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Abstract

Background: Predictive modeling with longitudinal electronic health record (EHR) data offers great promise for
accelerating personalized medicine and better informs clinical decision-making. Recently, deep learning models have
achieved state-of-the-art performance for many healthcare prediction tasks. However, deep models lack
interpretability, which is integral to successful decision-making and can lead to better patient care. In this paper, we
build upon the contextual decomposition (CD) method, an algorithm for producing importance scores from long
short-term memory networks (LSTMs). We extend the method to bidirectional LSTMs (BiLSTMs) and use it in the
context of predicting future clinical outcomes using patients’ EHR historical visits.
Methods: We use a real EHR dataset comprising 11071 patients, to evaluate and compare CD interpretations from
LSTM and BiLSTM models. First, we train LSTM and BiLSTM models for the task of predicting which pre-school children
with respiratory system-related complications will have asthma at school-age. After that, we conduct quantitative and
qualitative analysis to evaluate the CD interpretations produced by the contextual decomposition of the trained
models. In addition, we develop an interactive visualization to demonstrate the utility of CD scores in explaining
predicted outcomes.
Results: Our experimental evaluation demonstrate that whenever a clear visit-level pattern exists, the models learn
that pattern and the contextual decomposition can appropriately attribute the prediction to the correct pattern. In
addition, the results confirm that the CD scores agree to a large extent with the importance scores generated using
logistic regression coefficients. Our main insight was that rather than interpreting the attribution of individual visits to
the predicted outcome, we could instead attribute a model’s prediction to a group of visits.
Conclusion: We presented a quantitative and qualitative evidence that CD interpretations can explain
patient-specific predictions using CD attributions of individual visits or a group of visits.
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Background
The exponential surge in the amount of digital data cap-
tured in electronic health record (EHR) offers promis-
ing opportunities for predicting the risk of potential
diseases and better informs decision-making. Recently,
deep learning models have achieved impressive results,
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compared to traditional machine learning techniques, by
effectively learning non-linear interactions between fea-
tures for several clinical tasks [1–5]. Among a variety
of deep learning methods, recurrent neural networks
(RNNs) could incorporate the entire EHR to produce
predictions for a wide range of clinical tasks [6–11]. Con-
sequently, there is a growing realization that, in addition
to predictions, deep learning models are capable of pro-
ducing knowledge about domain relationships contained
in data; often referred to as interpretations [12, 13].
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However, the high-dimensionality and sparsity of med-
ical features captured in the EHR makes it more complex
for clinicians to interpret the relative impact of features
and patterns which are potentially important in deci-
sions. A patient’s EHR usually consists of a sequence
of visits a patient has made, and each visit captures
the list of diagnosis codes documented by the clinician.
Therefore, it is reasonable and important to have inter-
pretable models which can focus on patient visits that
have higher impact on the predicted outcome, ignore
those visits with little effect on the outcome, and iden-
tify and validate the relevant subset of visits driving the
predictions.
Interpreting deep models trained on EHR data for

healthcare applications is a growing field spanning a
range of techniques, which can be broadly catego-
rized into three classes: attention mechanism, knowledge
injection via attention, and knowledge distillation [1].
Attention-mechanism-based learning was used in [14–
20] for explaining what part of historical information
weighs more in predicting future clinical events. Knowl-
edge injection via attention often integrates biomedi-
cal ontologies, as a major source of biomedical knowl-
edge, into attention models to enhance interpretability, as
demonstrated in [16]. Knowledge distillation first trains
a complex, slow, but accurate model and then com-
presses the learned knowledge into a much simpler, faster,
and still accurate model, as shown in [21, 22]. However,
the majority of previous work has focused on assign-
ing importance scores to individual features. As a result,
these techniques only provide limited local interpreta-
tions and do notmodel fine-grained interactions of groups
of input features. In addition, most of these techniques
require modifications on standard deep learning archi-
tectures to make it more interpretable. By contrast, there
are relatively few methods that can extract interactions
between features that a deep neural network (DNN)
learns. In the case of LSTMs, a recent work by Mur-
doch et al. [23] introduced contextual decomposition
(CD), an algorithm for producing phrase-level impor-
tance scores from LSTMs without any modifications to
the underlying model, and demonstrated it on the task of
sentiment analysis.
In this paper, we hypothesized that the CD interpretabil-

ity method translates well to healthcare. Therefore, we
build upon the CD technique and extend it to BiLSTMs
in the context of predicting future clinical outcomes using
EHR data. Particularly, we aimed to produce visit-level CD
scores explaining why a BiLSTM model produced a cer-
tain prediction using patients’ EHR historical visits. Our
main insight was that rather than interpreting the attri-
bution of individual visits to the predicted outcome, we
could instead attribute BiLSTM’s prediction to a subset of
visits. Our main contributions are as follows:

• We introduce a CD-based approach to determine the
relative contributions of single visits and a group of
visits in explaining the predicted outcome, and
subsequently identify the most predictive subset of
visits.

• We develop an interactive visualization and
demonstrate, using a concrete case study, how CD
scores offer an intuitive visit-level interpretation.

• We evaluate and compare CD interpretations from
LSTM and BiLSTMmodels for the task of predicting
which pre-school children with respiratory
system-related complications will have asthma at
school age.

• On a real EHR dataset comprising 11,071 patients
having a total of 3318 different diagnosis codes, we
present quantitative and qualitative evidence that CD
interpretations can explain patient-specific
predictions using CD attributions of individual visits
or a group of visits.

Methods
EHR data description
The EHR data consists of patients’ longitudinal time-
ordered visits. Let P denote the set of all the patients
{p1, p2, . . . , p|P|}, where |P| is the number of unique
patients in the EHR. For each patient p ∈ P, there
are Tp time-ordered visits V (p)

1 ,V (p)
2 , . . . ,V (p)

Tp
. We denote

D = {d1, d2, . . . , d|D|} as the set of all the diagno-
sis codes, and |D| represents the number of unique
diagnosis codes. Each visit V (p)

t , where the subscript
t indexes the time step, includes a subset of diag-
nosis codes, which is denoted by a vector x(p)

t ∈
{0, 1}|D|. The i-th element in x(p)

t is 1 if di existed in
visit V (p)

t and 0 otherwise. For notational convenience,
we will henceforth drop the superscript (p) indexing
patients.

Long short termmemory networks
Long short term memory networks (LSTMs) are a spe-
cial class of recurrent neural networks (RNNs), capable
of selectively remembering patterns for long duration of
time. They were introduced by Hochreiter and Schmid-
huber [24], and were refined and widely used by many
people in following work. For predictive modeling using
EHR data, LSTMs effectively capture longitudinal obser-
vations, encapsulated in a time-stamped sequence of
encounters (visits), with varying length and long range
dependencies. Given an EHR record of a patient p,
denoted by X = {xt}Tt=1, where T is an integer represent-
ing the total number of visits for each patient. The LSTM
layer takes X as input and generates an estimate output Y,
by iterating through the following equations at each time
step t:
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it = σ(Wixt + Uiht−1 + bi) (1)

ft = σ(Wf xt + Uf ht−1 + bf ) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

gt = tanh(Wgxt + Ught−1 + bg) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � tanh(ct) (6)
Where i, f , and o are respectively the input gate, forget

gate, and output gate, ct is the cell vector, and gt is the
candidate for cell state at timestamp t, ht is the state vec-
tor, Wi,Wf ,Wo,Wg represent input-to-hidden weights,
Ui,Uf ,Uo,Ug represent hidden-to-hidden weights, and
bi, bf , bo, bg are the bias vectors. All the gates have sigmoid
activations and cells have tanh activations.

Bidirectional long short termmemory networks
Bidirectional LSTMs [25] make use of both the past and
the future contextual information for every time step in
the input sequence X in order to calculate the output. The
structure of an unfolded BiLSTM consists of a forward
LSTM layer and a backward LSTM layer. The forward
layer outputs a hidden state

−→
h , which is iteratively cal-

culated using inputs in the forward or positive direction
from time t = 1 to time T. The backward layer, on the
other hand, outputs a hidden state

←−
h , calculated from

time t = T to 1, in the backward or negative direction.
Both the forward and backward layer outputs are calcu-
lated using the standard LSTM updating equations 1- 6,
and the final ht is calculated as:

−→
h = −−−→

LSTM(xt) (7)

←−
h = ←−−−

LSTM(xt) (8)

ht =[
−→
h ,

←−
h ]= BiLSTM(xt) (9)

The final layer is a classification layer, which is the same
for an LSTM- or BiLSTM-based architecture. The final
state ht is treated as a vector of learned features and used
as input to an activation function to return a probabil-
ity distribution p over C classes. The probability pj of
predicting class j is defined as follows:

pj = exp(Wj · ht + bj)
∑C

i=1 exp(Wi · ht + bi)
(10)

whereW represents the hidden-to-output weights matrix
andWi is the i-th column, b is the bias vector of the output
layer and bi is the i-th element.

Contextual decomposition of BiLSTMs
Murdoch et al.[23] suggested that for LSTM, we can
decompose every output value of every neural network
component into relevant contributions β and an irrelevant
contributions γ as:

Y = β + γ (11)

We extend the work of Murdoch et al.[23] to BiLSTMs,
in the context of patient visit-level decomposition for
analyzing patient-specific predictions made by standard
BiLSTMs. Given an EHR record of a patient, X = {xt}Tt=1,
we decompose the output of the network for a particu-
lar class into two types of contributions: (1) contributions
made solely by an individual visit or group of visits, and
(2) contributions resulting from all other visits of the same
patient.
Hence, we can decompose ht in ( 6) as the sum of two

contributions β and γ . In practice, we only consider the
pre-activation and decompose it for BiLSTM as:

Wj·(−→h ,
←−
h )+bj = Wj·[−→β ,←−β ]+Wj·[−→γ ,←−γ ]+bj (12)

Finally, the contribution of a subset of visits with indexes
S to the final score of class j is equal to Wj · β for LSTM
andWj·[−→β ,←−β ] for BiLSTM.We refer to these two scores
as the CD attributions for LSTM and BiLSTM throughout
the paper.

Finding Most predictive subset of visits
We introduce a CD-based approach to find the most
predictive subset of visits, with respect to a predicted out-
come. More specifically, the goal is to find subset of visits
XS ∈ X, where XS consists of the visits with the highest
relevant contributionWj·[−→β ,←−β ] presented to the user.
Algorithm 1 describes the exact steps to find the most

predictive subset of visits represented byXS with the high-
est relative CD attributions. We consider V is the list of
all patient visits, W is the list of all window sizes to anal-
yse, and each w ∈ W is an integer setting the size of
the window, s is an integer setting the size of the step
between windows, m is the model to be decomposed
(LSTM/BiLSTM). In our context, a sliding window is a
time window of fixed width w that slides across the list of
patient visits V with step size s and returns the list of Can-
didateGroups (subsets of visits) with the specified w. For
each of these CandidateGroups, the algorithm takes the
subset of visits and apply contextual decomposition on the
specified model m to get the relative contribution scores
of this subset of visits against the complete list of patient
visits. This procedure is applied iteratively for each win-
dow size w. Finally, the group with the highest CD score is
assigned to XS.
This approach, while simple, exhaustively evaluates all

possible combinations of subsets of consecutive visits,
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and then finds the best subset. Obviously, the exhaustive
search’s computational cost is high. However, since the
total number of visits doesn’t exceed tens usually, going
through all possible combinations of consecutive visits is
still computationally feasible.

Algorithm 1 Finding Most Predictive Subset of Visits
1: Let V = {v1 . . . vx}
2: LetW = {w1 . . .wy}
3: Let s = 1
4: Letmodel = m
5: Let groupScores =[ ]
6: function FINDVISITSUBSET(V ,W ,m, s)
7: for w inW do
8: CandidateGroups = slidingWindow(V ,w, s)
9: for group in CandidateGroups do

10: groupScores[ group]=
contextualDecomposition(group,V ,model)

11: end for
12: end for
13: Xs = argmax(groupScores)
14: end function

Dataset and cohort construction
The data was extracted from the Cerner Health Facts©
EHR database, which consists of patient-level data col-
lected from 561 health care facilities in the United States
with 240million encounters for 43million unique patients
collected between the years 2000-2013 [26]. The data is
de-identified and is HIPAA (Health Insurance Portability
and Accountability Act)-compliant to protect both patient
and organization identity.
For the purpose of our analysis, we identified children
with respiratory system-related symptoms by following
the International Classification of Diseases (ICD-9) stan-
dards. We extracted 323,555 children who had a diagnosis
code of 786* (symptoms involving respiratory system and
other chest symptoms, except 786.3: hemoptysis). After
that, we filtered for those patients who had at least one
encounter with one of these symptoms andmore than two
encounters before the age of 5, and were followed-up at
least until the age of 8 years. Accordingly, the dataset size
reduced significantly to 11,071 patients. The statistics and
demographics of the study cohort are described in Table 1.
To demonstrate our interpretability approach on this

data of pre-school children with respiratory system-
related symptoms, we try to predict those children who
will have asthma at school-age (cases) and those who
will not have asthma at school-age (controls). Cases were
defined as children who had at least one encounter with
respiratory system-related symptoms before the age of 5,
and at least one encounter with asthma diagnosis ICD

Table 1 Basic statistics of the cohort

Cases Controls

# of patients 6159 4912

# of visits 62962 42182

# of diagnosis 128877 77038

Avg. # of visits per patient 10.2 8.6

Avg. # of codes in a visit 2.0 1.8

Gender
Female 2395 2278

Male 3764 2634

Race

African American 2222 926

Asian 56 56

Biracial 83 43

Caucasian 2361 2805

Hispanic 602 454

Native American 22 15

Pacific Islander 8 2

Unknown 805 611

493* after the age of 6. Controls were defined as children
who had at least one encounter with respiratory system-
related symptoms before the age of 5, and no diagnosis of
asthma for at least three years after school-age, which is
age 6. This definition splits our data into 6159 cases and
4912 controls. It is worth mentioning here that, for this
specific cohort, the proportion of cases is relatively high
(56%), compared to other cohorts or diseases, in which the
prevalence of the disease is usually less.
The LSTM and BiLSTM models require longitudinal
patient-level data that has been collected over time across
several clinical encounters. Therefore, we processed the
dataset to be in the format of list of lists of lists. The
outermost list corresponds to patients, the intermediate
list corresponds to the time-ordered visit sequence each
patient made, and the innermost list corresponds to the
diagnosis codes that were documented within each visit.
Only the order of the visits was considered and the times-
tamp was not included.
Furthermore, deep learning libraries assume a vectorized
representation of the data for time-series prediction prob-
lems. In our case, since the number of visits for each
patient is different, we transformed the data such that all
patients will have the same sequence length. This is done
by padding the sequence of each patient with zeros so that
all patients will have the same sequence length, equal to
the length of the longest patient sequence. This vectoriza-
tion allows the implementation to efficiently perform the
matrix operations in batch for the deep learning model.
This is a standard approachwhen handling sequential data
with different sizes.
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Experimental setup
We implemented LSTM and BiLSTM models in PyTorch,
and We also extended the implementation of Murdoch
et al.[23] to decompose BiLSTM models. As the pri-
mary objective of this paper is not predictive accuracy,
we used standard best practices without much tuning to
fit the models used to produce interpretations. All mod-
els were optimized using Adam [27] with learning rate of
0.0005 using early stopping on the validation set. The total
number of input features (diagnosis codes) was 930 for
ICD-9 3-digits format and 3318 for ICD-9 4-digits format.
Patients were randomly split into training (55%), valida-
tion (15%), and test (30%) sets. The same proportion of
cases (56%) and controls (44%) was maintained among
the training, validation, and test sets. Model accuracy is
reported on the test set, and area under the curve (AUC)
is used to measure the prediction accuracy, together with
95% confidence interval (CI) as a measure of variability.

Results
In this section, we first describe the models training
results. After that, we provide quantitative evidence of
the benefits of using CD interpretations and explore the
extent to which it agrees with baseline interpretations.
Finally, we present our qualitative analysis including an
interactive visualization and demonstrate its utility for
explaining predictive models using individual visit scores
and relative contributions of subset of visits.

Models training
To validate the performance of the proposed interpretabil-
ity approach, we train LSTM and BiLSTM models on
the asthma dataset, which has two classes: c=1 for cases,
and c=0 for controls. In addition, we compare the predic-
tion performance of these models with a baseline logistic
regression model. The average AUC scores for 10 runs,
with random seeds, on the full test set are shown in
Table 2. Overall, the LSTM and BiLSTM models achieve
higher AUC scores than baseline models such as logistic
regression. Consequently, bothmodels learned useful visit
patterns for predicting school-age asthma.

Quantitative analysis
In this section, we conduct quantitative analysis to (1) val-
idate the contextual decomposition of the trained models,

Table 2 Average AUC of models trained on asthma dataset for
the task of school-age asthma prediction

Model AUC (95% CI)

LSTM 0.831 (0.824-0.838)

BiLSTM 0.819 (0.811-0.827)

Logistic Regression 0.702 (0.692-0.712)

(2) evaluate the interpretations produced by the mod-
els, and (3) understand the extent to which the learned
patterns correlate with other baseline interpretations.

Validation of contextual decomposition for BiLSTMs
Objective: To verify that the contextual decomposition of
LSTMs and BiLSTMs works correctly with our prediction
task, we designed a controlled experiment in which we
add the same artificial visit to each patient of certain class,
testing whether the contextual decomposition will assign
a high attribution score to the artificial visit with respect
to that specific class.
Given a patient p and a corresponding binary label c,

we add an artificial visit vart with one artificial diagnosis
code dart to each patient’s visits list V. The dart was cho-
sen to be a synthetic diagnosis code which does not exist
in the ICD-9 codes list. On the full dataset P, the artificial
visit is added with probability part to patients with label 1,
and with probability 1 − part to patients with label 0. As a
result, when part = 1, all patients of class 1 will have vart ,
and consequently the model should predict label 1 with a
100% accuracy and contribution of vart should always be
the maximum among other visits. Similarly, when part =
0.5, both classes will equally have patients with vart , and
therefore vart does not provide any additional informa-
tion about the label, and vart should thus have a small
contribution.
Experimental settings: We train LSTM and BiLSTM

models on the asthma dataset with the artificial visit vart
setup. To measure the impact of vart , we first add vart to
patients of class c=1, with probability part , varying part
from 1 to 0.5 with steps of 0.1. After that, we train both
models on this modified dataset, and then calculate the
contribution of each visit by using the CD algorithm. We
run the experiment 5 times with a different random seed
and report on the average correct attribution. The attribu-
tion is correct if the highest contribution among all visits
is assigned to vart .
Results: The results of our evaluation are depicted in

Fig. 1. When part = 1, the models correctly attribute the
prediction to the artificial visit at 100% accuracy. More-
over, as part becomes smaller, the contribution of the arti-
ficial visit goes down, since vart becomes less important.
Finally, when part= 0.5, the contribution of the artificial
visit becomes irrelevant and the model attributes the pre-
diction to other visits. Both models LSTM and BiLSTM
perform similarly with 100% and 0% attribution accu-
racy at part= 1 and part=0.5, respectively. However, when
part is between 0.8 and 0.6, BiLSTM attributes higher
contribution to vart than LSTM. This might be due to
BiLSTM specific architecture, which accesses informa-
tion in both forward and backward direction, allowing it
to generate better inference about the visits importance
with lower sensitivity to the position of vart , compared
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Fig. 1 Validation of contextual decomposition for LSTM and BiLSTM for the class c=1. The attribution is correct if the highest contribution among all
visits is assigned to the artificial visit. The prediction curves indicate the prediction accuracy for class c=1, which also represents the upper bound for
the attribution accuracy

to unidirectional LSTM. Overall, we can conclude that
whenever there is a clear visit-level pattern, the models
learn that pattern and the contextual decomposition can
appropriately attribute the prediction to the correct visit.

Evaluation of interpretations extracted from BiLSTMs
Before examining the visit-level dynamics produced by
the CD algorithm, we first verify that it compares favor-
ably to prior work for the standard use case of pro-
ducing coefficients for individual visits, using logistic

regression. For longitudinal data such as EHR, a logistic
regression model summarizes the EHR sequence ensem-
ble to become aggregate features that ignore the tem-
poral relationships among the feature elements. How-
ever, when sufficiently accurate in terms of prediction,
logistic regression coefficients are generally treated as a
gold standard for interpretability. Additionally, when the
coefficients are transformed by an exponential function,
they can be interpreted as odds ratio [28]. In partic-
ular, when applied to clinical outcomes prediction, the

Fig. 2 Evaluation of the agreement between CD scores and importance scores generated from logistic regression coefficients. The matching is
correct if the visit with the highest LSTM/BiLSTM CD attribution matches one of the top three visits, which are generated using logistic regression
coefficients
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Fig. 3 CD scores for individual visits produced from LSTM and BiLSTM models trained for the task of predicting school-age asthma. Red is positive,
white is neutral and blue is negative. The squares represent patient EHR time-ordered visits, and the label of each square indicates the visit number
appended by the date of the visit. The upper row is the LSTM CD attributions and the lower row is the BiLSTM CD attributions

ordering of visits given by their coefficient value pro-
vides qualitatively sensible measure of importance. There-
fore, when validating the interpretations extracted using
the CD algorithm we should expect to find a meaning-
ful correlation between the CD scores and the logistic
regression coefficients. To that end, we present our eval-
uation of the interpretations extracted using the CD algo-
rithm with respect to the coefficients produced by logistic
regression.
Generating Ground Truth Attribution for Interpre-

tation: Using our trained logistic regression model, we
identified the most important three visits for each patient
and used it as a baseline to evaluate the correlation
between logistic regression coefficients and CD attribu-
tions. First, we calculated the importance score for each
diagnosis code. After that we used these scores to cal-
culate the importance score for each visit, by summing
the importance scores of the diagnosis codes included in
each visit. The importance score for each diagnosis code
is calculated as follows:

• extract statistically significant diagnosis codes, using
p-value criterion p ≤ 0.05

• for all significant diagnosis codes, calculate
coefficients and odds ratios

• filter for diagnosis codes with odds ratio > 1
• sort filtered diagnosis codes in descending order

according to their odds ratios
• group the sorted diagnosis codes into 4 groups.

Diagnosis codes with similar/closer odds ratios are
grouped together

• assign an importance score for each group in
descending order, based on the odds ratios of
diagnosis codes in each group

Finally, we calculated the importance score for each
visit, by summing the importance scores of the diagnosis
codes occurred in that visit, and used the visits scores to
identify the most important three visits for each patient.
We run this analysis on a subset of 5000 patients, who
have asthma, and for each patient the ground truth attri-
bution baseline is the most important three visits, ordered
according to their importance scores.
Evaluation: For each patient/ground-truth pair, we

measured if the ground truth visits match the visit with
the highest CD score for the same patient. We ranked the
CD scores of visits for each patient and reported on the
matching accuracy between the visit with the highest CD
contribution and the three ground truth visits for each
patient.

Fig. 4Most predictive subset of visits using CD-based scores highlighted in yellow. Example for a patient where relative contributions of subset of
visits produced from LSTM and BiLSTM are similar
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Results:The aggregated results for both LSTM and BiL-
STM models are presented in Fig. 2. Overall, we observe
that, for the two models, the contextual decomposition
attribution overlaps with our generated baseline ground
truth attribution for at least 60% of the patient/ground-
truth pairs. The matching between the top visit using
the CD algorithm and the first top ground truth visit
is 60%, the top two ground truth visits is 80%, the top
three ground truth visits is 90%. These results confirm
that there is a strong relationship between the importance
scores generated using logistic regression coefficients and
the CD importance scores based on the patterns an
LSTM/BiLSTMmodel learns.

Qualitative analysis
After providing quantitative evidence of the benefits of
CD to interpret the patient EHR visits importance, we
now present our qualitative analysis using three types
of experiments. First, we introduce our visualization and
demonstrate its utility to interpret patient-specific pre-
dictions. Second, we provide examples for using our CD-
based algorithm to find the most predictive subset of
visits. Finally, we show that the CD algorithm is capable of
identifying the top scoring visit patterns and demonstrate
this in the context of predicting school-age asthma.

Explaining predictions using individual visit scores
In this section, we present our interactive visualization
and illustrate it with an example for both LSTM and BiL-
STM models. The timeline in Fig. 3 represents a patient’s
EHR time-ordered visits and the colors of the visits reflect
the CD contributions of each visit to the predicted out-
come. Moreover, hovering over the visits with the mouse
will display the ICD codes documented by the clinician
during the visit. Visualizing the CD contributions of each
visit can be used to quickly explain why did the model
make a certain prediction. For example, the patient shown
in Fig. 3 was correctly predicted to have asthma at school
age. He had 19 data points (visits) before the age of
six years and it was all considered by the model. The

visualization indicated that visits 15 to 19 have the highest
contribution to the prediction for both LSTM and BiL-
STM models, and the ICD-9 codes included in these four
visits are: 486 (pneumonia), 786 (symptoms involving res-
piratory system and other chest symptoms), 493 (asthma),
and 465 (acute upper respiratory infections of multiple
or unspecified sites). Presenting such information to the
clinician could be of a great help in the decision making
process. For example, this specific patient has been fol-
lowing up at the hospital from age 0 to 5 years, and he had
respiratory-related complications throughout the 5 years.
Typically, the physician will have to check the full his-
tory of a patient to understand the patient condition and
make a decision. In contrast, visualizing the CD scores for
each visit as shown in Fig. 3 indicates that, for this specific
patient, older visits are not very relevant. The visualiza-
tion highlights that recent visits are more important to
examine. This is probably due to the fact that continu-
ing to have respiratory complications till age 5, just before
school-age, is an important indication that this patient will
likely continue to have asthma at school age.

Explaining predictions using relative contributions of subset
of visits
In this section, we first present our results for the imple-
mentation of the algorithm introduced earlier for finding
the most predictive subset of visits, and then we qualita-
tively compare between the relative contributions of the
subset of visits produced by LSTM and BiLSTM.
Figure 4 shows an example of a patient who was cor-

rectly predicted to have asthma at school-age. The patient
made 14 visits between age 0 and 5 with different com-
plications. The individual visit scores do not provide clear
information about the critical time window which the
physician needs to examine. However, using our algo-
rithm for finding the most predictive subset of visits, the
algorithm identified that grouping visits 1 to 4 together
(highlighted in yellow) produced the maximum relative
contribution to the predicted outcome, compared to other
subset of visits. The ICD codes included in these visits

Fig. 5Most predictive subset of visits using CD-based scores. Example for a patient where BiLSTM is producing better interpretation than LSTM
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indicated that this patient has been diagnosed with con-
genital anomalies as well as asthma before the age of 1,
followed by organic sleep disorders and symptoms involv-
ing respiratory system and chest in the following years.
Therefore, although the contributions of individual visits
were not high, the relative contribution of grouping the
visits together provided useful information to explain the
prediction.
In general, we found that the relative contributions of

subset of visits extracted from BiLSTM and LSTM are
often similar. However, for some cases, such as the patient
shown in Fig. 5, we observed that contributions produced
from BiLSMT are likely more clinically relevant than
LSTM. This is possibly because BiLSTM mimics physi-
cian practice by examining the EHR clinical visits not only
in forward time order, but also considers the backward
time order so that recent clinical visits are likely to receive
higher importance.

Identifying top scoring patterns
We now demonstrate the utility of using the CD attri-
butions to identify the top scoring patterns which was
learned by the LSTM and BiLSTM models. To address
this, we analysed for each patient for which the class c=1
(having asthma at school age) was correctly predicted,
which visit patterns of length one and two visits had
the highest positive contribution towards predicting that
class. The results of this evaluation are summarized for
one visit patterns in Table 3 and two visits patterns in
Table 4. Overall, both models learn similar patterns for

both length one and two visits with no significant dif-
ference. Moreover, the identified patterns are inline with
the risk factors suggested in the literature for school-age
asthma [29–31].

Discussion
In this study, we assessed the potential application of con-
textual decomposition (CD) method to explain patient-
specific risk predictions using quantitative and qualitative
evaluation. Our results demonestrated that whenever a
clear visit-level pattern exists, the LSTM and BiLSTM
models learn that pattern and the contextual decompo-
sition can appropriately attribute the prediction to the
correct pattern. In addition, the results confirm that the
CD score agrees to a large extent with the importance
scores produced using logistic regression coefficients. Our
main insight was that rather than interpreting the attribu-
tion of individual patient visits to the predicted outcome,
we could instead attribute a model’s prediction to a group
of visits.
A potential limitation of our study is the identification of

asthma patients using ICD codes. In particular, although
using ICD codes to identify asthma is a popular practice
in large-scale epidemiologic research, previous research
showed that using ICD-9 codes have a moderate accu-
racy of identifying children with asthma, compared to
criteria-based medical record review [32]. In addition, the
contextual decomposition approach was demonstrated
on a single cohort of patients. Generalizing the findings
and explanations of this study would require assessing

Table 3 Top scoring patterns of length 1 visit, produced by the contextual decomposition of LSTM and BiLSTM models on the asthma
data

LSTM BiLSTM

ICD Codes Frequency% ICD Codes Frequency%

1 493.9 Asthma Unspecified 40% 493.9 Asthma Unspecified 34%

2 493.9,786.0 Asthma Unspecified, Dyspnea and
Respiratory Abnormalities

13% 786.2 Cough 15%

3 786.0 Dyspnea and Respiratory Abnormalities 11% 493.9,786.0 Asthma Unspecified, Dyspnea and
Respiratory

21%

4 493.9,786.2 Asthma Unspecified,Cough 10% 786.0 Dyspnea and Respiratory Abnormalities 10%

5 465.9,493.9 Acute Upper Respiratory Infections of
Unspecified Site, Asthma Unspecified

9% 493.9,786.2 Asthma Unspecified, Cough 9%

6 493.0 Extrinsic Asthma 4% 465.9,493.9 Acute Upper Respiratory Infections of
Unspecified Site,Asthma Unspecified 8%

7 486,493.9 Pneumonia, Asthma Unspecified 4% 465.9,786.2 Acute Upper Respiratory Infections of
Unspecified Site,Cough

5%

8 465.9,493.9,786.2 Acute Upper Respiratory Infec-
tions of Unspecified Site, Asthma Unspecified,
Cough

3% 486,493.9 Pneumonia, Asthma Unspecified 3%

9 382.9,493.9 Unspecified Otitis Media, Asthma
Unspecified

3% 486,493.9 Pneumonia, Asthma Unspecified 3%

10 493.0, 493.9 Extrinsic Asthma,Asthma Unspecified 3% V67.9 Unspecified Follow-Up Examination 3%
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Table 4 Top scoring patterns of length 2 visit, produced by the contextual decomposition of LSTM and BiLSTM models on the asthma
data

LSTM BiLSTM

ICD Codes Frequency% ICD Codes Frequency%

1 [493.9],[493.9] [Asthma Unspecified],[Asthma Unspecified] 13% [493.9], [493.9] [Asthma
Unspecified],[Asthma Unspeci-
fied]

11%

2 [493.9,786.0],[493.9][Asthma Unspecified, Dyspnea and
Respiratory Ab-normalities], [Asthma Unspecified]

2% [493.9,786.0],[493.9][Asthma
Unspecified, Dyspnea and Res-
piratory Ab-normalities],
[Asthma Unspecified]

2%

3 [493.9],[493.9,786.0] [Asthma Unspecified], [Asthma
Unspecified, Dysp-nea and Respiratory Abnormalities]

2% [493.9],[493.9,786.0][Asthma
Unspecified], [Asthma
Unspecified, Dysp-nea and
Respiratory Abnormalities]

2%

4 [493.9], [V20.2] [Asthma Unspecified], [Routine Infant or
Child Health Check]

2% [493.9], [V20.2][Asthma
Unspecified], [Routine Infant or
Child Health Check]

2%

5 [493.9,786.2], [493.9] [Asthma Unspecified, Cough],
[Asthma Unspecified]

2% [493.9,786.2], [493.9][Asthma
Unspecified, Cough], [Asthma
Unspecified]

1%

multiple datasets represeting multiple cohorts, diseases,
and age groups.

Conclusion
In this paper, we have proposed using contextual decom-
position (CD) to produce importance scores for individual
visits and relative importance scores for a group of vis-
its, to explain decisions of risk prediction models. In
addition, we developed an interactive visualization tool
and demonstrated, using a concrete case study with real
EHR data, how CD scores offer an intuitive visit-level
interpretation. This movement beyond single visit impor-
tance is critical for understanding a model as complex
and highly non-linear as BiLSTM. The potential exten-
sion of our approach to other sources of big medical
data (e.g. genomics and imaging), could generate valuable
insights to assist decision-making for improved diagnosis
and treatment.
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