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Abstract: Remodeling of arterioles is a pivotal event in the manifestation of many inflammation-based
cardio-vasculopathologies, such as hypertension. During these remodeling events, vascular smooth
muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. The latter is characterized
by increased proliferation, migration, and invasion. Compounds with anti-inflammatory actions have
been successful in attenuating this phenotypic switch. While the vast majority of studies investigating
phenotypic modulation were undertaken in VSMCs isolated from large vessels, little is known about
the effect of such compounds on phenotypic switch in VSMCs of microvessels (microVSMCs). We have
recently characterized a novel homoisoflavonoid that we called 7-O-methylpunctatin (MP). In this
study, we show that MP decreased FBS-induced cell proliferation, migration, invasion, and adhesion.
MP also attenuated adhesion of THP-1 monocytes to microVSMCs, abolished FBS-induced expression
of MMP-2, MMP-9, and NF-κB, as well as reduced activation of ERK1/2 and FAK. Furthermore,
MP-treated VSMCs showed an increase in early (myocardin, SM-22α, SM-α) and mid-term (calponin
and caldesmon) differentiation markers and a decrease in osteopontin, a protein highly expressed in
synthetic VSMCs. MP also reduced transcription of cyclin D1, CDK4 but increased protein levels
of p21 and p27. Taken together, these results corroborate an anti-inflammatory action of MP on
human microVSMCs. Therefore, by inhibiting the synthetic phenotype of microVSMCs, MP may be a
promising modulator for inflammation-induced arteriolar pathophysiology.
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1. Introduction

Arterioles are internally wrapped with one or more layers of vascular smooth muscle cells
(VSMCs) [1]. Under normal physiological conditions, VSMCs assume a contractile phenotype [2]. It is
this phenotype that is largely responsible for the contractility of blood vessels, allowing them to tightly
control vasotone and regulate flow both under physiologic and pathophysiologic conditions [2–4].
In response to inflammatory cues, VSMCs switch from the contractile to a dedifferentiated synthetic
phenotype, with increased proliferative and migratory abilities [2]. This VSMC phenotypic switch
plays a key role in vascular/arteriolar inflammation and remodeling [5].

The use of herbal medicine in the prevention and treatment of cardiovascular disease (CVD)
has been substantially growing [6,7]. Remarkably, the PubMed database contains more than 600
clinical trials and around 3300 publications dealing with herbal drugs for CVDs [7]. These reports
provide scientific evidence on the beneficial role of herbal medicine in CVD. Among the many herbal
compounds associated with cardio-vasculoprotective effects are flavonoids [8–12]. For instance,
the flavonoid-rich herb Scutellaria baicalensis was reported to confer protection against ischemic
heart disease [13]. Likewise, flavonoids are known to ameliorate atherosclerosis [14] and exert an
antihypertensive effect [15]. Importantly, several studies tested the effect of many chemicals/flavonoids
with anti-inflammatory actions on vascular cells. Nonetheless, most of these drugs were tested on
VSMCs isolated from large vessels [16–19]. Indeed, very little is known about compounds targeting
arteriolar inflammation.

A special class of flavonoids distinguished by one additional carbon atom on their carbon cytoskeleton
are the homoisoflavonoids (3-benzylidenechroman-4-ones) [20]. They constitute a rare class of natural
compounds [20]. More than 240 natural homoisoflavonoids have so far been reported, all restricted
to only six plant families: Fabaceae, Asparagaceae, Polygonaceae, Portulacaceae, Orchidaceae, and
Gentianaceae [16,20,21]. Recently, homoisoflavonoids have been receiving increased interest due to their
broad spectrum of biological effects [20]. These include anti-inflammatory [22], anti-hyperglycemic [23],
anti-mutagenic [24], anti-microbial [25], antiviral [26], and anti-oxidant activities [27]. The anti-oxidant
effect seems to be the most important and most extensively studied owing to its potentially beneficial effects
in diabetes and inflammation [28] and CVD [29]. For instance, Ophiopogonin japonicus, rich in anti-oxidative
homoisoflavonoids, appears to be effective in treating myocardial ischemia and arrhythmias [29]. Thus, by
virtue of their anti-oxidative potential, homoisoflavonoid-rich plants may be regarded as an important
resource in the management or treatment of CVD.

Bellevalia eigii Feinbrun is a perennial plant belonging to the family Asparagaceae [16,30]. It is
native to Mediterranean region and Sinai [31] and is widespread in Jordan, where it is known among
local people as “the Jordan Valley onion” [16]. From the bulbs of Bellevalia eigii Feinbrun, we recently
isolated, purified and characterized a new compound, 7-O-methylpunctatin (MP) [16] (Figure 1). Here,
we sought to determine the effect MP on fetal bovine serum (FBS)-induced inflammation of human
VSMCs extracted from dermal arterioles.
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2. Materials and Methods

2.1. Reagents

Anti-Calponin antibody (ab46794), anti-Caldesmon antibody (ab32330), anti-β actin antibody
(ab119716), anti-ERK1/2 antibody (ab17942), anti-ERK1 (phospho Y204) + ERK2 (phospho Y187)
antibody (ab47339), anti-FAK antibody (ab61113), anti-FAK antibody (phospho Y397, ab81298),
HRP-conjugated Goat Anti-Mouse antibody (ab97040), HRP-conjugated Goat Anti-Rabbit antibody (ab
ab150080), and Tetrazolium (ab146345) were purchased from Abcam (Cambridge, UK). Anti-GAPDH
antibody (2118), anti-caspase-3 (8G10), anti- nuclear factor (NF)-κB p65 antibody (3034), anti-IκB
antibody (9242), and anti-IκBα (phospho Ser32/36, 9246) were obtained from Cell Signaling Technology
(Leiden, The Netherlands). Anti-p21antibody (sc-397) and anti-p27 antibody (sc-1641) were purchased
from Santa Cruz Biotechnology (Dallas, TX, USA). Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture
F-12 Ham DMEM: F12 (BE12-719F), RPMI-1640, Penicillin/Streptomycin (17-602E), and Trypsin (BE02-007E),
DMSO (0231) were obtained from Lonza (Basel, Switzerland). Fetal Bovine Serum FBS (F9665), Phosphorous
Buffer Saline PBS (D1408), and Propidium Iodide (P4170) were purchased from Sigma-Aldrich (Schnelldorf,
Germany). MMP-2 and MMP-9 ELISA kits were obtained from R&D Systems (Minneapolis, MN, USA),
DC Protein Assay kit and ClarityWestern ECL Substrate from Bio-rad (Irvine, CA, USA), BrdU kit from
Roche Diagnostics (Penzberg, Germany), Luciferase Assay Kit from Promega (Fitchburg, WI, USA), Moloney
murine leukemia virus reverse transcriptase (RT) from Invitrogen (Carlsbad, CA, USA), and SYBR Green
fluorophore from SuperArray Bioscience Corporation (Frederick, MD, USA).

2.2. Cell Culture

Human arteriolar smooth muscle cells were extracted by the non-enzymatic sprouting method
from post-circumcision tissue of a newborn boy. No IRB approval is needed as this source is considered
clinical waste. Cells were grown in Ham’s Growth medium (DMEM: F12, 50:50; supplemented with
10% FBS, and 1% penicillin/streptomycin). Only cells of passages 8–11 were used. Before treatment,
cells were synchronized by starvation in a quiescent serum-free medium (DMEM: F12, 50:50, 0.5%
FBS, 1% penicillin/streptomycin) for 48 h, as previously described [32]. THP-1 cells were cultured in
RPMI-1640 and supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were maintained
in a humidified incubator at 37 ◦C with 5% CO2 atmosphere.

2.3. Preparation of 7-O-methylpunctatin

Extraction, characterization, and purification of MP was done as we recently reported [16]. MP was
stored at −20 ◦C, and for cell treatment, it was dissolved in DMSO. The dissolved compound was
stored in the dark at −20 ◦C.

2.4. MTT Assay

VSMCs were grown in 96-well plate until they reached 30–40% confluence. Then cells were
starved in serum-free medium for 48 hrs. Following starvation, cells were treated with increasing
concentrations of MP for 24, 48, and 72 h. MTT solution (20 µL, 5 mg/mL) was added to each well, and
cells were incubated for an hour in a 5% CO2 incubator. The medium was then removed, and 200 µL
DMSO was added to each well. The plate was placed on a shaker for 15 min to allow for the dissolution
of formazan crystals. Using an ELISA Multiscan EX Reader (Thermo Fisher, Vantaa, Finland), optical
density was read at 550 nm. Absorbance is directly proportional to cell viability.

2.5. BrdU Incorporation Assay

Here, five thousand cells/well were seeded into 96-well plates. Cells were then starved for 48 h before
commencing any treatment. Cell proliferation was then measured with BrdU kit (Roche Diagnostics,
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Penzberg, Germany) following the manufacturer’s protocol. Optical density was measured using a
microplate reader spectrophotometer at excitation wavelength 450 nm.

2.6. Cell Cycle Analysis

Cells were made quiescent by culturing in starvation medium for 48 h. After starvation, cells
were treated for 48 h with complete medium in the absence or presence of MP. They were then washed
with PBS, trypsinized, and collected by centrifugation. After washing twice with ice-cold PBS, cells
were re-suspended in 500 µL PBS. For permeabilization and fixation, 2 mL of ice-cold pure ethanol was
added for 15 min. The cell suspension was centrifuged, and the cell pellet was washed twice with
PBS. Cells were then incubated for 10 min in 1 mg/mL of propidium iodide in PBS. Propidium iodide
(PI) fluorescence was read using Guava EasyCyte8 Flow Cytometer (Luminex, Hayward, CA, USA).
Cell cycle analysis was done using Guava Soft 2.7 software.

2.7. RT-PCR

Cells were seeded and allowed to grow in complete medium, then starved for 48 h. Total RNA
was extracted using Nucleospin RNA II kit as per the manufacturer’s protocols (Machery Nagel,
Germany). cDNA was then synthesized using 1 µg of total RNA by RevertAid 1st strand cDNA
synthesis kit (Thermo Fisher ScientificF). RT-PCR was then performed using the iQ SYBR green
supermix. Using serial dilutions of cDNA of positive controls for each gene of interest, standard
curves are determined and plotted, and then the threshold cycle value (Ct) obtained for each gene
and normalized to the housekeeping gene GAPDH (internal control). The ∆∆Ct method was used to
analyze expression changes between the different conditions, where the control untreated group value
is set to one. Gene sequences were amplified using the following primers:

• Cyclin D1F: TCCTGTGCTGCGAAGTGGAAAC;
• Cyclin D1R: AAATCGTGCGGGGTCATTGC;
• cdk4F: AAGAGTGTGAGAGTCCCCAATGG;
• cdk4R: GATTTTGCCCAACTGGTCGG;
• Myocardin F: GAGAGGTCCATTCCAACTGC;
• Myocardin R: GGGCTGTGAGGCTGAGTC;
• SM-22α F: TCCAGGTCTGGCTGAAGAATGG;
• SM-22α R: CTGCTCCATCTGCTTGAAGACC;
• SM-α F: ACTGAGCGTGGCTATTCCTCCGTT
• SM-α R: GCAGTGGCCATCTCATTTTCA;
• GAPDH F: CGCTCTCTGCTCCTCCTGTTC;
• GAPDH R: TTGACTCCGACCTTCACCTTCC.

2.8. Phase Contrast Microscopy

VSMCs were grown in 6-well plates. Cells were then starved for 48 h then treated with complete
medium in the absence or presence of MP. Images were acquired using a phase-contrast microscope
(Zeiss, Oberkochen, Germany) after 24, 48, and 72 h.

2.9. Scanning Electron Microscopy

Cells were cultured in complete medium on coverslips in 12-well plates. At 80% confluency, cells were
starved for 48 h, then treated with complete medium in the absence or presence MP for 48 hrs. Wells were
then washed and cells fixed with 2.5% glutaraldehyde for 45 min at 4 ◦C. After washing with PBS, cells
were dehydrated with increasing ethanol concentrations (25, 50, 75, 95, and 100%) for 5 min per incubation.
The coverslips were mounted on scanning electronic miscoscope (SEM) stub, cells were sputtered with gold
and images were acquired using Tescan SEM (MIRA3 software; Brno; Czech Republic).
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2.10. Wound Healing (Scratch) assay

Cells were cultured in 12-well plates until 90–95% confluent. They were then incubated in
quiescent medium (0.5% FBS) for 48 h. Using a 10 µL sterile pipette tip, a scratch was made on
the cellular monolayer. Wells were washed with PBS to remove cellular debris, and medium was
replenished in the absence or presence of MP. Wound healing was monitored at 0, 2, 4, 6, 8, 12, and 24 h,
and photomicrographs were taken using a Zeiss phase contrast microscope. ZEN imaging software
(blue edition) from Zeiss was used to measure the width of the scratch.

2.11. Invasion Assay

Transwell inserts were coated with matrigel and allowed to dry overnight under ultraviolet light.
Cells in serum-free media were seeded onto the rehydrated upper transwell chamber in the absence
or presence of MP. The lower chamber was loaded with complete medium, acting as a chemotactic
attractant. Cells were then incubated at 37 ◦C for 24 h. After treatment, the medium was aspired,
and wells were washed with PBS. Non-invading cells were removed from the upper surface with a
cotton swab, whereas invading cells were fixed with methanol and stained with DAPI. The membrane
was cut with a blade and mounted on an anti-fade agent. Slides were observed under Zeiss Axio
fluorescent microscope. Cells from at least five different fields were counted.

2.12. Cell Adhesion Assay

Cells in starvation medium were seeded in 6-well plates and allowed to adhere for 1 h at 37 ◦C.
Then, wells were gently washed with PBS to remove non-adherent cells. Images were acquired using
Zeiss phase contrast microscope and adherent cells were counted.

2.13. Monocyte Adhesion Assay

Cells were grown in complete medium until confluence. Cells were then treated with MP for
1hour followed by treatment with phorbol myristate acetate (PMA) for 20 h. THP-1 cells labelled with
NucBlue (Thermo Fischer Scientific) were added over the VSMC monolayer and allowed to adhere
for 30 min. Non-adherent THP-1 cells were removed by washing the wells with PBS. Images of the
adherent THP-1 cells were acquired using Zeiss Axio fluorescent microscope. In addition, quantitative
analysis was done by measuring the fluorescence intensity of five random fields of photomicrographs.

2.14. Measurement of MMP-2 and MMP-9

Cells were grown to a subconfluent level and then starved for 48 h. Following treatment with the
respective conditions, medium of each condition was collected for MMP-2 and MMP-9 detection using
ELISA kits (R&D Systems), as recommended by the manufacturer and we recently reported [33].

2.15. Actin Staining

At 30–40% confluence, cells were starved in quiescent medium for 48 h. Following treatment, cells
were washed twice with PBS, fixed with 4% paraformaldehyde, and permeabilized with 0.1% Triton
X-100. Cells were then washed again and incubated with Rhodamine phalloidin stain for 1 h in the dark.
Cells were washed again, and nuclei were counter-stained with DAPI for 15 min at room temperature.
Cells were mounted on an anti-fading agent and visualized using Zeiss Axio fluorescent microscope.

2.16. Luciferase Reporter Assay

As we previously reported [34], cells were transiently transfected with NF-κB-driven promoter
luciferase using Amaxa Nucleofector (Amaxa Biosystems, Gaithersburg, MD, USA) according to the
manufacturer’s protocol. Renilla luciferase vector was used as an internal control, to which firefly
luciferase values were normalized. Following transfection, cells were allowed to recover overnight,
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and then starved for 48 h. After treatment, cells were washed and lysed in luciferase lysis buffer
(Promega), and luciferase activity was measured.

2.17. Western Blotting

Cells were washed with PBS and then lysed using 2% SDS, 60 mM Tris lysis buffer (pH 6.8) as
previously described [35]. Proteins were quantified using DC Protein Assay and equal amounts of
protein (20–30 µg) were loaded and separated using 5–11% SDS-PAGE. Proteins were then transferred
onto polyvinylidene difluoride (PVDF) membrane (Biorad). After blocking in 5% fat-free milk in
TBS-T, 1 h at room temperature, the membrane was incubated overnight with the relevant primary
antibody at 4 ◦C. The membrane was then washed thrice with TBS-T for 10 min each and incubated
with the appropriate HRP-conjugated secondary antibody for 1 h at room temperature. The membrane
was washed again (three times with TBS-T, 10 min each) and then developed using enhanced
chemiluminescence (ECL clarity, Biorad) and quantified using Chemidoc MP Imaging system (Biorad).

2.18. Statistical Analysis

Statistical analyses were performed by student’s t-test for either paired or unpaired observations.
For multiple comparisons, ANOVA was used—either one-way ANOVA (with Dunnett’s post hoc test)
or two-way ANOVA (with Tukey-Kramer’s post hoc test). Except for Western blotting, experiments
were performed at least three times, and each time was made of triplicate wells. The average of the
triplicate from each experiment (individual mean) was calculated, and these means were then averaged.
Data were presented as mean ± standard error of the mean (SEM). A p-value of less than 0.05 was
considered as significant.

3. Results

3.1. MP Inhibits FBS-Induced VSMC Proliferation

Cells were stimulated with FBS then were treated with or without MP. MP inhibited proliferation
in a concentration- and time-dependent manner (Figure 2A). At the concentrations of 200 and 300 µM,
MP significantly reduced the number of viable cells at 24, 48, and 72 h. However, the lowest MP
concentration (100 µM) caused a significant reduction only at 48 and 72 h (100 vs 83% and 100 vs 77%
respectively; p < 0.05 for both). A similar result was observed when FBS-unchallenged (i.e., quiescent)
cells were treated with increasing concentrations of MP (100, 200, and 300 µM) (Figure 2B). This suggests
that MP inhibits basal and FBS-induced proliferation of these cells.

In order to determine whether the anti-proliferative effect of MP is associated with a change in DNA
synthesis, BrdU incorporation assay was employed. MP slightly but significantly decreased basal BrdU
incorporation (100 vs 88%; p < 0.05) (Figure 2C). As expected, FBS induced a significant increase in DNA
synthesis (100 vs 258 ± 28%; p < 0.05) (Figure 2C). This increase was potently diminished by MP (258 ± 28%
vs 140 ± 20%; p < 0.01). These results are in line with the anti-proliferative effect of MP evaluated by MTT.

3.2. MP Induces Cell Cycle Arrest of FBS-Induced VSMC

Having established that MP attenuates FBS-induced cell proliferation, we next sought to assess the
effect of MP on cell cycle progression. As shown in Figure 3A, MP increased the G0/G1 cell population,
while decreasing those in the S and G2/M phases. Expectedly, treatment with FBS decreased the
percentage of cells in G0/G and increased the percentage of cells in the S phase (Figure 3A). These
FBS-induced changes in the cell cycle profile were attenuated by pretreatment with MP. This indicates
that MP inhibited cell proliferation by arresting the cells in the G0/G1 phase.
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Figure 3. MP blocks VSMCs in G0/G1 phase of cell cycle. (A) Cells were treated with MP (100 µM) for
48 h, stained with PI, then sorted by flow cytometer. Data represent the mean of three independent
experiments. (B) and (C) Cells were grown in starvation or complete medium, in presence or absence
of MP (100 µM). The expression levels of CDK4 (B) and Cyclin D1 (C) were determined by RT-PCR.
Values are calculated as % of the corresponding vehicle control value and represented as mean ±
SEM of three replicates. (*p < 0.05). (D) Cells were treated with MP (100 µM) for 24, 48, and 72 h.
The expression of p21 and p27 was detected by Western blotting. Values mean fold change of three
replicates. One-way ANOVA followed by Tukey’s test was performed for all panels.
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3.3. MP Downregulates the Expression of Cyclin D1 and CDK4 and Upregulates the Expression of CDK
Inhibitors, p21 and p27, in VSMCs

To further validate our results, we sought to characterize the changes in the expression of factors
directly involved in cell cycle regulation. Here, we looked at the expression level of cyclin D1, CDK4,
p21 and p27. RT-PCR analysis showed that MP significantly decreased the mRNA level of cyclin D1 and
CDK4 (Figure 3B,C). As expected, treatment with FBS induced an increase in the transcript level of both
cyclin D1 (100 vs 252 ± 21%; p < 0.05) and CDK4 (100 vs 259 ± 49%; p < 0.05) (Figure 3B,C). This increase
was abrogated by MP (252 ± 21% vs 127 ± 12% for cyclin D1 or 259 ± 49% vs 125 ± 26% for CDK4)
(Figure 3B,C). Furthermore, MP induced an increase in the expression of p21 and p27 (Figure 3D).
While the upregulation of p21 was noticeable at 24 and 48 h (Figure 3D), p27 was upregulated only
after 48 h of treatment with MP (Figure 3D). These results further reinforce our hypothesis that MP
attenuates FBS-induced cell cycle progression by inhibiting the escape from G1 phase.

3.4. MP Induces VSMC Apoptosis

It is well-established that cellular morphologic changes greatly reflect as well as affect cellular
function [36–38]. For instance, cells undergoing apoptosis show distinguished morphological features
such as cell shrinkage and cytoplasmic extensions [39]. Light microscopic examination of MP-treated
cells revealed morphological changes indicative of a loss in the VSMC characteristic spindle shape.
These changes occurred 48 and 72 h post treatment (Figure 4A). Indeed, cells adopted a round translucent
morphology (Figure 4A), likely indicative of cell death. Higher magnification showed shrunken and
smaller-sized cells (Figure 4B). Moreover, treated cells exhibited long string-like cytoplasmic extensions
with blebs attached to their ends (Figure 4C; red arrows). All these changes are characteristic of
apoptotic cells [40,41]. Using SEM, the cellular ultrastructure revealed the presence of cytoplasmic
protrusions known as apoptopodia (Figure 4D; red arrows). Collectively, these observations indicate
that MP induces apoptosis of microvascular smooth muscle cells.Biomolecules 2019, 9, x FOR PEER REVIEW  9 of 26 
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Figure 4. MP induces VSMC apoptosis. Cells were treated with MP (100 µM) for 24, 48, and 72 h.
Micrographs were captured at magnifications of (A) 4×, (B) 10×, and (C) 20×. (C) The area in the
red square was captured at 100×magnification (lower micrograph). (D): Representative SEM images
of MP-treated cells. Scale bars, 50 µm. In (C) and (D): Red arrows point at cytoplasmic extensions.
(E) Cells were treated with MP (100 µM) for 24, 48, and 72 h. Activation of caspase-3 and the expression
levels of Bax and Bcl2 were detected by Western blotting. Values mean fold change of three independent
experiments. One-way ANOVA followed by Tukey’s test was performed.
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To validate our finding, we determined the effect of MP on caspase-3 cleavage and Bax/Bcl2 ratio.
We found that caspase-3 was not activated in MP-treated VSMC for 24 h (Figure 4E). This result is in
agreement with cell viability results and cell morphology images. However, longer exposure (48 and
72 h) to MP activated apoptotic cell death revealed by the cleavage of caspase 3 (Figure 4E). In addition,
MP induced an increase in the Bax/Bcl2 ratio after 48 or 72 h of treatment (Figure 4E), suggesting the
activation of the intrinsic apoptotic pathway.

3.5. MP Attenuates FBS-Induced VSMC Migration, Invasion, and Adhesion

The effect of MP on FBS-induced migration was examined using scratch assay. MP, at a concentration
of 100 µM, significantly attenuated wound-healing (p < 0.05) after 12 h (Figure 5A,B). At this time point,
no cytotoxic effect of MP was observed (data not shown) (Figure 5A,B), indicating that the anti-migratory
capacity is independent of MP’s anti-proliferative effect. In addition, we evaluated the effect of MP on
the invasive capacity of VSMCs using Matrigel-coated Boyden chambers. Our results showed that MP
inhibited FBS-induced invasiveness (Figure 5C).
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Figure 5. MP inhibits VSMC migration, invasion, and adhesion. (A) Cells were treated with MP
(100 µM) and cell migration was assessed by scratch assay. Images were taken at the indicated time
points (Scale bar, 50 µm). (B) Values are represented as mean ± SEM of distance migrated (n = 3
replicates) (*p < 0.05). (C) Cells were treated with MP (100 µM). Cell invasion was evaluated using
invasion assay. Representative photomicrographs showing the effect of MP on invading cells. (D) Cells
were treated with MP (100 µM) and allowed to adhere for 1 hr. Representative photomicrographs of the
effect of MP on VSMC adhesion. Scale bar, 50 µm. (E) Values are represented as mean ± SEM of relative
fold inhibition of vehicle-treated cells (*p < 0.05). One-way ANOVA was performed for all panels.

Because cell adhesion to its substratum is critical for cell migration and invasion, we next
determined the effect of MP on VSMC adhesion. We found that MP significantly inhibited VSMC
adhesion as shown in Figure 5D,E.

3.6. MP Inhibits MMP-2 and MMP-9 Secretion in VSMCs

Matrix metalloproteases-2 and -9 (MMP-2 and MMP-9) are known to play a major role in vascular
remodeling. Specifically, the activation of MMP-2 and MMP-9 in response to inflammatory stimuli
leads to ECM degradation, thus facilitating VSMC migration and invasion [42–44]. Here, our results
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show that MP significantly decreased the levels of secreted MMP-2 and MMP-9. Specifically, MP
slightly but significantly reduced basal levels of secreted MMP-2 (100 vs 89 ± 3%; p < 0.05) (Figure 6A)
and MMP-9 (100 vs 83 ± 2%; p < 0.05) (Figure 6B). Stimulation with FBS induced a profound increase in
MMP-2 (100 vs 283 ± 12%; p < 0.01) and MMP-9 (100 vs 307 ± 9%; p < 0.01) (Figure 6A,B). This increase
was significantly attenuated by pretreatment with MP (283 ± 12% vs 150 ± 11% or 307 ± 9% vs
157 ± 22%, for MMP-2 and MMP-9 respectively; p < 0.01 for both) (Figure 6A,B).
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Figure 6. MP inhibits basal and FBS-induced MMP-2 and MMP-9 secretion. Cells were grown in
starvation or complete medium, in presence or absence MP (100 µM). Levels of secreted MMP-2 (A)
and MMP-9 (B) were evaluated by ELISA. Data represented are mean ± SEM of % MMP level in the
corresponding vehicle-treated well. (*p < 0.05, **p < 0.01). One-way ANOVA followed by Tukey’s test
was performed.

3.7. MP Decreases the Phosphorylation of ERK1/2 and FAK

Activation of the ERK1/2 pathway plays a key role in VSMC proliferation and migration [45–47].
In addition, FAK activation is associated with cell migration and adhesion [48]. Thus, we investigated
the effect of MP on the phosphorylation of ERK and FAK using Western blotting. We found that MP
induced a decrease in ERK1/2 phosphorylation in a time-dependent manner (Figure 7). Moreover, FAK
phosphorylation decreased as early as 10 min post-MP treatment (Figure 7).
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Figure 7. MP attenuates ERK1/2 and FAK phosphorylation in a time-dependent manner. Cells were
treated with MP (100 µM) for 10, 30, and 60 min. The phosphorylation levels of ERK1/2 and FAK were
determined by Western blotting. Values mean fold change of three independent experiments.

3.8. MP Increases the Expression of Early and Mid-Term Differentiation Markers and Decreases the Expression
of a De-differentiation Marker

VSMC phenotype, whether contractile or synthetic, may be defined by the level of expression
of specific markers. The contractile phenotype is characterized by differentiation markers that are
grouped into early, mid-term, and late differentiation markers [49]. On the other hand, synthetic
VSMCs secrete many ECM proteins, including osteopontin and osteonectin [50,51].
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Here, we show that MP significantly increased the expression of the early differentiation markers,
SM22-α, SM α-actin, and myocardin (100 vs 197 ± 16%; 100 vs 181 ± 20%; or 100 vs 222 ± 22%; for SM22-α,
SM α-actin, and myocardin respectively; p < 0.01 for all) in quiescent cells (Figure 8A–C). As expected,
treatment with FBS induced a decrease in the expression of these markers. This decrease was greatly
attenuated by MP (FBS alone versus FBS plus MP: 43 ± 8% vs 110 ± 14%; 51 ± 8% vs 142 ± 12%;
or 41 ± 10% vs 160 ± 19%; for SM22-α, SM α-actin, or myocardin respectively; p < 0.01 for all). Similar
results were obtained for mid-term differentiation markers, calponin and caldesmon (Figure 8D) Moreover,
MP abrogated the basal (100 vs 67 ± 14%; p < 0.01) and FBS-induced (223 ± 18% vs 118 ± 9%; p < 0.01)
expression of osteopontin, a glycoprotein secreted by synthetic VSMCs (Figure 8E). These results indicate
that MP drives VSMCs towards a contractile phenotype via increasing the expression of differentiation
markers and decreasing the expression of osteopontin in quiescent and FBS-induced cells.
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Figure 8. MP increases the expression of basal and FBS-attenuated differentiation markers and decreases
basal and FBS-induced expression of osteopontin. Cells were grown in starvation or complete medium,
in presence or absence MP (100 µM). Expression levels of contractile differentiation markers (A) SM-22α,
(B) SM-α, (C) myocardin were evaluated by RT-PCR. Values represented are mean ± SEM of % vehicle
control. (*p < 0.05). (D) Cells were grown in starvation or complete medium, in presence or absence
MP (100 µM). The expression of differentiation markers, calponin and caldesmon, was determined
by Western blotting. Values mean fold change of three independent experiments. (E) Cells were
grown in starvation or complete medium, in presence or absence MP (100 µM). The expression level
of osteopontin was asssessed by RT-PCR. Values represented are mean ± SEM of % vehicle control.
(*p < 0.05). One-way ANOVA followed by Tukey’s test was performed.

3.9. MP Inhibits Actin Polymerization

The actin cytoskeleton in VSMCs is dynamic and responds to external stimuli by polymerization
of globular (G) actin to filamentous (F) actin [52]. To test the effect of MP on FBS-induced actin
polymerization, phalloidin stain was employed. Phalloidin binds to F-actin and prevents their
depolymerization. As expected, FBS treatment induced actin polymerization. This FBS-induced
polymerization was inhibited by MP pretreatment as shown in Figure 9.
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Figure 9. MP attenuates FBS-induced actin polymerization. Cells were treated with FBS for 24 h
in the presence or absence of MP (100 µM). Cells were then stained with phalloidin and actin
polymerization was assessed. Representative micrographs showing the effect of MP on FBS-induced
actin-polymerization. Scale bar, 50 µm.

3.10. MP Inhibits PMA-induced Adhesion of THP-1 Monocytes on VSMCs

Monocyte adhesion to VSMC takes place in many vasculopathies including atherosclerosis,
thrombosis, and restenosis [53]. We sought to determine the effect on MP on monocyte adhesion to
PMA-induced VSMCs. Toward this, THP-1 cells were incubated with PMA-stimulated VSMCs, with or
without pretreatment with MP. In the absence of PMA, the number of THP-1 cells adhered to VSMCs
was expectedly minimal. However, stimulation of VSMCs with PMA for 20 h lead to significant
increase in the number of adherent THP-1 cells (Figure 10A). Indeed a 3-fold increase in monocyte
adhesion was observed under these conditions (Figure 10B). Interestingly, this increase was completely
abolished when VSMC were pretreated with 100 µM of MP (Figure 10A,B).
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Figure 10. MP abolishes phorbol myristate acetate (PMA)-evoked adhesion THP-1 cells to VSMCs.
Cells were treated with PMA (50 nM) in presence or absence of MP (100 µM), and adhesion of THP-1
cells was examined by monocyte adhesion assay (A). Representative photomicrographs of the effect of
MP on THP-1 adhesion to VSMC. (B) Quantitation of mean fluorescence intensity of adherent THP-1,
assessed at 5 different regions; *** p < 0.001. Values are represented as mean ± SEM of relative fold
adhesion of vehicle-treated cells. One-way ANOVA followed by Tukey’s test was performed.
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3.11. MP Inhibits FBS-Induced Expression of NF-κB in a Concentration-Dependent Manner

NF-κB transcription factor is a key regulator of vascular inflammatory responses [54]. Here, the effect
of MP on the expression of NF-κB and the phosphorylation of its inhibitor protein, IκB, were evaluated.
As shown in Figure 11A, FBS evoked a significant increase in NF-κB transcription (100 vs 288± 62%; p < 0.05).
This increase was attenuated by MP in a concentration-dependent manner (288± 62% vs 138 ± 19%, 111 ± 6%
or 87 ± 9% for 100, 200, and 300 µM respectively; p < 0.01 for all). Western blotting analysis showed that
whereas FBS induced an increase in NF-κB expression, pretreatment with MP abolished its activation
in a time-dependent manner (Figure 11B). Furthermore, pretreatment with MP inhibited FBS-induced
phosphorylation of IκBα (Figure 11B).
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Figure 11. MP inhibits FBS-induced NF-κB expression in a time- and concentration-dependent manner,
and attenuates the activation of its inhibitor, IκBα. (A) Cells were treated with FBS in the absence or
presence of increasing concentrations of MP (100, 200, and 300 µM). NF-κB expression was determined
by luciferase assay. Values represented are mean ± SEM. # denotes p < 0.05 (FBS versus vehicle) and
* denotes p < 0.05 (MP + FBS vs FBS)). (B) Cells were treated with FBS in the presence or absence of
MP (100 µM) for 24, 48, and 72 h. Expression of NF-κB and phosphorylation of IKBα were detected
by Western blotting. Values mean fold change of three independent experiments. One-way ANOVA
followed by Tukey’s test was performed.

4. Discussion

Inflammation of arterioles has recently emerged as a key event in the manifestation of many
diseases [1,55,56]. These include diabetes and inflammation-based disorders such as chronic obstructive
pulmonary disease, inflammatory bowel diseases, cystic fibrosis, and atherosclerosis. Importantly, studies
show that changes in arterioles in response to hypercholesterolemia predate the formation of atherosclerotic
plaques in large arteries [57]. Moreover, cardiovascular risk factors such as obesity and hypertension
induce inflammatory responses at the level of arterioles [58–62]. In response to inflammatory cues,
VSMCs acquire increased proliferative, migratory and invasive capabilities. Accordingly, inhibiting these
dedifferentiation hallmarks would confer anti-inflammatory effects on arterioles.

In this study, we assessed the vasculoprotective role of MP against FBS-induced arteriolar
SMC inflammation, a model mimicking mild arteriolar inflammation. Our results showed that MP,
a novel homo-isoflavonoid that we isolated and characterized, inhibited FBS-induced proliferation and
migration of human arteriolar smooth muscle cells. Moreover, MP attenuated VSMC adhesion and
invasion as well as monocyte adhesion to VSMCs. This inhibition was concomitant with a decrease in
matrix metalloproteases, MMP-2 and MMP-9, as well as an increase in the expression of myocardin,
SM-22α, SM-α actin, calponin and caldesmon. On the other hand, MP decreased the expression of
osteopontin, and abolished FBS-induced NF-κB expression and IkB phosphorylation.

The significance of this study stems from three points: the novelty of the studied compound,
the concentration used to conduct the experiments, and the relevance of the employed model. First,
MP is a newly isolated and characterized homoisoflavonoid. Its potential vasculoprotective effects
are established for the first time in this study. Moreover, MP proved to be potent at a sub-cytotoxic
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concentration. This may be promising especially in developing a noncytotoxic drug, which may have
no or fewer side effects. To our knowledge, this is the first study using human arteriolar SMC as
a model for arteriolar inflammation. Previous studies addressing vascular inflammation had used
VSMCs extracted from large vessels. This is likely due to the challenging technical difficulty of isolating
and maintaining a culture of microvascular smooth muscle cells isolated from human arterioles.

The origin of the VSMC greatly affect its response to various stimuli. For instance, studies reporting
the effect of estrogen on VSMCs differ in different vascular beds. To address this, we recently published
a paper where we elaborated on the effect of the vascular bed on various functional responses [63].
More relevantly, certain diseases such as retinopathies and kidney diseases affect arterioles rather than
large vessels. Accordingly, microvascular SMCs would be a better model to recapitulate many aspects
of these pathophysiological cues. However, whether MP effects mirror this vascular bed discrepancy
remains to be established.

Overwhelming evidence shows that increased cell proliferation is a hallmark of VSMC phenotypic
switch, especially in response to inflammation [64,65]. In our study, MP attenuated FBS-induced VSMC
proliferation by blocking cells in the G0/G1 phase and inhibiting their progression to S phase. Progression
from the G1 to S phase requires cyclin D1 [66,67]. Early in G1, cyclin D1 binds to CDK4. The resulting
cyclin D1-CDK4 complex inhibits retinoblastoma protein, thus facilitating the transcription of S-phase
genes [68]. Moreover, the activity of cyclin D1-CDK4 complex is inhibited by CDK inhibitors such as
p21 and p27 [68]. Here, MP-induced cell cycle arrest was concomitant with an increase in the expression
of CDK inhibitors, p21 and p27, as well as a decrease in both cyclinD1 and CDK4.

The anti-proliferative effect of MP is in accordance with the results of two previous studies.
The first study reported that brazilin, a homoisoflavonoid, inhibited PDGF-induced proliferation
of rat aortic VSMCs and induced cell-cycle arrest at G0/G1 phase [69]. The other study showed
that the homoisoflavonoid-rich plant, Ophiopogon japonicas, exhibited anti-proliferative effects on
thrombin-induced rat aortic VSMCs [70]. Similar to brazilin and Ophiopogon japonicas, MP induced the
upregulation of p27 [69,70]. This suggests that homoisoflavonoids attenuate VSMC proliferation by
targeting cell cycle regulators. Notably, p27 and p21 are regulated by ERK1/2 [71], which is a mitogenic
factor itself [72]. Indeed, pharmacological [73] and genetic [47] inhibition of ERK1/2 inhibit VSMC
proliferation. Here, MP attenuated FBS-induced phosphorylation of ERK1/2. This inhibition is in line
with the effect of brazilin in VSMCs [69].

Clinically, arteriolar SMC proliferation has been previously assessed in two pathological conditions:
hypertension [74] and menorrhagia [75]. VSMCs cultured from rat renal preglomerular arterioles
showed that Angiotensin II significantly increased VSMC proliferation, indicating that VSMC
hyperplasia may be associated with hypertension [74]. In menorrhagia, endometrial biopsies
showed that proliferation of arteriolar SMCs varied between healthy and menorrhagic females [75].
Moreover, arterioles are responsive to pro-inflammatory cues [55], and thus are also remodeled during
atherosclerosis by changing their cellular function and phenotype [55,57,76]. It is only reasonable to
assume that inhibiting VSMC proliferation may aid in the ameliorating microvasculature in these
pathological conditions. In this sense, MP, owing to anti-proliferative effect on arteriolar SMCs, presents
a promising therapeutic potential at the level of microcirculation.

Many vascular complications arise from the imbalance in the proliferation/apoptosis ratio of
VSMCs [77]. For example, VSMCs of diabetic patients have an increased level of the anti-apoptotic
protein, Bcl2, and exhibit high proliferative rate [78]. This “failure to die” leads to alteration in
the vessel microarchitecture [79]. In our study, MP-treated VSMCs became shrunk and translucent,
with fine cytoplasmic extensions ending with blebs. All these features are characteristic of apoptotic
cells [80]. These microscopic observations were confirmed by the fact that MP increased Bax/Bcl2
ratio and upregulated the level of activated caspase-3. Thus, MP induced apoptosis in FBS-induced
micro VSMCs. It would thus be tempting to test whether MP can decrease thickening of muscularized
arterioles in pulmonary artery hypertension or chronic obstructive lung disease [81,82].
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Migration, invasion and adhesion of VSMCs are also major determinants of the dedifferentiated
phenotype, and play a major role in vascular pathogenesis [83]. In our study, MP potently attenuated
these hallmarks. Knowing that both ERK1/2 and FAK mediate cell migration [46,84], we may assume
that MP-attenuated migration is achieved via inhibiting ERK1/2 and FAK phosphorylation. Moreover,
in addition to its role in mobilizing adrenergic receptors to the cell surface [85], actin polymerization
plays a key role in VSMC migration [52]. During migration, integrins are activated and clustered along
with adhesion molecules at the migrating edge of the cell [86]. These cytoskeletal rearrangements
along with actin polymerization facilitate cell crawling [87]. In our study, MP attenuated FBS-induced
actin polymerization. Furthermore, MP reduced the invasive capacity of VSMCs by attenuating the
expression of the matrix metalloprotease of MMP-2 and MMP-9. Previous studies report that VSMC
migration was attenuated by the homoisoflavonoid, brazilin, and the homoisoflavonoid-rich plant,
Ophiopogon japonicas [69,70]. However, these studies neither used human arteriolar cells nor assessed
the effects on VSMC adhesion or invasion.

Clinically, arteriolar SMC migration was observed during cardiac transplantation in a condition termed
transplant arteriosclerosis [88]. This condition is characterized by inflammation and intimal thickening due
to the accumulation of SMCs from both donor and recipient [88]. A study using post-transplantation cardiac
biopsy specimens from allograft patients showed that higher arteriolar SMC migration was associated with
rejection grade, and thus with inflammation [88]. Here, MP attenuated arteriolar SMC migration. Hence, we
may postulate that MP may contribute to reversing arteriolar inflammation and decreasing rejection grade.

Monocyte adhesion to blood vessels is a defining feature of vascular inflammation [89,90].
In response to inflammatory cues, arterioles become more permissive to monocytes, allowing them
interact with endothelial cells and VSMCs [55]. Monocyte adhesion may also precipitate arteriolar
barrier dysfunction [91]. Indeed, in response to increased luminal shear stress, monocytes are recruited
to then adhere onto collateral arterioles [92]. Furthermore, direct evidence of monocyte adhesion to
arterioles in response to Angiotensin II has been reported [93]. In our study, we showed that MP
attenuated monocyte adhesion to PMA-activated arteriolar SMCs. Because PKC is a direct target of
PMA [94], it may be postulated that MP attenuates PMA-provoked adhesion by inhibiting PKC. Indeed,
PKC is inhibited by many flavonoids [95]. However, whether MP inhibits PKC is yet to be investigated.

VSMCs are not terminally differentiated, but are rather characterized by plasticity that allows
phenotypic switch [96]. The extent of VSMC differentiation is determined by the expression level
of differentiation markers. These markers are divided in to early, mid-term, and late differentiation
markers, according to their order of appearance during embryogenesis [49]. The early differentiation
markers include SM-α actin, myocardin, and SM22-α [49]. Caldesmon and calponin are considered to
be mid-term differentiation markers [97]. Finally, desmin and smoothelin are among late differentiation
markers [97]. Contractile VSMCs are characterized by the elevated expression of these markers [98].
In response to inflammation, VSMCs reduce the expression of these markers and adopt the expression
of synthetic dedifferentiated phenotype [98]. VSMCs then become active in secreting ECM molecules
such as osteopontin and osteonectin [51,99,100]. As such, high levels of these proteins indicate VSMC
switch to synthetic phenotype.

Myocardin is a transcriptional co-activator that acts upstream of calponin and caldesmon. It is
selectively expressed in cardiomyocytes and contractile SMCs [101–103]. It is a potent activator of the
Serum Response Factor (SRF) where it stabilizes its binding at the CC(A/T-rich)6GG (CArG) cis-elements
of CArG-dependent genes. Interestingly, expression of VSMC differentiation genes, such as SM22, MHC,
SM α-actin and caldesmon requires CArG box in their promoter region and/or intronic sequences [104,105].
Nonetheless, some studies report that myocardin-driven expression of CArG-dependent SMC marker
genes is not sufficient for the initiation of complete SMC differentiation [106].

In response to stimuli, myocardin regulation of SMC markers expression is attenuated mainly through
2 distinct pathways, both involving ERK1/2 activation. Activated ERK1/2 leads to Elk-1 phosphorylation,
which competes with myocardin for SRF, leading to attenuated SMC marker expression [107]. Alternatively,
myocardin may be directly phosphorylated by ERK1/2. This ERK1/2-induced myocardin phosphorylation
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hinders its ability to bind SRF and induce marker genes expression [108]. Several other effector pathways
have been reported. For example the JAK/STAT signaling mediates VSMC switch to the synthetic phenotype
via the interaction between STAT3 and myocardin [109]. Furthermore, Yap1 upregulation promotes
synthetic phenotype by reducing myocardin-SRF interaction [110]. Similarly, NF-κB (p65) interacts
with myocardin hindering myocardin-SRF interaction necessary for contractile genes expression [111].
Interestingly, myocardin attenuates the expression of NF-κB(p65)-driven genes [111]. In this sense,
the protective role of myocardin lies in orchestrating the expression of SMC differentiation genes and in
attenuating the expression of inflammatory genes.

Osteopontin is a glycoprotein secreted by many cell types including osteoblasts, monocytes,
and VSMCs [112,113]. Specifically, its expression is increased during the switch of VSMCs to the
synthetic phenotype as well as during vascular remodeling [114,115], as it is involved proliferation
and migration [116–118]. Osteopontin induces migration by phosphorylating FAK, dephosphorylating
downstream ILK, and by disrupting FAK-ILK interaction [118]. In addition, osteopontin leads to decreased
expression of differentiation markers such as α-SM actin, and calponin [119]. Furthermore, studies show
that osteopontin plays a role in vascular inflammation by inducing leukocyte chemotaxis and macrophage
adhesion to endothelial cells [115]. Transcription of osteopontin is regulated by NF-κB [120,121].

Whereas previous reports have focused almost exclusively on assessing the expression level of
these differentiation markers in macro-VSMCs [119,122,123], our study assessed the expression of these
markers in micro-VSMCs. We showed that MP induced an elevation in myocardin, SM-α, SM-22α,
calponin, and caldesmon, and reversed the FBS-attenuated expression of these markers in arteriolar
SMCs. In fact, one previous study assessed the phenotypic switch of arteriolar SMCs in the context
of benign nephrosclerosis (bN), a common hypertensive kidney damage characterized by fibrosis of
renal arterioles [124]. Using renal tissue specimens, this study showed that arteriolar SMCs undergo
a phenotypic switch in bN [124]. Surprisingly, their findings did not suggest an inverse correlation
between caldesmon and dedifferentiated VSMCs [124]. Conversely, our results showed the caldesmon
and calponin were upregulated by MP in FBS-induced arteriolar SMCs. Moreover, MP effectively
decreased the expression of basal and FBS-induced expression osteopontin, further emphasizing the
maintenance of a contractile phenotype of VSMCs. In 2018, Lin et al. showed that the flavonoid,
(−)-epigallocatechin gallate (EGCG), attenuated Ag-II induced proliferation and migration in vitro and
neointimal formation in vivo [125]. These inhibitory effects were mediated by myocardin. Therefore,
this and other studies present myocardin as a molecular therapeutic target in vascular inflammation.
In light of our results showing its ability to modulate myocardin expression, MP may thus be expected
to possess a much-desired anti-inflammatory capacity. Indeed, our unpublished observations strongly
suggest such an effect.

NF-κB is a member of the Rel-family of transcription factors [126]. Under normal physiological
conditions, NF-κB is attached to its inhibitor protein IκB which traps it in the cytosol [126]. In response to
inflammatory stimuli, IκB gets phosphorylated by its kinase, IκK, then ubiquitinated and degraded [122].
NF-κB then becomes free to translocate to the nucleus and trigger the transcription of pro-inflammatory
genes [127,128]. In vascular inflammation, such as atherosclerosis, NF-κB upregulates the expression of
adhesion molecules (ICAM-1and VCAM-1) and matrix-metalloproteases (MMP-2, and MMP-9) [129],
further exacerbating vascular inflammation [130]. The vast majority of research show that NF-κB
activates the inflammatory signaling in VSMCs of large vessels [127]. Except for one study showing
that NF-κB is expressed and activated in arterioles [131], no previous studies assessed the modulation
of NF-κB expression specifically in microVSMCs. Here, we show that NF-κB expression and IκB
phosphorylation were attenuated by MP in FBS-activated micro VSMCs. This supports the vascular
anti-inflammatory actions of MP and presents NF-κB and IκB as major molecular targets in the involved
signaling pathway. By doing so, MP may be suppressing many genes such as MMP-2 and MMP-9,
in addition to other genes which remain to be investigated.
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5. Conclusions

To sum up, our data are consistent with the model shown in Figure 12, which illustrates different
lines of action of MP and the involved molecular players. All depicted MP effects serve to attenuate
VSMC dedifferentiation and thus may amend arteriolar inflammation. Further research is needed to
better dissect the molecular mechanisms implicated in MP signaling. For instance, some flavonoids and
isoflavonoids have been shown to regulate cAMP signaling in VSMCs [132,133]. Given the important
and broad range of cAMP effects in human microvascular smooth muscle cells [32,34,86,134], if MP
appears to modulate this pathway in these cells lines, one would expect to find diverse effects of MP on
arteriolar physiology and pathophysiology. Further investigations are warranted to better determine
the potential of MP as anti-inflammatory drug especially as pertains to vascular anti-inflammatory
therapies. Knowing that modern drug therapy is still insufficient in preventing or treating CVD [135],
the use of alternative medicine such as flavonoids and homoisoflavonoids may provide an important
resource for potential new drugs.
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