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Supplementary Note 1 — Coplanar resonator fabrication

Fabrication starts with a substrate of 500 µm compensation doped silicon, covered by 500nm thermally grown SiO2 and
100nm niobium. The niobium layer is structured to form the coplanar λ/2 resonator geometry (1) (see Supplementary Figure 1)
using optical lithography and reactive ion etching with argon and sulphur hexafluoride SF6. In this step also the bond pads (2)
(3) (5) and the outer dc leads are defined, though the dc leads are not connected to the nanotube deposition area and the resonator
center line yet.

Next, using electron beam lithography and thermal deposition of gold, the 100nm wide and 50nm thick gate finger (8) is
created near the coupling capacitors of the resonator, reaching under the area where a carbon nanotube will be deposited. This
gate finger is then covered with about 200nm of poly-methyl methacrylate (PMMA) electron beam resist, which is locally cross-
linked via electron beam overexposure. The subsequent step uses the same techniques as for the gate finger to connect the gate
dc lead with the centre of the resonator, and to create the source, drain, and cutting electrodes for the nanotube (6) using 200nm
gold.

As final step, areas to either side of the transfer electrodes are etched 10 µm deep into the substrate (7), to allow the nanotube
transfer fork (see below) to pass below the resonator plane.

Supplementary Note 2 — Carbon nanotube growth and deposition

Our carbon nanotube growth and deposition process is based on techniques developed by several research groups over the
past years; a more detailed description can be found in Ref. 1. As growth substrate, we use a commercial, macroscopic quartz
tuning fork, where the metallization has been chemically removed. Nominally 1nm cobalt is sputter-deposited onto the fork tips.
Subsequently, the quartz fork is inserted into a tube oven and exposed to a gas flow of 10sccm CH4 and 20sccm H2 at 960◦C
for 30min. The cobalt clusters on the tip surfaces then act as catalyst seeds for the nanotube growth.2,3

A typical growth result is shown in the scanning electron micrograph of Supplementary Figure 2a, where long and clean
carbon nanotubes cross the fork tines and the gap between them. Here, for better visibility of the nanotubes, the entire fork has
been coated with cobalt, not only its tips.

Subsequently, the fork is mounted on a manual positioning system and lowered towards the sample holder circuit board with
the bonded resonator chip, see Supplementary Figure 2b. Monitoring the current between the contact electrodes allows us to
detect when a nanotube touches them. Then, between each of the outer two electrode pairs, a voltage is subsequently ramped up
to cut the macromolecule with a high current. After cutting, the fork is retracted, with a nanotube segment remaining between
the central source and drain electrodes.
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Supplementary Figure 1. The combined coplanar waveguide resonator – carbon nanotube device a, Optical microscope overview
image, including the superconducting coplanar resonator (1) (length ∼ 1cm), the bond pads (2) to couple a GHz signal into and out of the
cavity, the dc bond pads (3) leading to the transfer areas (4), and the dc bondpad (5) leading to the center conductor of the cavity. b, Detail
zoom of the carbon nanotube deposition area with the transfer electrodes (6) in between the deep etched areas (7), the gate finger (8) connected
to the cavity, and 0.5 µm thin, meandering gold lines (9) as rf blocks, connecting the dc electrodes to the bondpads shown in a.
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Supplementary Figure 2. Nanotube growth and transfer a, Scanning electron micrograph of carbon nanotubes grown over and
between the tines of a commercial quartz tuning fork1. For better visibility of the nanotubes, here the entire fork has been covered with cobalt
catalyst, not only the fork tips. b, Optical microscope view during nanotube transfer. A near-transparent growth quartz fork is lowered onto an
electrode chip (here without a coplanar resonator, for testing purposes), while monitoring the resistance between the target electrodes.
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Supplementary Figure 3. Characterization of the Coulomb blockade oscillation a, Logarithmic color scale plot of the absolute value
of the dc current

∣∣I(Vg,Vsd)
∣∣ as function of gate voltage Vg and bias voltage Vsd, in the parameter region discussed in the main manuscript.

A small current offset, likely caused by the used current-to-voltage amplifier, has been manually corrected. Note that over the duration of
the measurement the absolute gate voltages of the Coulomb oscillations underwent a significant slow shift. b, Trace cuts from a, with a
characteristic bias voltage scale of 0.1mV indicated.

Supplementary Note 3 — Quantum dot precharacterization

Supplementary Figure 3a displays a detail measurement of the Coulomb oscillation of the nanotube near Vg =−1.2V. A gap
in low-bias conduction across Coulomb diamonds, as visible here and also in Figure 1c of the main text, can be caused by a
chain of several quantum dots.4,5 The regularity of the diamond-shaped regions of Coulomb blockade in Figure 1c, where overall
only one set of delineating slopes occurs, indicates that one quantum dot is dominant; if a second potential minimum exists, it is
likely a trap state at one of the contacts, e.g., pinned to that contact’s potential.

In order to obtain a lower estimate of the total tunnel rate Γ into and out of the quantum dot, we look at the sharpest current
features in single electron tunneling at this Coulomb oscillation, see Supplementary Figure 3b. The typical scale is given by
∆Vsd = 0.1mV, corresponding to a characteristic energy of ∆ε = 0.064meV and a rate Γest = ∆ε/h' 15GHz. This still exceeds
the cavity resonance frequency of ωc/(2π)' 5.74GHz, making separation of timescales a valid assumption.

We note here however that the current as function of bias voltage exhibits peaks, not steps as expected for a single quantum
dot, within the single electron tunneling and co-tunneling regions. This is an additional indication for a trap state and quasi
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Supplementary Figure 4. Cryogenic measurement setup a, Schematic measurement setup, at the example of an optomechanically
induced transparency (OMIT) measurement. b, Top view of the sample holder with dc and GHz access to the chip. The dc lines, with 12 vias
at upper and lower edge of the PCB each, lead to a connector on the bottom side.

double quantum dot behaviour, where discrete levels tune into and out of resonance; in such a system the intrinsic line width of
a weakly coupled trap level may additionally cause feature sizes.

A near-zero bias trace of the dc current, see Supplementary Figure 12, is consistent with a broadening Γ∼ 163GHz.

Supplementary Note 4 — RF measurement setup

Supplementary Figure 4a sketches the measurement setup integrating both dc and GHz access into our Oxford Instruments
Kelvinox 400HA dilution refrigerator; the arrangement of the room temperature equipment in the figure corresponds to the
optomechanically induced transparency (OMIT) measurement shown in Figure 2 of the main text. The probe signal, generated
by a Rohde & Schwarz (R&S) ZVA 24 vector network analyzer, is injected into the coupled port, the drive signal, generated by
a R&S SMB100A microwave source, into the direct port of a directional coupler at room temperature. UT85 semirigid cables,
using superconducting NbTi from the 1K stage on, and with thermally anchored attenuators inserted at every temperature stage,
convey the combined signal to the device at dilution refrigerator base temperature.

Our chip is mounted on a custom-made printed circuit board “sandwich”, with two Mini-SMP connectors for the GHz signals
and a Micro-D connector for up to 24 dc wires, see Supplementary Figure 4b. A cryogenic circulator, mounted at the mixing
chamber stage, with a terminated third port, guides the transmitted output signal towards the cryostat output and blocks noise
from higher temperature stages. The signal is amplified by 30dB each along a chain of amplifiers: a cryogenic low-noise HEMT
amplifier Caltech CITCRYO 1-12 at the 1K-pot stage, and two microwave amplifiers at room temperature. Subsequently, it is
detected by the vector network analyzer.

Supplementary Figure 5, extending Figures 1b and 2b of the main text, combines a simplified sketch of the device and a circuit
model to clarify device function and nomenclature.
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Supplementary Figure 5. Models of the optomechanical device a, Schematic drawing and b, corresponding circuit. The carbon
nanotube, marked in brown in the model, is capacitively (Cg) coupled to a coplanar waveguide resonator (RCPW, LCPW, CCPW), marked in gray
in the model. A microwave signal can be coupled in and out of the cavity via coupling capacitors (Ck). To tune the electrostatic potential, an
additional dc gate voltage Vg can be applied to the cavity center conductor.
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Supplementary Figure 6. Carbon nanotube vibration mode precharacterization, raw data Absolute value of the lock-in signal
|dI/dPa| measured while an amplitude-modulated rf signal is irradiated onto the device, as function of signal frequency ωa/2π and applied
gate voltage Vg. Tracewise extraction of the peak positions leads to the data plotted in the main text, Figure 1d, and in Supplementary Figure 7.
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Supplementary Figure 7. Carbon nanotube vibration mode precharacterization Resonance positions extracted from the data of
Supplementary Figure 6, and fitted using two coupled modes with parabolic dispersion each.

Supplementary Note 5 — Vibration mode precharacterization

In order to precharacterize the vibration modes of our carbon nanotube device, following Refs. 6–9 we use an antenna to
irradiate an amplitude-modulated MHz signal onto the device and measure the current response through the device using a lock-
in amplifier. The result is plotted in Supplementary Figure 6; two gate-dependent vibration modes are clearly visible, which
display an avoided crossing at Vg ' ±8V. A trace-wise extraction of the response maxima leads to the plot of Figure 1d in
the main text. Even though the contact separation of our device is L = 1 µm, we do not observe any vibration modes at lower
frequency. In combination with the very weak gate voltage dependence of the resonance frequencies, this indicates that high
mechanical tension has been imprinted on the carbon nanotube during device fabrication.

In Supplementary Figure 7, the two observed modes are fitted regarding their gate voltage dependence. We use for the bare
mode frequency in both cases as approximation a quadratic dispersion, in one case with positive, in the other with negative
curvature. In addition, a single mode coupling parameter common to both observed anticrossings is introduced.

Both dispersions with positive and with negative curvature have been observed in literature; the former corresponds to gate
voltage-induced tension,6,10 the latter to electrostatic softening of the vibration.11,12 The frequency maximum of the softening
mode is near the apparent band gap as expected. The tension-dominated mode has a frequency minimum near Vg = 7V, but also
only a very small curvature. We cannot give an explanation for this phenomenon.

For both observed resonances, the obvious gate voltage dependence of the resonance frequency excludes an electromagnetic
resonance in the measurement apparatus as origin. Additionally, both modes show in dc current measurements the characteristic
oscillatory vibrational softening at Coulomb blockade oscillations,7 see Supplementary Figure 8.

Supplementary Note 6 — Cavity precharacterization

For a λ/2-resonator, as the one used here, intrinsically a Lorentzian line shape of the transmission as function of frequency
is expected. As also frequently observed in literature, the measured signal can, however, deviate, due to crosstalk on the sample
around the actual resonator. The combination of a resonant channel and direct transmission leads to a Fano line shape, see
Supplementary Figure 9, where |S21|2 is plotted both as linear value and in dB.

In a fit model, the side channel corresponding to the crosstalk is introduced by adding an additional complex term13 eiθ r,

S21 = A
[

eiθ r+
1

κc
2 − i(ω−ωc)

]
. (1)

Here, A is an overall transmission amplitude, and ωc and κc are the cavity resonance frequency and line width. The fit function
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Supplementary Figure 8. Carbon nanotube vibration mode precharacterization, detail “Coulomb blockade oscillations of vibra-
tional resonance frequency”, cf. Ref. 7, of both observed resonances.
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Supplementary Figure 9. Characterization of the coplanar waveguide cavity transmission near its resonance a, power transmission
in linear scale, b, power transmission in dB. Points are measured transmission data; the solid line is a fit of Supplementary Equation 1.

of Figure 9 corresponds to ωc/2π = 5.74005GHz and κc/2π = 11.6MHz, leading to a total quality factor of Qc = 497. The fit
parameters for the crosstalk side channel are θ =−39.5791◦ and r =−7.53961×10−8 s.

Supplementary Note 7 — Cavity photon number calibration

Since the center conductor of the coplanar microwave cavity also acts as dc gate of the carbon nanotube quantum dot, we
use the cavity-induced broadening of Coulomb oscillations for calibration of the voltage amplitude in the cavity and thereby
the average photon number. Modeling the microwave cavity classically, it applies a sinusoidal ac gate voltage on top of the dc
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Supplementary Figure 10. Cavity photon number calibration a, Current across a Coulomb blockade oscillation, as a function of gate
voltage Vg and off-resonant, red sideband (ωd = 2π ·5.2399GHz) cavity drive power Pcav (as set at the signal generator). For increasing drive
power, the current peak broadens. b, Extracted squared ac gate voltage amplitude (V ac

g )2 (left axis) and cavity photon number nc (right axis),
as function of applied generator drive power Pcav.

voltage. In a dc measurement, this leads to broadening of a Coulomb oscillation I(Vg) as follows:

Idriven(Vg,Pcav) =
1

2π

2π∫
0

I
(
Vg +V ac

g (Pcav)sin(ϕ)
)

dϕ (2)

where V ac
g (Pcav) is the so-far unknown dependence of the ac voltage amplitude on the drive power. Note that both voltages Vg

and V ac
g are applied via the same gate electrode and thus act on the quantum dot with the same geometric lever arm.

The function I(Vg) is extracted for the lowermost generator power, I(Vg) := Idriven(Vg,−10dB), and Supplementary Equation 2
is used to obtain V ac

g (Pcav) by fitting Idriven(Vg,Pcav), Supplementary Equation 2, for each power setting Pcav at the generator. The
result is shown in Supplementary Figure 10b (left axis).

For obtaining the number of photons in the cavity nc, we calculate the total capacitance of our coplanar waveguide based on
conformal mapping techniques;14 this results in CCPW = 1.75pF. The energy stored in the cavity is then given by

E =
1
2

CCPW

(
V ac

g√
2

)2

= nch̄ωd, (3)

where the factor 1/
√

2 reflects the non-homogeneous voltage distribution along the cavity.15 The resulting cavity photon number
nc is given by the right axis of Supplementary Figure 10b, and depends, as expected, linearly on the drive power. For a generator
output power of Pcav = 25dBm, we obtain nc = 67501.

Supplementary Note 8 — Optomechanical coupling

A key parameter of a dispersively coupled optomechanical system16 is the single-photon optomechanical coupling g0, given
by the shift in cavity frequency when the mechanical resonator is displaced on its characteristic zero point fluctuation length
scale xzpf,

g0 =
∂ωc

∂x

∣∣∣∣
x=0

xzpf. (4)
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In experiments, it typically enters via

g = g0
√

nc, (5)

where g is the optomechanical coupling scaling with the number of cavity photons nc.
To derive g0 for our coplanar waveguide cavity, we start with the electronic cavity parameters. The cavity can be modeled as

a lumped element resonator with total capacitance Cc, approximated as a sum of three terms,

Cc =
CCPW

2
+2Ck +Cg(x). (6)

The capacitance CCPW of the coplanar waveguide forming the cavity to its ground plane can be calculated analytically from the
waveguide geometry, using conformal mapping techniques.14,15 For our device we obtain CCPW = 1.75pF; the factor 1/2 stems
from the transformation between distributed and lumped element model.15 Ck describes the coupling of input (drive) and output
line to the cavity; it can be estimated by finite element modelling, is typically in the range of fF,15 and in any case small for an
undercoupled cavity. The last and by far smallest term, Cg(x), is the deflection-dependent capacitance between the suspended
carbon nanotube and the cavity gate finger; thus, to a good approximation

Cc '
CCPW

2
(7)

With ωc = 1/
√

CcLc, the optomechanical single-photon coupling strength g0 from Supplementary Equation 4 is then given
by16,17

g0 =
ωc

2Cc

∂Cc

∂x

∣∣∣∣
x=0

xzpf. (8)

Supplementary Note 9 — Extracting the coupling constant from OMIT

Since we measure transmission through our λ/2 cavity, from an input port to an output port, we need to take both input and
output coupling separately into account. We define the loss rate of the GHz cavity κc by

κc = κ0 +κin +κout (9)

where κin describes the input port and κout the output port coupling, and κ0 is the intrinsic loss. Following Ref. 18, in an OMIT
experiment, with sin as amplitude of the probe signal at ωp, with a cavity drive signal at the red-detuned mechanical side band
ωd = ωc−ωm, and with ∆ = ωp− (ωd +ωm), the intracavity probe field amplitude is given by

A(∆,g) =
1

(−i∆+κc/2)+ g2

−i∆+κm/2

√
κinsin. (10)

leading to a signal transmitted through the cavity

sout(∆) =
√

κout A(∆,g) (11)

We need to consider again the crosstalk transmission that leads to the Fano cavity line shape; it bypasses the optomechanical
coupling as well and is thus not influenced by OMIT. To model it, as in Supplementary Equation 1, we add a complex shift

AFano(∆,g) =

eiθ r+
1

(−i∆′+κc/2)+ g2

−i∆+κm/2

√κinsin. (12)

The parameters r and θ , which characterize our setup (e.g., the sample holder), are taken from the fit of Supplementary Note 6
and kept constant. Additionally, following Ref. 18, we account for drive frequencies ωd that deviate from the motional sideband
condition ωc−ωm = ωd by a modified parameter ∆′ = ωp−ωc.

With this, the OMIT data can be fitted; the power transmission coefficient |S21|2 recorded by the vector network analyzer is
proportional to |AFano(∆,g)|2. Supplementary Figure 11 illustrates the result at the example of the data set of Figure 2c of the
main text. Note that in Figure 2c a strong probe signal was applied, leading to a nonlinear response of the mechanical system,19

which is why the fit using a linear response function here only provides a rough approximation. For the data of Figure 2f, the
signal strength has been reduced to obtain a linear response.
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Supplementary Figure 11. OMIT data evaluation Normalized power transmission of the data trace of Figure 2c in the main text, with
a corresponding fit based on Supplementary Equation 12. Note that here the applied probe power is large, leading to a nonlinear response of
the mechanical system; the fit can only be seen as a rough approximation.

Supplementary Note 10 — Regarding sign conventions

When mathematically treating systems of one or multiple oscillating observables with the help of the exponential function
with imaginary argument, different sign conventions are possible. This becomes immediately visible when comparing the ansatz
of Ref. 18, the first OMIT observation, with, e.g., Ref. 20, a standard reference for microwave-optomechanical systems. The
former writes the mechanical deflection as x(t) =Xe−iωt +c.c., the latter as x(t) =Xeiωt +c.c. This alone suffices to arrive at dif-
ferent expressions for the mechanical susceptibility; rewriting them in our nomenclature, χm(ω) =

[
m(ω2

m−ω2− iωκm)
]−1 in

Ref. 18, χm(ω) =
[
m(ω2

m−ω2 + iωκm)
]−1 in Ref. 20. Note that no optical system or optomechanical coupling is required

for the derivation of χm. The difference between the two expressions is in phase alone, leading to the same |χm(ω)|2 =[
m2((ω2

m−ω2)2 +ω2κ2
m)
]−1. Furthermore, in the derivation of OMIT, χm is not inserted or directly used (since only opti-

cal observables are controlled and measured); at most, its expression evolves as part of the solution of the equations of motion.
The Fourier transformation of the measured microwave signal, corresponding to the choice of expression for frequency-

dependent observables, is performed intrinsically by the vector network analyzer. This means that our experimental setup
enforces a specific choice of sign convention when dealing with time-varying field amplitudes or charges. Does the choice
matter? We can check this in a simple toy model. Let us assume a time-dependent input function u(t), which undergoes Fourier
transformation,

u(ω) =
∫

eiωtu(t)dt (13)

Now we assume a frequency-dependent transfer function s(ω) (corresponding to the transmission of our setup) is multiplied
onto u(ω), and we obtain an output signal v(t) via reverse Fourier transformation:

v(t) =
∫

e−iωts(ω)u(ω)dω (14)

In the above equations we have chosen one specific sign convention for the Fourier transformation; now we repeat the process
with the opposite one:

u′(ω) =
∫

e−iωtu(t)dt (15)

v′(t) =
∫

eiωts′(ω)u′(ω)dω (16)
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From Supplementary Equation 15 we see u′(ω) = u(−ω). Inserting this into Supplementary Equation 16 and setting v(t) = v′(t),
we obtain as general relation between the two transfer functions

−s′(−ω) = s(ω) (17)

Comparison with Supplementary Equation 10 tells us that the “wrong” sign convention leads to the negative, complex-conjugated
value of A. However, as already noted above, the evaluated quantity in all our OMIT data sets is the absolute value squared
transmission coefficient |S21|2 alone — and here, the difference between the two posssible approaches is lost. Since the choice of
sign convention equally applies to the crosstalk channel, this conclusion remains valid for the extended version of Supplementary
Equation 12, at most leading to different signs of the fit parameters r and θ .

The remaining question is whether the sign conventions of Ref. 18 are consistent between the different – “optical” and
“mechanical” – subsystems of our microwave-optomechanical device. We can deliberately introduce a sign inconsistency into
the ansatz of Weis et al., Ref. 18, by replacing their Supplementary Equation S15 with

δx(t) = XeiΩt +X∗e−iΩt (18)

It turns out that the derivation of Supplementary Equation 10 is equally possible this way; now the deflection amplitude X∗

(instead of X) is eliminated from the equations, leading to the same result.
It remains to remark that the existence of any fundamental difference between “optical” and “microwave” optomechanics

would be highly surprising and unexpected, given that the two types of experiment differ only in frequency range, and that a
coplanar waveguide resonator can be treated using formalisms from both wave optics and lumped element electronic circuits.

Supplementary Note 11 — Modeling the geometric optomechanical coupling

Comparing our system with previous microwave optomechanical devices, see, e.g., Ref. 21, we can model the carbon nanotube
as metallic and conductive, neglecting Coulomb blockade effects. The only part of the total cavity capacitance Cc which depends
on the nanotube deflection is then the geometrical capacitance Cg(x) between gate finger and nanotube, thus

∂Cc

∂x
=

∂Cg

∂x
. (19)

We can approximate Cg(x) using the relation for a long conductive rod above an infinite conductive plane,

Cg(x) =
2πε0εr`

cosh−1( d−x
r )

, (20)

where d is the distance between nanotube and gate at equilibrium, x is the deflection, r the nanotube radius, and ` the nanotube
length. Our device has 250nm vacuum and 200nm cross-linked PMMA (with a typical dielectric constant of εPMMA

r ' 3)22

between nanotube and gate; we approximate d = 450nm and εr = 2. Since we do not know the diameter of our carbon nanotube,
we assume a typical value of r = 2nm.

From dc Coulomb blockade measurements, we obtain a gate capacitance CCB
g = 2.6aF; we identify this with the capacitance

at zero deflection Cg(0), resulting in an effective electronic length of the system `eff = 140nm, significantly smaller than the
geometric length `= 1000nm taken from the contact electrode distance. This indicates that our electrostatically induced potential
well only takes up part of the nanotube length; the remaining parts represent barriers and/or leads.

From the abovementioned identification of CCB
g =Cg(0) we obtain

∂Cg

∂x

∣∣∣∣
x=0

= 0.95
pF
m

(21)

and

g0 = 2π ·2.9mHz (22)

A summary of the device constants as input parameters and the predicted or measured optomechanical properties is given in
Supplementary Table 1, where it is also compared with other optomechanical systems from literature.
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meas. CNT Graphene drum Aluminum beam
CB enhanced (Singh et al., 23) (Regal et al., 21)

“Optical” cavity
Resonance frequency ωc 2π ·5.74005GHz 2π ·5.9GHz 2π ·4.9GHz
Line width κc 2π ·11.6MHz 2π ·242kHz 2π ·490kHz
Quality factor ωc/κc Qc 497 [2.4 ·104] 104

Capacitance Cc 875fF 415fF
Mechanical resonator
Resonance frequency ωm 2π ·502.5MHz 2π ·36MHz 2π ·240kHz
Line width κm ∼ 2π ·50kHz 2π ·228Hz [2π ·104Hz]
Quality factor ωm/κm Qm ∼ 104 1.6 ·105 2.3 ·103

Thermal occ. (10mK) kBT/h̄ωm nm 0.41 [5.8] [870]
Length of nanotube / beam ` 1 µm 50 µm
Effective electronic length `eff 143nm
Radius of nanotube / drum / beam r 2nm 4 µm ∼ 50nm
Effective mass m 4.8 ·10−21 kg 2 ·10−15 kg
Coupling
Zero-point motion ampl.

√
h̄/2mωm xzpf 1.9pm 29fm 130fm

Distance to gate / ground d 450nm 150nm 1 µm
Dielectric constant εr 2 1 1
Geometric capacitance to gate / ground Cg 2.6aF 578aF
Geometric gate coupling ∂Cg/∂x 0.95pF/m 170pF/m
Optomechanical parameters
(ncav = 67500)

(for optimal Vg)

Side band resolution ωm/κc 43.5 149 0.5
Geometric single photon coupling g0 2π ·2.9mHz 2π ·0.83Hz [2π ·0.15Hz]
Max. CB-enh. single photon coupling g0 2π ·95Hz
Optomechanical coupling g0

√
ncav g 2π ·24.7kHz [2π ·216Hz] [2π ·39Hz]

Cavity pull-in parameter g0/xzpf G 2π ·51Hz/pm 2π ·26.5Hz/pm 2π ·1.2Hz/pm
Dispersive coupling g0/κc Ã 8.2 ·10−6 [3.4 ·10−6] [3.1 ·10−7]
Maximal sideband cooling rate 4ncavg2

0/κc Γopt 2π ·211Hz [2π ·0.77Hz] [2π ·12mHz]
Cooperativity Γopt/κm C 4.2 ·10−3 [3.4 ·10−3] [1.2 ·10−4]
Cooling power Γopth̄ωm Q̇ 4.4 ·10−22 W [1.2 ·10−25 W] [1.2 ·10−29 W]

Supplementary Table 1. Overview of the parameters of the optomechanical system The nomenclature of Ref. 16 is used. The
geometric values for the carbon nanotube quantum dot are calculated based on the device geometry and dc measurement results; the Coulomb
blockade enhanced values are based on the OMIT measurement evaluation, as are the derived parameters in the lowermost table block. Values
of seminal early papers for a graphene drum, Ref. 23, and for an aluminum beam, Ref. 21, are given for comparison; parameters in brackets
have been calculated based on the data in these publications.

Supplementary Note 12 — Coulomb-blockade enhancement of the optomechanical coupling

So far, the nanomechanical system has been approximated as metallic, and only geometric capacitances have been taken into
account. We now demonstrate that the dispersive optomechanical coupling can be drastically enhanced when the quantum dot
behavior of the nanotube and the resulting variation of its quantum capacitance is additionally considered. See also Refs. 17
and 24, where a nanotube is coupled resonantly, i.e., with ωc ' ωm, for a model based on similar principles, and Ref. 25 for the
source of the derivation of the precise expression of the quantum capacitance.

We here assume that a full separation of time scales is possible, with ωm � ωc � Γ, where Γ characterizes the electronic
tunnel processes of the quantum dot and corresponds to the lifetime broadening of its states; see Supplementary Note 3 for
the validity of this assumption. The effective capacitance Ceff “visible” to the coplanar resonator is then given via the injected
charge on the gate electrode 〈Qg〉 averaged over single electron tunneling processes in the quantum dot at rates faster than both
the mechanical frequency ωm and the cavity frequency ωc,

Ceff = e
∂ 〈Qg〉
∂Vg

. (23)

With Vdot as the potential of the quantum dot, Cdot =Cg +Cs +Cd as its total capacitance, and N as number of charge carriers on
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it, electrostatics provides the relations Qg =Cg(Vg−Vdot) and Vdot = (CgVg− eN)/Cdot, resulting in

〈Qg〉=
Cg(Cs +Cd)

Cdot
Vg + e〈N〉

Cg

Cdot
(24)

The first term describes the geometric capacitance of the gate junction in series with source and drain junction; the second term
stems from the quantum capacitance. The quantum capacitance thus becomes

CCNT = e
Cg

Cdot

∂ 〈N〉
∂Vg

, (25)

where 〈N〉 is the number of charge carriers on the quantum dot, averaged over fast single electron tunneling processes. Here, Vg
is the static, externally applied gate voltage.

To calculate g0, we require ∂Cc/∂x, and we now assume that this CCNT (instead of Cg) is its dominant, deflection-dependent
part, i.e.,

∂Cc

∂x
=

∂CCNT

∂x
. (26)

Any change in the mechanically modulated geometric gate capacitance δCg leads to a change of the gate voltage where Coulomb
blockade oscillations reach maximum conductance; one can thus translate δCg into an effective gate voltage modulation δV eff

g
via

CgδV eff
g =VgδCg, (27)

where Cg is the static, geometric capacitance at zero deflection. With this we implicitly assume that a variation of the effective
gate voltage δV eff

g acts on the system in the same way as a variation of the actual gate voltage δVg. We now expand

∂CCNT

∂x
=

∂CCNT

∂V eff
g

∂V eff
g

∂x
=

∂CCNT

∂V eff
g

Vg

Cg

∂Cg

∂x
(28)

Inserting Eq. (25) and using our definition of the effective gate voltage δV eff
g , we can now simplify and obtain

∂CCNT

∂x
= e

∂ 2 〈N〉
∂V 2

g

Cg

Cdot

Vg

Cg

∂Cg

∂x
. (29)

In an intuitive picture, the cavity probes the first derivative of the charge 〈N〉; an optomechanical interaction results precisely
when that derivative changes over a mechanical modulation cycle, i.e, when the second derivative of 〈N〉 is non-zero.

What remains is to insert an expression for 〈N〉(Vg). Given our above requirements of large single electron tunneling rates,
the limit h̄Γ� kBT of a lifetime-broadened single electron tunneling (SET) conductance peak at zero temperature is appropriate.
Then, the time-averaged number of charge carriers on the quantum dot 〈N〉(Vg), near a SET peak centered at Vg0, can be modelled
as the integral over the quantum dot density of states below the Fermi energy,

〈N〉(Vg) = N0 +

Vg∫
−∞

1
2π

h̄Γ( h̄Γ

2

)2
+ eα

(
V ′g−Vg0

)2 dV ′g (30)

Here, N0 is an offset number of charge carriers, and α is the gate lever arm.
In the fit of Figure 3 of the main text, the free parameters were the broadening Γ, the Coulomb oscillation position Vg0, and an

additionally introduced scaling prefactor a, resulting in Vg0 =−1.18841V, h̄Γ = 0.673meV, and a = 5.77 = gexp
0 /gth

0 .
The broadening Γ corresponds to a frequency of 163GHz, clearly consistent with the separation of time scales. Note that

in the case of two unequal tunnel barriers defining the quantum dot, the current through the nanotube is limited by the more
opaque barrier, while the broadening is dominated by the more transparent barrier. Thus, the tunnel current only provides a
lower boundary for Γ.

Supplementary Note 13 — Consistency with conductance

For the OMIT measurements, to reach a sharp Coulomb oscillation and with that a strong optomechanical enhancement effect,
we have tuned the bias voltage to zero as precisely as possible. An ac conductance measurement is challenging at the high device
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Supplementary Figure 12. Comparison of the predicted conductance from Figure 3b of the main manuscript and the recorded current
Data points, current due to bias offsets in the measurement and rectification effects, recorded in the course of a red sideband upconversion
experiment similar to Figure 4 in the main manuscript. Solid line, fit result curve of the conductance from Figure 3b. The position in Vg as
well as the scaling in I have been adapted, however, the curve widths are unscaled.
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Supplementary Figure 13. Comparison of vibration frequency softening and optomechanical coupling Solid red points, optome-
chanical single photon coupling g0(Vg) in Hz, as also plotted in Figure 2g, right axis; bars, numerical derivative of the extracted mechanical
resonance frequency, dωm/dVg /2π in Hz/V, left axis; green solid line, expected dωm/dVg /2π from the electrostatic model, left axis, see also
the text. The error bars are derived from the standard error of the mechanical resonance frequency in the OMIT fit, cf. Figure 2f.

impedance; while the dc current through the device can be measured, it is typically dominated by minute voltage offsets and
rectification effects.26

Supplementary Figure 12 compares such a current trace, extracted from a separate data set and recorded at nominally zero
bias, with the theoretical conductance curve obtained from the fit in Figure 3b of the main text. An offset in Vg has been corrected,
and the curve has been scaled in height (I) to coincide, however, the width of both peaks is unscaled.

The asymmetry of the current peak can be attributed to abovementioned rectification effects; nevertheless, the width of the
conductance curve derived from the OMIT data and of the current peak coincide nicely.

Supplementary Note 14 — Consistency with frequency softening

Figure 2f of the main text not only demonstrates the optomechanical coupling, but also allows us to trace the mechanical
resonance frequency and its electrostatic softening at the position of the charge degeneracy point7. The change in effective
spring constant is given by7

∆k =
Vg(Vg−Vdot)

Cdot

(
∂Cg

∂x

)2(
1−|e| ∂ 〈N〉

∂ (CgVg)

)
. (31)

Here, Cdot is the total quantum dot capacitance and Vdot is the potential of the quantum dot.
In the case of Vsd = 0, Vdot(Vg) oscillates around the common potential of source and drain contact. We can approximate

Vdot = 0, an assumption that becomes better with increasing
∣∣Vg
∣∣. Neglecting now constant terms and assuming that 〈N〉 is only
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a function of Vg, the change in spring constant reduces to

∆k =−|e|
V 2

g

CdotCg

(
∂Cg

∂x

)2
∂ 〈N〉
∂Vg

. (32)

Comparing Supplementary Equations 29 and 32, we see that the derivative of the mechanical resonance frequency ∂ωm/∂Vg
should be proportional to the optomechanical coupling. We obtain for the gate voltage derivative of the mechanical resonance
frequency the at the Coulomb oscillation dominant term

dωm

dVg
=

1
2mω

d(∆k)
dVg

≈ e
2mω

V 2
g

CdotCg

(
∂Cg

∂x

)2
∂ 2 〈N〉
∂V 2

g
(33)

This correspondence is illustrated in Supplementary Figure 13. Even after applying a sliding average, the numerical derivative
∂ωm/∂Vg remains noisy. The qualitative evolution agrees approximately with the extracted optomechanical coupling.

The green solid line in Supplementary Figure 13 results from inserting the values of our electrostatic and mechnanical model
into Supplementary Equation 33. The experimentally observed softening exceeds the model results by approximately a factor
10. The origin of this deviation is so far unknown; with the deflection derivative of the gate capacitance, the mass, and the
total quantum dot capacitance however several parameters enter also here that are experimentally not precisely known, see the
following Supplementary Note 15.

Supplementary Note 15 — Error sources

In the following we discuss potential errors introduced by approximations entering our calculation.

• The length of the vibrating nanotube segment is assumed to be equal to the contact electrode separation, `= 1 µm. It can
be larger in case the nanotube is not aligned perpendicular to the electrodes.

• Since we do not know the radius of the specific carbon nanotube in the device, we assume a typical value r = 2nm.

• The space between nanotube and gate electrode consists of 250nm vacuum and 200nm cross-linked PMMA. We simplify
this as a single material with relative dielectric constant εr = 2 and thickness d = 450nm.

• We approximate the nanotube-gate capacitance as that of a thin, long rod above an infinite conductive plane, while the
width of the gate electrode, below the nanotube and perpedicular to it, is also only approximately 100nm.

• The effective mass of the carbon nanotube vibrational resonator is assumed to be half its total mass, m=
(
2πr`ρgraphene

)
/2.

Supplementary Note 16 — Additional data

Supplementary Figure 14 displays a red sideband upconversion measurement analogous to Figure 4 of the main text, but
recorded at the subsequent Coulomb blockade oscillation. The plot exhibits essentially the same behaviour, with the frequency
of the upconversion feature following the electrostatic softening at the charge degeneracy point7 and a finite coupling. Away
from the charge degeneracy point, no signal is found, indicating a negligible optomechanical coupling in agreement with our
findings.
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5 S. Reinhardt, L. Pirker, C. Bäuml, M. Remškar, and A. K. Hüttel, “Coulomb blockade spectroscopy of a MoS2 nanotube,” physica status

solidi (RRL) – Rapid Research Letters 13, 1900251 (2019).
6 A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and H. S. J. van der Zant, “Carbon nanotubes as ultrahigh quality

factor mechanical resonators,” Nano Letters 9, 2547–2552 (2009).

http://dx.doi.org/ 10.1002/pssb.201800118
http://dx.doi.org/10.1021/nl801007r
http://dx.doi.org/10.1166/jnn.2010.2939
http://dx.doi.org/10.1166/jnn.2010.2939
http://dx.doi.org/10.1002/pssr.201900251
http://dx.doi.org/10.1002/pssr.201900251
http://dx.doi.org/10.1021/nl900612h


16

-92.5

-90

-87.5

-85

-82.5

-80

-78.5

-1.128 -1.126-1.130

502.525

502.550

502.575

502.600

dP
(dBm)

Vg(V)

(MHz)
aω /2π

Supplementary Figure 14. Subsequent Coulomb oscillation Red sideband upconversion experiment analogous to Figure 4 of the main
text, but performed at the subsequent Coulomb oscillation.
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