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Abstract

Due to the popularity of Web-based applications, various developers have provided an

abundance of Web services with similar functionality. Such similarity makes it challenging

for users to discover, select, and recommend appropriate Web services for the service-ori-

ented systems. Quality of Service (QoS) has become a vital criterion for service discovery,

selection, and recommendation. Unfortunately, service registries cannot ensure the validity

of the available quality values of the Web services provided online. Consequently, predicting

the Web services’ QoS values has become a vital way to find the most appropriate services.

In this paper, we propose a novel methodology for predicting Web service QoS using source

code metrics. The core component is aggregating software metrics using inequality distribu-

tion from micro level of individual class to the macro level of the entire Web service. We

used correlation between QoS and software metrics to train the learning machine. We vali-

date and evaluate our approach using three sets of software quality metrics. Our results

show that the proposed methodology can help improve the efficiency for the prediction of

QoS properties using its source code metrics.

1 Introduction

Service-Oriented Architecture (SOA) has become a platform for processing large amounts

of information and knowledge to provide essential data and services to the users [1, 2]. Web

service is the basic unit for a SOA. Web Services(WS) are loosely coupled application pro-

grams designed to support business-to-business interoperability using XML based Simple

Object Access Protocol(SOAP) [3, 4]. Developers write and publish Web services at service

repositories where users can discover, deploy and orchestrate them according to their busi-

ness needs.

The success of cloud computing depends heavily on the quality of services provided in wire-

less terminals with limited computing and storage power such as mobile phones [5–7]. WS are

of paramount importance among different kinds of cloud services. Indeed the number of WSs

is rapidly increasing every day [8]. According to an open source WS repository “programma-

bleweb.com”, they have 22,367 WSslisted. Due to the proliferation of WSs, there are numerous

functionally similar services available [9, 10]. Consequently, searching for WS using the
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functionality keyword is no longer valid. Therefore, non-functional property such as Quality

of Service (QoS) have become pivotal criterion in Web service discovery, selection, recommen-

dation and orchestration [11].

Many QoS-driven Web service selection techniques have been proposed and successfully

utilized in SOA [12–14]. However, they use QoS values for the Web services made available by

the repositories. The QoS data accessible at service repositories have challenges due to some

real-world scenarios as stated below:

1. Web service repository turns into a complex hierarchy in various situations. Therefore, end

users would take quite a lot of time to go through enormous QoS records [15].

2. Public service repository such as Universal Description Discovery and Integration (UDDI)

may hold untrustworthy QoS information due to lack of monitoring. Thus, they might list

unavailable services and outdated QoS information for a user’ query [16].

3. Commercial Web services require users to pay a subscription fee to use. Thus, if a user want

to test Web service by themselves end up paying considerable amount of money. Obviously,

it is not practically possible for a user to monitor and collect QoS data for all the function-

ally similar WSs.

4. Some public repositories collect feedback from users to acquire QoS data. However, QoS

information is influenced by network and geological factors. As Internet is dynamic and

vulnerable, it is not possible to get the same QoS values for different users from diverse loca-

tions for a particular service [17, 18].

Even though service-level agreement (SLA) contains QoS parameters of a WS, users are still

unsure with what is the quality it actually achieves. Certainly, a fundamental pre-request is to

predict the QoS values instead of using the data available at repositories. Coscia JLO, Crasso

M, Mateos C, Zunino A, and Misra S [19] found a statistically significant and strong relation-

ship among a number of conventional sources code-level metrics and the catalogue of WSDL

level service metrics. Observing software quality metrics is a prevalent methodology to evaluate

software maintainability. Each Web service comprises of many micro-level software compo-

nents such as class, method and package. Therefore, source code metrics are calculated at

micro-level and aggregated into macro level to represent the entire software efficiently. We

hereby list out some of the common practices in software industries for aggregating source

code metrics and its disadvantages [20]:

• Simple average: Calculating the mean of metric results for individual elements of a system

might not be efficient enough to represent. Because, it does not express the standard devia-

tion and may mitigate the effects of unwanted values in the generalized result. In other

words, average function simply smoothed the results but does not reflect the reality.

• Weighted average: Weight could be used to differentiate less important components from

critical components. However, defining the weight is very critical and may introduce prob-

lem of its own.

• Statistical aggregation methods: Central tendency measures such as mean, median or

standard deviation cannot be trusted due to the highly-skewed distribution nature of

software.

Impact of aggregation schemes for source code metrics on Web service QoS prediction

remains unexplored. We hypothesize that the metrics aggregation scheme plays a vital role for

high correlation between many metrics at the file-level. Furthermore, the performance of QoS
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prediction models may be negatively affected by the potential loss of information due to sum-

mation and aggregation.

In this paper, we investigate the impact of source code metrics aggregation on correlation

between QoS attributes and source code metrics. Our investigation will be based on three dif-

ferent sets of quality metrics namely object oriented quality metrics proposed by Chidamber

SR, and Kemerer CF [21], Complexity metrics proposed by H.M.Sneed [22] and maintainabil-

ity suite by Baski and Misra [23].

The remainder of the paper is organized as follows: Section 2 presents the motivation and

specifications of the research. Section 3 highlights the related work in the research background.

Section 4 briefs about the methodologies used to aggregate code metrics and the configuration

of the learning machine. Section 5 explains the experimental set up used to validate the pro-

posed approach and discusses the results on Web service QoS prediction. Finally, Section 6

concludes the paper with vision for future work.

2 Problem specification

The aim of the research is to investigate the impact of source code metrics aggregation to

predict QoS properties. Chidamber and Kemerer explained source code metrics namely

Lines of code, functional abstraction measurement, the coupling between object classes,

average method complexity, weighted methods per class, McCabe’s cyclomatic complexity

[21]. Coscia JLO, Crasso M, Mateos C, Zunino A, and Misra S introduces the possibility to

predict the service interface maintainability or QoS by applying traditional software metrics

in service implementation. They used source code metrics as a primary pointers to support

the software programmers for developing services with more maintainability [19]. Mateos

C, Crasso M, Zunino A, and Coscia JLO introduced an interesting correlation between the

anti-patterns in the WSDLs and its object-oriented metrics identified from its source code

[24]. Kumar L, Kumar M, and Rath SK presented a learning machine to predict the QoS

properties such as reliability, response time, throughput, modularity, interoperability, avail-

ability, and testability by exploring the correlation between its object oriented software

source code metrics [25].

However, less attention had been paid to the aggregation of source code metrics for the

Web services so far. Even though a Web service can act as a single standalone system, it

comprises of many methods and classes. Thus, aggregation of different micro-level metric

values for each pieces of code helps to obtain a single value for global evaluation of the Web

service. Arithmetic mean is the predominantly used aggregation function for most of the

performance evaluation metric calculation models. However, most of the software quality

metric values are much skewed in nature. Consequently, the simple mean function is not

reliable against this kind of distributions. A known approach to reduce this problem is to

select a known family of distribution such as log-normal, exponential or negative binomial

and aggregate the metric value by fitting its observed parameters. This method however is

not viable because whenever a new metric is introduced, we need to repeat the fitting

process.

As a response to these challenges, we proposed a methodology to calculate source code

metrics using micro level software components. We propose an aggregation model for Web

service at micro-level by utilizing an inequality measure Theil index. Theil index is widely

used in econometrics to study inequality of welfare or income distribution among various

groups of people. Distribution of data in econometrics is very much like the data distribution

happens in software engineering. As it is having the potential to summarize a large amount
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of data, it has been proposed recently as an aggregation scheme for software source code

metrics.

To achieve the goal of this study, the objectives will be as follows:

• Extracting the source code metrics for micro level attributes from Web service description

file named Web Service Description Language (WSDL).

• Calculating source code metrics values using the micro level software components.

• Identifying the correlation between source code metrics (Example: Weighted methods per

class, Lack of cohesion in methods) and QoS properties.

• Automate the prediction of QoS properties using the correlation via Machine learning

techniques.

We will extract the class files from the WSDL files obtained from QWS-WSDL dataset

using WSDL2Java tool. We will calculate source code metrics at class level. Potential

source code metrics will be obtained by feature selection and reduction for each quality of

service. Finally, learning machine with various kernels will be trained to predict the QoS

properties.

3 Related work

3.1 Web service & quality of service

In practice, it is very difficult for an end user to obtain QoS information. The user needs to

spend large amount of resource, time and cost to invoke and measure QoS for all available

Web services. Different users will get dissimilar QoS experiences while using the same Web

service due to the dynamic nature of the network environment and geographically distributed

locations [26]. Therefore, predicting the QoS properties of a Web service became an important

step to be followed in service-oriented systems. Using available QoS values in invocation rec-

ords to calculate the unavailable or missing QoS parameters is called QoS Prediction [27]. Col-

laborative Filtering (CF) technique is widely adapted in Web service community due to the

success in commercial recommender systems. CF predicts unknown QoS values based on his-

torical user data [28].

Predicted QoS values can be used as additional criteria to rank the matching results during

the service discovery and selection process. Top ranked service holds an importance among

the other services [29]. In service orchestration, considering the QoS of services is as important

as combining functionalities of different services.

3.2 Software source code metrics

Mateos C, Crasso M, Zunino A, and Coscia JLO [24] discussed the methods available in code-

first Web services to remove unnecessary anti-patterns. The authors worked on the hypothesis

that the occurrence of anti-pattern can be avoided using object-oriented source code metrics.

To find the occurrence of anti-pattern at WSDL level, they have considered eleven source code

metrics such as: Average Parameter Count (APC), Response for the Class (RFC), Abstract

Type Count (ATC), Coupling between the objects (CBO), Lack of Cohesion among the Meth-

ods (LOCM), Void Type Count (VTC), Cohesion among Methods of Class (CAM), Lack of

cohesion in methods Henderson-Sellers version(LCOM3), Total Parameter Count (TPC),

Weighted Methods per Class (WMC), and Empty Parameters Methods (EPM) [25, 30].

Mateos C, Crasso M, Zunino A, and Coscia JLO used a real-time Web service dataset to
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identify the correlation between object-oriented metrics and occurrence of anti-pattern by

using well-known statistical methods. They also measured the impact of simple metric-driven

code refactoring on the occurrence of anti-pattern to some of the generated WSDLs from the

dataset. As a summary, Mateos C, Crasso M, Zunino A, and Coscia JLO observed that the

complexity and maintainability of Web services can be predicted using object-oriented metrics

and refactoring.

3.3 Correlation between source code metrics and QoS

A high correlation between traditional Object-oriented source code-level metrics and

WSDL-level service metrics have been found by Charrad et al [29]. They used the most com-

prehensive and thoroughly evaluated set of metrics to calculate the maintainability of Web

service using WSDL interfaces. The findings of this paper suggest that the software develop-

ers can avoid developing non-maintainable service by applying simple early code refactoring.

As Java is widely used as a programming language to develop back-end services, the authors

focused on java based Web services but their finding does not depend on the programming

language.

Romano et al. tried to identify the list of source code metrics which can be used to predict

Java interfaces that are vulnerable to change [31]. The source code metrics such as Lack of

Cohesion among Methods (LCOM), Coupling between Object (CBO), Depth of inheritance

tree (DIT), Number of Children (NOC), Weighted Method per Class (WMC), Response for

Class (RFC), and Interface Usage Cohesion (IUC) were used along with fine-grained source

code changes in interfaces of ten open-source Java-based systems [25, 30]. The correlation

between the metrics of the source code and the fine-grained changes in the source code was

tested empirically. Romano et al. concluded that the external interface cohesion source metrics

have greatest association with the number of changes in source code.

3.4 Software metrics aggregation

Software metrics calculated at micro-level artefacts and aggregated to the macro-level artefact

for the analysis. The popular aggregation technique used for source code metrics is mean [32],

[33] even though there are increasing research works to demonstrate the inappropriateness of

this technique [34], [35] due to the skewness of source code metrics distribution [36]. The sum

is another popular aggregation technique. Chidamber et al. used the sum to aggregate com-

plexity of individual methods to the class level in their metrics suite [21]. Alexander et al. [37]

used the Theil index, a widely used inequality measure in econometrics to identify the wealth

distribution to aggregate the software metrics values as they both share the same kind of data

distribution. Theil index is not specific to a particular metric and can be used to aggregate a

wide range of metrics.

4 Proposed work

4.1 Research framework

Fig 1 demonstrates our proposed structure and methodologies for this research. The system is

made up of many steps and the first step is to extract java class files from WSDL files using

WSDL2java software. The next step is to measure the various metrics of the source code. By

following the steps described in Fig 1, we used CKJM_extended tool to measure the object-ori-

ented source code metrics. For each Java class file, we calculate 19 metrics of source code.

Then we use the Theil index as an aggregation technique to sum up a single value for all the

metrics of the source code. We used Principal Component Analysis to remove irrelevant
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features to achieve dimensionality reduction. As a final step, we apply linear regression to pre-

dict the quality metrics for the Web services. By using the different combination of available

source code metric sets, we got seven sets of metrics to evaluate the performance of regression

learner. Performance of prediction model using different sets of metrics evaluated by calculat-

ing estimator evaluation metrics.

4.2 Source code metrics aggregation

Data of wealth distribution inequality from economics and source code metrics of software are

sharing similar structure. The Gini coefficient, a widely applied economics inequality measures

attracted attention in the field of software metrics. It can be easily explained using Lorenz

curve. However, the Gini coefficient has a major drawback as it cannot be decomposed [37].

Serebrenik et al. proposed another inequality measure named Theil index instead of Gini

index as it is decomposable so it can be used not only to calculate the inequality but also to

explain it. Moreover, it is not specific to any specific metrics so it can be used to aggregate

wide range of metrics. [38]. Therefore, we preferred Theil index to calculate the aggregation

for source code metrics.

4.3 Feature redcution & selection

We used Principal Component Analysis (PCA) as data preprocessing method for feature

extraction and selection. For each PC (Principal Components), we calculate eigenvalue, vari-

ance percent, cumulative percentage and source code metrics interpreted. PCs with eigen

value more than 1 are considered as a potential source code metrics coherts. Table 1 shows the

Fig 1. The proposed framework.

https://doi.org/10.1371/journal.pone.0226867.g001

Table 1. PCA results for object oriented metrics.

Principal component Eigenvalue % Variance % cumulative Metric Interpreted

PC 1 5.744292522 38.29528348 38.29528348 WMC, CBO, RFC, Ca, LCOM, Ce, NPM, LOC, MOA, CAM, AMC

PC 2 3.553881589 23.69254393 61.98782741 DIT, CBO, LCOM, Ca, Ce, LOC, DAM, MOA, MFA, CAM, AMC

PC 3 1.92886401 12.8590934 74.8469208 WMC, CBO, RFC, Ca, LCOM, Ce, NPM, AMC

PC 4 1.104911736 7.36607824 82.21299904 WMC, RFC, LCOM, Ca, Ce, NPM, DAM, MOA, MFA, CAM, AMC

https://doi.org/10.1371/journal.pone.0226867.t001
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PCA results of object oriented metrics. Out of 19 source code metrics, 12 metrics were identi-

fied as having potential to predict QoS properties. Tables 2 and 3 shows the PCA results for

Baski & Misra metrics and Sneed’s metrics.

4.4 Learning machine

The aim of this research is to examine the impact of aggregation methods of source code met-

rics (e.g. Lack of cohesion in methods, coupling between object classes) on predicting QoS

characteristics (e.g. reaction time, accessibility, throughput, testability, interoperability, etc.).

Therefore, We preferred to use a simple regression model called multiple linear regression

model to employ the prediction. By fitting a linear equation to measured data, multiple linear

regression aims to model the relationship between two or more independent variables and a

response variable. We developed the training set according to the correlation standards

defined in [25]. Then the number of latent variables need to be defined for each QoS property.

Fig 2. Number of Java files extracted from available WSDL.

https://doi.org/10.1371/journal.pone.0226867.g002

Table 2. PCA results for Baski & Misra metrics.

Principal component Eigenvalue % Variance % cumulative Metric Interpreted

PC 1 2.908 48.465 48.465 OPS, DW,MRS,DMC

PC 2 1.489 24.809 73.275 DMC,DMR,ME

https://doi.org/10.1371/journal.pone.0226867.t002

Table 3. PCA results for Sneed’s metrics.

Principal

component

Eigenvalue %

Variance

%

cumulative

Metric Interpreted

PC 1 2.359 29.490 29.490 Data flow complexity, Data access complexity, Interface complexity, Control flow complexity, Decisional

complexity, Branching complexity, Language complexity

PC 2 1.946 24.327 53.817 Data complexity, Data flow complexity, Decisional complexity, Branching complexity, Language

complexity

PC 3 1.320 16.501 70.318 Data flow complexity, interface complexity, Language complexity

https://doi.org/10.1371/journal.pone.0226867.t003
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The next step is to build a model to generate the value of the QoS property by using the train-

ing set knowledge base. The data set was submitted to a 10-fold cross-validated paired t-test

analysis. In the 10-fold cross-validated paired t-test procedure we segment the dataset into 10

parts of equally sized, each of which is then used for analysis, while the remaining 10-1 parts

(joined together) are used to train the regressor (i.e., generic k-fold cross-validation). For dem-

onstrating the reliability of the regression learner, we used two different performance metrics

(MAE, RMSE).

5 Experiments & analysis of results

5.1 Research questions

Our experimental study designed to answer the following two research questions:

5.1.1 RQ1: How does the proposed methodology improve the predictability of

source code metrics? A software system is not a single standalone system to provide the

Fig 3. BM metrics vs modularity prediction.

https://doi.org/10.1371/journal.pone.0226867.g003
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solution. Normally, it comprises many subordinate pieces of code such as class, method or

function. Therefore, the software metrics must calculated in the micro level and should

aggregated into macro level for representing the source code metric of a software system.

Since software code metrics are highly skewed values, it is inappropriate to use simple

statistical aggregation (mean, median, etc.,) methods. The proposed inequality distribution

models are very successful in economics data, which is as skewed as software source code

data.

5.1.2 RQ2: How are source code metrics used to predict quality of service properties of

Web service using source code metrics? During the software development life cycle, devel-

opers extract source code metrics to evaluate the maintainability to reduce the future issues

with the system. Thus, source code metrics and quality of service properties are correlated. We

will use the correlation between source code metrics and quality of service to predict the QoS

of Web services. We use linear regression based learning machines to create a prediction

model.

Fig 4. CKJM metrics vs modularity prediction.

https://doi.org/10.1371/journal.pone.0226867.g004
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5.2 Variables and objects

5.2.1 Independent variable. A technique under investigation is defined as independent

variable. So, Theil index is selected as the independent variable for this research. Dutch statisti-

cian Henri Theil presented an inequality measure named Theil index [39]. Given a (continu-

ous) univariate distribution function F with the support X � R and the mean μ(F) the first

Theil index is defined as:

ITheilðFÞ ¼
Z

x
mðFÞ

log
x

mðFÞ

� �

dFðxÞ ð1Þ

The Theil index was introduced for the field of unequal income distribution aggregation. Let

x0 2 X is a particular value of income, F is a distribution of income in the population, and

F(x0) is the proportion of the population with the income x less than or equal to x0. We calcu-

late source code metrics at micro level and aggregate to represent the macro level software

Fig 5. Prediction model for modularity using SM metrics.

https://doi.org/10.1371/journal.pone.0226867.g005
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using Theil index. Metrics that have negative values can not be aggregated using Theil index

because of the logarithmic calculation in its formula. Since logx for x� 0 can produce an unde-

fined value, Theil index may also be an undefined value if they contains non-positive values

[37].

5.2.2 Dependent variable. Mean Absolute Error (MAE) and Root Mean Squared Error

(RMSE) are the two well-known statistical precision measurements utilized to assess the pre-

diction results. MAE is the average absolute deviation of predictions to the ground truth data.

For all test services and test QoS properties, MAE is calculated as:

MAE ¼
ð
P

ijkQij � Q̂ijkÞ

N
ð2Þ

In the Eq 2, Qij denotes the observed QoS value of Web service j obtained from data set

entry i; Q̂ij is the predicted QoS value; and N is the number of predicted values. The smaller

Fig 6. Modularity prediction results for SM-CKM metrics.

https://doi.org/10.1371/journal.pone.0226867.g006
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value of MAE indicates better prediction result. RMSE can be expressed as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

ijkQij � Q̂ijk
2

N

s

ð3Þ

RMSE can be measured using Eq 3 to find out the differences between the actual and pre-

dicted values. Once the model yields more than 90% accuracy level, the learning machine can

able to predict the five chosen QoS properties for a WSDL of a service.

5.2.3 Objects. We used the WS dream dataset, an open source dataset produced by a

group of researchers from The Chinese University of Hong Kong. WS dream dataset contains

two versions of datasets and we used version 1 for the experiment. The dataset contains URLs

of 5825 Web services and its response time and throughput readings from 339 geographically

distributed users. The dataset also has more details about both the Web services and users such

as IP address, country, continent, longitude, latitude, region, and city.

Fig 7. Modularity prediction results with BSM-CKM metrics.

https://doi.org/10.1371/journal.pone.0226867.g007
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Our main goal of this research is to identify the implications of aggregation of source code

metrics on QoS prediction. Therefore, we need to calculate the source code metrics for the tar-

get Web services using its Web Service Description Language (WSDL) is necessary. wsimport

is a Java function to process WSDL file and extract class files for the corresponding Web

services.

Since the dataset only contains URL for the WSDL of Web services, we developed a Java

application to crawl the WSDL files using URLs from the dataset. Only 457 out of 5825 Web

services have active WSDL available on the internet. As we mentioned earlier, wsimport was

used to extract the Java class files. The number of class files per Web services ranges from

one to 281. Fig 2 shows the number of class files per Web service. The x-axis represents the

Web service ID and y-axis represents the number of Java files extracted from the Web

service.

Fig 8. Modularity prediction results with BSM-SM metrics.

https://doi.org/10.1371/journal.pone.0226867.g008
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5.3 Empirical environment

5.3.1 Source code metrics. We used three sets of metrics sucha as object oriented source

code metrics proposed by Chidamber et al. [21], Baski and Misra Metrics [23] and Sneed’s

metrics [22].

Fig 9. Modularity predicted vs actual for All metrics.

https://doi.org/10.1371/journal.pone.0226867.g009

Table 4. RMSE & MAE comparison for different sets of metrics for modularity.

S.No Metric set name RMSE MAE

1 BSM 0.284 0.172

2 CKM 0.017 0.011

3 SM 0.0085 0.0057

4 BSM-CKM 0.1497 0.022

5 BSM-SM 0.0872 0.0581

6 SM-CKM 0.12114 0.085

7 AM 0.1556 0.0743

https://doi.org/10.1371/journal.pone.0226867.t004
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Chidamber and Kemerer Metrics: Ckjm_extended tool introduced by Chidamber et al.

[21] can be utilized to calculate 19 size and structure software source code metrics from the

generated Java class files. The metrics are Weighted methods per class, Depth of Inheritance

Tree, Number of Children, Coupling between object classes, Response for a Class, Lack of

cohesion in methods, Afferent coupling, Efferent coupling, Number of Public Methods for a

class, Lack of cohesion in methods Henderson-Sellers version, Lines of Code, Data Access

Metric, Measure of Aggregation, Measure of Functional Abstraction, Cohesion Among Meth-

ods of Class, Inheritance Coupling, Coupling Between Methods, Average Method Complexity,

McCabe’s Cyclomatic Complexity.

We developed a Java based system to integrate with ckjm tool and calculated 19 metrics for

all the 457 Web services. For the next step, we used R language to calculate the statistical calcu-

lation. R library called ineq have been used to calculate the Theil index ITheil for the Web

services.

Fig 10. Testability prediction results with BSM metrics.

https://doi.org/10.1371/journal.pone.0226867.g010
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Sneed’s tool: Sneed et al. [22] developed a tool named softAudit for measuring Web Ser-

vice interfaces. The suite consists of nine different source code metrics to measure complex-

ity of service interfaces: Data Complexity (Chapin Metric), Data Flow Complexity (Elshof

Metric), Data Access Complexity (Card Metric), Interface Complexity (Henry Metric), Con-

trol Flow Complexity (Mccabe Metric), Decisional Complexity (Mcclure Metric), Branching

Complexity (Sneed Metric), Language Complexity (Halstead Metric), Weighted Average

Program Complexity. We used softaudit tool provided by Sneed et al. to calculate the 09

complexity metrics for all the Web service by processing micro-level class files. We also cal-

culated 09 quality metrics using sneed’s tool namely Degree of Modularity, Degree Of Porta-

bility, Degree Of Reusability, Degree Of Testability, Degree Of Convertibility, Degree Of

Flexibility, Degree Of Conformity, Degree Of Maintainability, Weighted Average Program

Quality.

Fig 11. Testability predicted vs actual for all metrics.

https://doi.org/10.1371/journal.pone.0226867.g011
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Baski and Misra Metrics: Baski and Misra [23] proposed a tool to compute six different

complexity metrics of WSDL file These metrics are based on analyzing the WSDL and XSD

schema elements. The metrics are Data Weight of a WSDL (DW), Distinct Message Ratio

(DMR), Distinct Message Count (DMC), Message Entropy (ME), Message Repetition Scale

(MRS) and Operations Per Service (OPS). Baski & Misra metrics have been calculated by

processing the WSDL file for each web service rather than processing micro-level class files.

We used Baski & Misra’s tool to calculate the six metrics for the 457 Web services WSDL

files.

We used above mentioned three sets of quality metrics as an independent variables and

quality metric values calculated using Sneed’s tool as a dependent variable. Normalization is

very important to process the data for regression. So, we applied unsupervised normalization

with the range of 0.0 to 1.0 using Weka tool. Then we grouped the metric sets with different

combination to populate more sets of metrics to compare our results. Consequently, we

Fig 12. Testability prediction results with Sneed’s metrics.

https://doi.org/10.1371/journal.pone.0226867.g012
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have Chidamber and Kemerer Metrics (CKM), Baski and Misra Metrics (BSM), Sneed’s

metrics (SM), CKM-BSM metrics, CKM-SM metrics, BSM-SM metrics and All metrics

(AM). After grouping, we got seven different sets of metrics available. We applied linear

regression to predict modularity, quality of service value calculated. The results show that

Sneed’s metrics individually outperform the other sets of metrics. Object-oriented metrics

also have the potential to predict the QoS value but not as efficient as Sneed’s metrics. Baski

& Misra metrics have the lowest efficiency among the available group of metrics. In sum-

mary, metric values calculated at the micro-level have better QoS prediction efficiency than

those at macro level.

5.4 Result analysis

Three Quality of service metrics namely Modularity, Testability, Maintainability, Reusability

for the available Web service had been calculated using Sneed’ tool. All three sets of metrics

Fig 13. Reusability predicted vs actual for all metrics.

https://doi.org/10.1371/journal.pone.0226867.g013
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and its combinations had been used to predict the metrics value using robust linear regression.

Fig 3 shows the graph between actual modularity values and predicted modularity values. The

RMSE and MAE values respectively, 0.284, 0.172 which not a better values for a linear predic-

tion model. Fig 4 contains the comparative graph of predicted modularity values using CKJM

metrics and actual modularity values. RMSE and MAE values are 0.017, 0.011. The prediction

results are better than Baski & Misra metrics. The graph depicted in Fig 5 illustrates the com-

parative study between actual vs predicted modularity values using sneed’s metrics. The results

shows the sneed metrics have higher potential to predict the quality metrics for the Web ser-

vice compare to other two metrics. The RMSE and MAE values are 0.0085, 0.0057 that implies

the prediction results are very good.

Figs 6, 7 and 8 shows the prediction results with different combination among the three

sets of metrics. Neither combination produced better results than the sneed’ set of metrics.

As shown in Fig 7, BSM-CKM metrics have least potential to produce better prediction of

modularity. The prediction and actual modularity values using all metrics comparative

Fig 14. Reusability prediction results with BSM metrics.

https://doi.org/10.1371/journal.pone.0226867.g014
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graph shown in Fig 9. It also could not produce better results than SM metrics. Table 4

shows the summary of RMSE and AME values of different sets of metrics used for the robust

linear prediction. Sneed has set of metrics as a stand-alone predictors to produce better

results for modularity quality prediction. As stated in Figs 10, 11 and 12, all metrics com-

bined produces slightly better result than BaSki and Misra (BSM) metrics for predicting test-

ability. However, Sneed’s metrics yields way better results than the all metrics and BSM

metrics.

Figs 13, 14 and 15 shows that using all metrics combined and BSM metrics could not

achieve better results for Reusability prediction. Sneed’ metrics produces slightly better

results while compare with other sets of metrics. By comparing Figs 16 and 17, all metrics

together produces better prediction results than BSM metrics. As stated in Fig 18 Sneed’ met-

rics shows better potential than over all metrics combined and BSM metrics for predicting

Maintainability.

Fig 15. Reusability predicted vs actual for Sneed’s metrics.

https://doi.org/10.1371/journal.pone.0226867.g015
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The comparison table shows that the CKM metrics and SM metrics individually produce

better results. When CKM and SM combined the efficiency of the prediction quality is reduced

indicated by the increasing MAE and RMSE values. BSM metrics have lower potential to pre-

dict the quality values individually. The results of BSM combined with SM is better than CKM.

As a conclusion, we demonstrated that the CKM and SM metrics that are calculated from

micro level have higher potential to predict the quality of a Web service.

6 Conclusion

QoS values have become an essential criterion to choose a suitable service from abundance of

functionally similar Web services. On the other hand, service providers do not provide ade-

quate QoS data, while unequal computing and network environment make the user provided

QoS data invalid. Therefore, predicting the QoS values of Web service is an important step in

service-oriented systems. One of the independent methods to predict the quality parameters

Fig 16. Maintanability prediction results with BSM metrics.

https://doi.org/10.1371/journal.pone.0226867.g016
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of the Web service is to utilize the software code metrics. Web service is not just a single sys-

tem, but it contains many classes and methods. Thus, source code metrics should be calcu-

lated from the micro level such as classes and methods to a macro level system. However,

most of the current systems either calculates the code metrics at a macro level or use basic

arithmetic average and mean to lift the metrics from class level to system level. Such methods

may cover up the inefficient values and provide the values of a rounded-up metric for the

predictor.

In this paper, we investigated the impact of calculating source code metrics from a micro

level on predicting the quality metrics. We used three sets of metrics namely CKM, BSM and

SM to validate our system. For CKM metrics, we calculated source code metrics at the class

level and used the Theil index, a method to aggregate source code metrics without compromis-

ing the distributed nature of the software source code. For SM metrics, we used Sneed’s tool to

calculate complexity metrics from the Web service class files. BSM metrics have been calcu-

lated using its macro-level WSDL file instead of class files. We applied linear regression to

predict modularity, quality of service value calculated. The results show that SM metrics

Fig 17. Maintainability predicted vs actual for all metrics.

https://doi.org/10.1371/journal.pone.0226867.g017
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individually outperform the other sets of metrics. CKM metrics also have the potential to pre-

dict the QoS value but not as efficient as SM metrics. BSM metrics have the lowest efficiency

among the available group of metrics. In summary, metric values calculated at the micro level

have better QoS prediction efficiency than those at macro level.
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