6 (D)). But the trend of the fraction of
the distinct signalling classes with respect to the stimulation strength could be
repeated. The titration data of the knock-out cell line exhibits on the population
level a stronger signalling (Fig. 11.16 (B)). Especially if the level of the sustained
late response is compared with what was obtained in the cells there SMAD7 is
normally expressed. If the mapping of the signalling classes onto the parental and
the SMAD7 knock-out is compared the distribution of the signalling classes, with
respect to the dose of the ligand, was shifted. With the decreasing strength of the
negative feedback the signalling class composition within the population shifts
toward those classes that exhibit a higher responsiveness, stronger signalling and
towards more sustained dynamics line (Fig. 11.17 (B)). While transient signalling
could still be observed, the existence of additional negative feedback loops can
be assumed due to the presence of redundant transcriptional feedback regulators
in TGFβ signalling [357]. Hence, negative feedback within the TGFβ signalling



11.6 Negative feedback regulator SMAD7 knock-out explains heterogenity partially 117

Fig. 11.16. Negative feedback triggered by SMAD7 influence the signalling dynamics.

A - Median nuc/cyt SMAD2 ratio of parental cells of the SMAD7 knock-out cell line
stimulated with the indicated concentrations of TGFβ (3571 cells, control - 266 cells,
1 pM - 743 cells, 2.5 pM - 655 cells, 5 pM - 568 cells, 25 pM - 686 cells, 100 pM - 653
cells).
B - The parental cells of the SMAD7 knock-out cell shown in (A) are mapped to the
signalling classes using the fundamental temporal components. (cluster 1 - 1803 cells,
cluster 2 - 524 cells, cluster 3 - 133 cells, cluster 4 - 676 cells, cluster 5 - 300 cells,
cluster 6 - 135 cells).
C - Median nuc/cyt SMAD2 ratio of the SMAD7 knock-out cell line stimulated with
the indicated concentrations of TGFβ (3998 cells, control - 475 cells, 1 pM - 670 cells,
2.5 pM - 821 cells, 5 pM - 614 cells, 25 pM - 771 cells, 100 pM - 647 cells).
D - Distribution of signalling classes in SMAD7 knock-out cells (cluster 1 - 1520 cells,
cluster 2 - 796 cells, cluster 3 - 357 cells, cluster 4 - 505 cells, cluster 5 - 630 cells,
cluster 6 - 190 cells).
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Fig. 11.17. Negative feedback triggered by SMAD7 shifts composition of signalling
classes and is a cause for the heterogeneity observed.

A - Proportion of signalling classes among the different conditions in parental cell line
of the SMAD7 knock-out cells.
B - Distribution of the loadings of the fundamental temporal components for cells from
the parental cell line for 100 pM.
C - Proportion of signalling classes among the different conditions of the SMAD7 knock-
out cells.
D - Distribution of the loadings of the fundamental temporal components for cells from
the SMAD7 knock out for 100 pM. The SMAD7 knock-out cells differ significantly in
the proportion that the 5th component. The 5th component contributes to the late
sustained late response.

pathway is not only carried out by SMAD7.
Also it was compared how the loadings of the fundamental components within a
population of cells stimulated with the dose changes due to the SMAD7 knock
out. The dynamics observed in SMAD7 wild type and the SMAD7 knock out cells
are altered predominantly in the 5th component. The 5th component contributes
notably to the sustained response. Surprisingly, the loadings of the other funda-
mental components are only affected weakly. This is shown in Fig. 11.17 (C,D)
for the stimulation with a dose of 100 pM TGFβ.
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The CRISPR/Cas9-mediated knock-out of SMAD7 indicates that a major part
of the observed heterogeneity, can be attributed to fluctuations in feedback pro-
teins. The SMAD7 knock-out specifically affected the signal duration and shifts
the observed dynamics towards more sustained signalling. The findings confirm
our hypothesis that cell-to-cell variability in signalling protein concentrations is
the main source of the observed heterogeneity in the signalling dynamics.





Part V

P53 dynamics are sensitive to changes in
temperature
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Temperature modulates p53 dynamics upon
genotoxic stress

Time-lapse microscopy is used to monitor p53 and p21 in a live-cell reporter
system introduced in section 4.1. The live-cell reporter system expresses fusion
proteins of p53 and p21 with fluorescent proteins from endogenous gene loci [304],
over time in individual cells.
All the single cell data presented in this chapter was acquired by Petra Snyder at
the TU Darmstadt.

12.1 Reduction of variance among different experimental
replicates

A common problem when working with time-lapse microscopy data is bringing
together different experiments that were acquired on different microscopes, by
different experimentalists, on different days. Combining such diverse experiments
to analyse them quantitatively and qualitatively is a non-trivial task. The dis-
tributions of the fluorescence intensity measured differ even among identical ex-
perimental settings. The sources of the observed variability have multiple origins
ranging from biological sources such as different passage numbers of the cells
monitored to technical sources such as different light sources. As it is aimed to in-
vestigate the effects of varying environmental conditions, it is necessary to remove
the unwanted variability caused by other biological and technical sources. In this
section, a normalization method is proposed that reduces the inter-experimental
deviation by fitting a set of experiments to one reference experiment. The method
works similar to quantile normalization, a technique for making two distributions
identical in statistical properties. But, in contrast to quantile normalization the
measured distributions are mapped onto one reference distribution. The central
assumption of the normalization algorithm is trivial. If a subset of measurements
is given for all experiments with identical experimental settings, it can be assumed
that they all have a similar distribution of the measurement. In this scenario, the
observed deviations of the measurements can be directly linked to sources not
related to the biological heterogeneity. Therefore, the heterogeneity observed is
directly linked to non-biological variation in the data acquisition procedure.
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Fig. 12.1. Normalization with respect to identical experimental settings at a certain
time point

A - Median trajectories of the nuclear p53 level for cells growing at different tempera-
tures. The temperature was changed at the beginning of the experiment. The change
in the temperature was roughly 1◦C per hour. Each temperature setting was performed
in a distinct experiment. From this setting one could expect that all measures at the
beginning of the experiment should be equally distributed. Hence, the differences among
the measures at the first time point are experimental noise. It can be observed, espe-
cially for 33◦C, 35◦C and 37◦C, that the initial error propagates thought the whole time
course of the experiment.
B - Median trajectories of the normalized cells shown in panel A. The normalization is
done with respect to the first time point of the experiments.
C-F - Distribution of the p53 fluorescence measures at different time points (1h, 4h 8h
and 24h). We cannot exclude that the source of the heterogeneity, observed among the
different experiments, is connected to the experimental effects. Therefore, it cannot be
concluded that the different p53 levels originate from biological sources modulated by
temperature.
G-J - After normalization with respect to the first time point of measurement it can
be expected that the experimental technical error effects are removed from the observa-
tions. The normalization removes a large proportion of the detected differences in the
level of p53 among the different experiments.

In the setup of this study, at the beginning of each experiment the nuclear p53
level is measured in identically treated cells. At the first time point there will al-
ways be non-irradiated cells incubated at 37◦C. The differences detected among ex-
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periments should therefore only be to a minor extent related to biological sources.
In the example, presented in this section, an equal number cells in different ex-
periments is assumed. This simplification will not hold in the scenarios faced in
the real world. Hence, usually the procedure requires additional interpolation or
extrapolation steps. Interpolation or extrapolation is done using splines.

Example of normalization procedure:
Let Eijk be a measurement in a set of experiments, for the ith experiment, at
the jth time point and for the kth cell. All experiments have the same experi-
mental biological setup at first time point j = 1. The xth experiment is set as
the reference. The aim is to fit another experiment y onto x so that the effect
of non-biological error sources is reduced. The integral part of the method is the
initial estimation of coefficients of different weight. The calculation starts with
computing the coefficient by weight = sort(Ex,1,:)./sort(Ey,1,:). These weights are
used in in the further steps to fit the experiment y onto x by applying the coeffi-
cient to each distinct time point.
The pseudocode of the method is shown in the text field below.

weight = sort(Ex,1,:)./sort(Ey,1,:)
for k = 1 : NrOftimePoints

[iF jF ] = sort(E(y, k, :))
% iF sorted values and jF the corresponding order so that
% Ey,k,: equals iFjF

tmp = weight. ∗ iF
fittedExp(k, :) = tmp(jF )

% the order jF is used to reorder tmp so that the mapping of
% remains identical between the original and the normalized data

end

The idea is that the non-biological error is constant over the whole time curse
of the experiment. Therefore, this error can be estimated at the first time point
where all cells from the different experiments have received the same treatment.
The differences observed do not originate from biological sources. In Fig. 12.1
results computed by the proposed method are shown. In the example shown five
different experiments are given. At the beginning of all different experiments the
cells face the same experimental condition. After the start the temperature was
set to different temperatures in the range from 35◦C to 41◦C. While studding the
raw data (In Fig. 12.1 (A,C-F)) a huge difference among the different experiments
could be detected. The difference is already strong at the first time point (Fig.
12.1(C)). Hence the differences in the measurements at the first time point cannot
be related to the any biological difference in the experimental setup. Therefore,
it is not clear to which extent the later differences are related to the different
treatment. After we applied the proposed normalization method the heterogene-
ity among different experiments is reduced drastically (In Fig. 12.1 (A,C-F)).
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After the non-biological effects were removed only cells treated with 41◦C differ
significant from the other conditions. The temporal dynamics and differences en-
coded in the strength of the response are conserved after normalization among
the different experimental. This method ensures that, one can directly compare
normalized measures of the p53 level within the analysed cell populations among
diverse experimental settings monitored in different experiments.

12.2 P53 dynamics upon genotoxic stress are temperature
sensitive

To investigate, if temperature has an impact on p53 signalling dynamics, we equi-
librated cells to temperature in the range from 33◦C to 41◦C and monitored the
p53 dynamics on the single cell level for 24 h at for non-irradiated and irradiated
cells by time-resolved live-cell microscopy (Fig.12.2 (A-E)). The irradiation dose
was set to 10Gy X-ray (250kV). The data acquired in the different experiment
where normalized by the method presented in the previous section.
In untreated cells no differences were detected in p53 dynamics among cells equi-
librated at temperatures below and at normotherm 37◦C. With increasing tem-
perature, one could observe an effect on the p53 dynamics, even in the absence
of DNA damage induced by radiation. At 39◦C a minor increase in the p53 level
could be detected. Surprisingly at 41◦C p53 accumulates significantly. Within the
first 6 h of the experiments the nuclear p53 level increases constantly and remains
elevated for the complete time course of the experiment (Fig. 12.2 (E)). On aver-
age the p53 level accumulates in non-irradiated cells at 41◦C to around 60 % of
the first observed canonical pulse, detected as response to radiation at 37◦C.
Cells irradiated with 10Gy exhibit a much more complex picture. Pulse dura-
tion and pulse frequency are correlated with temperature in the range from 33◦C
to 39◦C. The lower the temperature the slower pulses appear (Fig. 12.2 (A-D)).
Pulses were asynchronous and heterogeneous across the population equilibrated at
different temperatures. Therefore, pulses appear damped in the median p53 level
in the different cell populations irradiated and equilibrated between 33◦C to 39◦C.
At 41◦C a surprising non-canonical response as detected for the non-irradiated
cells was observed. Instead of pulsatile dynamics, a strong accumulation within
the first 6 hours was detected ensued by a slow decrease over the following hours
monitored in the experiment. The p53 accumulates much stronger than what had
been observed at other temperatures and reaches levels around 1.5 fold than the
average amplitude of the first pulse at 37◦C. After 24h the p53 level is similar in
irradiated and non-irradiated cells grown at 41◦C.
The result so far is challenging, especially at 41◦C, because even if the cells were

equilibrated to the temperature before the experiment was started, a direct tem-
perature response at the beginning of the experiments could be observed. This
could as well be observed in a strong increase in the heterogeneity, directly after
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A B C

D E

Fig. 12.2. p53 dynamics are modulated by temperature (all cells there normalized to
the 37◦C condition)

A-E - Cells pre-equilibrated were monitored for 24 h in a temperature range from 33◦C
(A) to 41◦C (E). The incubation chamber of the microscope had a temperature of 37◦C.
The temperature switch was initiated at the begin of the experiment inducing a gradual
temperature change over time. The cell population shown in blue was irradiated with
10 Gy at the begin of the experiment. Non-irradiated cells are shown in grey. Bold lines
indicate median p53 levels, shaded areas reflect the inter-quantile ranges from 0.25 to
0.75. To our surprise at 41◦C the canonical pulsatile p53 dynamics are replaced by a
sustained accumulation response. High temperature alone is sufficient to induce a p53
response even in the absence of radiation. The number of shown cells in the order of
the temperature was for non-irradiated 1214, 1759, 3820, 2436, 1139 and for irradiated
782, 1098, 2857, 1630, 1007.
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A B

C D

Fig. 12.3. p53 dynamics are modulated by temperature (all cells there normalized to
the 37◦C condition)

A - Coefficients of variation over time for control cell populations shown in 12.2(A-E).
At 41◦C a strong increase in the heterogeneity of the measurements could be detected.
B - Coefficients of variation over time for cell populations irradiated with 10Gy x-rays
shown in 12.2(A-E). At 41◦C a strong increase in the heterogeneity of the measurements
could be detected. At the other temperatures monitored the heterogeneity measured can
be linked to the asynchrony in radiation induced p53 pulsing.
C - p53 response of control and irradiated cell populations acutely shifted to 41◦C with-
out prior pre-equilibration. A stronger and in the dynamics slightly shifted p53 response
compared to cells pre-equilibrated at 41◦C 12.2(E) could be observed. Data shown for
721 non-irradiated and 994 irradiated cells.
D - Boxplot indicating the cumulative p53 level for the single cell trajectories. A minor
positive correlation in the temperature range from 33◦C to 39◦C could be detected. The
strongest effect is estimated for 41◦C, where a sustained response was obtained for con-
trol and irradiated cells. Surprisingly the most heterogeneous and on average strongest
response was observed for non-irradiated cells pre-equilibrated at 41◦C 12.2(C).
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the start of the experiment shown in Fig. 12.3 (A,B). This raises the question, why
does this direct response after the start of the experiment, even in pre-equilibrated
cells, occur.
Therefore, it was investigated how cells react to an acute temperature change
from 37◦C to 41◦C (Fig. 12.3 (C)). The p53 response observed while exposed to
a direct acute shift in temperature differs substantially from what was monitored
for cells that were pre-equilibrated. In general, the response was much stronger
compared to cells pre-equilibrated. In non-irradiated cells p53 accumulates during
the first 8 h and decreases afterwards slowly. The p53 level reached is on average
much higher than what had been observed in pre-equilibrated cells. Radiation in
combination with acute temperature shift induced an even stronger immediate
response. p53 accumulates fast, within the first 4 h, to levels twice of what have
been quantified in cells pre-equilibrated. Interestingly, this accumulation is less
long-lasting then in the non-irradiated 41◦C experiment. After 10 h the p53 level
is on average only half of the average amplitude of the direct response and after
24 h a fraction of cells has again reached the initial p53 level. Another interesting
observation made in the acute temperature shift experiment is, that the average
response of non-irradiated cells is stronger than the response of irradiated after
around 8 h where the average amplitude of the non-irradiated cells reaches its
maximum. While the p53 decrease slower in non-irradiated cells than in irradi-
ated cells, the average p53 level of non-irradiated cells remains higher than in
irradiated cells for the rest of the experiment. Due to this observations, it can be
assumed that the pre-equilibration reduces the sensitivity of the p53 dynamics to
temperature changes.
To access the variability over time within each of the datasets the coefficient of
variation (CV) (Fig. 12.3 (A,B)) was estimated. In non-irradiated cells a similar
low level in the temperature range from 33◦C to 39◦C could be observed. The
CV increases drastically at 41◦C were the fast increase in the first 6 h to levels
4-fold of the other conditions was obtained and remained elevated for the whole
course of the experiment. For irradiated cells in the range from 33◦C to 39◦C dif-
ferences in the CV related to the induced p53 pulsing where detected. At higher
temperatures the pulsing is faster and stronger and at lower slower and weaker as
quantified in the temporal dynamics of the CV measurement, especially for the
first pulse. At 41◦C a faster and longer increase as for non-irradiated cells at the
same temperature can be found. In contrast to the non-irradiated cells the CV
starts to decrease after around 10 h. The induced sustained p53 response at 41◦C
has a drastic impact on the observed variability.
To complete the initial analysis, the integrated nuclear p53 level over the whole
time course of the experiment (Fig. 12.3 (D)) was compared. In the temperature
range from 33◦C to 39◦C the cumulative p53 level remains constant. The median
integrated p53 levels of non-irradiated 41◦C pre-equilibrated cells were similar to
what we observed for damaged cells at lower temperature, but with wider dis-
tribution across the population. Irradiated cells at 41◦C exhibit a substantially
higher accumulated p53 level. Between pre-equilibrated and acute shift to 41◦C
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the accumulated response is comparable even if the dynamics are different. Sur-
prisingly the accumulated level of non-irradiated cells is on average the strongest
and exhibits the strongest heterogeneity.
The differences between cells pre-equilibrated at or directly exposed to 41◦C point
to a decreased sensitivity to hyperthermia of pre-equilibrated cells. The question,
why a response in pre-equilibrated cells could be detected remains open. It might
be that the short time frame necessary for the transfer from the incubator to the
microscope cools down the cells and that the short temperature reduction stops
ongoing p53 responses. This will be investigated this in the following sections in
detail.

12.3 Hyperthermia has a direct effect on the p53 response

In this section, p53 dynamics are analysed in more detail to get a better under-
standing of the temperature dependence of p53 signalling dynamics induced by
DNA damage at the single cell level. To change perspective, the auto-correlation
between p53 levels in the population at two different time points (Fig. 12.4) was
determined. Repetitive patterns in the temperature range from 33◦C or 39◦C could
be detected as lines, areas of increased auto-correlation in (Fig. 12.4), parallel to
the main diagonal. At 41◦C the picture changed completely. Any kind of repeti-
tiveness vanishes completely and is replaced by a sustained accumulation pf p53.
At 41◦C the level of p53 accumulation is correlated over a longer time period.
This indicates that a strong immediate response lead to a strong p53 level at later
time points and vice versa. Hence, the p53 level remains relatively stable after the
initial increase at 41◦C. In the range between 33◦C and 39◦C the pulsing frequency
is positively correlated with temperature. In addition, it could be observed that
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Fig. 12.4. Auto-correlation

A-E - Auto-correlation among cells irradiated with 10 Gy at the indicated temperatures.
Each point in this graph represents the correlation coefficient between p53 levels in
the population at indicated time points. Repetitive pulses could be detected in the
temperature range from 33◦C to 39◦C. The pulsatile dynamical patterns vanish at 41◦C
and are replaced by a long monotone response.
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Fig. 12.5. Estimation of the pitch detection using the average magnitude difference
function

A-C - The distribution of the first three peak positions estimated using the average
magnitude difference function for cells irradiated with 10 Gy over a temperature range
33◦C to 39◦C. Red lines indicate medians of distributions, boxes include data between
the 25th and 75th percentiles, whiskers extend to maximum values within 1.5 times
the interquartile range. Cells pulse slower the lower the temperature at 33◦C to 35◦C
compared to cells at 37◦C or 39◦C. The pulsing frequency at 37◦C and 39◦C is similar.
D - The inter-peak interval estimated for cells irradiated with 10 Gy over a temperature
range 33◦C to 39◦C based on the first five detected pitches. The inter-peak interval gets
longer with reduced temperature while the range of the distribution gets wider with
increasing temperature.

the parallel lines get much more distinct at later time points of the experimental
course. At 39◦C the lines parallel to the main diagonal spread out and the valleys
between the lines become less clear shaped. This indicates that the pulsing fre-
quency is more heterogeneous at 39◦C.
To estimate the pitch of p53 pulses the Average Magnitude Difference Function
(AMDF) proposed by Ross at al. in 1974 [285] was applied. AMDF is the com-
monly used method for pitch detection. Window lengths between 4.5h - 7h were
used and a pitch period lower bound of 2h was assumed. For robustness the dif-
ferent pitch positions for the different window sizes were integrated. The mean
over all window sizes was used as estimate for a certain pitch position.
The pitch positions for the first 3 pulses differed among the cell populations from
33◦C to 39◦C (Fig. 12.5 (A-C)). 41◦C data was excluded due to the fact that no
pulsing is expect. The difference of the normotherm population to cells equili-
brated at lower temperatures is much stronger than the difference to the 39◦C cell
population. The colder the temperature the slower the pulsing. Pulsing at 39◦C
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Fig. 12.6. Dynamic of p53 pulses is modulated by temperature

A-E - Visualization of the detected features upon damage induction for the temperature
range from 33◦C to 41◦C. The different pulses are shown in different colour as indicated
next to (E). The legend at the right side refers to which colour corresponds to the
temporal order of the detected features. The white lines indicate the average end of the
pulses at 37◦C.

is only slightly faster than at 37◦C. From a broader perspective the inter-pitch
intervals (Fig. 12.5 (D)) were calculated. The inter-pitch intervals confirm the
previous findings. Pulsing frequency is positively correlated with the temperature
in the temperatures below 41◦C and accompanied by an increase in the variability
of the pitch position with increasing temperature.
The two methods applied at the begin of this section aim to find repetitive pat-
terns by using the concept of auto-correlation. In the rest of this section will focus
on the well described DNA damage induced canonical p53 pulses. The p53 pulses
are essential in the encoding and processing of the DNA damage information in
the DDR signalling network [180, 275]. The framework based on local DTW in-
troduced in section 9 will be applied to detect and characterize the pulsing with
respect to the temperature applied. This approach will gain deeper insight on the
p53 dynamics and how temperature modulates the p53 DDR. Does temperature
alter characteristics of the p53 pulses?
The local DTW feature detection method was applied to the dataset and the
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Fig. 12.7. Dynamic of p53 pulses is modulated by temperature

A - Power (integrated p53 level) for the first 3 pulses for the temperature range from
33◦C to 39◦C. The features of a pulse are shown in (Fig. 9.5(A)). Pulses are detected
using a local dynamic time warping based approach.
B - Average p53 level for the first 3 pulses for the temperature range from 33◦C to 39◦C.
C - Fold change (maximum divided by minimum level of a pulse) for the first 3 features
for the temperature range from 33◦C to 39◦C.
D - Length in hours that a pulse stays above the half-maximal amplitude of the first 3
pulses for the temperature range from 33◦C to 39◦C.
E - Increase slope for the first 3 pulses for the temperature range from 33◦C to 39◦C.
The increase is measured by the change in the fluorescence intensity [au] per minute.

pulses shown in (Fig. 12.6 (A-E)) were identified. In this figure white lines as a
reference to the 37◦C cell population were added and the cells were sorted with
respect to the length of the first detected feature. At 41◦C the spread of the length
of the first pulse ranges over the whole experimental course. At the other temper-
atures p53 pulsing was obtained in response to induced DNA damage. It could
be observed that the bands formed by the colour coded pulses get broader with
lowering the temperature. The opposite was detected at 39◦C where only the first
two pulses form a clear band in the plot and later pulses appear less homogeneous
in their timing within the investigated cell population. The heterogeneity in this
timing is positively correlated in the range from 33◦C to 39◦C.
The pulses are characterized by several features. These features are modulated by
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Fig. 12.8. Probability of a cell of being in a certain pulse

A-E - The probability of being in a certain pulse at a given time point for the tempera-
ture range from 33◦C to 41◦C. Each of the x-axes of the sub-plots has a range from 0 to
1. The pulsing frequency is positively correlated with the temperature within the range
between 33◦C to 39◦C. At 41◦C the pulsing dynamics is completely lost and replaced
by a sustained response.

the temperature in the range from 33◦C to 39◦C. 41◦C was excluded due to the
exceptional different dynamic, that is not directly comparable with the pulsing
observe at temperatures below. In Fig. 12.7(A-E) for the first tree detected pulses
in a trajectory, the power, the average, the max-mix fold-change, the time a pulse
is above half the amplitude and the slope of the increase are presented. For all
the read-outs one could quantify substantial differences.
For the power, the integrated intensities of a pulse, the 2nd and the 3rd pulse at
39◦C are stronger than for the other temperatures (Fig. 12.7(A)). For the average
intensity of a pulse, a similar trend (Fig. 12.7(B)) was observed, with the exception
of the first pulse at 33◦C which has the hugest power due to the increased length.
The average can be interpreted as the length adjusted power. The strength of the
first pulse likely depends on the temperature, while later pulses at have similar
strength for 33◦C to 37◦C. Later pulses at 39◦C exhibit a higher average intensity
compared to lower temperatures. This is accompanied by a reduced fold change
(Fig. 12.7(C)) indicating a higher basal level. For the max-min fold-change higher
values could be observed for the first pulse at higher temperature. The opposite
was observed for the 2nd and 3rd pulse. This is due to the fact that the min
value of later pulses is higher at higher temperatures. Next, the time a feature
is above half the maximum amplitude of the pulse (Fig. 12.7(D)) is quantified.
The differences in the length of pulses a mainly found in the first detected pulse,
while the 2nd and 3rd pulse exhibit a similar length no matter the temperature.
Finally, the increase slope of the pulses (Fig. 12.7(E)) is compared. The slope
differs especially in the first pulse. The increase is much slower for cells from 33◦C
and 35◦C compared to cells equilibrated to 37◦C to 39◦C.
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Based on the estimated pulses, the probabilities for being in a certain feature
at a given time point were calculated. The probabilities were estimated with re-
spect to the populations monitored at different experimental conditions. Again
temperature-dependent changes in timing from 33◦C to 39◦C (Fig. 12.8) were ob-
served. This analysis confirmed changes in synchrony of features in a temperature
dependent manner. The probability distributions overlap stronger with increasing
temperature until the pulsing dynamics break down and are replaced by a strong
sustained response at 41◦C were canonical p53 pulses are not detectable.

12.4 P53 response is modulated directly by temperature

So far, it has been observed that temperature modulates p53 dynamics and hyper-
thermia alone is sufficient to induce a p53 response. The question why a response in
pre-equilibrated cells could be detected remains still an open question. Therefore,
it will be investigated how dynamic patterns of p53 might change if temperature
is altered during an already ongoing response to stress induced by DNA damage.

Fig. 12.9. Temperature change alters the dynamics of an ongoing p53 response

A - Cells at 37◦C were irradiated and monitored for 12 h. After the 12 h the temperature
was altered in a range from 33◦C to 41◦C. Time point 12 h were chosen to induce the
temperature effect approximately after the 3rd pulse. After the temperature switch the
cells were tracked for the following 36 h. The data for 1407, 1488, 1420, 935 and 909 cells
are shown. The order of the number of cells corresponds to the order of the temperature
switch.
B - Probability of being in a certain pulse after the temperature was switched at 12 h.
Pulses that had started before the temperature change are removed.
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Fig. 12.10. p53 response to hyperthermia is reversible

A - Cells pre-incubated at 41◦C were monitored for 48 h. After the 6th hour of the ex-
periment the temperature was switched to 37◦C normothermia. The sustained response
to 41◦C stops abruptly and one can detect pulses of low amplitude. Data shown for 449
non-irradiated and 2213 irradiated cells. As a reference data for 519 non-irradiated cells
incubated at 37◦C is shown in black.
B - Power of the detected pulses. The first pulse corresponds to 1st acute p53 response
to 41◦C. The strength of the detected pulses after the acute temperature response does
not differ substantially among radiated cells and irradiated cells. Red lines indicate me-
dians of distributions, boxes include data between the 25th and 75th percentiles and
whiskers extend to maximum values within 1.5 times the interquartile range.
C - Heatmap of p53 levels for the non-irradiated cell population sorted by the timing of
the first pulse that appeared after the temperature switch to 37◦C after 6h. To amplify
the pulses in the heatmap, especially in the non-irradiated scenario, image processing
techniques were applied. First, the cells were sorted according to the end of the first
pulse detected after the temperature was reduced. Then a Gaussian filter (11x11) was
applied on the sorted data matrix followed by an application of an additional median fil-
ter (31x31). The difference between the two results after the filtering steps were plotted.
The pulses induced by the transmission from the acute 41◦C to 37◦C are not present in
all cells and are very heterogeneous in their timing.
D - Heatmap of p53 levels for the irradiated cell population sorted by the timing of
the first pulse that appeared after the temperature switch to 37◦C after 6h. To enhance
visualization of pulsatile dynamics the data was filtered using images processing tech-
niques as in C.
E - Probabilities of being in a certain feature at a given time point for irradiated and
non-irradiated cells. The induced pulsing is less heterogeneous for irradiated cells. Non-
irradiated cells have on average less pulses.
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First, cells were equilibrated at 37◦C. To induce genotoxic stress, the cells were
irradiated with 10Gy and time-lapse microscopy was carried out to monitor the
p53 dynamics. After 12 h, the temperature was changed in the range from 37◦C
to 41◦C and the cells were monitored for additional 36 h. 12 h were chosen to
induce the expected change in the ongoing p53 dynamics approximately after the
end of the 3rd pulse of the canonical p53 response to radiation (Fig. 12.9(A)). Be-
fore analysing the new dataset, the normalization step presented in section 12.1
was carried out. The results reproduce to a certain extent the observations made
in the previous two sections. At the first 12 h cells response to genotoxic in a
regular pulsatile manner. Compared to 37◦C, after the temperature switch the
pulsing frequency was reduced while the temperature was lowered and at 39◦C
the pulsing frequency increased together with an increase in the heterogeneity of
the timing of the pulses. At 41◦C cells lose their pulsatile dynamical patterns and
exhibit a strong immediate transient response. The temperature change disrupts
the ongoing canonical dynamics of p53 DDR and a new dynamic regime is exhib-
ited. This could be shown by calculating the pulses, with the novel local DTW
based feature detection method (Fig. 12.9(B)). Only pulses that appeared after
the 12th h of the experiment passed were investigated. The temporal pattern of
the appearance of pulses was studied according to the different temperatures.
Finally, the acute p53 response by changing the temperature from 41◦C to 37◦C is
studied. It was already hypothesized before that short-term temperature change
in pre-equilibrated cells during the transfer from the incubator to the microscope
may be sufficient to reset the p53 system. It had been observed so far that a
change to 41◦C directly induces a dynamic p53 response that overrides the dy-
namics exhibited by the cell before the temperature change. For this end, it was
studied how a change in temperature alters an ongoing p53 response to hyper-
thermia in irradiated and non-irradiated. The experiment from section 12.2 was
repeated with cells pre-equilibrated at 41◦C but the temperature was not kept
constant over the whole time course. After 6 h the temperature was decreased
to 37◦C normothermia (Fig. 12.10(A)). This temperature drop took around 30
minutes due to the technical capabilities of the incubation system incorporated
in the microscope.
For the first 6 h the initial findings for hyperthermia conditions could be repro-
duced. A strong accumulation of p53 in the nucleus was measured. This accumula-
tion is faster for irradiated cells and slower for non-irradiated cells. Irradiated cells
reach their maximum amplitude already before the temperature was changed. For
non-irradiated cells it still seems as if p53 level is still increasing while the tem-
perature reduction to 37◦C was induced. In irradiated and non-irradiated cells,
the p53 level dropped immediately the moment the temperature was change. The
p53 level decreased and irradiated cells started to show pulsatile dynamical pat-
terns around 3h post the temperature shift (Fig. 12.10(E,F)). Surprisingly, p53
pulses could be detected in non-irradiated cells after the direct p53 response to
hyperthermia was terminated (Fig. 12.10(C,D)).
To quantify the pulses, feature detection based on local DTW was applied. In
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Fig. 12.10(B)) the power of the different detected pulses is shown. The first pulse
shown corresponds to the direct response to hyperthermia. For the first response
significant differences in the accumulated p53 level could be quantified. This was
not the case for the pulses that followed after the temperature was set to normoth-
erm. Also it was analysed when the pulses appear (Fig. 12.10(D,E)). It was found
that the timing and synchrony of p53 pulses differs notably (Fig. 12.10(D,E)).
Irradiated cells exhibit, after the direct response to hyperthermia was terminated,
homogeneous dynamical patterns comparable to what had been observed in ir-
radiated cells equilibrated at 37◦C after the first 2 or 3 pulses have passed. In
non-irradiated cells p53 pulses vary to a much greater extent. They occur asyn-
chronous over a wider time period. The timing of first pulse after the temperature
was changed has a much greater interquartile ratio than the same pulse in irradi-
ated cells.
While nearly all irradiated cells show a pulsatile behaviour after the temperature
shift 11% of non-irradiated cells did not exhibit any secondary response after the
direct response to hyperthermia. In addition, irradiated cells produced several
pulses, while most non-irradiated cells have only 2 distinct pulses. The dynamical
differences point to an alternative molecular mechanism that steers pulsatile p53
accumulation in the absence of radiation induced genotoxic stress related kinase
activity.
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Simultaneous monitoring of P53 and P21 upon
genotoxic stress
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P53 modulates P21 in dependence of the cell
cycle state

The following sections are based on data; we have published in 2019 [304]. The
experiments shown in this chapter were carry out by Caibin Sheng at the TU
Darmstadt.

13.1 p53 and p21 DNA damage response dynamics are
related to the cell cycle

To investigate how p53 and p21 dynamics in the DDR are connected, live-cell
microscopy was used to monitor the nuclear level of the proteins over time in
single cells, using the fluorescence reporter system introduced in section 4.1. All
experiments presented and analysed in this chapter consist of two phases. For the
first 24 h cells were grown under normal conditions without any treatment. After
24 h the cells were exposed to ionizing radiation. Afterwards, the dynamics of p53
and p21 were monitored for additional 24 h. The first phase was carried out to
monitor the protein levels of p53 and p21 and cell division events while cells were
undamaged and therefore able to proliferate. Hence the DDR could be analysed
in context of previous monitored molecular dynamics of the p53-p21 pathway and
the cell cycle state. The exposure to irradiation induced DSBs in the cell and
stopped detectable cell proliferation immediately. In this section all cells in the
experiment were exposed to the same 5 Gy dose of genotoxic stress after the pro-
liferation phase of 24 h passed (Fig. 13.1 (A,C) and Fig. 13.2 (A,B)).
For the first 24 h stochastic p53 pulsing was detected in some cells, that was in
general not accompanied by a change in the nuclear p21 level. Upon DSB induc-
tion by irradiation p53 starts to pulse in almost all cell. The first pulse directly
starts upon damage induction and reaches a maximum after around 4 h and is
homogeneous in the whole population of the monitored cells. Later pulses appear
damped at the population level due to the heterogeneity in their timing (Fig.
13.1 (A, B)). On the population level, p21 accumulates with a small time lag of
1-2 h within the first 6 h after the irradiation and remains elevated for the rest
of the course of the experiment (Fig. 13.1 (C)). However, at the level of single
cell trajectories, the observed p21 dynamics exhibit heterogeneity to a large scale
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Fig. 13.1. The dynamics of p53 and p21 in response to genotoxic stress can be moni-
tored simultaneous at the single cell level

A - Median nuclear p53 level of cells tracked for 48 h. After 24 h, cells were stimulated
with 5 Gy and the change in the p53 dynamics was monitored. The shaded area repre-
sents the 25% and 75% quantile range. In total 9868 cells were tracked.
B - To visualize heterogeneity in the data three p53 trajectories were randomly selected
and shown. The first direct p53 pulse of the DDR is homogeneous, while the later pulses
vary in the timing and overlap. These overlap let the pulse appear damped in the me-
dian plot shown in (A). In the first 24 h cells exhibit some stochastic pulsing even in
absence of induced DNA damage.
C - Median nuclear p21 level of cells shown in (A). After 24 h cells were stimulated
with 5 Gy and the induced change in the p21 dynamics was monitored. The shaded
area represents the 25% and 75% quantile range.
D - To visualize heterogeneity in the data the p21 level of the randomly chosen tra-
jectories from (B) were shown. The p21 response varies in strength and timing. The
lightness of the colour identifies the corresponding cells in the plots.
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Fig. 13.2. The dynamics of p53 and p21 in response to genotoxic stress can be moni-
tored simultaneous at the single cell level

A - Heatmap of the p53 single cell trajectories. The cells were sorted with respect to the
accumulated p53 level over time. The more bluish the colour the lesser is the measured
nuclear level of p53 in the nucleus.
B - Heatmap of the p21 single cell trajectories. The cells were sorted with respect to
the accumulated p53 level as used in (C). We could not identify a direct correlation
between the strength of the p53 response and arrangement p21 trajectories. The more
bluish the colour the lesser is the measured nuclear level of p53 in the nucleus.
C – Cross-correlation between p53 relative to p21. Before the DNA damage induction,
the p53 measurements distribution is positively correlated with later p21 levels. P21
exhibits no specific correlation with later p53 measurements. After the damage induction
any p53 correlation to p21 vanishes.
D - Coefficients of variation over time for control cell populations shown in (A, B).
After the DNA damage is induced the heterogeneity in the p21 measurements increases
drastically.
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Fig. 13.3. Structure of the classification of single cell p53-p21 dynamics based on DTW
similarity estimates

A - At the top the dendrogram calculated for the classification of single cell trajectories.
The heatmap of p53 trajectories is sorted according to the leafs of the dendrogram.
B - At the top the same dendrogram as shown in (A). The heatmap of p21 trajectories
is sorted according to the dendrogram.

(Fig. 13.2 (D)). For example, cells were observed that accumulate p21 directly
after the treatment in one big pulse, cells that start to accumulate p21 hours after
the irradiation or cells that do not show any kind of p21 response. At first glance,
any correlation between p53 and p21 dynamics is hidden from direct observation.
While sorting p21 trajectories according to the integrated p53 intensity no simple
linear relation or pattern (Fig. 13.2 (A,B)) could be detected.
In Fig. 13.2 (C) the correlation of the p53 and p21 measurements at different
time points is shown. Before DNA damage induction p53 is positively correlated
with current and future p21 levels. This correlation is reduced for p21 levels mea-
sured after the irradiation. P21 measurements are not correlated with future p53
measurements. Remarkable the relation of p53 and p21 seems to vanish after the
treatment.
While no direct linear relation is obvious between p53 and p21 measurements after
DNA damage induction - how else are obtained dynamics connected to each other?
To shed light on the issue, a DTW based approach to classify single cell dynamics
was applied. This could allow the identification and quantification of non-linear
correlations between p21 and p53 dynamics. In chapter 11, the single cell trajecto-
ries were clustered with respect to the observed SMAD2 dynamics. The analysis
of single cell dynamics in this chapter goes a step further, while incorporating
that more than one readout of a protein of interest is given. The approach pro-



13.1 p53 and p21 DNA damage response dynamics are related to the cell cycle 145

A B C D E

Fig. 13.4. The p21-p53 signalling can be classified in distinct dynamics (At the top in
blue the p53 dynamics and below in black the corresponding p21 response)

A - The signalling class is 1 formed by 913 cells (p53 in blue and p21 in grey). The
shaded area represents the 25% and 75% quantile range. These cells exhibit a direct
p53 pulse followed by a steady increase of p53 accompanied by a shortly delayed pulse
like p21 response.
B - The signalling class is 2 formed by 2830 cells. One could observe a direct p53 pulse
followed by asynchronous pulses. p21 starts very late in the course of the experiment to
accumulate.
C - The signalling class is 3 formed by 1721 cells. Surprisingly, this cluster does not show
any p53 activity before the irradiation. One could observe a direct p53 pulse followed
by asynchronous pulses. p21 activity is negligible.
D - The signalling class is 4 formed by 3416 cells. One could observe a direct p53 pulse
followed by asynchronous pulses of low amplitude in contrast to cluster 2 and 3. p21
accumulates fast with a short delay and remains elevated for the rest of the course of
the experiment.
E - The signalling class is 5 formed by 988 cells. p53 already shows a relatively high
activity before the irradiation. Irradiation induces on direct pulse followed by a decrease
in the p53 level. These cluster exhibits a strong p21 activity already before irradiation.
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Fig. 13.5. The clusters are not even distributed over the population. One of the main
drivers behind the formation of signalling classes is the state of the cell cycle before the
irradiation.

A - Distribution of the clusters among the cell population. The number of p21 none
responders (Clusters 2,3) and the number of cells that exhibit a ‘normal‘ p21 response
(Clusters 1,4) have the similar proportion of the population.
B - Temporal distribution of the cell division events. At the top the background distri-
bution of the whole cell population is shown. At the same top line 2 vertical black lines
on the right serve as a scale for 1% and 2%. The other 5 shown distributions illustrate
the relation of clusters and cell cycle state. All clusters show a specific shape of the
observe cell division distribution.
C - To enhance the difference in the cell division distribution of the different signalling
classes the difference to the background (distribution at the top of (B)) is shown.

posed in section 7.3, that enables quantification of dissimilarity among different
multidimensional single cell time series, will be utilized. Multidimensional in this
context means 2D single cell trajectories of simultaneously measured nuclear p21
and p53 intensity.
The trajectories were aligned as shown in Fig. 7.5. Based on these alignments qual-
itative estimates on how much p53-p21 signalling dynamics differ among cells were
made. To guarantee that none of the two proteins of interest gets overestimated in
the 2D DTW dissimilarity measurement, the p21 and p53 measures were normal-
ized, using the min-max method. Min-max normalization scales the intensity mea-
surements into a range between zero and one. For all the intensity measurements x
of each protein, the normalized values z by zi = (xi−min(x))/(max(x)−min(x))
were calculated. The normalization step was executed globally on all p53 or p21
measurements on the whole cell population and not separately for each trajec-
tory. After having computed all pairwise dissimilarities the clustering procedure
as described in 8.1 was used. The resulting dendrograms are shown in figure 13.3.
They illustrate the arrangement of the classification of the signalling dynamics
produced by the clustering approach. By investigating the heatmaps sorted ac-
cording to the hierarchical clustering, one observed again that the p53 dynamics
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are relatively homogeneous while the p21 dynamics exhibit a strong heterogeneity.
However, several patterns that shape the relation among p53 and p21 dynamics
can be detected. The number of signalling classes was set, as in chapter 11 based
on the results of the Jump method [327]. Following this procedure, five distinct
clusters could be identified, that incorporate the p53 as well as the p21 dynamics
with equal proportion.
The dynamics from the population perceptive are shown in figure 13.4. The clus-
ters differ in their p53 dynamics as well as in their p21 dynamics. p53 differs
among clusters in the activity before the irradiation, the strength of the pulse
that directly follows the treatment and the shape of the late response that fol-
lows. p21 exhibits as expected a more heterogeneous picture of different dynamics
with respect to the clusters. The analysis included cells that do not show any p21
activity (cluster 3), cells that show late accumulation of p21 (cluster 2), cells that
exhibit a short pulse like response (cluster 1), cells that accumulate p21 fast and
have an increased p21 level for the rest of the course of the experiment (cluster 4)
to cells that accumulate fast vast amounts of p21 followed by a steady decrease
in the p21 level (cluster 5).
While looking at the median trajectories of the clusters there is not always a direct
visible link between the p53 and p21 dynamics observed (Fig. 13.4 ). For cluster
5 cells that that have already a high basal p53 activity before the treatment ex-
hibit the strongest, around 2-fold of what was observe in the other clusters, p21
response. This strong p21 response is accompanied by losing the pulsatile p53
dynamics and an increase in the p53 level on average to levels lower than that
was observed before the stimulus. In cluster 5, already a significantly enhanced
p21 activity before irradiation compared to the other signalling classes could be
detected. Cells from cluster 1 show an increase in the late p53 level, while the p21
is removed from the nucleus. In contrast, cells from cluster 4 have a low median
p53 level accompanied by a relatively high p21 level in the nucleus. The late p21
responders, cluster 2 and 3, differ mainly in the p53 activity before the treatment.
Cells from cluster 3 show, as the only cluster, no p53 activity before the irradia-
tion. This increased p53 activity in cluster 2 leads to an earlier accumulation of
p21 compared to cluster 3, where nearly no p21 activity is detectable over the
whole course of the experiment.
The frequency of the signalling classes is not evenly distributed in the cell popula-
tion studied(fig.13.5 (A)). A little less than 2/3 of the cells come from the clusters
2 and 4 and cluster 1 and 5 provide around 10%. Remarkable the number of p21
none responders (Clusters 2,3) and the number of cells that exhibit a ‘normal‘
p21 response (Clusters 1,4) have the same share of the population.
While p21 as a major target of p53, the p21-p53 pathway integrates exposure to
stress with the cell cycle. To this end, it is of special interested if the estimated
signalling classes and their underlying signalling dynamics have a connection to
the cell cycle state. As estimate for the cell cycle state, the cell was in before
the genotoxic stress was applied, the time passed since the last detected division
before the treatment was used (Fig. 13.5(B,C)) . A clear relation between the
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classification of the p53-p21 dynamics and the cell cycle state could be detected.
Cells from cluster 2 and 3 that show only a minor late p21 response originate
from cells that are in S or G2. Cells from cluster 1 that exhibit a short pulse-like
direct p21 response are mainly cells from G1 that divided near to the time of
irradiation. For cells that form cluster 4 and 5 the connection to the cell cycle is
less clear. Cluster 4 is composed of cells that have divided recently and cells that
have divided at the begin of the experiment, so cells either in G1 or G2. Cluster
5 cells show no clear trend of the time passed since the last division, with a small
under representation of cells from S and G2 and small over representation of cells
from G1.
The clusters differ as well in the number of expect divisions before the irradiation.
In cluster 1 around 90% of the cells have divided, while in cluster 3 and 5 this
number drops to around 75% and in cluster 2 and 4 around 67%. Surprisingly,
the increased p53 activity before irradiation in cluster 5 had no impact on the
proliferation.
The p53 response within the population was quite homogeneous while the p21
response is variable. One main driver for this might be the cell cycle state, a cell
is in while exposed to genotoxic stress. It could be also reveal that p21 and p53
signalling dynamics are connected. The p21 accumulation is commonly accompa-
nied with low nuclear level of p53 in the nucleus at later time points. Especially,
for cluster 1 and 5 this is obvious. The direct p53 pulse induced by genotoxic
stress has no influence on the behaviour of p21 within the experiment.
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13.2 Dynamics are linked to the strength of the genotoxic
stress

After it has been shown, that one can identify several distinct signalling classes, in
a population genetically identical of cells, treated with the same level of genotoxic
stress, it will be studied if and how the strength of the applied ionizing radiation
has an impact on the recorded p53-p21 dynamics. Will where be distinct signalling
classes for each level of applied genotoxic stress or will the same signalling classes
be detected in each of the conditions? To this end, it will be studied how stronger
genotoxic stress as applied in the previous chapter shape and modulate the re-
sponse dynamics of the p53-p21 signalling pathway. In addition to the previous
applied 5 Gy also higher doses of 10 Gy and 20 Gy were investigated.
As in the previous section, the experiment analysed in this section consisted of
two distinct phases. A first phase where the cell proliferation and pathway activity
in absence of a stimulus and a second there the p53 and p21 dynamics in response
to different levels genotoxic stress were monitored.
On the population level similar dynamics were observed as already described for
5 Gy ( Fig. 13.6. The nuclear p53 level of the DDR is positively correlate with the
strength of the stimulus. The amplitude of the pulse directly induced by genotoxic
stress as well as the level of the late phase increased with the dose. The dynamics
of p21 appear less sensitive to the irradiation dose. The median p21 response is
a little stronger and the width of the distribution of the measured p21 intensity
increases with the dose.
As in the previous section, the DTW framework was used to estimate all pair-
wise similarities among the single cell trajectories of the new dataset. To avoid a
bias towards one of the proteins of interest, min-max normalization was applied
as described in the previous section. After calculation of all cell to cell pairwise
similarities, the clustering procedure as described in 8.1 was applied again. To
estimate the number of clusters the Jump method [327] was used as well. The
Jump method indicated to use either 3 or 5 distinct signalling classes. As five
clusters were identified in the previous section, the same amount of clusters was
chosen for the dataset analysed in this section.

The computed classes of p53-p21 signalling dynamics are shown in figure 13.7.
The signalling classes estimated exhibit remarkable similarities to the clusters
identified in the previous section. The identified cluster 1* and 5* exhibit similar
dynamics (fig. 13.7 (A,D)). A direct p53 pulse after irradiation is detected, fol-
lowed by a steady increase for the rest of the experimental course on the level of
the population. The two cluster differ primary in the amplitude of p53. Cells from
cluster 5* exhibit a higher nuclear p53 level. The p21 response is in both clusters
nearly negligible. Cells from signalling class 1*, show a minor late response by
staring to accumulate p21 slowly around 16 h post irradiation. Also the clusters
2* and 4* are similar in their observed dynamics and differ primary in the strength
of the p53 response, which is higher in cluster 4* (fig. 13.7 (B,D)). A direct p53
pulse is observed followed by increased relatively stable level of p53. This late p53
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A B C

Fig. 13.6. The p53-p21 dynamics induced by different strength of the genotoxic stress.

A - Dynamics of p53 and p21 on the population level. Cells were treated with 5 Gy
after 24 h have passed. In total 982 cells were tracked for this condition. p53 in blue
and p21 in grey. The shaded area represents the 25% and 75% quantile range.
B - The same experimental setting as in (A) with 10 Gy. 1263 cells were tracked.
C - The same experimental setting as in (A) with 20 Gy. 1186 cells were tracked. The
increased dose enhances the p53 response. The p21 dynamics are relatively unperturbed
by the dose.

level is lower than what had been monitored for cells from cluster 1* and 5*. The
nuclear level of p21 increases fast after irradiation with a short temporal delay
and reached a maximum amplitude around 8 h after the exposure to genotoxic
stress. Cluster 3* cells already show increased p53 activity before irradiation ac-
companied minor p21 activity (fig. 13.7 (C)). After irradiation only one direct
strong p53 pulse could be monitored followed by a decreased nuclear level of p53.
Surprisingly, this decreased late p53 level in cluster 3* cells is even lower than the
level detected before irradiation. Additionally, the p21 response after irradiation is
very strong. p21 accumulates fast and reaches values of more than two fold of the
p21 amplitude, that has been measured in the other clusters. After a maximum
is reached, around 5 h after irradiation, the p21 level is decreasing, but is still
around the level of maximum amplitude at the end of the experimental course,
measured for cluster 2* and 4*.
The signalling classes identified in this dataset do not reproduce directly the clus-
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A B C D E

Fig. 13.7. The p21-p53 signalling induced by different levels of genotoxic stress can be
classified in distinct dynamics

A - The signalling class 1* is formed by 934 cells (p53 in blue and p21 in grey). The
shaded area represents the 25% and 75% quantile range. These cells exhibit a direct
p53 pulse followed by a steady increase of p53. A minor p21 response is detectable at
the end of the course of the experiment.
B - The signalling class 2* is formed by 1206 cells. One could observe a direct p53 pulse
followed by asynchronous pulses that are shaded by their heterogeneity in the timing.
p21 responses accumulates fast after the irradiation with a short delay. The p21 level
reaches a maximum around 33 h and decreases slowly.
C - The signalling class 3* is formed by 346 cells. This cluster exhibits the strongest p53
activity before irradiation. After irradiation p53 one can observe one big pulse. After
the first pulse has ended p53 activity is the lowest among all clusters.
D - Signalling class 4* formed by 476 cells. The p53 and p21 dynamics equal the dy-
namics of cluster 2* with a higher p53 amplitude.
E - The signalling class 5* formed by 469 cells. The p53 and p21 dynamics equal the
dynamics of cluster 1* with a higher p53 amplitude and negligible p21 activity.

ters found in the previous section. As an exception cluster 5 from the previous
section could be directly linked to cells from cluster 3*. The p21 non-responding
classes 1* and cluster 5* are likely to have connection to the clusters 2 and 3 from
the previous section as well as that a connection between cluster 2* and 4* and
the cluster 1 and 4 from the previous section is not negligible. The connection
between the clusters identified in the different sections was primary based on the
observed p21 dynamics.
While having a glance at the distribution of signalling classes with respect to the
applied level of genotoxic stress, the precision of the mapping of the two different
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Fig. 13.8. Clusters are differently distributed with respect to the condition and the
signalling classes are dependent on the cell cycle state.

A - Distribution of the clusters among the different conditions. The number of p21 none
responders (Clusters 1,5) and the number of cells that exhibit a ‘normal‘ p21 response
(Clusters 2,4) have the similar proportion of each differently treated population. At 20
Gy the population shifts from cluster 1 and 2 cells to mainly cluster 4 and 5 cells.
B - Temporal distribution of the cell division events. At the top the background distri-
bution of the whole cell population is shown. At the same top line 2 vertical black lines
on the right serve as a scale for 1% and 2%. The other 5 shown distributions illustrate
the relation of clusters and cell cycle state. All clusters show a specific shape of the
observe cell division distribution.
C - To enhance the difference in the cell division distribution of the different signalling
classes the difference to the background (distribution at the top of (B)) is shown.

sets of signalling classes (fig. 13.8(A)) onto another could be increased. No matter
the stimulus cells from cluster 3* at all irradiation levels could be found. They
were present in all three conditions in only a small fraction, slowly growing with
the strength of the applied ionizing radiation. At 5 Gy and 10 Gy majority of
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Fig. 13.9. Temporal distribution of the first three features detected, that were already
ongoing while genotoxic stress was applied or were induced by the genotoxic stimulus.

A - Detected features sorted by the first pulse (red). The first was detected in nearly
all cells. A not small proportion of cells from cluster 3 were due to the enhanced p53
activity before the treatment already in a pulse before the stimulus was set.
B - Detected features sorted by the second pulse (blue). The temporal distribution of
the second pulse is more homogeneous in cluster 1 and 2.
C - Detected features sorted by the third pulse (black).

the cell population is contrived by cells that originate from 1* or 2*, both with
similar proportion, while none of the cell could be assigned to cluster 4* and 5*.
At 20 Gy the population shifts towards cluster 4* and 5* cells. Cluster 1* cells
are completely lost and cluster 2* cell are a minority of less than 5%.
With these additional observations, it could be assumed that cluster 1* is likely
composed of cells from initial cluster 2 and 3, that cluster 2* cells are aggregated
from initial cluster 1 and 4 cells and that the remaining cells cluster 3* cells were
directly connected to the previous cluster 5. As it is obvious that cluster 1* and 5*
show similar dynamics. Cluster 1* are likely composed of cells from the previous
identified clusters 2 and 3. I could be claimed that cluster 5* was likely composed
of cells with dynamics similar to the previous identified clusters 2 and 3 but with
a stronger p53 response due to the increased level of genotoxic stress. The same
can be stated for cluster 2* and 4*.
To support these assumption, the state of cell cycle (fig. 13.8(B,C)) cells were
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A

B

Fig. 13.10. Amplitude of the first three p53 pulses and the simultaneous measured
amplitude of p21 while in a pulse.

A - The amplitude of the first three p53 pulses in dependence of the classification.
B - The amplitude of p21 while being in one of the first three p53 pulses.

in before irradiation was analysed in relation to the assigned signalling classes.
Again a clear connection between the cell cycle state and the classification could
be observed. Cluster 2* and 3* as well as cluster 1* and 5* exhibit a similar distri-
butions of detected cell division events in the first 24 h of the experiment. Cluster
1* and 5* originate from cells that are in S or G2, while cells from Cluster 2* and
3* are in G1 or G2.
The analysis of the p53-p21 dynamics in dependence to different doses of genotoxic
stress was completed with the study of p53 pulses induced by the irradiation. The
quantification of the pulsing was set into relation with the nuclear p21 dynamics.
To this end, as in the previous chapter, the method proposed in section 9.2 to
detect the p53 pulses in the dataset is utilized. From the detected pulses all pulses
were removed that had ended before the cells were irradiated and the first 3 pulses
that remain for each time series were analysed. In Fig. 13.9 the temporal order
and frequency of the first three pulses is shown. It is not that unlikely that a cell
from cluster 3* was already in a p53 pulse while the cells were irradiated. In Fig.
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13.9, the corresponding amplitude of the p53 pulses in relation to simultaneous
measured amplitude of p21 is shown. In close to all cells, an in the timing homo-
geneous first pulse could be detected, that differs in the p53 amplitude among the
clusters. Cells from cluster 5* have a homogeneous strong response. The average
response in cluster 3* cells is similar but with a wider distribution. The first p53
pulse in cells from cluster 2* has the lowest amplitude. The second and the third
pulse have either a similar amplitude as the first pulse (cluster 1*,2* and 5*) or
a reduced p53 pulse amplitude (cluster 3* and 4*). The clusters 1* and 5* that
exhibit the highest amplitude in the second and third pulse show the lowest p21
activity. Interestingly, one cannot find a relation of the strength of the first pulse
and the observed p21 activity. Cells treated with 5 Gy and 10 Gy, identified as
cells that belong to cluster 1* and 2*, show as well a more homogeneous pulsing
behaviour compared to cells treated with 20 Gy.
From the cluster analysis, it can be concluded that p21 dynamics are not directly
influenced by the strength of the genotoxic stress and mainly driven by the cell
cycle state and that the strength of the p53 is steered by the level of applied ir-
radiation. The strength of late p53 nuclear level is negatively correlated with the
level of p21 in the nucleus. Cells that show already p53 activity before radiation,
likely struggling already with their genome integrity, are most p21 responsive due
to genotoxic stress. These cells show in addition a damped late p53 response while
huge amount p21 can be found in the nucleus.
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Discussion

14.1 Classification of SMAD signalling

A disturbed information flow in the TGFβ pathway can change the cellular re-
sponse to TGFβ ligand and cause severe human health defects like cancer, fibrosis,
vascular disorders and autoimmune diseases [37, 218, 117]. There is a precise un-
derstanding of the signalling TGFβ pathway components, but it is rather unclear
how the pathways can transmit context-dependent and concentration-dependent
signals through the TGFβ signalling pathway [131]. Illuminating the logic that
integrate these various inputs to explain the multifunctional nature of the TGFβ
pathway is a central challenge [131].
A combination of experimental and computational methods was used to investi-
gate how information is processed within the TGFβ signalling pathway. Exper-
imentally, the shuttling of SMAD between the cytoplasm and the nucleus and
phenotypic characteristics at the single cell level could be measured for up to 60
hours. It could be shown that SMAD translocation dynamics induced by TGFβ
encode phenotypic responses of epithelial cells.
In general, SMAD signalling dynamics can be split in two phases. The first direct
transient response of fast nuclear SMAD accumulation followed by a slower de-
crease in the nuclear SMAD level of more or less dose dependent amplitude. The
strength of the nuclear SMAD2 accumulation is to some extent positively corre-
lated with the strength of the TGFβ stimulus. The later second phase is more
heterogeneous characterized by multiple features ranging from sustained plateaus
to fluctuation in the SMAD nuclear cytoplasm equilibrium. The average dynam-
ics observed are consistent with previously published studies based on population
measurements [152, 62, 388, 347].
Especially, three processes shape the signalling dynamics: the availability of the
extracellular ligand that is limited mainly by degradation due to endocytosis, the
cellular state defined by the internal molecular setup and redundant transcrip-
tional feedback [80, 378, 372, 165]. If the transcriptional feedback is reduced, the
responsiveness of the cells is increased and the observed signalling dynamics are
shifted towards more sustained characteristics.
Dynamic Time Warping, as a method for non-linear alignment of time series and
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a supervised learning method called fundamental components were established as
new tools to quantify single cell trajectories. The standard DTW method does not
constrain temporal shifts, so that features can be aligned no matter how distant in
time they are. Hence, the framework was modified to a stiffer version that ensures
that the results remain biological relevant by constraining the extent of allowed
squeezing and stretching. A modified DTW method (cDTW), that constrains the
flexibility in the time domain to generate biological more relevant results, was
used to analyse the translocation dynamics of thousands of cells. With cDTW the
similarity among thousands of individual single cell trajectories can be quantified.
DTW is less sensitive to asynchronies than simpler similarity measures such as the
Euclidian distance and more important respects the order of the measurements
acquired at different time points. The DTW framework provides a toolbox that
can quantify similarity among time series while being flexible in the time domain.
Based on the estimated pairwise cell similarity obtained by cDTW, hierarchical
clustering was applied and different signalling classes of translocation dynamics
could be identified. By clustering the time series, a pronounced cell-to-cell vari-
ability could be quantified even within cells stimulated with a fixed dose of TGFβ.
The clustering yields a more homogeneous grouping of the dynamics compared to
other sorting such as ligand concentration applied or the state of the cell cycle.
The transitions from signalling class to signalling class were not sharp, rather they
form a continuum. The decomposition of the cell population into signalling classes
is dose depended and allows a quantification of the heterogeneity of the signalling
dynamics. Heterogeneity in signalling dynamics of the response increases with the
strength of the stimulus.
With the introduction of the concept of the fundamental components distinct
underlying dynamics in the time series data were identified. How much the iden-
tified distinct fundamental contribute to the observed dynamics depends on the
strength of the stimulus or on the presence of the negative feedback regulator
SMAD7.
It could be shown, that heterogeneity in the response of the TGFβ arises mainly
from the cellular state. Cell-to-cell variability in signalling protein concentrations
is the main source of the observed heterogeneity. It was shown that local cell den-
sity or cell cycle state play only a minor role. Cell cycle state has for example
impact on signalling through the ATM and ATR kinases[3]
Several processes have been reported to have an impact on the cellular hetero-
geneity [204, 314]. Cell cycle state or local cell density cannot explain the observed
heterogeneity. It has been shown that the cell density sensing YAP/TAZ pathway
does not influence SMAD signalling [251]. YAP and TAZ are the major down-
stream effectors of the Hippo pathway, which regulates tissue homeostasis, organ
size, regeneration and tumorigenesis [237].
Using sister cell analysis, it could be shown that the molecular setup of a cell can
explain cell-to-cell variability. As sister cells are more similar than other cells for
a longer period of time after division, it can be assumed that long-lasting compo-
nents dominates cellular heterogeneity. The use of sister cell analysis has proven to
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be a helpful tool to analyse characteristics of signalling pathways [112, 319, 293].
The assumption is that sister cells are more similar in their molecular setup than
a randomly picked pair of cells.
Negative feedback is essential for most cellular signalling pathways [189]. The
primary negative transcriptional feedback in the TGFβ pathway is SMAD7. It
is expected that the feedback comes into play at high ligand doses, where it is
limiting the sustained secondary response. This was confirmed by studying the
TGFβ response in a SMAD7 knock out cell line. By suppressing the negative
transcriptional feedback, by the SMAD7 knock out, it could be observed that sig-
nalling shifts to stronger more sustained responses and to a more heterogeneous
distribution of the signalling classes with respect to the applied TFGβ dose. While
not only sustained dynamics could be observed additional redundant transcrip-
tional feedbacks can be assumed that need to be investigated further. The negative
regulators Ski and SnoN of TGFβ signalling are potential components worth an
additional look. How the inhibition of SNoN or Ski changes the dynamics while
SMAD7 is present or knocked-out can give new insight on the topology of the
TGFβ signalling.
During later signalling phases especially at higher stimulation doses several
stochastic fluctuations in the nuclear SMAD level could be observed. These fluc-
tuations cannot be explained by current models of the TGFβ pathway topology
[326]. It can be speculated that vesicle-mediated recycling of receptors to the cell
surface leads to stochastic increases in the cellular sensitivity to the ligand. In
the context of EGF signalling this has been observed [344]. In additional studies,
combined live-cell reporters may shed light on the SMAD dynamics, by monitor-
ing other known players in the TGFβ signalling like the receptors, SMURF1/2,
SARA or p38.
Signalling dynamics trigger the phenotypic features at the longer time scales. Phe-
notypic detectable changes occur several hours post ligand application. TGFβ
pathway stimulation promotes motility in general while the anti-proliferation ef-
fect is connected to strong and sustained signalling responses.
It could be shown, that the sensitivity of the TGFβ pathway within an individ-
ual cell can be controlled by the concentrations of the signalling protein. This
might give cells a regulatory ability to adjust the TGFβ response according to
the demands, by adjusting the signalling protein composition by other signalling
pathways. This may give cells or on a larger scale the epithelium they form the
potential to incorporate additional information and provide the variability of re-
sponses to function proper in different scenarios.

14.2 p53 dynamics are modulated by temperature

P53 as guardian of the genome and the central hub of the cellular stress response
is crucial to prevent of tumorigenesis. In this context the regulation of cell cycle
arrest, senescence and apoptosis upon stress are the best understood functions of
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p53, but p53 has a much broader role, controlling many aspects of cellular home-
ostasis [176]. An increasing number of studies highlight the role of mutant p53
proteins in cancer cell growth and in the worsening of cancer patients’ clinical out-
come [66]. The p53 status in cancer predicts patient survival [229]. Disturbances in
the information processing by the p53 pathway leads to transformation of individ-
ual cells and subsequent tumorigenesis. 40 years of research on p53 accompanied
by more than 80000 publications still has not explained the full complexity of the
p53 signalling network [158].
A combinatorial cancer treatment of hyperthermia together with radiation and
anticancer agents has been used clinically where it has shown positive results to
a certain degree [6]. Several elements of the p53 pathway as well as other proteins
that interact with p53 are modulated by temperature [120]. However, the underly-
ing mechanism of signal transduction and the set of genes involved in this process
are still poorly understood. Progress in screening methods has paved the way for
tackling the many ways in which dynamics are modulated. To understand how
varying temperature modulates single cell dynamics of p53 upon genotoxic stress
the nuclear p53 protein levels of thousands of genetically identical cells exposed to
the physiologically relevant temperature range of 33◦C to 41◦C were monitored.
It could be shown that below 39◦C the frequency of p53 accumulation pulses that
encodes the DNA damage is positively correlated with the temperature. Also, it
could be observed that the heterogeneity of the pulsing in the populations of cell
exposed to a fixed temperature increases with the temperature. Surprisingly, in
spite of the outstanding importance of p53 dynamics for the maintenance of ge-
nomic integrity the network p53 is embedded in as central hub cannot compensate
environmental temperature. Interestingly suchlike was quantified for the NF-κB
pathway in 2018 [128]. Harper et al. have shown that the frequency of cytoplas-
mic to nuclear translocation of the transcription factor RelA is as well positively
correlated with the temperature and that this is caused by differential timing in
the feedback expression. This only affects a subset of the RelA target genes. If a
similar change in the timing of the negative feedback loops of the p53 pathway
cause the change in p53 accumulation frequency or other factors contribute to this
behaviour has to be investigated in further studies.
The most surprising finding was that at 41◦C the canonical p53 pulsing induced
by irradiation vanishes and is replaced by a strong initial accumulation of p53 that
is followed by a sustained increased p53 nuclear level. The nuclear p53 level could
be decreased to a normal level by changing the temperature back to normother-
mal 37◦C. Also astonishing was that a change in temperature to 41◦C without
DNA damage induction was sufficient to induce a heterogeneous p53 response.
The return to 37◦C induced in irradiated and non-irradiated cell p53 pulses. The
response induced by mild hyperthermia leads to an increased nuclear p53 level that
stayed constant after around 6 h have passed since the temperature was altered.
The molecular mechanisms underneath are unclear. Potential sources may be the
integration of p53, MDM2 and HSPs [351] or structural properties of p53. Unfold-
ing of p53 at 41◦C could inhibit the interaction with the negative feedback MDM2
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preventing p53 proteasomal degradation. Unfolded p53 is as well transcriptional
inactive and is unable to induce its own negative transcriptional feedback loops.
It is known that cancer related p53 mutants exhibit not unlikely temperature
sensitive phenotypes [158, 157]. Furthermore, the binding of the chaperon HSP90
induced by elevated temperatures may stabilize p53 conformation and prevent
MDM2 binding and promote MDM2 degradation [244, 266, 195].
The effect of mild-hyperthermia discussed so far dealt with cells that were pre-
incubated at 41◦C. Compared to cell that were pre-incubated a direct acute shift
from normotherm to 41◦C induced a much stronger response. As expected the ini-
tial response is much stronger for irradiated cells but surprisingly p53 accumulates
drastically in untreated cells while the p53 level in irradiated returns on average
to basal levels observed before the temperature was changed and the DNA dam-
age was induced. This indicates that the p53 network acquires tolerance to heat
shocks. The molecular mechanisms that contribute to this observation and the po-
tential role of the HSPs system are unclear and require further investigations. The
acquired heat shock tolerance may play an important role in described thermal
chemosensitization and thermal radiosensitization [137, 54] that may contribute
to the positive effect of combinational cancer treatment .
Hyperthermia induced p53 accumulation may ensure sufficient expression of tar-
get genes, such as p21 while p53s function as transcription factor is reduced. The
low complexity in the sustained dynamics may not encode the DNA damage and
steer a flexible response but ensure cell cycle arrest. Studies have shown that hy-
perthermia facilitates genome instability [346] and attenuated damage response
[338], so that sustained nuclear p53 accumulation may guarantee cells enter cycle
arrest and go through mitosis only if DNA integrity is ensured.
The combination of hyperthermia with radio- or chemotherapy has proven to be
beneficial for the outcome of cancer treatment with the additional advantage of
neglectable side effects [315, 278]. The molecular mechanisms of hyperthermia
that contribute to the positive effects on cancer therapy by modulating molecular
pathways is not well studied and remains an open question [137]. The p53 level
may be an indicator for the forecast of therapeutic success of cancer treatment
in combination with temperature [261]. The molecular dynamics observed may
indicate that sustained p53 accumulation induces cell cycle arrest and that this
prevents cell killing by mitotic catastrophe. Mitotic catastrophe is a failure to
undergo complete mitosis after DNA damage. Hyperthermia may recover func-
tions of p53 for example where p53 is disabled by a amplification of its negative
feedback MDM2 as it is found in sarcomas [256, 190].
The complex interactions of HSPs with the p53 network may also contribute to
the positive effect of hyperthermia on the cancer treatment. Heat shock induced
conformational change of wild type p53 and binding to Hsp90 [352]. Hsp90 may
promote refolding of destabilized mutant p53 upon application of hyperthermia
is ended and thus compensating functional deficiencies in cancer cells [244, 245].
Hsp70 family members participate in the cytoplasmic sequestration of wild-type
p53 in cancer cells [391]. This leads to p53 resistance to Mdm2-mediated degra-
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dation [379] and to a high degree of aggregation that impairs the G1 checkpoint
following DNA damage [232].
The observed dynamics and the observation that the p53 network acquires toler-
ance to heat shocks provide molecular evidence that the precise timing of radiation
and hyperthermic treatments is a critical parameter for successful combination
therapies [171, 132].
In further studies it should be determined if the expression of p53 target genes
upon damage induction is temperature-dependent as well. To this end, high confi-
dence target genes that contribute to distinct cellular response pathways, including
CDKN1A/p21, GADD45 (both cell cycle arrest), XPC (DNA damage repair) and
BAX (apoptosis) should be studied by measuring corresponding RNA levels at
different time points and temperatures in untreated and irradiated cells by qPCR
[100]. Also the use of the same cell line as in chapter VI may enlighten how the
dynamics of p21 are influenced by temperature.

14.3 p53 and p21 dynamics in response to DNA damage
are cell cycle dependent

p53 is embedded as central hub in a molecular network that steers several biolog-
ical functionalities ranging from cell division, cell death, senescence, angiogenesis,
differentiation and DNA metabolism. Among the target genes in response to p53
is the cyclin-dependent kinase inhibitor 1A (CDK1A) [102]. The gene CDK1A
encodes one of the main effectors of the p53 DDR p21. Best known is its func-
tion as a CDK2 inhibitor that prevents hyperphosphorylation of RB and thereby
arrest cells at the restriction point. The downregulation of cell cycle regulated
genes in this context by the p53-p21 pathway [201, 330, 337, 299, 169, 385] hence
regulating the cell cycle progression. Cell cycle transition from G1 to S and G2
to mitosis is regulated by cyclin-dependent kinase (CDK) family of proteins that
are activated by cyclins [343] and inhibited by p21. To understand the dynamic
relations between p53 and p21, after exposure to irradiation, both signalling com-
ponents were monitored within thousands of individual cells.
p53 signalling encodes information about signal intensity, duration and identity in
complex dynamics. After exposure to irradiation of 5 Gy homogeneous p53 dynam-
ics were observed at the population level in contrast to p21 where a substantial
heterogeneity in the accumulation was detected. The observed heterogeneity of
the p21 response observed is in accordance with the current literature [61, 323].
Consistent with previous studies it was observed that not all p53 dynamics induce
CDKN1A expression [203]. It could be shown that before irradiation the nuclear
level of p53 is positively correlated with future nuclear p21 levels. The correlation
is disrupted if irradiation is applied. How characteristics of the p53 dynamics re-
sult in CDKN1A expression could be answered using classification of signalling
dynamics.
To quantify similarity among cells the DTW framework for multivariate time se-
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ries, introduced in section 7.3, was used. While having labelled p53 and p21 simul-
taneous it would be desirable to quantify the similarity between cellular dynamics
while looking at the labelled proteins simultaneously. Based on the estimated sim-
ilarities hierarchical clustering was applied to identify distinct signalling classes
that incorporate information of p53 and p21. In a recent study that used the same
reporter system the data was clustered only by taking the p21 measures into ac-
count [304] using the k-shape algorithm [263]. As its distance measure k-Shape
uses a normalized version of the cross-correlation measure in order to consider the
shapes of time series while comparing them [263]. Sheng observed with this ap-
proach that p21 dynamics after DNA damage diverge from p53 dynamics in Single
Cells [304], while it could be shown utilizing the DTW approach that p21 and p53
are connected. The identified signalling classes connect p53 and p21 dynamics and
split the heterogeneous p21 response. The p21 dynamics in the signalling classes
range from a strong direct response to no accumulation of p21 at all. The stronger
the p21 accumulation the lower is the p53 at later time points. If a direct response
in p21 cannot be detected the p53 level is higher. In cells that do not show any
p21 response the p53 pulsing is much more prominent.
As in previous studies [304] a relation was observed between p21 dynamics and
the cell cycle position at the moment of damage was observed. In addition, also
the p53 dynamics could be linked to the cell cycle, as it could be shown that
only cells that were in S or G1 before the irradiation exhibit a clearly pronounced
pulsatile behaviour. These cells normally lack a p21 accumulation.
Cells that exhibit already p53 and p21 activity before irradiation is applied likely
struggle already with their genomic integrity and exhibit the strongest response
to genotoxic stress. These group shows as well no connection to the cell cycle.
Cells need p21 degradation for faithful repair and replication of the genome, as in-
appropriate p21 accumulation during S-phase led to increased genomic instability
[304]. At can be assumed that a main driver behind the observed p21 hetero-
geneity is explained by post-translational regulation as heterogeneity is largely
explained by cell cycle position at the moment of damage. It was shown by Sheng
[304] that heterogeneous p21 dynamics post damage are caused by S phase-specific
degradation through PCNA-CRL4cdt2, which is necessary for maintaining genome
stability.
It was also studied how signalling is modulated by different intensities of applied
genotoxic stress. The dynamics similar but the strength of the p53 response is
dependent of the applied irradiation.

14.4 Application of computational methods on single cell
data

Complex biological signalling pathways can be analysed by utilizing computa-
tional and mathematical methods. These methods are essential for the study of
the interactions between the pathway components and illumination of how these
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interactions give rise to biological functions and dynamical behaviour of cellular
signalling networks. These pathways form a complex molecular network that con-
trols the dynamics of the signalling proteins, requiring investigators to consider
multiple time points when analysing pathway activity [324].
In the chapter III several methods were introduced that were used in the flowing
chapters IV, V and VI to handle and analyse the raw live-cell time-lapse imaging
data and the extracted single-cells time series.
Coherent Point Drift, a non-rigid point set registration algorithm, was proposed
as a method of choice for the cell tracking problem. To find the point-to-point
correspondence it assumes that the approximate arrangement of a point cloud is
preserved. Points in corresponds to the center of mass of segmented nuclei in the
imaging data. The motion coherence constrain of the Coherent Point Drift mim-
ics the observation that cells do not move independently; they are embedded in a
neighbourhood that constrains their freedom of movement. This gives the impres-
sion of a coordinated motion of neighbouring cells grouped in clusters. Non-rigid
registration methods outperform rigid methods while generating cell tracks. Vi-
sual inspection of the generated tracks in the imaging data ensured the quality of
the tracks. But to validate the methodology further work is necessary. Using the
datasets provided by the Biomedical Imaging 2013 Cell Tracking Challenge may
be an appropriate way to benchmark and compare the method to other state of
the art methods [216].
To analyse signalling dynamics in thousands of genetically identical reporter cells,
I established constrained dynamic time warping as a tool for non-linear alignment
of time series data. Dynamic time warping both emphasizes similarities in dy-
namic patterns of the time courses, and allows quantifying differences in signal
amplitude, thereby improving the grouping of noisy single-cell trajectories. By
allowing for stretching and squeezing of time courses, DTW is less sensitive to
asynchronicity than simpler similarity measures such as the Euclidean distance.
However, constraining the extent of temporal alignments in DTW is critical to
ensure that results remain biologically significant. To this end the DTW was mod-
ified by introducing an additional parameter that reduces the flexibility of DTW
by an elastic constrain.
Based on the non-linear alignments signalling classes can be identified in the data.
Hierarchical clustering was used. In the course of this work, the identification of
signalling classes within a population of cells has proven to be a precious tool to
link dynamics to other phenotypic features.
The DTW approach of quantifying similarity and subsequent clustering was also
utilized for multivariate time series. This enables the comparison of cell on the
level of several pathway components simultaneous while the dynamics of the com-
ponents are not treated independent. This revealed in chapter VI that p53 and
p21 dynamics are connected.
Clustering of single cell data was applied before for example in Sheng [304] and
Ryu [288]. Sheng used k-Shape [263] to identify the data only on p21 even if simul-
taneous p53 measurements were given and therefore missed the interplay between
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p21 and p53 dynamics. Rhyu used the Euclidean distance and k-means to identify
signalling classes in ERK activity trajectories. I would discourage the use of the
Euclidean distance because of its high sensitivity to asynchronicity.
I used the Dynamic Time Warp framework to develop a feature detection method
that is characterized by its flexibility in the time domain and its independence to
scaling.
To identify underlying dynamics that contribute to the observed dynamics a su-
pervised learning method was introduced. The method produces a set of funda-
mental components taking account existing knowledge. Linear combinations of
the fundamental components can reproduce the original dataset to some extent.
The concept reduces the dimensionality of the data and can be used to identify
signalling classes in the data or map new data on existing classifications. This
perspective onto single cell dynamics is new. Similar approaches like PCA or dif-
fusion maps have been used for single-cell sequencing data [47, 123].
To understand complex biological systems requires the integration of experimental
and computational research.
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Appendix

15.1 List of Experiments

Datasets are listed in the order of their appearance.

15.1.1 SMAD single cell data

Data used in chapter IV
SMAD2 titration 24 h

Number of cells: control - 358, 1pM tgfβ - 395, 2.5pM tgfβ - 314, 5pM tgfβ - 295,
25pM tgfβ - 351, 100pM tgfβ - 352
Carried out by Henriette Strasen

SMAD2 titration 60 h
Number of cells: control - 1442, 1pM tgfβ - 948, 2.5pM tgfβ - 776, 5pM tgfβ -
813, 25pM tgfβ - 1024, 100pM tgfβ - 932
Carried out by Stefan Bohn

SMAD2 titration 36 h, stimulus after 24 h
Number of cells: control - 671, 1pM tgfβ - 282, 2.5pM tgfβ - 697, 5pM tgfβ - 602,
25pM tgfβ - 810, 100pM tgfβ - 513
Carried out by Henriette Strasen

SMAD2 titration 24 h, parental cell line SMAD7 kock down
Number of cells: control - 266, 1pM tgfβ - 743, 2.5pM tgfβ - 655, 5pM tgfβ - 568,
25pM tgfβ - 686, 100pM tgfβ - 653
Carried out by Henriette Strasen

SMAD2 titration 24 h, SMAD7 knock down
Number of cells: control - 475, 1pM tgfβ - 670, 2.5pM tgfβ - 821, 5pM tgfβ - 614,
25pM tgfβ - 771, 100pM tgfβ - 647
Carried out by Henriette Strasen
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Sister cell analysis
Number of cells: 11 replicates 100pM tgfβ - 989, 938, 1550, 1440, 1417, 796, 647,
1208, 2050, 115, 745
Carried out by Henriette Strasen

15.1.2 p53 single cell data

Data used in chapter V
All experiments carried out by Petra Snyder
Irradiation 10Gy

Non-irradiated cells equilibrated to 37◦C - 2857 cells
Irradiated cells equilibrated to 37◦C - 1182 cells
Non-irradiated cells equilibrated to 33◦C - 1214 cells
Irradiated cells equilibrated to 33◦C - 782 cells
Non-irradiated cells equilibrated to 35◦C - 1759 cells
Irradiated cells equilibrated to 35◦C - 1098 cells
Non-irradiated cells equilibrated to 37◦C - 3830 cells
Irradiated cells equilibrated to 37◦C - 2857 cells
Non-irradiated cells equilibrated to 39◦C - 2436 cells
Irradiated cells equilibrated to 39◦C - 1630 cells
Non-irradiated cells equilibrated to 41◦C - 1139 cells
Irradiated cells equilibrated to 41◦C - 1007 cells
Non-irradiated cells acutely shifted to 41◦C - 721 cells
Irradiated cells acutely shifted to 41◦C - 994 cells
Irradiated cells damaged at 37◦C - 1420 cells
Irradiated cells damaged at 37◦C and shifted to 33◦C after 6h - 1407 cells
Irradiated cells damaged at 37◦C and shifted to 35◦C after 6h - 1488 cells
Irradiated cells damaged at 37◦C and shifted to 39◦C after 6h - 935 cells
Irradiated cells damaged at 37◦C and shifted to 41◦C after 6h - 909 cells
Non-irradiated cells incubated at 41◦C and shifted to 37◦C after 6h - 449 cells
Irradiated cells damaged at 41◦C and shifted to 37◦C after 6h - 2213 cells
Non-irradiated cells incubated at 37◦C - 519 cells

15.1.3 Simultaneous p53-p21 single cell data

Data used in chapter VI
All experiments carried out by Caibin Sheng

5Gy - 9968 cells, 5Gy - 982 cells, 10Gy - 1263 cells, 20Gy - 1186 cells
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15.2 List of Abbreviations

ASPP1 Apoptosis-stimulating of p53 protein 1
AKT1 RAC-alpha serine/threonine-protein kinase
AMH Anti-Müllerian protein
AMDF Average Magnitude Difference Function
AMP Adenosine monophosphate
ARF ADP ribosylation factor
ASPP1 Apoptosis-stimulating of p53 protein 1
ASPP2 Apoptosis-stimulating of p53 protein 2
ATM Ataxia telangiectasia mutated
ATR ATM and Rad3-related
BAX Bcl-2-associated X protein
BMP Bone morphogentic protein
CBP CREB-Binding Protein
cDNA copy DNA
cDTW constrained Dynamic Time Warping
CFP Cyan fluorescence protein
Cdc2 Cell division cycle protein 2 homolog
Cdc42 Cell division control protein 42 homolog
CDKN1A Cyclin Dependent Kinase Inhibitor 1A
CDK Cyclin Dependent Kinase
Chk1 Checkpoint kinase 1
Chk2 Checkpoint kinase 2
CPD Coherent point drift
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DDR DNA damage response
DNA Deoxyribonucleic acid
DSB Double strand breaks
DTW Dynamic Time Warping
ERK Extracellular signal-regulated kinases
EMT Epithelial-to-mesenchymal transition
FIR Finite impulse response
Gadd45 Growth arrest and DNA-damage-inducible protein GADD45 alpha
GDF Growth and differentiation factor
GLUT1 Glucose transporter 1
GLUT4 Glucose transporter 4
GTP Guanosine-5’-triphosphate
H2B Histone H2B
HDAC1 Histone deacetylase 1
HSF Heat shock factor
HSP Heat shock protein
HZF Hematopoietic zinc finger protein
iASPP Inhibitor Of Apoptosis Stimulating Protein Of P53
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JNK c-Jun N-terminal kinase
LAP Latency-associated protein
MDC Max-Delbrück Center
MDM2 Mouse double minute 2 homolog
MAPK Mitogen-activated protein kinase
MKK Mitogen-activated protein kinase kinase
MKKK Mitogen-activated protein kinase kinase kinase
mRNA Messenger ribonucleic acid
mTOR mechanistic Target of Rapamycin
Mre11 Double-strand break repair protein MRE11A
MUC1 Mucin-1
Nbs1 Nibrin
NFAT Nuclear factor of activated T-cells
NF-κB Nuclear factor ’kappa-light-chain-enhancer’ of activated B-cells
NOXA Phorbol-12-myristate-13-acetate-induced protein 1
p21 CDK-Inhibitor 1
p300 Histone acetyltransferase p300
p38 P38 mitogen-activated protein kinases
PI3K Phosphoinositid-3-Kinase
PARP Poly [ADP-ribose] polymerase
PCA Principal components analysis
PIN1 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
PK Protein kinase
PP2A Protein phosphatase 2
PRMT1 Protein arginine N-methyltransferase 1
PUMA p53 upregulated modulator of apoptosis
qPCR quantitative polymerase chain reaction
Rad50 DNA repair protein RAD50
RE Response element
RelA Nuclear factor NF-kappa-B p65 subunit
RFP Red fluorescence protein
Rho Ras homolog family member
RhoA Ras homolog family member A
SARA SMAD anchor for receptor activation
Shc SHC-transforming protein
SIK1 Serine/threonine-protein kinase SIK1
SIRT1 Sirtuin-1
SMURF1 E3 ubiquitin-protein ligase SMURF1
SMURF2 E3 ubiquitin-protein ligase SMURF2
SNR Signal to noise ratio
SSB Single strand breaks
SOS Son of Sevenless
TAK1 Mitogen-activated protein kinase kinase kinase 7
TAZ Transcriptional coactivator with PDZ-binding motif
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TF Transcription factor
TRAF6 TNF receptor associated factor 6
TGFβ Transforming growth factor beta
TGFβRI Transforming growth factor beta receptor 1
TGFβRII Transforming growth factor beta receptor 2
TNFα Tumor necrosis factor alpha
TU Technische Universität
UbCp Ubiquitin-like domain-containing CTD phosphatase
UV Ultraviolet radiation
Wip1 P53-Induced Protein Phosphatase 1
WPGMA Unweighted Pair Group Method with Arithmetic mean
Wnt P53-Induced Protein Phosphatase 1
XPC Xeroderma pigmentosum, complementation group C
YAP Yes-associated protein
YFP Yellow fluorescence protein
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PCNA-Mediated Degradation of p21 Coordinates the DNA Damage Response and Cell Cycle
Regulation in Individual Cells
Cell Reports, 2019, 27 (1)

Jentsch, M. Snyder, P. Sheng, C. Cristiano, E. Löwer, A.
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