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1 Introduction

Finite mixture models

A commonly used tool to model hidden heterogeneity is given by finite mixture dis-
tributions, i.e. for a fixed number of components m € N, the mixture of densities
fe:R—=1[0,00),c=1,...,mis given by

zm:ﬂcfc , (1.0.1)
c=1

where 71, ..., 7Ty, >0, Zlnzl m; = 1 are mixing parameters. Suppose there are m different
latent subpopulations present and observations from each subpopulation are distributed
according to some density f.. Then a mixture of the form (1.0.1) is a natural way to
model the data.

Early work on finite mixture distributions goes back to Newcomb (1886) who recognized
that the presupposition ”that there must always be some one 'most probable value’ of a
quantity determined by observations, lacks generality” and therefore proposed the idea
of "modified curves of probability” that he formalized by introducing mixture distribu-
tions. Pearson (1894) used a mixture of two normal distributions in order to describe
evolutionary phenomena and was subsequently able to detect clusters within populations
of crabs. Parameter estimation was done with the method of moments.

In most models, the component densities f. are considered to come from a parametric
family, i.e. there are sets ©. C R% and families of probability measures {P§ : § € O}
so that f. ~ P§. for some 0 € ©., ¢c = 1,...,m. The most common example is given
by mixtures of normal distributions, although mixtures of most well-known distribu-
tions have been studied extensively, for a broad overview cf. Titterington et al. (1985)
or McLachlan and Peel (2004). Depending on the statistical application however, the
usage of parametric families can be too restrictive, particularly because many estimation
methods are sensitive to violation of distributional model assumptions.

When dropping the parametric assumption, identifiability of the model becomes an intri-
cate issue. The less constraints one imposes on the component densities, the more often
the model becomes non-identifiable, making consistent estimation impossible. Symmetry
turns out to be a viable constraint for retaining identifiability. Bordes et al. (2006b) and
Butucea and Vandekerkhove (2014) considered two-component mixture models in which
both components are given by the translation of one single unknown zero-symmetric
density. Bordes et al. (2006a), Bordes and Vandekerkhove (2010) and Hohmann and
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Holzmann (2013a) considered two-component mixture models in which one component
density is known a priori and the other is an unknown translated zero-symmetric density.
All those models are identifiable and estimation methods were established. Hunter et al.
(2007) even gave identifiability conditions for mixtures of three symmetric components
belonging to the same location family and additionally conjectured identifiability for
mixtures with more components. Multivariate two-component mixtures with indepen-
dent marginal components were considered by Hall and Zhou (2003) who proved that
the model is non-parametrically identifiable for three-variate mixtures. Two-variate mix-
tures are only identifiable up to a parametric family of two parameters. /n-consistent
estimators for the univariate marginal distribution functions of the components and the
mixing proportions were introduced.

Finite mixtures of regressions

The concept of finite mixtures of regressions (FMR) combines finite mixture distributions
and regression models. Regression models are used to study the relationship of explana-
tory variables or covariates X on response variables Y. Assume one draws observations
from a population (Y, X) taking values in R x R? having the functional relationship

Y=¢g(X)+e¢,

where ¢ is an error generally assumed to fulfil E[e| X]| = 0 and g is the regression function.
The most prominent regression type is the linear regression where g(z) = { x + fy is a
linear function.

In the case of FMR, one assumes there are multiple explanatory relations and a latent
random variable choosing the explanatory relationship for every single observation. To
be more precise, let there be a functional relationship of covariates and response in the
shape of

m

Y =) Welge(X) +ec]

c=1

where (W1,...,Wp)|X =z ~ Mult(1; (w1 (), ..., mp(x))) with 3, 7 = 1, the mix-
ing functions m. may be predictor-dependent and conditionally on X, the ¢, and W, are
independent as well as again E[e.|X] =0, ¢ = 1,...,m. Here, for each latent subpopu-
lation, g. is the regression function and describes the regression relationship within the
subpopulation. A slight variation of this model are mixtures of location scale regressions.
They typically have the form

m

Y = S W pe(X) + oe(X)=]

c=1

where the locations p. and scales o, may be predictor-dependent, cf. Huang et al. (2013)
or Butucea et al. (2017).



Early work on a two-component mixture of linear regressions model with normally dis-
tributed errors was done by Quandt (1958). A formalization in the context of FMR was
discussed by Quandt (1972) who introduced the idea that switching occurs according to
some random variable that determines from which regime observations are drawn. Esti-
mation in FMR models was first considered by Quandt and Ramsey (1978) who examined
a model with normally distributed errors and estimated parameters using the method of
moments. Extensions of this model were considered by Jordan and Xu (1995), Young and
Hunter (2010) and Huang and Yao (2012) resulting in the most general model of mixtures
of normal regressions by Huang et al. (2013). In their model, any finite number of com-
ponents is allowed and mixing, location and scaling functions are predictor-dependent
and modelled non-parametrically. A local log-likelihood estimator and an EM algorithm
were proposed and asymptotic normality of the estimator was derived.

There are also considerations of FMR in which the error distributions need not be normal.
Hunter and Young (2012) considered mixtures of linear regressions with any finite number
of components, each of which is supposed to have the same error distribution. The
authors were able to prove identifiability by making use of the additional information
carried by the covariates. Vandekerkhove (2013) examined a two-component mixture
of linear regressions with zero-symmetric error distributions. Kasahara and Shimotsu
(2009) and Hohmann and Holzmann (2013b) considered regression on the model of Hall
and Zhou (2003). In a very recent paper, Butucea et al. (2017) considered a FMR model
with two components in which proportions and locations are predictor-dependent and
both errors are distributed according to a single unknown zero-symmetric distribution.
They proposed a local contrast M-estimator for the parameter functions that turns out
to be asymptotically normal under reasonable conditions. Furthermore, they proposed a
kernel type estimator for the error distribution. Its asymptotic properties are still under
consideration.

Organization of this thesis

In Chapter 2, we review some existing FMR models and methods from the literature. We
further briefly discuss the models that are later thoroughly examined in Chapter 4. In
Chapter 3, we give a general set of conditions under which local M-estimators have non-
parametric uniform convergence rates and further give a uniform adaptive estimation
procedure. Both are applicable to a variety of models, e.g. the models in Butucea et al.
(2017) or Huang et al. (2013). In Chapter 4, we apply the methods to the model in
Huang et al. (2013) and a regression model based on an alteration of the model without
covariates in Bordes and Vandekerkhove (2010). Chapter 5 accumulates most of the
proofs for Chapters 3 and 4. Furthermore, in Chapter 6, we conduct a simulation study
of the local log-likelihood estimator for the model in Huang et al. (2013) that displays
the finite sample properties of the supremum errors of the estimators.






2 Preliminaries

In this chapter, we will review some literature and theory relevant to this thesis. We first
give classical asymptotic results on M-estimators as described by van der Vaart (2000)
and van der Vaart and Wellner (1996) and subsequently briefly discuss the concept of
local M-estimation. Furthermore, we discuss literature on mixture of regressions models,
briefly recall function classes broadly used in non-parametric estimation and shortly
discuss kernel density estimation.

2.1 M-estimation

A well-studied concept for parameter estimation is M-estimation. Suppose one draws
observations Y7, Ys,... from a distribution Py, coming from an identifiable statistical
model (Py)geo depending on some parameter set ©. Further suppose one can find a
contrast function, that is, a function M : ©® — R that has a unique maximum at
the true parameter 6,. Moreover, assume one can estimate M by a random function
M, (-) = My (;Y1,...,Y,) : © = R. Then a natural approach to estimate the model pa-
rameter 6, is to maximize the random function M, over the parameter set © if possible
and to use the point of maximum as an estimator.

The first estimator of this type, the maximum likelihood estimator, was introduced by
Fisher (1922) and has been studied extensively since, e.g. Huber et al. (1967). The log-
likelihood estimator is a commonly used variation of this. Assume every Py possesses a
density py. Given i.i.d. observations Y7,...,Y,, one chooses the parameter as estimate
that is most likely to produce the observations at hand, if existent, i.e.

. 1 —
0,, = argmax M, (), M,(0)=— log (pe(Y3)) . 2.1.1
gmax Mo (6) () n; g (po(Y))) (2.1.1)
Other examples are least square estimators or estimators that use model specific prop-
erties like symmetry to construct contrast functions, cf. Hall and Zhou (2003), Bordes
et al. (2006b), Hunter et al. (2007), Bordes and Vandekerkhove (2010), Hohmann and
Holzmann (2013a) as well as Butucea and Vandekerkhove (2014).

A fundamental criterion for the quality of an estimator is the concept of consistency. We
call a sequence of estimators 6,, consistent for (every possible model parameter) 6, € ©
if

16 — 6. = op(1)
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where the estimators 6, depend on Y7, ...,Y,, which are distributed according to Py, .

In the context of M-estimators, consistency is often achieved by the contrast function
M taking a unique and well-separated global maximum at the true parameter and the
random functions M,, estimating the contrast M uniformly consistently, so that points
of global maxima of M, need to converge to points of global maxima of M. Uniform
consistency of M,, often turns out easy to prove when the parameter space O is compact.
This result is summarized in the following theorem, cf. van der Vaart (2000, Theorem
5.7).

Theorem 2.1.1 (van der Vaart (2000)). Let d be a metric on ©, M,, be random functions
and let M be a fized function of 0 such that for every e > 0

sup |M,,(0) — M ()| = op(1) , sup M(0) < M(0.) .
0cO 0€0:d(0,0,)>¢

Then any sequence of estimators 0, with M,(0,) > M,(6) — op(1) converges in prob-
ability to 0,.

After consistency of an estimator 6, is established, the question arises at which rate the
estimator converges, that is, one wishes to identify a deterministic sequence r,, — oo so
that

TnHén — 0.]| = Op(1)

for every possible model parameter 6, € ©. The sequence 7,, is then an upper bound of
the convergence rate.

A general convergence rate result can be found in van der Vaart and Wellner (1996,
Theorem 3.2.5). Suppose that 6, € © C R™. Under suitable differentiability conditions,
the gradient of M at 6, has to be zero and its Hessian matrix V(0) = 82, M (0) evaluated
at 0, is always negative semidefinite. If one assumes that it is in fact negative definite,
a Taylor expansion around 6, gives for some 6 € [6,6,] that

M(6) — M(0.) = (0 — 6.)7 9pM(8,) + ~(8—0.)7V(@)(6—0.) .
T 2

By additional regularity conditions, such like Lipschitz continuity of the Hessian matrix,
one can often achieve that the distance of M(6) and M(6.) behaves like the squared
distance of # and 6,. Combining this with a condition on the expectation of the continuity
modulus of M,, — M can give upper bounds on the convergence rate of the maximizers
of M,. The latter condition often happens to be Lipschitz continuity with Lipschitz-

constant decreasing at rate r;; .

Theorem 2.1.2 (van der Vaart and Wellner (1996)). Let M, be stochastic processes
indexed by a semimetric space (0,d) and M : © — R a deterministic function, such that
for every 0 in a neighbourhood of 0.,

M) — M(0,) < —d*(6,6.) .



2.2 Local M-estimation

Suppose that, for every n and sufficiently small §, the centred process M, — M satisfies

E*L( sup  |(My — M)(60) — (M, — M)(6,)| < 900)

9,0*)<6| ~ \/ﬁ ’

for functions ¢, such that 6 — ¢,(8)/0% is decreasing for some o < 2 (not depending
onn). Let

1
72 ¢ (r) <+n, for every n.
n

If the sequence 0, satisfies My, (6,,) > M, (0,)—Op(r;2) and converges in outer probability
to 0., then r,d(0,,0,) = Op«(1).

Note that we use outer expectation E* and outer probability P* in case there are problems
with measurability. This theorem may be generalized in order to allow for convergence
rates differing from /n and be applied to models with covariates, cf. Theorem 3.1.3.

2.2 Local M-estimation

When one aims to estimate the influence of covariates X on a response Y, M-estimation
is typically not directly applicable because one cannot draw observations from the con-
ditional distribution Y| X. However, one can often use local M-estimation, which uses a
localization strategy like weighting observations with the help of a kernel function.

To be precise, suppose one draws i.i.d. observations (Y1, X4),..., (Y,, X,) from a popu-
lation (Y, X), where X is supported on I C R? and Y is real-valued. For every x € I, one
suspects that the conditional distribution of Y[X = x given by Py, () is determined by
some unknown 6, (x) € © where © is a parameter set. Then the objective is to estimate
the parameter function 6,(-).

For now, consider the respective model without covariates, i.e. one has observations
Z1, Zs, ... with distribution Py, and like in Section 2.1, there is a function

M,(3Z1,...,Z,) :© >R

estimating a function ;Z\Z : © — R that has a unique maximum at the true parameter 6.,.
Further assume that M, is a linear estimator in the sense that it is of the shape

— 1 &
M (0 21, Zn) = > m(Z))
j=1

for some function my, like a log-likelihood estimator defined in (2.1.1).
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Then, returning to the model with covariates, the localization strategy can be applied
by using a kernel function K; = K(-/h)/h%, cf. Section 2.5. That is, define the local
M-estimator as

1 n
M, (0,23 h) := M, (0,25 h; (Y1, X1), ..., (Y1,X1)) = - > me(Y;)Kn(X; - x) .
j=1

The most prominent estimator of this kind is the local log-likelihood estimator that was
first described in a broad sense by Fan et al. (1998). Assume that all conditional distri-
butions Py possess densities pg, 6 € O. Given i.i.d. observations (Y1, X1),...,(Yn, Xn),
one chooses for every x the parameter that maximizes the local log-likelihood function

0, (z) = argmax M, (0, x; h) = argmax E Zlog (po(Y5)) Kn(X; — ) . (2.2.1)

6€o peo N T

2.3 Mixture of regressions models

In this section, we outline mixture of regressions models from the literature that are
related to the models examined in the main part of this thesis.

Let us start by considering the mixture of linear regressions models with normally dis-
tributed errors. Quandt (1972) considered such a switching linear regressions model.
Assume one observes the n x (k+ 1) random matrix (Y, X), where the vector Y consists
of response variables and the rows of X are k independent explanatory variables so that
there is a subset I C {1,...,n} so that

Y, = X1 +¢e1,:, 1€l

Yi=Xf2+e24, i €I,
where X; is the i-th row vector, ex; ~ N(0,0%) and 8; = (Bi1,...,Bik)", i = 1,2 are
parameters of interest so that (31,0?) # (82,03). Quandt (1972) was the first to model
this by postulating that “there is an unknown probability A that nature will choose
Regime 1 for generating observations and a probability 1 — A that it will choose Regime
2”. In a more rigorous fashion, one could postulate that there is a random variable

W; that, conditionally on the covariates, is independent of the ¢j; and has conditional
distribution Ber()) so that

Y, = Wi(Xiﬁl + 61,7;) —+ (1 — Wz)(XlﬂQ + 5271‘) , 1€ {1, - ,n} .

Quandt (1972) directly concluded that, conditionally on X; = (x14,. .., Z;), the response
Y; has a conditional mixture of two normal densities, i.e.

Fil(@ris - 200); 0) =X (yi|a] Br,oF) + (1= N (ys|] B2, 03) (2.3.1)
where 0 = (81, 32,01, 02, \)T, giving the log-likelihood function

01— log (f(YilXi;0))
=1
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which is to be maximized under the constraints o1,02 > 0, 0 < XA < 1. The estimation
method was tested empirically. In a later paper, Quandt and Ramsey (1978) gave an
estimation procedure based on the moment generating function.

This model is commonly applied in economics, see for example, DeSarbo et al. (1992),
Ramaswamy et al. (1993) or Helsen et al. (1993).

Generalizations

There are several ways to generalize the model given by the conditional model density
(2.3.1). We distinguish between two possibilities, namely (1) retaining normal errors and
(2) dropping the assumption of normally distributed errors. In both cases, natural ways
to generalize the model are

e allowing a higher or even unspecified finite number of components;

e allowing the mixing proportions and the scaling parameters to depend on the co-
variates as well;

e allowing for different regression function structures like polynomials or even drop-
ping parametric shape constraints entirely by letting parameter functions come
from non-parametric function classes.

2.3.1 Models with normally distributed errors

Goldfeld and Quandt (1973) proposed a Hidden-Markov approach in order to model
regime switches and proposed likelihood estimators in the framework of Quandt (1972).
Bayesian approaches for models with more than two components were given by Viele
and Tong (2002) and Hurn et al. (2003).

Young and Hunter (2010) extended the model of mixtures of linear regressions with nor-
mal errors in the sense that mixing proportions are allowed to be predictor-dependent.
That is, in the framework of mixtures of linear normal regressions with m > 2 compo-
nents, where the conditional densities are given by

f(ylz;0) Zm y|z"Be,0?)

c=1

the mixing proportions 7, are assumed to depend non-parametrically on the covariate
values. Let 7. : I — (0,1), ¢ =1,...,m, > ", 7. = 1 be functions giving the mixing
proportions for fixed covariate values x. Then, the conditional model densities are given
by

fly|x; 0) Zﬂ'c y|xTﬂC, ) .
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Young and Hunter (2010) gave an iterative global/local estimation (IGLE) algorithm for
estimating the mixing proportion functions 7. (-) along with the other global parameters

Be, 0c.

Huang and Yao (2012) proposed a slight variation of the model by Young and Hunter
(2010). The mixing proportions are assumed to depend on another explanatory variable
Z. The log-likelihood is given by

Zlog(Zﬂ'C Do (Yila Be,o )), (2.3.2)

so that the conditional model densities are given by
flylx, z;0) Zm ¢(y|xTﬁc,af) .

Huang and Yao (2012) proved identifiability of the model when the proportion functions
are continuous, the support of the covariate X contains an open subset and the support
of the other covariate Z has no isolated points.

In order to estimate the model parameters, the authors first proposed a local log-
likelihood estimation approach in the sense of (2.2.1) by localizing around z for pre-
estimation. That is, for fixed z, maximize the function

> log (chcb(ywﬂc,o?))Kh(Zi —z). (2.3.3)
i=1 c=1

The global parameters 3., ., c =1, ..., m are estimated with this procedure as well but
cannot have parametric convergence rate because they are estimated locally. Plugging in
the non-parametric estimates for the mixing proportions into the log-likelihood function
(2.3.2) and maximizing ensures /n-consistency of the parametric part of the estimator.
Plugging in the global parametric estimates into (2.3.3) and maximizing improves the
estimate of the proportion functions. This estimator is pointwise asymptotically normal
with non-parametric convergence rate. Furthermore, they gave an EM-type algorithm
for practical approximation of the maxima.

Huang et al. (2013) extended the model by letting all parameters be predictor-dependent
and modelling them non-parametrically by sufficiently smooth functions. That is, for any
number of components m > 2, any compact covariate support I C R¢ containing an open
subset and Hélder-a-smooth functions m. : I — (0,1), >0 7 = 1, 0. : I — (0,00),
e : I — R, the conditional model densities are given by

m

(ylz; 0(- Zﬂ-c (b(y‘ﬂc(x)vac(x)Q) )

10
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where
) = (m1()s e s Tt (D 111 (s ooy (1) ooy o ()T

is the model parameter function.

Huang et al. (2013) proved non-parametric identifiability under the assumption that the
covariates are compactly supported in R, the proportion functions are positive and con-
tinuous, the location and scaling functions are differentiable and pairs of those functions
are transversal, i.e. for any components ¢ # ¢, one has

(H(uc(x),oc(x)) — (uc/ (), 00 (:L‘))H + H(auc(a?),aac(x)) — (6uc/ (x), 00 (m)) H) #0.
This means that the pairs of parameter functions may only intersect nontangentially.

The authors proposed a local log-likelihood estimation method in the sense of (2.2.1).
By assuming amongst other things that the parameter functions are twice continuously
differentiable, the authors proved that the estimator is pointwise consistent and asymp-
totically normal with non-parametric convergence rate. One should note that the authors
provided no proof of positive definiteness of the Fisher information, which, in fact, can-
not be true at intersection points of at least two pairs of parameter curves (,uc(-)7 O'C(-))
because the estimation problem is then locally overparametrized. Hence, the asymptotic
properties of the estimator are only valid at covariate values x at which no parameter
curves intersect.

This model will be discussed later in this thesis, cf. Section 4.1. We will give conditions
under which the model with multivariate covariates is non-parametrically identifiable.
Furthermore, we will show that for Hélder-a-smooth parameter functions as defined in
Definition 2.4.1, the local log-likelihood estimator is uniformly consistent over compact
sets within the interior of the compact covariate support I C R? and has non-parametric
L convergence rate. We will briefly discuss the benefits of uniform consistency in
the context of curve estimation and the relabeling problem. Moreover, we will give
an estimation procedure based on Lepskii (1992) that is adaptive with respect to the
smoothness a.

2.3.2 Models with unspecified errors

When dropping the assumption of normally distributed errors and instead assuming the
error distributions to be unknown, identifiability typically becomes harder to prove. Let
us first consider mixtures of linear regressions in which the errors are unspecified.

Hunter and Young (2012) considered a finite mixture of linear regressions with unspecified
errors, i.e. the conditional model density is given by

Fylae;0) = mef*(y—a"Be)
c=1

11
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where 7,8, € R4 0 = (m1,...,7Tm1,B8L,...,BL, f*)T is the unknown parameter of
interest. The authors provided an identifiability result that only requires the support of
the covariates to contain an open subset and no two different regression hyperplanes to
be parallel, i.e. §; # Bk for j # k. One should note that the model without covariates,
i.e. mixtures

f) = mef*(y— pe)

are in general not identifiable. Additional information carried by the covariates enables
identifiability. The authors also provided a semi-parametric EM-type algorithm that es-
timates both the parametric part of the parameter and the non-parametric error density.

Bordes et al. (2013) considered a two-component mixture of linear regressions in which
one component error distribution is known, call its density f. They formulated an
equivalent estimation problem in which the conditional model density is given by

flyle;0) = A =p)f(y) +pf*(y —a = px),

where 0 = (p,, 3, f*)T. They proposed an asymptotically normal estimator for the
parametric part (p, a, ) and an estimator for the unknown component distribution func-
tion of f* that is derived from the empirical distribution function of the observations
Y; — a — 5X;. This estimator was shown to be asymptotically Gaussian.

Note that in the models of both Hunter and Young (2012) and Bordes et al. (2013),
the shape of the component densities are not constrained, particularly, they need not be
symmetric. However, the assumption of symmetry is a viable restriction often ensuring
identifiability in mixtures of regressions with more complex parameter structures and
in mixture models without covariates. Let us consider models of the latter kind before
discussing regression on one of them.

Bordes et al. (2006b) considered a two-component mixture model in which both compo-
nents come from the same location family of a symmetric density, i.e. the model density
is given by

fy;:0) =pf*(y— ) + (1 =p)f*(y — p2), (2.3.4)

where the parameter of interest is given by 6 = (p,u1,ue, f¥)7. They distinguished
between two cases. In the first case, location parameters are a priori known, in the
other case they are model parameters to be estimated. For both cases, they presented
estimators both for the parametric part (p, p1, p2) and the non-parametric part f* and
proved asymptotic properties. Additionally, the authors constructed an M-estimator for
the parametric part by representing the component distribution function F* as a func-
tion of the mixture distribution function F and the parameter. The non-parametric part
is estimated by inverting this relationship and directly using the empirical distribution
function of the accordingly transformed observations in order to estimate F'* or kernel

12
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density estimators of the transformed data in order to estimate f*.

Hunter et al. (2007) considered two- and three-component mixtures in which all compo-
nent densities come from a location family of one zero symmetric density f*. Hence, the
model density is given by

Fy;0) =Y mef*(y— pe) ,
c=1

where m € {2,3}, >-" | 7. = 1 and the parameter of interest is given by

0:(’lea"'77TWL—13“13"'7Nm7f*)T .

The authors provided an identifiability result for these models and further conjectured
that identifiability can be achieved for models with any number of components but re-
frained from tackling the proof because of increasing complexity for higher number of
components.

Bordes et al. (2006a) considered a two-component mixture model in which one component
density is a priori known and zero-symmetric and the other one comes from a location
family of an unknown zero-symmetric density. That is, for a known density f, the model
density is given by

f0) =0 =p)fy) +pf*(y—p),

where the parameter of interest is given by 6 = (p, u, I*)T The authors showed that
the model is identifiable basically if either the density f is compactly supported or if it
is positive and is dominated by f* in the tails.

Based on symmetry and the relation

@) =p ' (fly+m0) —1—p)fly+p), (2.3.5)

Bordes et al. (2006a) were able to build a contrast for the location p yielding a plug-in
estimator for p. The unknown component density f* can be estimated by estimating the
right-hand side of (2.3.5) with a kernel density estimator when plugging in the estimators
of the parametric part. The corresponding distribution function can be estimated once
again by the empirical distribution function of the right-hand side of (2.3.5). In addition,
the authors proved strong consistency of the parametric part, uniform consistency of the
empirical distribution function estimator as well as L' convergence of the kernel density
estimator.

Bordes and Vandekerkhove (2010) provided estimators for the model in Bordes et al.
(2006a) that are asymptotically normal in the sense that the deviations of the estima-
tors from the true parameters have convergence rate y/n and when scaled appropriately

13
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converge in distribution to a Gaussian process.

Hohmann and Holzmann (2013a) extended the model in Bordes et al. (2006a) by in-
troducing a location parameter to the component with the known density. The authors
provided results on identifiability based on symmetry of the component distributions and
the assumption that the Fourier transforms of the component distribution functions are
distinguishable in the tails. Additionally, Hohmann and Holzmann (2013a) introduced
asymptotically normal estimators both for the parametric part and the component dis-
tribution function.

Butucea and Vandekerkhove (2014) once again considered the model in Bordes et al.
(2006b), cf. (2.3.4). For the parametric part, the authors proposed a smooth U-statistic
estimator that is based on the characteristic functions of the component density f*,
which needs to be real-valued as f* is symmetric. The estimator is asymptotically nor-
mal with parametric convergence rate y/n. The non-parametric part is estimated with a
kernel estimator. For Sobolev functions, the estimator was shown to have non-parametric
convergence rate, which is in fact the minimax rate for the model.

Let us discuss the model of Butucea et al. (2017) who considered regression on the model
in Butucea and Vandekerkhove (2014) in more detail. Suppose one draws observations
from a population (Y, X), where X is a R%valued explanatory variable with density ¢
for the scalar response variable Y. Furthermore, assume the relation

Y =W(a(X)+er1) + (1 —W)(b(X) +e2) ,

where conditionally on X = x, W has distribution Ber(p(z)) for some mixing function
p: R4 — (0,1) and is independent of £; and e, which have common zero-symmetric
conditional density f,. Additionally, a,b : R* — R are location functions to be estimated
along with the mixing function p and the conditional densities f,.

For every point in the interior of the covariates’ support x € supp(¢)°, the conditional
density of Y|X = z is given by

Fylz;00) = p(x) fo(y — alx)) + (1 = p(x)) fo(y — b)) .

Due to the relabeling problem, the parameters (p(x), a(x),b(z)) and (1 —p(x), b(x), a(x))
yield the same mixture density. In order to deal with this label switching problem for
a fixed z, one can allow a(x) and b(z) to coincide only if one restricts the mixing para-
meter to a compact subset of either (0,1/2) or (1/2,1); or one can demand the location
parameters to be ordered, i.e. a(x) < b(z) or b(z) < a(z).

There are also strategies to overcome label switching when examining global identifia-
bility, that is identifiability of the parameter functions on supp(¢). Butucea et al. (2017)
were able to give identifiability of the parameter curves for univariate covariates by im-
posing transversality constraints on the location functions. In detail, they required the
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2.3 Mixture of regressions models

location functions to be differentiable and to intersect nowhere tangentially, i.e.
la(z) = b(2)|| + [[0a(x) — Ob(x)[| # 0, = € supp(f),

as well as the existence of an z( so that a(zg) < b(z) and the mixing function p to be
continuous. This allows for intersections of the location functions, meaning local non-
identifiability. At a point of intersection x, however, the labels are identifiable by the
labels in the neighbourhood of . That is because switching labels at x would then make
the parameter curve non-differentiable due to transversality.

The estimation procedure proposed by Butucea et al. (2017) was adopted from the work
on the model without covariates by Butucea and Vandekerkhove (2014). It is strongly
based on symmetry of the component density f,, which particularly implies that its
characteristic function ¢y, is real-valued. By linearity of the Fourier transform, the
characteristic function of f(-|x) is then given by

P10 (t) = (p(z)eit“(x) +(1- p(x))fi”b(m)>90fm (t), teR. (2.3.6)

Denote the parameter function by 6(-) = (p(-), a(-), b(~))T. For any x € supp(¢) and an
a priori fixed density ¢, the function

5O = [ 3(esm®(pe "+ 1 -pe ™)) a(0)dt - £(0).

is a non-negative contrast function under the identifiability assumptions, i.e. S(8) = 0
iff 6 is the true parameter 6(z) or a label switched version thereof. When inserting the
true parameter, the second factor in the argument of the imaginary part is the complex
conjugate of the first factor in (2.3.6), leaving the real-valued characteristic function ¢y,
scaled by a positive real number within the imaginary part, hence a zero.

An empirical version of S was constructed by estimating
S (1) (8) (pe " + (1 = p)e™™™))

locally and using these estimates to build a U-statistic. Therefore, a kernel K : R* — R
along with a bandwidth parameter h was being used to propose the estimate

) ) . 1 Xy —x
e itYy | —ita _ —itb k
Zk(ﬁ,t,h)—\s<e (pe + (1 —p)e ))th( - )

for i.i.d. observations (Y%, X)) coming from the population (Y, X). The first factor in the
argument of the imaginary part function can be interpreted as the empirical estimate of
the characteristic function of Y'|X = x so that choosing 6 such that the imaginary part
is close to zero should translate to  being close to 6(x) with probability approaching one
under usual assumptions. The M-estimator in the form of a U-statistic type empirical
contrast was then defined by

5.0) =~ > [ zuto.t.mz;0.t. a0y

J#k
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A minimizer 6, of S, was proposed as the estimator for the model parameter.

Butucea et al. (2017) proved that the estimator is asymptotically normal with conver-
gence rate vVnhd when h — 0, nh% — oo as well as

h2etd — o(n=1) (2.3.7)

under usual assumptions. Particularly, the parameter functions are assumed to be
Holder-a-smooth with o > 1, so that the balanced bandwidth choice h = n~z¥a does
not fulfil (2.3.7). Hence, asymptotic normality is achieved by undersmoothing. However,
in Theorem 4, the authors pointed out that the estimator has convergence rate nTard
when balancing the bandwidth. This convergence rate also turns out to be the lower
bound on the L' minimax risk in this model.

Two-component mixture of location scale regressions

Let us finally give a variation of the mixture of regressions model in Butucea et al. (2017)
that is studied in the main part of this thesis, cf. Section 4.2. Consider regression in the
framework of Bordes et al. (2006a) when adding an unknown scaling parameter to the a
priori known component. The regression relationship is then given by

Y, = Wi ((Xi) +e1,) + (1= Wi)o(X)eai, €N,

for sequences of i.i.d. random vectors (X;);en having support I C R? where I is a
compact cuboid containing an open subset, d > 1 and i.i.d. random variables (Y;);en,
(W)ien, (€1,4)ien and (€2;)ien. The explanatory variables X; and the response variables
Y; are observable, the latent variables W; and the error variables €1 ; and €2 ; are not.
The covariates X; are assumed to have a Lebesgue density ¢ : I — (0, 00).

The unknown location and scaling functions o : I — R, o : I — (0, 00) are functions to be
estimated as they partially determine the distributional relation between the explanatory
and response variables along with the unknown mixing function p : I — (0,1). That
is because conditionally on X; = z, the variables W, are assumed to have a Bernoulli-
distribution with parameter p(x), i.e.

P(W; =11X; =2)=p(z) and P(W;=0X;=2)=1-p(z).

Let us further assume that conditionally on X; = x, the vectors €1 ; and €3 ; have zero-
symmetric conditional densities denoted by f, and f, respectively, where we assume that

f is known and f, is not. If we furthermore have the conditional independence relations
€1,i AL W2|Xz and €2i 1 W1|X2 5

then, conditional on X; = x, the random variables Y; have the conditional density

: _ L—p(x) z( y
£k 90) = (@) foly = @) + — 25 (S 05) » veR,
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where the parameter function of interest is given by U(-) = (p(-), u(-), o (), f.)T.

We will prove identifiability of the model by showing that for every x € I, the conditional
mixture density f(-|z;9(-)) is identifiable within all mixture densities of the postulated
type while making mild assumptions.

We propose an estimation procedure that is strongly based on symmetry of the com-
ponent densities and the idea of making use of a relationship analogous to (2.3.5) that
was used by Bordes et al. (2006a) in their model without covariates. The M-estimator
minimizes a smooth U-statistic and is shown to be uniformly consistent over compact
sets within the interior of the covariate sgpport. It especially has the typical uniform
non-parametric convergence rate (10%) 2atd for Holder-a-smooth parameter functions.
Additionally, an estimation procedure that is adaptive with respect to the smoothness
parameter « is proposed which is based on Lepskii (1992).

2.4 Function classes

When decomposing estimation errors of non-parametric estimators into bias and vari-
ance terms, upper bounds on the variance term can often be obtained without shape or
smoothness constraints on the model parameter function, e.g. variance of kernel density
estimators, cf. Tsybakov (2008, Proposition 1.1). However, bounds on the bias term
typically rely on smoothness conditions. Classically, the parameter functions are as-
sumed to be continuous and particularly to come from a smoothness class within the set
of continuous functions. The predominant smoothness classes are Sobolev- and Hoélder
classes. In the main part of this thesis, we will work with Hélder classes as defined below.

Definition 2.4.1 (Hélder class). Let o, L € (0,00) and I C RY be compact so that
I =int(I). The class of Hélder-a-smooth functions H(a, L,U) on I C R? taking values
in some set U C R is defined by the set of all functions £ : I — U that are continuous,

|| -times differentiable in int(I) and fulfil
0% 0(x) = 0"e(y)| < Lljw —yl*~tV |k = o), 2.y €int(]),
as well as
0" ¢lloe <L, 1< k| < |a] -

In the main part of this thesis, Holder classes are used to model smoothness of parameter
functions. Therefore, let us discuss some relevant properties. First, we briefly discuss
Holder classes as subsets of Banach spaces. For a more general and extensive overview,
cf. Driver (2003). Driver (2003) introduces Holder spaces on open sets and extends func-
tions and their derivatives to the boundary. We will define functions for compact sets I
so that I = int(7), which leads to the same objects.
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Definition 2.4.2. For any o € (0,1] and any compact I C R with I = int(I), a
continuous function £ : I — R is called Hélder-a-continuous if [{], < oo, where

(o = sup [é(z) — Ly)| .
eweme [T =yl
TF#Y

The map [-], is a seminorm on all continuous functions ¢ with [¢], < co. It is not a norm
because all constant functions are mapped to zero.

Definition 2.4.3 (Holder norm and Holder-a-continuous functions).
Let I C R? be a compact set with I = int(I), o > 0. For any continuous function ¢
having continuous |« |-order derivatives, define the Holder-a-norm as

[lla =1l +[a, o€ (0,1]
lla=" > N0"ec+ Y [0"azia), a€(1,00). (2.4.1)

0<|k|< ] |kl=La]

The set of Holder-a-continuous functions C*(I) on I, call it Holder-a-space, is defined
as the set of all continuous functions ¢ that are |«|-times continuously differentiable in
int(I) with |||l < oo.

Remark 2.4.4.

(i) The map || - || is a norm since it is the sum of norms and seminorms.

(ii) For any compact I C R? with I = int(7) and any o > 0, (C*(I), | - ||«) is a Banach
space, cf. Driver (2003, Theorem 5.8).

(iii) By definition of the Holder-a-norm (2.4.1), any ¢ € C*(I) is bounded, i.e. ||£||c <
00.

(iv) Regarding Holder classes in Definition 2.4.1, whenever U is bounded, we have that

sup  |[]|oo € max{—infU,supU} < oo .
teH(a,L,U)

(v) For any compact set I C R? with I = int(/) and any compact U C R, we have
H(a,L,U) C C*(I). Particularly, for ¢ € H(a, L,U), we have that

e l—d 4 gla]
1]l < max{—infU,supU} + (Tt Hd)L, d>1 <00,
(laJ 1)L . =1

qlel+1_g

because Z]L;ijl db =~

(vi) The Hoélder class H(w, L,U) is closed with respect to || - ||o. In order to see this,
define the functions ¥y, ¥y : C*(I) — [0, 00)

U(0) = 0o, 1< K[ < L), U4(0) = [0* om0y » k] = o]
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and observe that they are continuous with respect to || - ||o. Then
H(a,L,U) = |- ||(;1([O,max{finfU, sup U}]) N ﬂ ([0, L))
1<|kl< o)
n () ¥ (o, 1)) .
|k=a]

(vii) For compact I C R? with I = int(I), the Hélder-a-spaces C*(I) are compactly
nested in the sense that for 0 < a < § < oo, we have

CP(I) c ¢c*(I)

and the unit disk {¢ € CA(I) : ||€||s < 1} is compact with respect to ||-||q, cf. Driver
(2003, Theorem 5.14).

Unlike Holder-a-spaces, Holder classes are not nested in general. However, they are
whenever the diameter of the domain I is at most one. For domains with larger diameters,
it can be useful to transform the domain appropriately in order to get inclusion of the
Holder classes.

Remark 2.4.5.
(i) When diam I < 1 the Holder classes are nested, i.e. we have the inclusion property
H(B,L,U)C Ha, L,U), a<8.

In order to see this, fix £ € H(3,L,U). If |a] < | 3], the functions 9%¢, |k| = ||
are continuously differentiable with respect to any argument x;, hence Lipschitz
continuous with Lipschitz constant max; ||0,,0/||c < L so that

0% 6(x) = 0"e(y)| < Lz — yl| < Lz —y[*~').
Whenever |«] = |§], we directly conclude
|0 () — " e(y)| < Lljw —yl|”" ) < Lllz =yt |k = o) = 8] .

inducing new Holder classes on I*,

If diam I > 1, we transform [ into I* = ﬁ
lam

ie.

H*(a,L,U) ={¢: I* — U| ¢ is continuous and |a]-times differentiable in int(I*),
0% 0(x) = 0"e(y) < Lz —yll*~ ), k| = la), @,y € int(I7)
100l <L, 1<K <la)}.

We directly see that ¢ € H(a, L,U) corresponds to ¢* € H*(a, (diamI)* - L,U),
where ¢*(z) = ¢((diam I)x). Indeed, for 1 < |k| < |«], it holds that

[0%6% || 0o = (diam I)*[|8"¢]| o < (diam I)“L,
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(iv)

and for |k| = |«], we have
’(“)kf*(x) — 0"*(y)| < (diam I) Lo ’(“)kf((diam I)z) — 9%¢((diam Dy)|
< (diam )" Lijz — y||*~ L)

Furthermore, we see that for any 0 < a < b < oo, we have that every ¢ €
Uaea,p) H(e, L, U) corresponds to some

e |J H'(a,(diamD)*-L,U)C | ) H*(e,(diamI)"- L,U)
a€la,b] agla,b]
C H*(a,(diamI)° - L,U) ,

so that results stated uniformly over H*(a,(diamI)? - L,U) especially give the
corresponding results uniformly over Uae[a’b] H(a,L,U).

According to Remark 2.4.4 (v) - (vii), H(a, L,U), « € [a,b], are compact with
respect to || - ||q/2, defined in (2.4.1).

Whenever continuity of a functional ¥ : H(a, L,U) — R* k € N, a € [a, b] with

respect to || - [|q/2 is to be proven, it is enough to show continuity with respect to
the sup-norm || - || since the sup-norm, as a norm on the domain space, is weaker
than || - [|4/2.

Assume diam I < 1. For any a > 0 and sequences «;,, / «, we have
() H(an, L,U) = H(o, L, U)
neN

as one can simply assume that «,, > |«] for all n and observe that the map

[¢(z) — L(y)|
B—= g o= sup —————— . [e(|a],a
Hﬁ La] I;HE;“t(I> ||m_y||5—\_aj (L ] ]
Ty

is continuous.

2.5 Kernel density estimation

Kernel density estimators are broadly used in order to estimate probability densities. For
i.i.d. observations X, Xs, ... with common probability density function ¢ : R* — [0, ),
take some probability density K : R? — [0, 00) as kernel function and define the kernel
density estimator of ¢ as
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2.5 Kernel density estimation

where h is a bandwidth parameter typically converging to 0 in n that crucially influences
the asymptotic properties of the method.

Kernel density estimators have been first studied by Rosenblatt (1956) for indicator
kernels and in a more general setting by Parzen (1962) who proved consistency, uniform
consistency, asymptotic normality for the mode and studied the mean squared error of
kernel density estimators. Silverman (1978) proved strong uniform consistency of kernel
density estimators and their derivatives. Silverman (1981) used kernel density estima-
tors in order to detect multimodality in a distribution. Lepskii (1992) gave a method
for choosing bandwidth parameters adaptive to the smoothness of Holder classes. Giné
and Guillou (2002) gave uniform convergence rates for kernel density estimators. For
extensive overviews cf. Tsybakov (2008), Scott (2015) or Silverman (2018).

In order to exploit smoothness of higher order, e.g. a > 2 for Holder classes, one needs
to drop the assumption of non-negativity of the kernel function.

Definition 2.5.1 (Higher order kernels).
Leta >0, K : R — R be a kernel. K is said to be of order o if for allk = (ki,...,kq) €
Ng with |k| € {1,...,|a]}, we have

/K(z) dz=1, /sz(z) dz=0, /Hz||a|K(z)|dz < 00. (2.5.1)

The mixed moments of order 2 in (2.5.1) can only be zero if K takes negative values.
Hence, kernels of order o > 2 always take positive and negative values.

Univariate kernels of order a having support [—1, 1] can be constructed from orthogonal
polynomials, such as Legendre polynomials, cf. Tsybakov (2008, Section 1.2.2). d-variate
kernels of order « can then easily be obtained by multiplying d univariate kernels of
order a, i.e. for univariate kernels K1, ..., Ky of order o define K : R — R by

K:ﬁKJ—.

j=1
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3 Me-estimation and supremum distance

3.1 General methods for deriving uniform convergence
rates

In order to judge the quality of non-parametric estimation methods, global risk measures
are of particular interest. Typical examples are mean integrated squared error, i.e. L2-
risk or the sup-error, i.e. L°°-risk.

The main results in this thesis regard local M-estimation in mixture of regressions mod-
els. Particularly, asymptotic results are given for the L*°-error of the estimators as well
as uniformly over the whole parameter class. In one of the models, cf. Section 4.1, we
have to deal with a model that is not fully identifiable. In fact, it is only identifiable
up to label switching of the mixture components. In the following, we give variations of
Theorems 2.1.1 and 2.1.2 that are tailored to those problems as well as a set of assump-
tions allowing assertions regarding convergence rates of estimators in those models.

Let I', I be arbitrary sets and let © be a normed space with norm || - ||. For every v € T
introduce a deterministic function M(-, ;) : © x I — R that, for any z, v, is minimized
in its first argument by 6 € © iff § € &,,,, where &,,, C © is a non-empty finite set.
If the model is identifiable, the sets &, only contain one element each, namely 6(x;7),
the minimizer of M (-, x;~), i.e.

O(x;7) € argmin M (6, x;7) . (3.1.1)
[d<C]

Those parameter sets &, are to be estimated.

Assume we have a statistical model (97 A, (}P’.Y).Yep) and a sequence of random functions
M, :0 x I xT xQ — R, where we use the abbreviation

Mn(gaz”}/):Mn(Gaxv’y’)a 66@7:176]7761—"

Further suppose that, for any = € I, the random functions M, (-, z;v) are minimized by
some 0, (z;7), i.e.
0, (x;7) € argmin M,, (6, z;7) .
0co
We will give conditions sufficient for uniform consistency of én(, ) as well as for én(, v)
having uniform convergence rate r,, , both uniformly over the whole class I'. That is, we
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give conditions under which we have

I ]P’( in |0, (z; —9*>):0 >0
AnspP e, Py -z =0, <=0,

lim limsups IP’( S min ||6,,(x; — 0, >6):O.
f s P (e s, 2, Wl =042

Remark 3.1.1.

(i)

(iii)

The set T' typically consists of all model parameters. The random functions M,
are generally independent of v as proper estimators do not depend on unknown
model parameters. However, we will later discuss estimators that depend on some
nuisance parameter like the smoothness « in regard of Holder-a-smooth functions
and include « in the parameter . We will formulate asymptotic results for families
of estimators indexed by the nuisance and subsequently propose a method to make
a data driven choice for the nuisance parameter so that the resulting estimator
is in fact again independent of the model and nuisance parameters. Note that
this is why convergence rates 7, also depend on 7. For notational simplicity in
the following two general results, we use this unusual notation in which random
functions take model parameters as arguments and interpret v € I" to consist of
model parameters of which the random functions are independent and nuisance
parameters on which they may depend.

In regression models for example, I" might consist of tuples (0(+), ¢, ), where 6(-)
are parameter functions coming from some Holder classes, cf. Section 2.4, « is
the Holder smoothness and ¢ are covariate densities also coming from some set of
functions.

Whenever a model is not identifiable, the set &,., helps formalizing asymptotic
properties of estimators that cannot be consistent due to non-identifiability. Con-
sider for example mixture of regressions models that often are only identifiable up
to label switching. In those models &,., usually consists of the model parameter
and all label switched versions thereof.

Let us start with a uniform consistency result. The following result is a rather direct
extension of Theorem 2.1.1 in the sense that uniform consistency of the random functions
M,, and the minima of M being well-separated also yield uniform consistency in this
context.

Theorem 3.1.2 (Uniform consistency). Let © be a normed space with norm || - | and
assume that

lim sup P, (supsup|Mn(97x;'y) — M(&,x;y)| > 77) =0, n>0
N—=00 ~el 0€O zel

as well as that
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(%) for all € > 0 there is an n > 0 so that for every 8 € ©, x € I, v € T' with
M(0,2z;7) — M (04, 2;7) <1 for some 0, € &y, we have ming, cs,. [|0 — 0| < e.

Then the estimator én(-;’y) is uniformly consistent for &, i.e. for all e > 0, we have

e)=0.

The following theorem is a generalization of Theorem 2.1.2 that gives conditions for uni-
form convergence rates uniformly over the model parameters v for possibly unidentifiable
models.

lim supP, (sup min H9 (z;y) — 0.
n—=00 4 el ze] 0+€6,,

Theorem 3.1.3. Let the following assumptions be true:

(i) There is an 1 > 0 and constants C1,Cs > 0 so that for every e <,

inf inf inf {M(G,x;y) - M(O*(:z:;’y),x;’y)] > ()€
yel xel *

tn
lim sup sup sup —=r ]Ey[supsup min HW 0,z;7) — n(e*w;ry)ﬂ < Oy,
n—oo ~el e<n Pn(€) vel + 0.6,

where the third infimum is taken over {6 € © : mén |10 — 6.]| = e}, the fourth
€
supremum is taken over {§ € © : emm 10 — 6. < 5} and 0. (x;7) € Sgyy s
€6
any minimizer of M (-, ;7). Furthermore, Wa (0, z;7) := M, (0,x;v) — M0, x;7),

¢n : (0,00) = (0,00) are functions so that ¢, (-)/-* is decreasing for some o < 2
and ty,  — oo for every v € I'.

(i) For all 6 > 0, we have sup, P, (supzel mln ||t9 z;7) — 6. = 6) = o(1).
If sequences (ry, ) satisfy rnﬁ¢(1/rnw) < tn~ foralln,v as well as inf, r, , — 00, then

lim limsupsup P, (rnﬂ,sup min Hé’ x;y) — O H >6) =0.
6—00 np—oo ~y€er z€l 0+€6Ga;

The proof of both results can be found in Section 5.1.

Application to local M-estimation

Let us give a more specific set of conditions that yield assertions on M-estimators hav-
ing uniform convergence rates r,. The first assumption in (i) of Theorem 3.1.3 can
be provided by a Taylor expansion of M of order two around its minimizer 6, (z;~).
Hence, differentiability assumptions need to be made. The second assumption in (i)
holds whenever the gradients of the random functions M,, have uniform L' convergence
rate r,,. Uniform consistency follows from compactness of all sets, continuity of M and
the uniform consistency of M,, by Theorem 2.1.1. Note that the set of assumptions sim-
plifies when the model is identified, cf. Assumption A.2.1. Moreover, note that we will
drop dependence of the random functions M, and the convergence rates r, on 7y from
now on.
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3 M-estimation and supremum distance

Assumption 3.1.4. Let © C = C R™, I ¢ R? (T, - ||) be a normed space, M :
=Zx I xT — R be a deterministic function, M,, : Z x I — R be random functions,
(rn)nen C (0,00), be a sequence with r,, — oco.

(A1) Assume that © is compact and convex with © = int(©), = is open and convex,
I is compact and (I, || - ||) is a compact normed space. Furthermore, there is a
constant C' < oo so that for all 6,0’ € ©, there is an | € Ny and 64,...,60;, € © so
that with 6 = 6y, 6 = 6;,.1, we have

ékJrl_ék:Ckejk, k:(),,l

for some unit vectors e;, and some coefficients ¢;, € R with 22:0 lex| < C|160—¢'].

(A2) There is a set of permutations
3c{¢:{1,....,m} = {1,...,m} : C bijective} ,
so that M and M,, are invariant under permuting the first argument by ¢ € 3.

(A3) The function M is continuous, i.e. the map
(0, 2;7) = M(0,2;7)

is continuous. For every x € I, v € T, the contrast M (-, z;7) attains a minimum
at 0. (x; ) iff

0*(SU,"}/) € 6m;'y )

where S, = ((S4y) C O, ¢ € 3 and #6,., = #3. Furthermore, for any
zel vyeTl, b.(x;y) € S,,y, there is a permutation (,., € 3 so that the maps
(x;7) = Cary (04 (x;7y)) are continuous.

(A4) For all z € I,v €T, the function M (-, x;~) is twice continuously differentiable in
its first argument and the Hessian matrix

Ve (0x(257);7) := 05 M (0. (w3 7), 3 7)

is positive definite for all 6. (z; ) € &, Particularly, the eigenvalues A | > --- >

A, of Vi (64 (x;); ) are positive. Furthermore, the map (z,7) = V(6. (z;7); )
is continuous.

(A5) The Hessian matrices V,,(-;) are uniformly Lipschitz continuous in 6, i.e. for all
0,0 € =, we have

sup sup ||V1(9;’y) - Vz(9';7)|\ < LHeSSHH - 9/” )
vyel zel

where Less < 00 depends only on =, I and T'.
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3.1 General methods for deriving uniform convergence rates

(A6) There is an e* > 0 so that for all 0 < e < &*, z € I, v € T, the balls {0 € = :
160 —6.] <e}, 0. € &, are disjoint.

(A7) The empirical contrast M, is continuously differentiable in its first argument and
for the gradients

Sn(0,2) == 0gM,(0,2), S(0,x;7):=0gM(0,x;7) (3.1.2)

it holds that

limsupsuprnEw[ sup ||Sn(9,m) - S(Q,x;’y)”] < 00.
n—oo el zel,0€e0

(A8) The empirical contrast M, is uniformly consistent for M, i.e.

lim sup]P’.Y< sup | M, (6,2) — M(0,2;7)| > 5> =0, €>0.
n=0 neT z€1,0€0

Remark 3.1.5.

(i) The latter part of Assumption (A1) lets us bound increments |f(6) — f(6)| of
functions f on © by sums of increments for which arguments only differ in one
component. Note that for those vectors 6, we have [ék, §k+1] C O as O is convex.
Also note that the assumption is fulfilled by every compact cuboid ©® C R™ con-
taining an open subset because for any ¢’ = (9,...,9.,)%, 0 = (¥1,...,9,)T € 6,
the vectors

éj:(1917...719j,19;-+17...,’l9;n)TE@, 7=0,...,m

fulfil the postulated properties. Particularly, one can choose C' = m.

(ii) Whenever the model is identifiable, the set of Assumptions 3.1.4 shrinks drastically.
(A2) and (A6) can be dropped entirely. (A3) reduces to M being continuous, the
minima being unique and the parameter functions being continuous. A complete
list of altered assumptions can be found in the Appendix, cf. Assumption A.2.1.

(iii) We will consider estimation only for parameters in © but introduced = so that
differentiation of the contrast functions on the boundary of © is well-defined and
so that particularly S(0.(x;v),z;v) = 0 when 6. (z;v) € &,,, is a boundary point
of ©. The latter is true because points of minima of M,, on the boundary of © are
especially local minima on the open set =.

Theorem 3.1.6. Under Assumption 3.1.4, any sequence én(x) = argmin M, (-,x) has
uniform convergence rate ry, i.e.

lim limsupsup P (r sup min ||§,(z) — 0 >5):O.
s nampyeg 5 nme?a*EGme n( ) *H =
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3 M-estimation and supremum distance

Proof of Theorem 3.1.6. We need to check the assumptions of Theorem 3.1.3 for
on =1id and thy =Tny =Tn -

We obviously have that t,, — oo, t — gzbn(t)/t% = {73 is decreasing on (0, c0),

Tr%,w@t(l/rnm/) =Tny = tny-

First, observe that there is a bounded open set © C Z C = so that

dist(6,0Z) = £> 0.
Indeed, assume & = 0, then there is a sequence (6,)nen C O so that dist(%,aé) — 0.
As © is compact, there is a subsequence (0, )ken of (05 )nen so that 0, — 0 € ©. Since
0 — dist(#, 0 £) is continuous, 0 E is closed and dist(6,,,0E) — 0, we deduce § € 0=, a

contradiction. We can without loss of generality assume that Z is convex as the convex
hull of = is bounded and a subset of =.

Fix some ¢ < min {5*7 E}. Then, this implies that for any vy € T', z € I,
[BeZ:10- 0.z <e} CE. Bu(m:7) € 6y

and according to (A6), the balls are in particular disjoint.

Let us prove the first point of (i). For any v € T', = € I, our considerations above and
(A2) give some 6.(z;vy) € S, so that a second-order Taylor approximation around
0. (z;7) yields for every § € Z with |6 — 0.(x;7)| = € the existence of a &4, €
[0,0.(x;v)] so that

inf inf min inf [M(O, ;) — M(G*,x;'y)}
YET €1 04, €S 4~ Hefgeﬂf

> inf inf min inf [M(H,a:;’y) — M(Q*,x;’y)}
Vel 2€l 04€64;y  6CE:
16—0xl=¢
— inf inf  inf [MG,;—MG*;,;}
il M) = M0 (i), )

16—0x(z57) | =¢

1
infinf i (0= 0u(w37)) " Ve (6 (557)57) (6 0 (237))
10—6+ (z57)[|=¢

v

(60— 0.(=; 7))T(Vw (0+(2:7);7) = Ve (&5 7)) (6- 0*(3:;7))‘

N =

— sup sup sup
yel zel 0cE:
10—0+ (z57) l|=¢

LHess 3
£

1 o
> inf inf =\’ —
= el zel “ 2 ’

according to (A4) and (A5), where A7, is the smallest eigenvalue of V, (6. (x;7);7).
Since eigenvalues of a matrix depend continuously on its entries, the entries of the Hessian
matrices V; (64(;7);7) depend continuously on (z;7) by (A4), so that we can deduce

inf inf A", >0
yerzer ©7
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3.1 General methods for deriving uniform convergence rates

by compactness of T x I, cf. (A1). Conclude by choosing 1 < min {5*, 5‘} small enough.

Prove the second part of (i). Because of the invariance of the contrast functions under
permutations ¢ € 3, cf. (A2), we only need to show that for some 7 < min {5*,5} and
for any 0.(x;7v) € G4y,

limsup sup sup r—nIEA, [sup sup ’Wn(e,x;v) — Wn(G*(x;'y),x;V)” <Oy,
n—oo 0<e<n~el &€ zel 0co:
10—0x(z57)lI<e

for some constant Co > 0, where W,, (0, x;~) := M, (6,2) — M (0, x;).

For any 6 € ©, there is some lg 4.y € No, 01(0,2;7), .. ~v§lo,m (0,x;v) € © with the
properties described in (A1). By using the notation

6:é0(07$,7) 5 9*(1'7/}/) :élgvmw#’l(eax;PY) )
5 = 3 T
0u(6,237) = (95 (0,257), . 05 (0,0:7) " k=0, Do + 1
as well as t = (t1,...,tm), the fundamental theorem of calculus gives for any n, v that

sup  sup  [Wi(0,x37) — Wi (04 (237), 2:7) |
el 0cO:
(10—0.(z;7)]<e
lﬂ,m;v

<sup  osup Y Wi (Okgr (0, 259), 259) — Wi (0k(0, 237), 259) |
x 0eO:
106, (z:7)|| < #=0

lomiy ) 9N H(0,217)

=sup  sup O, W (t, z;y) dt;

I : _——

Hefé‘f(ef;)y)ugs k=0 | /U5, (0,27)

< Ce supsup || S, (0, z) — S(6, ;)
zel 6O

)

so that the second part of (i) is given directly by (AT).

We will prove (ii), i.e. the uniform consistency of én(), by using Theorem 3.1.2. As
uniform counsistency of the contrast M, is given by (A8), only (x) in the assumptions of
Theorem 3.1.2 needs to be proved.

Assume (x) does not hold. Then there is an € > 0 so that for any sequence 7, — 0, we
find z,, € I, 0,, € O, y, € T so that for every n € N

M (O, 205 vm) — M(G*(l'n;'Yn)axn;'Yn) <Mn, 0. (x 'Wrn)iélg ||0n - 9*(1'%5'%)” Z€.
(3.1.3)

As © x I xT' is compact according to (A1), there is a subsequence ((an s Ty s V"k))keN of
(0 0y 7)), cn cONVerging to a point (6, z',7') € @ x I xT. By continuity of (6, z;7)
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3 M-estimation and supremum distance

M (0, x;~) that is given by (A3) as well as the continuity of (x;7) — Cuy (04 (7)), we
have M(0',z';~7") = M(0.(z';~"),x’;~"), which implies that 8 € &, ., Now, according to
the right-hand side of (3.1.3) and the continuity of the functions (z;v) — (z:y (6 (25 7)),
we have

0. (z’;'ryr’l)iggz,ﬁ, Hel - 0*(1‘/,’Y/)|| Z 11]€H_1>g.}f 9*($nk;“/n1,?)ié16 ||9nk - 0* (xnk;'Ynk)H Z €,

z’n.k a'Y’n.k
a contradiction as § — M (6, z';+') is only minimized by elements of &,/ -/, cf. (A3).
0

3.1.1 Uniform adaptive estimation methods

As Lepskii (1991) pointed out, there is no optimally adaptive pointwise estimator for
estimating signals identified by a function coming from univariate Holder classes in the
Gaussian white noise model whenever the smoothness parameter is only known to come
from a set A with at least two elements. That is, there is no estimator estimating all
functions within H(«, L,U), a € A at the respective minimax rates. The author further
gives a weaker notion of quality of adaptive estimation.

Lepskii (1992) gave general conditions under which estimators are adaptive according
to the notion in Lepskii (1991). This theory is applicable to a variety of estimation
problems, e.g. kernel density estimation. Under those conditions, he particularly gave a
method for constructing adaptive estimators from estimators that each estimate func-
tions coming from one nuisance class with minimax rate, the Lepski method.

Assume one has estimators corresponding to every possible nuisance parameter fulfilling
certain conditions, cf. Lepskii (1992). Proceed by laying a finite ordered net on the set
of nuisance parameters and examine how estimators corresponding to the net points
improve with respect to a certain loss function when choosing net points of higher order.
Then choose the last estimator that still improves. As he further shows, inserting a
multiplicative logarithmic punitive term into the convergence rate suffices in many models
in order to achieve adaptivity, e.g. kernel density estimation with densities coming from
Holder classes.

Uniform adaptive estimation in local M-estimation

Proving adaptivity for specific estimators according to the Lepski method requires estab-
lishing exponential deviation inequalities for the estimators, cf. Lepskii (1992, Lemma
1). While inequalities of this type are available for a variety of estimators under mild
conditions, e.g. estimators in the form of sums of i.i.d. random variables like the kernel
density estimator, this is not the case for all estimators. We will give an approach on
uniform adaptive M-estimation when there is no exponential deviation inequality for the
estimators at hand.

30



3.1 General methods for deriving uniform convergence rates

Assume that in the general M-estimation setting described at the beginning of this chap-
ter, the parameter function 6(+; ) defined in (3.1.1) depends on some nuisance parameter
« like the smoothness a in regard of Holder classes. If this nuisance is unknown a priori,
a pointwise optimal adaptive estimator in the sense described by Lepskii (1991) should
be unattainable as mentioned above. However, it can be possible to obtain estimators of
this type when examining the L°°-errors because a logarithmic punitive term typically
is already present.

Assume one knows estimators

én(ac; «) = argmin M, (0, z; «) ,
PEC)

where M,, now depends on the nuisance parameter «, to have uniform convergence rates

(L)zaaﬂ ie
logn y

Zata R
lim limsup sup IP’7<< n ) sup min ||0n(x;a)—0*||2n) =0, a>0,

M= nooo ~yel(a) logn 2€l 9+€6a;ia

where I'(a) as well as &, now depend on « as well. Note that this is the most common
uniform non-parametric convergence rate depending on nuisance parameters. Consider
v € I'(«) to also model dependency of the parameter 6, (+;) and the asymptotic criterion
function M on «. Nonetheless, let the functions M and S depend on « in notation to
make it more obvious to which nuisance class the respective v belongs, i.e.

M- 5y;0) = M(57), SCsva):=80,57), vel(a).

Further assume one knows the nuisance parameter to come from a compact interval
[a,b] C (0,00), the contrast functions to be differentiable and that (A7) holds uniformly
over all « € [a,b], i.e.

Zatd
limsup sup sup (l n ) Eﬂ,[ sup ||Sn(9,x;a) — S(@,x;’y;a)ﬂ <C"<oo.
n—o0o  a€la,b] vel(a) \108T z€l,0€0

(3.1.4)

Remember that S,, and S are the gradients of M,, and M, cf. (3.1.2). The general idea is
to use the Lepski method first described in Lepskii (1992) for the gradients S,, in order
to obtain a data driven nuisance parameter &, € [a,b] so that

)MMEV[ sup HS,L(O,x;dn) —5(0,x;; a)”] <00,

limsup sup sup (
z€l,0€O

oo acla,b]yer(a) \1087

(3.1.5)

that is, Sy (-, -; &p) being an adaptive estimator for the asymptotic gradients S with nui-
sance coming from [a, b].
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3 M-estimation and supremum distance

Under Assumptions similar to Assumption 3.1.4, it is reasonable to assume that the
adaptivity extends from the gradient to the estimator 6,,(-; éy,) itself by using Theorem
3.1.3. Note that the convergence rates should typically remain identical because a loga-
rithmic punitive term is already present due to examining L°°-errors.

The application of the Lepski method now works as follows. Let us first lay a grid over
[a, b] that grows logarithmically in n, i.e.

b—
Bu=a+k N‘”, k=0,...,N, N=[logn], (3.1.6)
where [z] is the smallest integer strictly larger than z. Let us further use the notation
logn \ 2o+
r(a) < i > C =18 . (3.1.7)

Subsequently, define the adaptive data driven grid point by

Gy = 51}7

kn = k = max {0 <k<N: sup ||Sn(0,2;8k) — Su(0,2;8)|| < CLepr VO <1< k:} ,
zel,0eO
(3.1.8)

where the Lepski constant Crep, < 00 is to be chosen large enough. It will be model-
dependent and gets specified within the proof of the adaptivity of the corresponding
empirical gradient

i.e. (3.1.5). All parameters above actually depend on n. However, we choose to drop the
dependence in notation for convenience.

Remark 3.1.7.
(i) Note that k is a random variable with values in {0,..., N'}.

(ii) Also note that we implicitly expanded the domain of the functions M,, and S,, to Zx
I x [a, b] although © x I x [a, b] would suffice throughout this section. Additionally,
we expanded the domain of the functions M and S t0 Ex I X e[y (D) x {a}).

This construction yields the estimator

022 () = 0, (; &n) = argmin M, (6, 3 i) | (3.1.10)
€O

that, under mild conditions, attains adaptivity from the empirical gradients by Theorem
3.1.3, i.e.

Zatd ~
lim limsup sup sup IP’,Y<( n ) sup  min |02 (z) — 6, > T}) =0.

1% nooo aelab] vel(a) logn €l 0+€Cziya
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3.1 General methods for deriving uniform convergence rates

Let us discuss the intuition behind this construction in further detail. Under the as-
sumption that I'(a) C T'(&) for a > &, which particularly implies

a€la,b]
we make the following observations.
Remark 3.1.8. For some « € [a,b] and 0 < k, (o) < N so that By, (o) < @ < B, () +1,
we have:
(i) For a sequence (I,,) of grid points so that I, < ky(«) for all n € N, we have
I'(a) C T (B, (o)) C T(BL,)

and thus, according to (3.1.4),

sup Ew[ sup HSn(O,x;Bz,J—5(9730;7;04)\\] SC*ry

n

~el() zel, 0O
sup Ev[ sup ||Sn(97x;ﬂkn(a))*S(M;v;a)H] SC*ry, ()
veT (o) z€l,0€0

and hence
sup Ey| sup [[Su(0: B1,) = Su(0,23 Byl SO, + )
vyel' () zel,0€0

5 20*7“171 B

This means that the sequence k&, («) behaves like a deterministic asymptotic Lepski
choice for Crep, = C* and the actual Lepski choice k should be at least kn(@)
with probability approaching one as n — oo. The detailed formalization and
formal proof of this turns out to be rather difficult. It involves the aforementioned
exponential deviation inequalities.

(i) If the Lepski parameter is too big, i.e. for any v € I'(r), we have k, > ky(a) for
n € J CN, #J = oo, then, by definition of k,, we have

sup |‘Sn(97x’/31%n) - Sn(eax;ﬁkn(a))H < CLep'f'kn(a) , neJ
zel,0€0

as well as

E'y|: sup ||Sn (0, %; Br, (a) — 5(971’;7;0)|” SC* T (o)
xzel,0ecO

because I'(a) C T'(Bg, (o)), giving

Ew[ sup ||Sn(9,x;ﬂ,;n)*S(va;v;a)H}
zel,0eO
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3 M-estimation and supremum distance

gEW{ sup || Sn( (0,2;8;, ) — (07$;5kn(o¢))”:|
z€l,0€0

+E,[ sup ||S (0,25 B, () — SO, 257 @ ||]
zel,0ecO

S (Crep + C) Tk (a)

and as we will see in the proof of the following lemma, the sequences ry, (o) and
r(«) are equivalent. This basically means that a too large Lepski parameter results
in an alteration of the convergence rate that is asymptotically negligible.

Let us formalize our observations.

Lemma 3.1.9. Let 0 < a < b < o0, I'(a), a € [a,b] be sets, T'(a)) C I'(&) whenever
a<a;©CcR" I CRYandS, : © x I x [a,b] be random functions so that (3.1.4)
holds. Then, for any Crep > 0,

limsup sup sup r(a) 'E,| sup HS (0, z;4n) — S(6,z;v; H
n—oo a€la,b] yEl (o) z€l,0€0

< (CLep + ol ) exp(d(b — a))

+ C*limsup sup sup
n—oo a€la,b] yED (o)

Nl

sup T(a)_l(E—yK sup HS 0,z;8) — S0, z;v; H) ]) - log( )% sup v

Sl

a<B<a zel,0€0 0<I<i <k (o)
(3.1.11)
where
_ _ CLep—3C*"
piy =2P,( sup |[Sa(8,2;8;)) — Ey[Sn (0, 2; 8))]|| > Zee——r) . (3.1.12)
zel,0cO

In order to prove adaptivity, one needs to show that the second summand in (3.1.11)
is finite. Whenever one has an appropriate exponential deviation inequality for the
gradients S, at hand and the sets ©, I are compact, the terms p;; converge to zero
at polynomial rate with exponent tuned by the Lepski constant Crep. Two estimation
problems in which this is true can be found in Sections 4.1 and 4.2. Techniques for
deriving this can be found in Section 3.2.3. Note that the exponent will converge to co
for CLep — 00. This means that it is enough to assume that the L2-error above converges
to oo with at most polynomial rate, if at all, i.e.

n~T sup sup E [ sup HS 0,z;0) — S(0,x;7v; H}
a€la,b] vl (@) z€l,0€0

for some T > 0. As the uniform L'-error converges uniformly to zero at rate (loi oen) 2@”

it is reasonable to expect the L2 error to converge to zero at the same rate, which is the
assumption in the following lemma.
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3.1 General methods for deriving uniform convergence rates

Lemma 3.1.10. Let 0 < a < b < o0, I'(«), a € [a,b] be sets, ['(a)) C T'(&) whenever
a<a; ©CR™, I CR? be compact and Sy, : © x I x [a,b] be random functions so that
the L2 wversion of (3.1.4) holds, i.e.

limsup sup sup r(a) ?E,| sup HS 0,z;0) — S(0,x;7v; H <C™ <.
n—o0  a€la,b] yel(a) zel,0e©

(3.1.13)

Further, let there be a monotone function u : [C_,00) — [0,00) with u(t) = 0o, t — 00
and a constant C_ > 0 so that for every Crep > C_,

limsup sup sup sup n“(CLeP)plj <00, (3.1.14)
n—o0  a€la,b] yel(a) 0<I<j<ky(a)

where py; is defined in (3.1.12) and depends on Crep. Then, for any Crep > C_ with
u(Crep)/2 > 52— — 52
Lep 2b+d = 2a+td’

limsup sup sup r(a) 'E,| sup HS 0, 2;8,) — S0, 2;7; « H
n—oo a€la,b] yeT' () z€l,0€0

S(CLep + C**) exp(d(b - a)) .

The function u typically depends on C**, ©, I, a, b, the exponential deviation inequality
and possibly more model parameters. By Jensen’s inequality, (3.1.13) implies (3.1.4) with
C* = C**. The proofs of both lemmata are straightforward and given here. In Sections
3.2.1 and 3.2.2, we will give tools that help determining the uniform L? convergence rate
for specific types of contrast functions. Techniques for treating the gradient deviation
probabilities (3.1.14) are given in Section 3.2.3.

Proof of Lemma 3.1.9. Let for all a € [a,b], 0 < k(o) < N —1 so that 8, (o) < a <
Bk, (a)+1- Then we have for any a € [a,b], v € T'(a)

IEA,[ sup HS 0,2;8;) — S0, 2:7; M

zel,0eO
SE[ sup ||Sn (8,25 8;) — (9,%;7;@){|1E§kn(a)71} (3.1.15)
zel,0eO
+IE,Y[ sup ||Sn(9,x;,8f€)fS(G,x;fy;oz)H]l,;an(a)]. (3.1.16)
zel,0cO

The term (3.1.16) can be handled by a zero-addition of the term S, (0, z; By, (o)) Within
the supremum according to our prior observations in Remark 3.1.8, i.e.

Ev{ Sup HS 9955;9) (9733?7;@)”]11;2;@"(04)}
ze€l,0cO

SEWLESIUGPGG HS (0,2;8;) — (Hax;ﬂkn(a))H]lchkn(a)]

+1Ey[ sup ||Sn(0ax§6kn(a))7S(0,$;'Y§a)||]l}}2kn(a)}
xzel,heO
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S CLepThn(e) + C Tk ()
= (Crep + C)rk(a) 5
where we used that I'(a) C I'(By,, («))-

Now let us show that the convergence rates 7, () and r(a) are asymptotically equivalent
by deriving that for all n, a,

@ ﬂk‘n(a)
1 < Tkn(a) _ n 2otd 2Bkn(a)+d
~ r(a) logn
4= Prp(a)?
n 2a+d) (28, (a)t+d)
~ \logn
n d(afﬁkn(a))
<
logn

where we used that the net over [a,b] grows logarithmically. We get the desired bound
on (3.1.16), i.e.

limsup sup sup r(a)_l]Ey[ sup HSn(H,x;B,;)—S(G,x;v;a)”]l,%>kn(a)}
n—oo  a€la,b] yeT' () z€1,0€0 =

S(CLep + C*) GXp(d(b - a)) .

So let us examine (3.1.15). By using Cauchy-Schwarz’ inequality, we get for all « € [a, b,
v € T(a) that

]EA,[ sup HSn(Q,x;BE)—S(G,x;w;a)"ﬂkgkn(a)fl}

zel,0e0
kn(a)—1
= E'y|: sup HSn(ﬁ,x;ﬁj)—S(@,x;y;a)H]lE:j}

=0 ze€l,0€0
kn(a)—1 " A l
: = (EWKQCES}};;@HSTL(H,:C;BJ-)—5(9796;7;@)!\) D P, (k= j)?

2 % kn(a)—1 . N

< s (E( g 1908 — 5@l ])7- 32 o=t

J
]P)'y(k = J) < Z]P'y< sup ||Sn(07x;5j+1) - Sn(aaxaﬂl)n > CchTl)

zel,0e0
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3.1 General methods for deriving uniform convergence rates

s0+néﬁﬁmggﬁJwexﬂﬁu Su(0,28)]| > Crepr)

< log( ) max P’y( sup HS 0 Z; BJ+1) n(evxvﬁl)H > Cchrl) ’
=0 z€1,0€0

as the set of grid points grows logarithmically in n. Hence, we further deduce by index
shifting that

E,y{ sup HSH(H,:L';ﬁ,;)fS(G,x;’y;a)||]l,;§kn(a)_l}
zel,0cO

< s (5[(_swp_[5.0.:8) - s0.253:0])])

a<lf<a xze€l,0€e0
1
3 3
-log(n)2 sup IP’A,( sup HS 0, x; 85) — H,x;ﬁl)H > CLeprl)
0<I<j<kn(a) z€l,0€0

In order to treat the last factor, we first observe that for [ < j we have r; < ry, yielding

limsup sup sup sup rl_l sup HE [ (0 x,,@l)] [Sn(ﬂ,:v;ﬂj)]n
n—o0  a€la,b] yEl(a) 0<I<j<ky () z€l,0€0

< limsup sup sup rl_l sup sup HIE [ 0, x; ﬁl)} (G,x;v;a)H
n—oo  a€cla,b] yel'(a) 0<i<kn(a) xz€l,0€O

+ limsup sup sup sup r;l sup H]E [ (@, x,ﬁj)] S0, z;v; « )||

n—o0  a€la,b] yel(a) 0<j<k,(x) z€l,0cO
<2limsup sup sup r(a)”! sup HE (S0 (6, ;)] —S(G,x;W;a)H
n—o00  a€la,b] yel(x) zel,0e®

because I'() C T'(8;). Hence, there is an ng € N so that for all n > ng, 0 <1 < j <
kn(a), we have

sup sup ;' sup HE [Sn(0,2; 81)] — Ey[Sn(0,2;8))] || <3C** .
a€la,b] vET' () zel,0e®

Subsequently, deduce that for any n > ng, « € [a,b], v € T'(a), 0 <1 < j < kp(a), we
have

Py sup[[S0(6,23 8) — Su(60,23 B1)|| > Cropr)

zel,0eO

SP’Y( sup HSn(evx;Bj)7E’Y[Sn(03x5ﬂj)])”
xel,heO

4+ sup H]E [ (0 x,ﬂl)] - [Sn(ﬂ,x;ﬂj)]n

zel,0e0

+ sup ||Sn(9a x5 B1) — E, [Sn(ev €T3 ﬁl)} || > CLeprl)
z€l,0€0

<P, sup_[15u(6.236) ~ B, [Sul6.2: )] |

xel,hecO
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+ sup HSn(e,l',B]) - E’y [Sn(a,fﬂ,ﬂl)] || > (OLep - 30**)Tl>

zel,0cO

S%(Iesluepe@HS (0,2 8;) — By [Sn(0,3:8;)] || > Cw%w”)

+ Py sup [|Su(0,m5 8) — B [Sa(0, 2 8)] || > S

z€l,0€0

<2 max P ( sup |[|Sn (6, 23 B) — By [Sn(0, 23 8:)] || > CL“%SCMW) .
i€{s,l} z€I,0€0

O

Proof of Lemma 8.1.10. As all assumptions of Lemma 3.1.9 are fulfilled, we only need
to prove that the second summand in (3.1.11) is zero, i.e. that

1
O:Iimsup{ sup sup sup T(a)_l(E'y[( sup HSn(H,x;B)— (0, z;7; H) })2

n—»o00 a€la,b] vel'(a) a<f<a z€l,0€0

(3.1.17)

3
2

-log(n) sup  p } . (3.1.18)
0<I<j <k (ax)

Sl

The factor (3.1.17) is asymptotically dominated by the rate r(a)r(b)~! as can be seen
by inserting 7(38)r(3)~! so that

(3.1.17) < r(a)r(b)~" sup  sup T‘(Oé)il(E’YI:( sup ||Sn(9,w;a)—5(9,x;7; H) D%

a€la,b] vel'(a) x€l,0eO

where the supremum is asymptotically bounded by C** according to (3.1.13). The second
factor (3.1.18) can be dealt with by

1

sup sup log(n) 3 sup P

a€la,b] veT' (o) 0<I<j<kn (@)
1
< log(Tz)%n_“(cLef’)/2 sup  sup sup n“(CLeP)/prj
a€lab] 7€ (@) 0<I<<kn ()
and as u(Crep)/2 > 2b+d Sarar We get

B 2b+d 2a+d B
o)) ogn) G2 — (1) log(n) Fn~(Crn)/2 — o(1)

concluding the proof by (3.1.12). O

Extending adaptivity from the gradient to the estimator

Let us give a specific set of conditions under which the gradient S,,(-,+;&,) defined in
(3.1.9) is in fact adaptive and the adaptivity extends to the estimator §242P(.) defined
n (3.1.10). This set of assumptions extends Assumption 3.1.4 by assuming that most of
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3.1 General methods for deriving uniform convergence rates

the conditions hold uniformly over the nuisance parameter a as well. We further have to
assume uniform L? convergence of the gradients and an exponential deviation inequality
for the gradients as pointed out in the previous section. The extension of the convergence
rates works by using Theorem 3.1.3 once again.

Assumption 3.1.11. Let 0 < a < b < 00, © C ZE C R™ I C R (I(a),] - |la) be
normed spaces, o € [a,b], M : E x I X U,epay (P(a) x {a}) = R be a deterministic
function, M, : Ex I x [a,b] — R be random functions; S, r(«), k be defined as in (3.1.6),
(3.1.7) and (3.1.8), respectively; &, = /3;. Continuity of functions taking v as arguments
is to be understood with respect to the maximum of norms in the other arguments and
the norm || - ||4-

(B1)

(B2)

(B3)

(B4)

Assume that © is compact and convex with © = int(®), Z is open and convex, I
is compact, and (I'(a), || - ||o) are compactly nested spaces, i.e. I'(a) C T'(e’) and
I'(a) is compact with respect to || - [~ whenever o/ < a. Furthermore, I'(a) is
compact with respect to || - ||o. Additionally, for any a, «,,  «, it holds that

() T(en) =T() .

neN

Moreover, there is a constant C < oo so that for all #,6" € ©, there is an [ € Ny
and 01,...,0; € © so that with 0 = 6y, 0’ = 0,51, we have

Opr1 — O = crej, , k=0,...,1
for some unit vectors e;, and some coefficients ¢, € R with Z;ZO ek < CJ160—0'].
There is a set of permutation functions
3c{¢:{1,....,m} = {1,...,m} : ¢ bijective} ,
so that M and M,, are invariant under permuting the first argument by ¢ € 3.
The function M is continuous, i.e. the map
(0,257 ) = M(0,257; @)

is continuous. For every z € I, a € [a,b], v € T'(a), the contrast M(-,z;v; )
attains a minimum at 0, (z;v; «) iff

0. (1‘;7; a) S Gx;’y;a ,

where Gg.vi0 = ((Ggiyia) C O, ¢ € 3 and #6,.4. = #3. Furthermore, for any
zel,acab],yel(a),bz;7;0) € Syoyia, there is a permutation (5,0 € 3
so that the maps (;7; &) = (a5 (04 (@;7; @) are continuous.

For all x € I, a € [a,b], v € T'(a), the function M(-, x;~; @) is twice continuously
differentiable in its first argument and the Hessian matrix

Vo (0. (25 7; )17 @) o= 82 M (0. (25 7; @), 573 )
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3 M-estimation and supremum distance

(B5)

(B6)

(BT)

(B8)

(B9)

40

is positive definite for all 6, (x;v; @) € &4,4;a. Particularly, the eigenvalues AL >

T,y =

"> Aplyia of Vo (9* (575 );7; a) are positive. Furthermore, the map

(z57; @) = Vo (0 (2575 0);7; )
is continuous.

The Hessian matrices V,(+;; «) are uniformly Lipschitz continuous in 0, i.e. for
all 0,60’ € =, we have

sup sup sup ||Vz(0;7;a) — Vo (0';7;0)|| < Luess||0 — 6],
a€la,b] yel'(a) z€T

where Liess < 00 depends only on =, I, a, b and I'(a).

There is an €* > 0 so that for all 0 < e < e*, z € I, v € I'(a), a € [a,b] the balls
{0 €= |60 -0, <&}, 0. € Gy are disjoint.

The empirical contrast M, is continuously differentiable in its first argument and
for the gradients

Sn(0,z;0) := 0 My (0, x50) ,  S(0,2;7; ) := 0p M (0, ;7; @)

it holds that

limsup sup sup 7(a)’E, { sup HS (0,x;0) — S(0, z;7; « || } < C*™ < .
n—oo  «a€la,b] yET () z€el,0e®

The empirical contrast M, is uniformly consistent for M, i.e.

lim sup sup P < sup |Mn(0,:z:;oe) fM(G,x;fy;aﬂ > s) =0, >0.
n= nela,b] vel'(a) zel,0€0

There is a constant C_ > 0 and a monotone function u : [C_,00) — (1,00) with
u(t) — oo, t = oo so that for every Crep > C_,

limsup sup sup sup n(Crep)
n—o0  «a€la,b] yel'(a) 0<I<j<k, ()

plj<ooa

where p;; is defined in (3.1.12) and 0 < k,, (o) < N —1 with N = [logn] is chosen
so that Bkn(a) <a< ﬂkn(a) + 1.



3.1 General methods for deriving uniform convergence rates

Remark 3.1.12.

(i) Assumptions (B1) - (B8) imply Assumption 3.1.4 for any « € [a,b] so that for
any «, the estimators 0,,(-; &) € argmingcg M, (0, -; &) have convergence rate r(a).

(ii) In an identifiable model, the assumptions reduce in the same way as Assumption
3.1.4 does. A complete list of altered assumptions can be found in the Appendix,
cf. Assumption A.2.2.

(iii) Note that in (B8), we assume that every empirical contrast is consistent for all
asymptotic contrasts independently of the actual nuisance parameter. In most
estimation problems, this automatically holds when

lim sup sup ]P’A,( sup an(H,x;a) — M(G,x;'y;a)f > 5) =0, >0,
N0 gela,b) vl (o) z€l,0€O

as adjusting the nuisance parameter is in most cases only used in order to tweak

convergence rates, not to ensure consistency. Consider for example kernel density

estimators that are typically uniformly consistent whenever the bandwidth h fulfils

logn
nhd

so that varying h depending on nuisance parameters will not ruin consistency as
long as the displayed constraints are not violated.

h—0,

— 0,

Theorem 3.1.13. Under Assumption 3.1.11, for any Crep > C— with u(Crep) > ﬁ —

3aras the estimator é\zdap(-) defined in (3.1.10) is a uniformly adaptive estimator for
0. € Gy, .

lim limsup sup sup P (r a)"tsup min é\zdap ) — 0. > 77) =0.
N—=° n—oco a€la,b] yel'(a) K ( ) 2] 0+€Giy;a H ( ) H

Proof of Theorem 3.1.13. The proof works essentially analogous to the one of Theorem

3.1.6. Let us apply Theorem 3.1.3 for I' = {(,7) : @ € [a,b],y € I'(«) }, which is com-

pact with respect to max{| - |,| - |l«} as can be seen by a simple topological argument,

cf. Lemma 3.1.14. Further use 7, , = t,, , = r(a)™!, ¢, =id, n = *.

The first point of (i) is proved in the same way as for Theorem 3.1.6. The second part
of (i) is also proved accordingly, one only has to exchange the uniform L'-error of the
gradients with the adaptive version attained by Lemma 3.1.10, i.e.

limsup sup sup r(a)lEW[ sup ||Sn(9,x;€vn)S(G,x;’y;a)”]
n—oo  a€la,b] yeT' () xcl,0cO

<(CLep + C™) exp(d(b — a)) .

In order to prove uniform consistency of the estimator éﬁdap(-), we first use (B8), yielding

lim sup sup IF@( sup |Mn(9,x;dn)—M(9,x;w;a)’>5>

N0 acla,b] yEr () z€l,0e0
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3 M-estimation and supremum distance

< lim sup sup }P’,y< sup |Mn(9,x;a) fM(G,x;fy;a)} > €> =0, >0
n= qela,b] yel'(a) z€l,0€0

and then proceed analogously to the proof of Theorem 3.1.6
O

Lemma 3.1.14. Under Assumption (B1), the set T' = {(a,7) : a € [a,b],y € T(a)} is
compact with respect to max{|- |, - |la}-

Proof of Lemma 3.1.14. As [a,b] x T'(a) is compact with respect to max{|- |, || - ||o}, it is
enough to show that I' is a closed subset thereof. Let ((amvn))n C T converge to some
(s, Y4) € [a,b] x T'(a). If there is a subsequence (ny) so that ay,,, > ay for all k € N,
then

Tne € D(atn,,) CT(ax), forallkeN

and since T'(a) is closed with respect to || - ||4, we have

Ve = lim vy, = nh_{lgo Tn € F(a*) :

k—o0

Hence, assume that there is an n, € N so that for all n > n,, we have «,, < a,. Without
loss of generality assume «,, ,* . Then, for any 7 € N and any n > 7, we have

Yn € T(ay,) C T(ag) ,

so that particularly v. € I'(a;) for all 2 € N. Since [,y I'(@n) = I'(cw ), the assertion
follows. H

3.2 Techniques for examining uniform estimation errors

Let us describe some techniques for bounding uniform estimation errors often occurring
in local M-estimation problems. These methods will be applied in Chapter 4 to mixture
of regressions models.

3.2.1 Non-stochastic errors

Holder smoothness constraints on the function to estimate are particularly useful when
deriving bounds on the bias of an estimator. Consider for example a kernel density
estimator fn, cf. Section 2.5, estimating any probability density £ : R — [0, 00), i.e. Jt=
1. The bias of £, can always be described by

E[ln(@)] ~ t(2) = (Kn+£) () — (x) = / (¢(x + 2) — €(2)) Kn(2) dz

:/ (¢(x + he) — 0(x))K(z)dz, R
(3.2.1)

because [ K} = 1. Integrals like the one in (3.2.1) are particularly easy to treat when ¢
comes from a Hoélder class and one uses a kernel of higher order, cf. Definition 2.5.1.
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3.2 Techniques for examining uniform estimation errors

Lemma 3.2.1. Let 0 < a < b < 00, K : RY = R be a kernel of order b with support
[-1,1]%; T Cc R4, U C R be compact with I = int(I) as well as L > 0. Then, for any
compact cuboid J C int(I) containing an open subset, there is some constant 0 < Cyol <
oo depending only on [a,b], L, U and K so that

sup sup h™% sup sup
a€la,b] he(0,00) LeH (o, L,U)zEJ

/ (U(z) — €(z + hz)) K(2) dz| < Chol -

Proof. Fix any £ € H(o,L,U), x € J, a € [a,b] and h € (0,00). Using the Taylor
expansion of order |a] of £ around x and using that K is a kernel of order b, we get for
some 7 € [0,1] and independently of ¢, 2, o, n and h that

/K(z)(ﬁ(thrx) —{(z))dz
k] la)

< Z hk. ok e(x /K 2P dz Z he /kK )% (x + Thz) dz

|kle{1,...;|la] —1} | S —— |k|=|]

=0
L)

- o / () (Mo + he) — 0 U()) dz

=

Lhoro—lel N

< 3 B s

[k|=La)

Ldlelzo—lelpe
e A RLCILE

Ldbho‘
/ 2l1°1 K (=) d=
SCHolh

because according to the multinomial theorem, we have

1 1
— = (l+..4D™
Z kil . kg m! (\L/L)

0<kq,..., kg<m d times

3.2.2 Uniform stochastic errors
Exponential deviation inequalities

In order to examine uniform stochastic errors, one often discretizes the supremum and
uses exponential deviation inequalities of pointwise errors. The following three inequali-
ties are used throughout this thesis.
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3 M-estimation and supremum distance

The first exponential deviation inequality is Bernstein’s well-known inequality. For a
proof cf. Pollard (2012). This inequality gives an exponential bound on the tail proba-
bility of sums of uniformly bounded centred random variables.

Lemma 3.2.2 (Bernstein’s inequality). Let X,..., X, be independent centred random
variables with finite second moments so that |X;| < R for some R > 0. Let S, =
> i=1 X, then

t2
P(|S,| > 1) <2 - )., t>0.
(ISn] 2 1) < exp( 2Var(Sn)+gtR>

While Bernstein’s inequality is a powerful tool, it cannot be applied when the ran-
dom variables are not uniformly bounded. This is often a problem when dealing with
log-likelihood functions because the likelihood approaching zero translates to the log-
likelihood approaching —oo. The following inequality drops the boundedness constraint
by imposing constraints on all moments of the random variables. It was introduced by
Bennett (1962, p. 37-38).

Lemma 3.2.3 (Bennett’s inequality). Let Xi,..., X, be independent centred random
variables so that E[|X;|'] < I'M'2v;/2, for every | > 2 and all j and some constants
M, v;. Let Sp, = Z;L:1Xj and v =v1 + ...+ vy, then

1 2
P(|Sn\2t) <26xp<—2U+Mt>, t>0.

The third inequality is a Bernstein-type inequality for canonical U-statistics, also called
"degenerate U-statistics”, that can be found in Giné et al. (2000, p. 15). We use a slightly
weaker version.

Lemma 3.2.4 (Giné et al. (2000)). Let (X,,)n be a sequence of i.i.d. R%-valued random
variables, defining a canonical U-statistic U, with bounded canonical kernel x : R — R,
i.e. for all x,y € R?

n

Un= 325X . xo) =) B0 = [ () dPy,(2) = 0.

J#k
Then there is a universal constant T > 0 so that for any w > 0, we have

P(|U,| > w) §Texp<T1min{g, (Z)g (j)?) :

where

A = |1 xloos B* :=n|E[x*(X1,9)]] .. C? :=n(n—-DE[*(X1,X2)] . (3.2.2)
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3.2 Techniques for examining uniform estimation errors

Uniform stochastic L”-errors

The following two theorems are convergence rate results for the uniform Lf-error of
random processes of the shape

1 n
(0, — — 2.
z;h) nZTYk, VEKn(Xy —x), or (3.2.3)
k=1
(6,x;h) -t z”: (Y;,Ye, 0) K (X, VER(X ), (3.2.4)
5 L3 _n(n—l) ’vk_lT Jr Lk h T h k X <4
J#k

where 7 is a sufficiently smooth function, K is some kernel function and h some band-
width parameter and the distributions of the Y} and X depend on some parameter -y.
The desired result has the form

L

2
lim sup (bgg) Ew[supsup|M 0,x;h) — B[ M, (0, ; h)]‘ <C< oo,
n—00 nh z€J €O

uniformly over the parameter v and variations of bandwidth sequences h for some C' < oo,
where J C int(I). For both types of random processes M,,, the general scheme of proof
is identical, the details differ to some degree due to the differences in structure.

First, one discretizes the estimation error by laying a grid ©,, x J,, on the compact space
O x J getting finer at some rate 4,, — 0 that is used for balancing purposes. Write
T, =M, - E, [M,,] for the centred process. The discretization error

p
swp TG~ s (10 (3.2.5)
zeJ,0€0© yEJn,I€EO,

gets small fast enough by assuming that the function 7 is Lipschitz continuous and
bounded or more general versions thereof if necessary. As it turns out, being Lipschitz
continuous with integrable Lipschitz constant can replace Lipschitz continuity. An expo-
nential deviation inequality holding for the centred process T;, and uniform integrability
of 7 can replace boundedness.

The exponential inequality on the tail probability is used in order to get bounds on the
discrete estimation error in the form

E'y|: sup Tn(9,z;h)|"}
z€J,,0€0,

1ogn> { /aoo pwp—1P7(Z€Jsu§)ee (10, : h)| > (1zig)%w) dw}

)Q{a"—FC@ 76, d=m / wplnc‘l“’dw} ,

IN

(
G

IN
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3 M-estimation and supremum distance

where Cg ; depends only on © and J. The terms d,, a and C, need to be balanced in
a way so that the second summand and the discretization error (3.2.5) are negligible.

Note that for the U-statistic process M,, defined in (3.2.4), one would typically decompose
the centred process into a canonical U-statistic and a linear process before discretizing.
By using the notation Z; = (Yj,XjT)T, write for any fixed z € I, 6 € ©,

M, (0, x;h) — B [M,, (0, ; h)] Z Un(Z;, Zi, 0,2 h) (3.2.6)
JJ:H;
+= Zu (Zj, 0,25 h) — By un(Z1, Za, 0,23 )]
(3.2.7)

where for 2z = (21,22)7,y = (y1,y3)T € R x R?
Un(z,y,0,2;h) :=un(2,y,0,2;h) —ul(z,0,2;h) — u) (y,0;z; h)

3.2.8

+E’y[un(Z17Z230;x;h)} 9 ( )

Un(Z, Y, 9, X h’) = T(Zl7 Y1, G)Kh(ZQ - $)Kh(y2 - 'r) 9 (329)
ur (2,0, z;h) :=E,[un(Z1,2,0,2;h)] = E, [T(zl,Yl,O)Kh(Xl — :5)] - Kp(z0 — ) .

(3.2.10)

Now, (3.2.6) is a canonical U-statistic as
E,[Un(Z,2,0,2;h)] =0, z€RxR?

to which Giné’s inequality, Lemma 3.2.4, is usually applicable. On the other hand, (3.2.7)
is a centred linear process that can usually be treated by one of the inequalities given in
Lemmata 3.2.2 and 3.2.3 as described before.

The first theorem gives a result on functions M,, of the type (3.2.3).

Theorem 3.2.5. Let I' be a non-empty set, (Q,A, (Pv)'yel“) be a statistical model and
probability densities be given by

(y,2) = fy(ylo)ly(x),  (y,2) eRxT ,yeTl, (3.2.11)

where I C R? is a compact cuboid containing an open subset and is the support of the 4y
as well as sup ey || |loc < 00. Furthermore, let (Y, X;)T) = be sequences of i.i.d. ran-
dom vectors with joint density (3.2.11) under P,.

Let K : R? = R be a Lipschitz continuous and bounded L2-kernel; for some non-empty
set A, (hp(@))nen, @ € A be sequences of bandwidth parameters so that

logn
sup hp(a) =0, sup ———— —0.
S8 Anle) S ()
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3.2 Techniques for examining uniform estimation errors

Let 7 : Rx © — R be a function, where © C R™ is compact and convex with © = int(O)
and p € [1,00) so that

sup/(sup |7(y,8)])’ sup fy(y|z)dy =: Cr < 00 (3.2.12)
~el’ fee xel
and

17(y,0) = 7(y,0)| < V-(,0,0)|10 -0, yeRO,6€0, (3.2.13)

where V. is a non-negative function so that

Sup/ sup U2 (y,0,0) sup fy(ylz)dy < oo . (3.2.14)
yel'J g.0c0

If for the function M, : © x I x (0,00) — R given by

M, (0,x;h) :

3\'—‘

n
ZT Yk, K}L Xk—x)
k=1

there are constants Cq,Co < 0o independent of 0, x, h, v, so that

t2nh

P (| M (0,5 h) = By [M (6, 2:0)]| > 1) < 2exp < e

> L t>0, (3.2.15)
then for any compact J C int(I)

. logn % o
limsupsup sup (| ———— E, | sup sup ’Mn (9 z; hn(a )) -E, [Mn (G,x;hn(a))]‘ < C,

d
n—oo Y€l a€A nhy () zEJ €O

where C < oo depends on T, C1, Cy, Cr, 7, | K|leo, Li, p, I, © but is free from n and
the sequences of bandwidth parameters.

Remark 3.2.6.

(i) Note that assumption (3.2.15) is typically achieved by applying one of the expo-
nential deviation inequalities given by Lemmata 3.2.2 and 3.2.3. In order to use
Lemma 3.2.2, one might assume boundedness of 7 as well as

sup sup sup 7”Lhn(04)d\/amy (Mn(e,x; hn(oc))) <Cvar, Cvar<o00.
acA~vel €O, zel

(ii) Assumption (3.2.13) is fulfilled if for example the function 7 is Lipschitz contin-

uous in its second argument uniformly over its first argument, i.e. sup, |7(y, ) —
7(y,0)| < L.||¥ — 0]| for some L, < co.

The second theorem gives a result on functions M, of the type (3.2.4).
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3 M-estimation and supremum distance

Theorem 3.2.7. Let I' be a non-empty set, (Q,A, (Py)vep) be a statistical model and
probability densities be given by

(y,z) = fy(ylz)ly(z) , (y,z) eRxI,vel, (3.2.16)

where I C R? is a compact cuboid containing an open subset and is the support of the l,
as well as sup,cr [0y ||cc < 00. Furthermore, let (Zy), = ((Yn,X;{)T)n be sequences of
i.i.d. random vectors with joint density (3.2.16) under P.,.

Let K : R* — R be a Lipschitz continuous and bounded L?-kernel; for some non-empty
set A, (hn(@))nen, @ € A be sequences of bandwidth parameters so that

logn

sup hy(a) =0, sup —0.

acA acA nhn(a)d
Let 7 : Rx R x O — [0,00) be a bounded function that is symmetric in its first two
arguments as well as Lipschitz continuous in its third argument uniformly over all other
arguments, i.e.

sup |7(z,y,9) — 7(z,9,0)| < L-||9— 9|,

z,y
where © C R™ is compact and convex with © = int(©) and L, > 0 is a constant. Then,
for the function M, : © x I x (0,00) — [0,00) given by

b
n(n—1)

n

> 7 (Y, Y, 0) K (X — 2) Kn(Xx — ),

ik
we have for any p € [1,00) and any compact J C int(I)

M, (0,z;h) =

_P
. 1 2
imsupsup sup (082 ), | s sup M 05 0) — 1 [ (3@ <

where C' < oo depends on ||T||oo; Lr, | K|loos Li, p, I, ©, but is free from n and the
sequences of bandwidth parameters.

Remark 3.2.8.

(i) Note that Theorem 3.2.7 can be generalized similarly to the result on linear pro-
cesses, cf. Theorem 3.2.5, but it is not necessary for the remainder of this thesis.

(i) Whenever we have a function M,, mapping to R¥, & > 1 and wish to apply one of
the Theorems 3.2.5 or 3.2.7, it is enough to assume that every coordinate projection
¥;(My), i =1,...,k of the function M, fulfils the respective assumptions. Because
then by Jensen’s inequality for sums,

E, [sup sup HMn (0, T hn(a)) —E,[M, (9, T hn(a))] ||f]
zeJ 0O

k
L ZE’Y LSCIéB Slelg ’wz (Mn (97 €5 hn(a)>> - B, [w’ (M” (9’ *; h"(a)))] ‘p] ’

which yields the result.
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3.2 Techniques for examining uniform estimation errors

3.2.3 Methods specific to adaptive estimation

In this section, we give techniques for proving (B9) for differentiable contrast functions
in the form of either a linear or a U-statistic process as defined in (3.2.3) and (3.2.4),
respectively, i.e.

n

1
M, (0,x;h) = - Z T7(Vy, ) Kp (X, — ), or (3.2.17)
k=1
1 n
M, (0,z;h) = =) ;1 (Y}, Vi, ) K1 (X; — ) Kp( Xy — ) . (3.2.18)
Gk

That is, for any compact J C int(I), we prove the existence of some C_ > 0 and a
monotone function u : [C_,00) — (0,00) with u(t) — oo, ¢ — oo so that for every
OLep Z O_,

limsup sup sup sup n“(CLCP)plj < 00,
n—0o0  a€la,b] yel(a) 0<I<j<ky(a)

where

Dij :2]13’( sup HTn(H,x; hj)H > %%30**”) ,
©€J,0€0

Tn(0,z3h) =Sp(0,2;h) —Ey[Sn (0,25 h)]

n

h(@:(log”)?w, hi=h(B), r()=h)*, rn=r8).

The main tools for deriving v and C',cp, are also used when proving the results on uniform
L convergence rates of stochastic errors in Section 3.2.2, namely discretization, treating
the discrete error with exponential deviation inequalities and the discretization error by
smoothness arguments.

First, assume we are dealing with a linear process as defined in (3.2.17).

Lemma 3.2.9. Let M,, be a linear process as defined in (3.2.17) that is differentiable in
0 and all assumptions of Theorem 3.2.5 hold for the coordinate projections of the gradient

1 n
Sn(0,w3h) =~ > 0o (Yi, 0)Kp (X — ) -
k=1

Then, for any positive constants c1,co > 0,

. 1 btd+tl
— = . 1
C o (02+1+32max{01,02}(d+m) max{Q(der)17 a1 d + }) ,

_ CICLep — C2
"~ 32max{C1,C2}(d +m) ’

u(Clep)
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3 M-estimation and supremum distance

we have

limsup sup sup sup n“(CLe")ﬁlj <00, Crep>C_, where
n—=00  agla,b] yeT (o) 0<I<j<kn ()

ﬁlj = P( sup ||Tn(0,$,hj)|| > (Cchep — 02)7’1) .
z€J,0€0

Next, we are dealing with U-statistic processes as defined in (3.2.18).

Lemma 3.2.10. Let M,, be a U-statistic process as defined in (3.2.18) that is differen-
tiable in 0 and all assumptions of Theorem 3.2.7 hold for the coordinate projections of
the gradient

1 n
Sn(0,z;h) = w1 ;1 97 (Y, Vi, 0) K (X; — 2) Kp(Xi — ) .
Jim
J#k
For any positive constants ¢1,¢o > 0, let

C_ = max{al,ég} ,

2 2
=~ 1 2 2 1 b+2d+1
Ci1=¢ |:62+4+64T (d+m) maX{<2(d+m)—1> ,( 2+ d +1> }],

52—261_1|:62/2+1+32max{C’1,C’2}(d+m)maX{ L b+d+1—|—1}} ,

2(d+m)—1" 2a+d

(Crep) = mi T\/e1Crep — & &1CLep — &
UG Lep) = MmN 8(d +m) " 64 max{C1,Co(d+m) [’

where T is the universal constant in Lemma 3.2.4 and Cy,Cs are defined in Theorem
3.2.5.
Then we have

limsup sup sup sup n“(CLef‘)ﬁU <00, Crep=>C_, where
n—00  a€la,b] vET () 0<I<j<kn ()

pij = IP’( sup ||Tn(0,z;hj)| > (élCLep - ég)rl) .
z€J,0€0

The constant 51 and the first term in the minimum in the definition of u are relevant

to the U-statistic terms when decomposing T,,. The other terms are used to treat the
linear remainder. The proofs can be found in Section 5.1.
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4 Applications

4.1 Finite mixtures of normal regressions

Consider a mixture model of m normal regressions with multivariate covariates, expand-
ing the model with univariate regressors considered by Huang et al. (2013). That is,
we have observations (Y;, X;) taking values in R x I for some compact cuboid I C R?
containing an open subset and a latent model variable II; taking values in {1,...,m}
for some m > 2 so that P(II; = ¢|X; = z) = m.(x), where 7. : I — (0,1), >" m. =1,
are mixing functions and X; have the common density £ : I — (0, 00). The observations
have the relation

m

Y, = Z ]lni:c<0'c(Xi)Ec,i + Uc(Xi)) )
c=1
where

Ec,iﬂ_Hi‘Xi, €C’i|XZ‘:£UNN(O71),

the functions p. : I — R, 0. : I — (0,00) are location and scaling functions to be
estimated along with the mixing functions 7. so that the parameter of interest is given
by the function

0(-) = (771(-), e ,7rm_1(~),u1(-),...,,um(~),01(-),...,am(~))T I - R

Lemma 4.1.1. For all x € I, the conditional density of Y; given X; = x exists and is
given by

m

A wle) =Y me(@)d(ylne(@). 02 (@)) . yeR.

c=1

Especially, the joint distribution of Y; and X; is given by
o(-
Frx(y,) i= % (yl2) ()

- [ch<x>¢(yyuc<x>,o§<x>) @), (o) eRxI.
c=1
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4 Applications

Figure 4.1: Samples and densities from mixture of normal regressions models. Data points are color
coded by their respective subpopulation, where red, blue and green correspond to the
components 1-3, respectively. The black curves are the conditional densities given X =
0. Dashed curves illustrate the distribution within the respective subpopulation. Both
regimes are identical up to translation of the components. In the data sample of Regime
I, the presence of three components is directly visible. In the other regime this is not the
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case because the means are relatively close.




4.1 Finite mixtures of normal regressions

4.1.1 ldentifiability

A statistical model is called identifiable if there are no two parameters yielding the
same distribution. To be precise, let ©; C O3 be non-empty sets and (Pgp)pco, a
statistical model. The subset (Pp)gco, is called identifiable within (Pp)gco, if for any
01 € ©1,05 € Oy, Py, = Py, implies 01 = 6s.

When dealing with mixture models, one often has to weaken the definition due to the
relabeling problem. Consider any normal mixture density

m
> wedylpe, 02),
c=1

then any permutation of the components yields the same mixture. Hence, we will comply
with the common solution for this problem. That is, a mixture of normal distributions
is identifiable if for any 61 € ©1, 03 € Oq, Py, = Py, implies that 6, is a relabeled version
of 02.

We give two identifiability results. The first one imposes differentiability conditions on
the location and scaling functions and is stronger than needed for the estimation proce-
dure. Particularly when having no differentiability, we may use a weaker result deduced
directly from the classical identifiability result for normal mixture densities, cf. Teicher
(1963).

In Huang et al. (2013), the identifiability proof is based on the concept of transversal
curves, that is, differentiable curves mapping from R to R? that may intersect, however
not be tangential at intersections. To be precise, for any components ¢ # ¢, one assumes
that

(I (te(@), 7el@)) = (@), 00 @)]| + | (One(2), 00e(2) = (Oer(w), Do (@) ) # 0.

As the set of intersection points S is discrete, one can show that the mixture is identifiable
on all connected components of S¢. Subsequently, by approaching all intersection points
from both sides with sequences, one deduces that the mixture is identifiable overall. We
wish to extend this idea to differentiable curves mapping from R? to R2. As we show later,
we only need intersection points to be not tangential in one direction, i.e. for any ¢ # ¢/
and any intersection point z of (pi., o), (jter, 0 ), there needs to be a direction z € R,
Izl = 1, so that 9,(pe(x),0c(x)) # 0,(pe (x),00(x)). Hence, for those intersection
points z, we need to have that

d> D (z),
where
D¢ () := max {k e{l,...,d}3z,...,2 € RY ||zi]| = 1, z linearly independent :

Vi€ {]-a .- 7k} GZiMC(x) = 821:“6/(55) aazqzo—c(x) = azqzo—c/(x)} :
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4 Applications

Theorem 4.1.2. Let O C R? be an open connected set. Assume that 7. : O — (0,1)
are continuous functions with Y 7. =1, and p. : O = R and g, : O — (0,00) are
differentiable functions, c =1,...,m; any two curves (uc(+),0c(+)), (per (), 00 (7)) fulfil

(1e(2). 02(2)) — (e (). 00 () || + (d = D (2)) 0, w0,

Then the family of miztures
fllz) = me(x)d( - |pel(x),02(x)) , €O
c=1

is identifiable within oll families of miztures of normals indexed by O with at least two
and at most m components, positive mizing functions and differentiable location and
scaling functions. ILe. if there are m >V > 2, positive mizing functions A\i,..., Ay :
O — (0,1) with Z:}/:l Ay = 1, and differentiable functions v, : O = R, §, : O — (0, 00),
v=1,...,V so that for all x € O

v
FCl2) =D M@)o (- rol), 53(2)) |
v=1
then we have V.= m and there is a permutation 7 on {1,...,m} so that for all ¢ =
1....m,z€0,
Are)(@) = o), Vr(ey(®) = pe(w) ;. dr(e)(x) = 0c() . (4.1.1)

The following result derived from the one on normal mixture densities by Teicher (1963)
is weaker than Theorem 4.1.2 but suffices for the uniform estimation results we aim to
prove.

Theorem 4.1.3. Let I C R? be a compact cuboid containing an open subset. Assume
that 7. : I — (0,1), > me =1, pe : I — R and 0. : I — (0,00) are continuous
functions; any two curves (e(+),0c(+)), (pe (+),00(+)) with ¢ # ¢ fulfil

(uc(as),ac(x)) # (,uc/(x),ocl(x)) , xel.

Then, the family of mixtures
f(|$) = Zﬂ—c(x)(b( : ’Nc(x)agg(x)) , wvel
c=1

1s identifiable within all families of mixtures of normals indexed by I with at least two
and at most m components, positive mizing functions and continuous location and scaling
functions.

The proofs for both theorems can be found in Section 5.2.1.
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4.1 Finite mixtures of normal regressions

4.1.2 Estimation

We will use the local log-likelihood approach introduced by Huang et al. (2013). The
relevant estimation theory on local M-estimators is covered in Chapter 3.

Assume the true parameter function to be

9*() = (ﬂ-r()’ s ’W:n—l(')7ug{(')’ cee ,,ufn(-),crf(-),. e va;L('))T .

The log-likelihood for the conditional distribution of Y'|X = x is given by the function

(106 = 08 (1 ut019) 1= 108 (3 mo ot 2) )

where 6(+) comes from a non-parametric function class. A local version is given by

9(y; 0) :=1og (fmix(y;0)) := log (ch(zﬁ(ywc,a?)) ,
c=1
where

0= (771,...,7rm_1,,u1,...,,um,al,...,am)T ex, X=S8, xR™ x(0,00)™

and

m—1
S, = {(71’1,...,7Tm_1)T S (0’1)m—1 : Z mi < 1} .
j=1

Referring to the Kullback-Leibler divergence, we know that the function
M(a57) =By [g(Y3)|X = a] - £(x)

is uniquely maximized by the true parameter 6.(z) up to relabeling when the model
is identifiable up to relabeling, where E, denotes the expectation with respect to the
distribution P.,, which is defined by

B, (Y, X) € A) L/ Ol)t@) dy,z), 7= (0.(),0). (4.1.2)

Hence, let us define the set &,., to contain the true parameter 6,(x) as well as all
relabeled versions, i.e.

@mz{&e%

0. € argmax M (0, m;y)} . (4.1.3)
feX

An empirical version of the asymptotic contrast M is given by

M,,(6, ;) Zg (Yi; 0) K (Xy, — ) = ) _log (Zwm(yk\uc,az))Kh(Xk - 1),

k=1 c=1
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4 Applications

so that its maximizer

én(~; h) € argmax M, (6, -; h) (4.1.4)
9

is the proposed estimator of x +— &,.,, which exists when we restrict parameters to
come from a compact subset of X. Note that both the empirical and asymptotic con-
trasts are symmetric in (71, 1,01), .-, (Tm, thm, Om) SO that any relabeled maximizer
also maximizes the respective contrast.

4.1.3 Uniform rates of convergence

In order to achieve a setting in which the estimator 6, (-; k) defined in (4.1.4) estimates
the parameter function 6, (-) and relabeled versions thereof with standard non-parametric
uniform convergence rate, we need to make further assumptions on the model. We will

consider models in which the parameter functions 7} (-), ui(-), o(-) and the covariate

density ¢ are Holder-a-smooth as defined in Section 2.4, Definition 2.4.1. Let us denote
the parameter space by

0= {(m,...,wm,l) cumr -y n € Uw} x UM x U C X

for some sets U, C (0,1), U, C R, U, C (0,00) and the set of admissible parameter
functions by

A(O{, L7 U7r7 Upn Uo’a EA)

:{9() = (Wl(')a s aﬂ_mfl(')vlul(')v ce 7Nm(')’01(')a sy Jm('))T = e|

Ve=1,....m—1: 7.(-) € H(er, L, Uy), l—zg;zlwc(x)GUﬁ, zel,
Vc:l,...,m: Mc(')eH(a7L7Uu)7 Uc(')eH(a7L7U0)7

Ve#td ot ||(pe(@),00(2) — (b (@), 00 (2))|| = EA} (4.1.5)

for some € > 0 and any o, L > 0. The last assumption in the definition of the parameter
function set A(c, L, Ux, Uy, UU,EA) ensures that the parameter curves do not intersect
and hence implies identifiability while simultaneously making A(a, L, Ur, U, Uy, %)
compact with respect to the Holder norm || - ||o/2 as stated in Remark 2.4.5 (ii) when
assuming that the sets Uy, U,, U, are compact intervals.

Furthermore, the covariate density ¢ is supposed to take values in some set U, C (0, 00),
so that it is an element of the set

L(a,L,Ug) ={t € H(a,L,Up) : [¢(z)dz =1} .
In conclusion, the relevant model parameters must come from the class

F(a) = A(aa L,Uy, Uua Us, SA) X ‘C(Oﬁ L, Ué)

56



4.1 Finite mixtures of normal regressions

that determines the underlying distributions for a given a. From now on include « in
the definition of &y, cf. (4.1.3), i.e.

Gaivia = {9* € %‘9* € argmaxM(G,x;’y)} , z€I, a>0, yeT(a).
fex

The following assumptions will ensure uniform consistency of én(, hy) with convergence

rate (ﬁ) 777 for the bandwidth choice h, = (k’%) 2a+d which fulfils the assumptions
logn
hd

n

—0.

h, — 0 and

Assumption 4.1.4.

(N1) The sets I, Uy, Uy, Uy, Uy are compact cuboids or intervals containing an open
subset and ¢ > 0. In particular, 1/m € int(Uy).

(N2) The kernel K : R? — R is Lipschitz continuous with Lipschitz constant Lz > 0
and has support [—1, 1],

(N3) The kernel K is of order «, cf. Definition 2.5.1.
Remark 4.1.5.
(i) According to Remark 2.4.5 (i), we can assume diam I < 1 without loss of generality.

(ii) We assume 1/m € int(U,) so that © and the set of model parameters are non-
empty and O fulfils the latter part of Assumption 3.1.4 (A1).

(iii) One assumes the parameter set © to be of this specific structure so that label
switched versions of parameters in © also lie in ©. Particularly, for any « € I,
v € I'(a), we have G,y C O.

(iv) As the kernel K is Lipschitz continuous and has bounded support, all moments
exist.

(v) The bandwidth choice comes from balancing bias and variance. The logarithmic
punitive term seems to be widely present in non-parametric estimation when ex-
amining uniform convergence rates, e.g. Giné and Guillou (2002) in kernel density
estimation.

Theorem 4.1.6. Under Assumption 4.1.4, given a compact cuboid J C int(I) containing
o ol .
an open subset, if we let h,, = (lof—L”) 2e¥d " the estimator 0, (-5 hy) is uniformly consistent

. 1 == .
and has uniform convergence rate (°5%)%* j.e. we have that

lim limsup sup IPV(( ) sup min HGn(m,hn) —9*|| > n) =0.

100 n—co yel(a) logn 2€J 0+ECiia

The proof of this result can be found in Section 5.2.2.
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4.1.4 Curve estimation

A~ ~

In the last section, we showed that the estimator 6,(-) = 6,(-;h) estimates the set
function
T+ Gpivia

uniformly consistently over any compact cuboid J C int([) containing an open subset,
where we fixed ~ for simplicity. Assume

sup min Hén(a:)—e* <eg* (4.1.6)

2€J 0+ €S a;y5a

for some €* > 0. Then, for every = € J, there is a permutation (, switching the labels
of 6,,(-) so that

|Co (B (@) — Ou(@)] < €™ .

This permutation however depends on x as we do not have a natural way to correctly
assign labels since the parameter curve 6, (-) is unknown.

In order to obtain estimates of the parameter curves on some finite grid G C J, one
has to overcome this problem of label switching. The fact that the estimator én() is
uniformly consistent allows us to formulate a procedure that ensures that the labels of
the estimates at all grid points match with probability approaching one.

Consider estimation over the subset of parameter functions
0.(-) € Ao, L, Uy, Uy, Uy, €2)
with « > 1 for which
@) —pa (@) =S, et wel, (4.1.7)

which in fact defines a closed subset of A(a, L, Uy, U,,U,,e?) so that Theorem 4.1.6
holds with the appropriately altered I'(«).

Write J = J; X ... x J; and suppose that for some 0 < § < 1, one wants to estimate the
parameter curves on the finite equidistant grid

Gs=(z1+6-N§)nJ,

where x1 = (min Jy, ..., min J4)?. Furthermore, suppose one orders Gs in a way so that
subsequent indices translate to neighbouring grid points. To be precise, suppose that
for Gs = #Gs, the points z1,...,2g, € Gs are ordered so that ||z; — 2;41]j1 = 0 for all
1€ {1,...,G5—1}.

In addition, let €* in (4.1.6) and the grid width 0 be so small that

€8 > 4e* 4+ 2L5 (4.1.8)
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4.1 Finite mixtures of normal regressions

and let for ¢ € {1,...,Gs} the estimates

A . R N N R T

O (x;) = (Wl(xi), cos Tm(@), (@) oy i (24), 61 (24), - - - O’m(l‘i))
be given, where we included 7, (z;) for notational purposes. Also insert 7%, () into 0, ().
We will now give an iterative procedure to assign labels correctly. The idea is that,

starting with some permuted estimate (; (én(l‘l)) at some grid point x;, permuting the
labels of the estimate at the grid point ;1 with a permutation ;7 such that

Cit1(c) = irigmin ’ﬂ(i(c) (;) — fiz(xie1)|, c¢=1,...,m (4.1.9)

yields a proper estimate of one of the curves in &,.,., with probability approaching one.
That is, one chooses a permutation such that the location estimates of neighbouring
grid points are closest. Before deriving this rigorously, let us give some intuition why
this should work. Whenever (4.1.6) holds, for every u*(z;), there is an estimate fiz(x;)
with distance of at most €*. Since location functions with different labels have at least
distance €2 according to (4.1.7), this estimate jiz(2;) needs to be unique in regard of
(4.1.8). The location functions u’ being Holder-a-smooth with Holder constant L lets us
subsequently deduce that the choice (4.1.9) exists and is unique, both with probability
approaching one.

Let us start with the rigorous derivation. According to (4.1.6), we know that for every
i€ {l,...,Gs}, there is a permutation ¢; on {1,...,m} so that for all c € {1,...,m},

A (o) (x2) = pi(a)| < e (4.1.10)

Without loss of generality assume that (; = id and that the Holder-a-smoothness of the
parameter functions holds with respect to the norm || - ||; on I. As § < 1, we have for
any ¢ € {1,...,Gs — 1} that

(i) — (i) < L6, (4.1.11)

because for a > 1, pu’ is especially Lipschitz continuous with Lipschitz constant L.
Combining (4.1.10) for ¢ + 1 and (4.1.11), we derive

|fic,.r (o) (1) — pis(zi)| < e+ L§ ic{l,...,Gs—1} (4.1.12)

by triangular inequality. Now, for any ¢ # ¢, i € {1,...,Gs — 1}, combining (4.1.7),
(4.1.8) and (4.1.12), we see that

(@) = fice o (e @) | = | (i) = pi ()| = |1 (23) = fig, (o) (@ir) |
> 4e* 4206 — (e* + L)
=3¢+ L6 . (4.1.13)

Because of (4.1.10), (4.1.12), (4.1.13) and then again (4.1.10), we deduce that

|1&Ci(0) (iliz) - /”AI“CiJrl(C) (zi+1)| <2+ L6 )
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|la§i(c) (xi) - ﬂcm(c’)(xiﬂ)’ > ‘ﬂci+1(cf)($i+1) - MZ(%’)‘ - |Mz (%‘) - ﬂ{i(c) (xi)‘
>3e" + Lo —¢*
=2+ L6 .

This especially means that on the set

Avee = {sup, min0n(e) = 0] <}

forany i € {1,...,Gs — 1}, c € {1,...,m}, we have

Hence, starting with El = id, let us define

ZZ(C) = fxrgmin ’ﬂa,l(c)(xifl) — ﬂ5($1)| R 1€ {2, .. .,G5} s

c=1,...,

which are well-defined permutations on the set A,.~. In order to obtain permutations
that are also well-defined on A¢.., we propose for i € {2,...,Gs}, c=1,...,m,

Go=id, Gi(e) = argmin g, o (@i1) = fie(a)|
ce{l,....mI\{G:(1),.-,Ci(c—1)}

which in fact coincide with a on A,.~. Now, the curve estimators are given by

N N N N N N T
Ocwi) 1= (Fg, ) (@) s Ty oy (@) i, (1) () -3 iy amy (20): O, (1) ()5 8, gy (3))

Still under the assumption that {; = id, we see that

{Isggs ||9<(x) —b. ()| < 5*} > {sup min |0, (z) — 6, < s*} )

z€J 0x€6zaiyia

where the probability of the right-hand side converges to one due to uniform consistency
of 0,(-). When dropping this assumption, there must be a permutation (. independent
of = so that

{5292 Hc*(éc(x)) - 9*(x)H < 5*} D {sup min Hén(x) —G*H < E*} .

2€J 0+€C 4 0

4.1.5 Uniform adaptive estimation

Following the Lepski method for the gradients described in Section 3.1.1, we propose an
adaptive estimator for parameters coming from

Aa,L,Ur, Uy, Uyp,e®) = | Ao, L,Ux, Uy, Uy, e)
a€la,b]
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4.1 Finite mixtures of normal regressions

for some known 0 < a < b < 00, i.e. for the case in which the true smoothness parameter
« is only known to come from an interval [a,b]. Note that L, Ur, U,, Uy, ©, I are
assumed not to differ for varying a and are to have the same properties from the last
section. Also note that the equality in the display above directly follows from inclusion
of the Holder classes as described in Remark 2.4.5 (i). Particularly, the set of all model
parameters is now given by

I'a)= |J T(a). (4.1.14)
a€la,b]
As in Section 3.1.1, define
Sn(97x7h) :aﬂMn(evxvh) ) S(a,$,’y) :aﬂM(aaxa’Y) )

ﬁk:a+kb]_vg, k=0,...,N, N=/[logn],

h(a) = (logn)"’“l*d’ r(a) = h(a)* = <logn>2;+d, ri =71(Bk), P = h(B).

n n

Subsequently, define the adaptive data driven grid point by
b = ﬁ]}v
where

k = max {0 <k<N: sup HSn(H,x;hk) — Sn(G,x;hl)H <Clepm V0<I< k:} ,
z€l,0€O

where the Lepski constant Cprep < 0o is to be chosen large enough. A specific lower
bound on the Lepski constant can be derived from the discussion in the previous chapter,
particularly Assumption (B9) and Lemma 3.2.9.

This construction yields the estimator

02 () = argmin M, (0, x; hy)
e

In order to make use of the highest possible smoothness order b, we need to assume the
kernel K to be of order b, cf. Definition 2.5.1. Therefore, we formulate the following
alteration of Assumption (IN3).

Assumption 4.1.7.
(NS) The kernel K is of order b.
Now, we can state the main result.

Theorem 4.1.8. Let 0 < a < b < 0o, K be a kernel fulfilling Assumptions (N2) and
(N3). Then, under Assumption (N1), for any compact cuboid J C int(I) containing an
open subset, there is a Crep > 0 so that

N0 noo acla,b] vel (@) logn 2eJ 0x€E60inia

Satd ~
lim limsup sup sup P, <<n> sup min ||9?Ldap(x) - 0*” > 77> =0.
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4 Applications

In order to prove both Theorems 4.1.6 and 4.1.8, it is enough to prove that Conditions
(B1)-(B9) in Assumption 3.1.11 hold since this directly implies Theorem 4.1.8 by The-
orem 3.1.13. As discussed in Section 3.1.1, Assumption 3.1.11 implies Assumption 3.1.4
so that Theorem 4.1.6 follows from Theorem 3.1.6. A complete proof can be found in
Section 5.2.2. Here, we give some intuition and sketches.

Introduce some bounded, convex and open set © C = C X with = C X. Condition (B1)
follows directly from Assumption (N1) as well as (4.1.14) when using the Holder norm
| - [la/2 as defined in Definition 2.4.3, cf. Remark 2.4.5 (ii) and (iv). For the latter part
of Condition (B1), the polytope

D, = {(7T1,...,7Tm,1) S U;n_l 1-— Z:l:_fﬂ-c c Uﬂ}

is the central issue. Starting with a vector on the boundary, one can make small changes
in single arguments without leaving D,,,, which results in a vector in int(D,,). Hence, one
only needs to consider interior points. For two interior points A1, A2, a sufficiently small
e- neighbourhood around the connecting line segment [A1, A2] is a subset of int(D,,) as
it is an open convex set. Note that one can make small changes in single arguments
without leaving the neighbourhood. Proceed by reducing the distance between A\; and
Xa. As it turns out, one can choose C' = 4m — 1.

Condition (B2) is given because normal mixture densities are invariant under relabeling,
Condition (B6) holds because ¢ > 0 is independent of , v, o.. The continuity condition
(B3) holds because the log-likelihood is continuous and one can interchange limit and
integral by Lebesgue’s theorem. Further, the continuity of the parameter functions is
obvious as they all are assumed to be Hoélder-a-smooth. The differentiability of the
contrast functions is provided by the fact that the likelihood function of mixtures of
normals are C*°-functions and Lebesgue’s theorem once again. In order to prove that
the Hessian matrices V,(0.(x);7) of M are positive definite as demanded by Condition
(B4), one first deduces that the Hessian matrix is in fact given by the negative Fisher
information and reduces to

Va (0. (2);7) =05 M (0. (x), 257)

(9 fmix (V3 0 ())) (T fmix (V5 0 ()
fmix(Y; 0* (x))2

From this, one can derive linear equations in the form of

:_E’Y

X:x} () .

09 frnix (V; 9*(.73))TU =0, VyeR

and shows that R®™~1 3 v = 0 by using that there is always a component in the mixture
density fmix that is dominated by all other components asymptotically according to the
definition of A(«, L, U, U, Uy, e®) and €2 > 0. This successively proves that the com-
ponents of v need to be zero.
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4.2 A two-component mixture of location scale regressions

For the remaining conditions, one needs to bear in mind that the log-likelihood g and
its derivatives are unbounded and the mixture density fuix and its derivatives are not
Lipschitz continuous in 6 uniformly over all y. However, one can show that g and its
derivatives are integrable with respect to sup, z fmix(+;0) and that fiix and its deriva-
tives are Lipschitz continuous with a Lipschitz constant that is integrable in y with
respect to sup,.z fmix(+; ) as well, which directly gives (B5).

One can use Bennett’s inequality, c¢f. Lemma 3.2.3 in order to attain an exponential de-
viation inequality for the gradients S,,, where bounding all moments is straightforward
but lengthy. Accordingly, the conditions of Theorem 3.2.5 are fulfilled, which gives (BT)
directly and (B9) by Lemma 3.2.9.

The application of Theorem 3.2.5 in order to prove uniform consistency of the empirical
contrast, cf. (B8), does not seem to be fruitful because the log-likelihood does not provide
a Lipschitz constant that is integrable with respect to sup, z Jmix(+;0). However, there
is a workaround by using the fundamental theorem of calculus along edges of cuboids
spanned by parameters 6 and a single parameter 6 so that the uniform error reduces to

sup |Mn(97xah) _M(G,IE,’}/)‘

0e0,xeJ
S sup ‘Mn(é7 x; h) - M(é7 T, 7)'
z€J
+ (4m — 1) diam(©) sup |[|S,(0,2;h) — S(&x;’y)“oo . (4.1.15)

0e0,xeJ

The first summand in (4.1.15) can now be treated by Theorem 3.2.5 and Lemma 3.2.1
because the supremum is only taken over the covariate values. The second summand is

shown to be op_ (1) by using Markov’s inequality and arguments similar to the proof of
(B7).

4.2 A two-component mixture of location scale
regressions

We propose a non-parametric regression model of the form
Y, =W, (,LL(Xl) + 61,1') + (1 - Wi)U(Xi){:‘g’i , 1€N

for sequences of i.i.d. random vectors (X;);en having support I C R? where I is a
compact cuboid containing an open subset, d > 1 and i.i.d. random variables (Y;);en,
(Wi)ien, (€1,i)ien and (€2;);en. The explanatory variables X; and the response variables
Y; are observable, the latent variables W; and the error variables €1 ; and €2 ; are not.
The covariates X; are assumed to have a Lebesgue density £ : I — (0, 00).

The unknown location and scaling functions p: I — R, o : I — (0, 00) are functions to be
estimated as they partially determine the distributional relation between the explanatory
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and response variables along with the unknown mixing function p : I — (0,1). That
is because conditionally on X; = z, the variables W, are assumed to have a Bernoulli-
distribution with parameter p(x), i.e.

P(W,=1|X;=z)=p(z) and P(W;=0|X;=2)=1-p(z).

Let us further assume that conditionally on X; = x, the vectors £1; and €3 ; have zero-
symmetric conditional densities denoted by f, and f, respectively, where we assume that

f is known and f, is not. If we furthermore have the conditional independence relations
€1,i A W1|Xz and €2i AL VV1|,X2 5

we can deduce that the random vectors (Y;, X;) have a joint density. Therefore, we
formulate the following simple lemma that was proved in Werner (2015).

Lemma 4.2.1. For oll x € I, the conditional density of Y; given X; = x exists and is
given by

fgf})c(ylw) = Wf(gé)) +p(@)fe(y —p(x), yeR,

where 9(x) = (p(x),o(x), u(x), f). Especially, the joint distribution of Y; and X; is
given by

Frx (@) 1= fyix (yl2)e(z)

— [SAR (L) + o ww)| o) () R T

4.2.1 ldentifiability

We will prove local identifiability, i.e. that for every x € I the conditional density
fg?))((bv) is identifiable within all mixture densities of the proposed type under some
reasonable constraints. Hence, it is enough to consider the model without covariates.
We need the known component density f and the unknown model density f to have
finite third-order moments and be zero-symmetric. Therefore, we only examine the den-
sities -
fuix(y;9) = A =p)fy/o)/o+pfly—p), yeR,
where
9= (p,o,u f)T € X:=1[0,1] x (0,00) x R x &3,

and f € £ with

E={f:R—[0,00)| f even, [ f(z)dz = 1,f|x\3f(x)dx< oo} .
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4.2 A two-component mixture of location scale regressions

Data sample from Regime | with n=7500 observations Data sample from Regime Il with n=7500 observations
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N €1 ~ Laplace(0,1/2) | e1 ~N(0,0.4
Error distributions P (0,1/2) (0,0.4)
Eo ~ N(07 1) Eo ~ t(7)

p(z) = 0.6 — 0.15sin(0.3x)
Parameter functions o(z) = 0.4 + 0.25sin(0.25z)
u(z) = 1.5 4 0.5sin(0.5x)

Figure 4.2: Samples and densities from two-component mixtures of location scale regressions. Data

points are color coded by their respective subpopulation, where red corresponds to the
a priori unknown component and blue corresponds to the known component. The black
curves are the conditional densities given X = 0. Dashed curves illustrate the distribu-
tion within the respective subpopulation. The parameter functions in both regimes are
identical. However, different error distributions are chosen.
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The following two examples illustrate why the model cannot be pointwise identifiable
without imposing constraints.

Example 4.2.2.
(i) Let u=0,0=1, f = f. Then every p yields the same mixture.

(ii) For any p, f we have
(-8 FO+5FC-2=(1-p) O +p (1)
when f(-) = (f(- = 1)+ f(- +1))/2.

We will give two identifying assumptions. Both rely on the symmetry of the component
densities. Note that whenever a density f is zero-symmetric, its characteristic function
or Fourier transform

wf(t) = /exp(itz)f(z) dz, teR
is real-valued.
The first assumption imposes a strong constraint on the true mixing parameter p, but

only mild conditions on the component densities f and f,.

Assumption 4.2.3. The model parameter 0, = (p«, 0, fhx, f)T € X and the compo-
nent density f fulfil

(I1) pe € R\{0}, pi € (1/2,1), 0. € (0,00),
(I12) fe&s, o5>0,
(13) f. € &, ¢7. > 0.
Theorem 4.2.4. Let Assumption 4.2.3 hold. If for any 9 € X, we have
Fmix(Y; 0%) = fmix(y;9)  for almost all y € R, (4.2.1)
then ¥ = V..

Denote ¥ = (p,o,u, f)T. By Fourier transforming both sides of (4.2.1) and using an
addition formula for the trigonometric functions, we deduce

(1= p)ef(out) = (1= p)pjlot)] sin(ut) = papy, (t) sin (e — p)t) (4.2.2)

for all ¢ € R. Examining the zeros of the terms on both sides yields g = p., which in
fact implies the result, cf. Lemma 5.3.1. A complete proof can be found in Section 5.3.1.

The other identifiability result was introduced by Werner (2015) and is given for the sake
of completion. It does not impose a restriction on the mixing parameter but strongly
depends on the relationship of both component densities f and f,. That is, the charac-
teristic functions of those densities need to be distinguishable in the tails in one of the
following manners.
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4.2 A two-component mixture of location scale regressions

Condition 4.2.5. For large ¢ € R it holds ¢y, (t) # 0 and for all o > 0, we have

7ot
lim SOf(U )

=0.
t—oo @y, (1)

Condition 4.2.6. For large t € R it holds ¢y, (), ¢ (t) # 0 and for all o > 0, we have

er.(t)

=0 o (ot)

Further, we have that

7ot
1m£/):0, Vo<o' <o. (4.2.3)
t=o0 @ (o't)
Condition 4.2.7. For large ¢ € R it holds ¢y, (¢), ¢ (t) # 0, we have (4.2.3) and further,
there exists a o € (0, 00) such that

t (ot
lim (pf*():o, 0<o<op and lim(pf( ):0, g <o <.
t=00 @ 7(ot) t=oo @y, (t)
Moreover,
pr(oot)
=ce€ |0,00 1}.
A~ ey

Some typical examples of component densities fulfilling these conditions are given below.
Example 4.2.8.

(i) Condition 4.2.5 holds when f, ~ Laplace(u1,01) and f ~ N(ug,03), cf. Werner
(2015).

(ii) Condition 4.2.6 holds when f ~ t(v) and f. ~ N (u1,0%), cf. Werner (2015).
(iii) Condition 4.2.7 holds when f, ~ t(v), f ~ t(vy) for v # vg, cf. Werner (2015).

(iv) When both component densities are normals, none of the three conditions are
fulfilled. However, any centred normal density fulfils (I2) and (I3).

Admissible component densities f, are aggregated in the function class
6; ={f €& : (f, f) meets one of the Conditions 4.2.5 — 4.2.7} .

The second identifying assumption is as follows.

Assumption 4.2.9. The model parameter D = (Dus Oy f*)T € X and the known
component density f fulfil

(I1) 1. € R\{0}, p, € (0,1), 0. € (0,00),
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12) f €&,
(13) . eé&f.

Theorem 4.2.10 (Werner (2015)). Let Assumption 4.2.9 hold. If for any ¥ € X, we
have
fmix(y;'lg*) = fmix(y;ﬁ) f07” almost all Yy < Ra

then ¥ = U..

In order to prove this result, one examines (4.2.2) by dividing both sides by dominating
characteristic functions and letting t — oo. By using that sin is periodic, this allows for
assertions on the parameter. A full proof is given by Werner (2015) and can be found in
the appendix with some modifications, cf. Section A.4.

Remark 4.2.11. Note that in both identifiability results, the additional conditions need
only be imposed on the true parameter ¥, = (p«, 0, fi«, f )7, it is then identifiable within
the whole class of parameters X.

Both Theorems 4.2.4 and 4.2.10 directly give identifiability in the model with covariates.

Corollary 4.2.12. Let for all x € I the parameter 9,(z) and the component density f
fulfil either Assumption 4.2.3 or Assumption 4.2.9. If for any x € I, ¥ € X, we have

f3T§)(y|x) = fmix(y;ﬁ) for almost all y € R,

then V. (z) = 9.

Note that under the assumptions postulated in Corollary 4.2.12, we especially have
identifiability over any subset of X. That will be useful once we restrict the parameters
to a compact set.

4.2.2 Estimation

Let us construct a contrast function based on the component densities’ symmetry that
allows for minimization yielding an M-estimator for the parameter

0.(x) := (pu(),04(2), pu(x)) " € (1/2,1) x (0,00) x R\{0}

with f € & under the identifying Assumption 4.2.3.

For now, consider the model without covariates. To be specific, consider a random
variable Y with density

Faix(@92) = E22f (L) 4+ pofuly — ), yER,
where f, f, € £ and

0, = (pu, 0, p1x)T € (1/2,1) x (0,00) x R\{0}, ¥, = (67, f)T .
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4.2 A two-component mixture of location scale regressions

As f and f, are symmetric densities, their characteristic functions @7 and ¢y, are real-
valued. The characteristic function of the mixture fuix(+;9,) is given by

‘pfmix(-;ﬂ*)(t) =(1—p) ‘Pf(a*t) + p et TAGR
Now, as p.py. (t) is real-valued for all ¢t € R, so is
(<Pf,,,ix<-n9*>(t) — (1 —p.) pflo. t)) et (4.2.4)

Since @y, . (.0.)(t) €7 is the characteristic function of ¥ — p., we deduce for the
imaginary part of (4.2.4) that

0=3( (Prantea0) = (1= p) (o)) )
= By, {Sin (V= ) t)} + (1= pa) (0. t) sin(ty) (4.2.5)

for all t € R, where Ey, denotes the expectation with respect to the distribution Py, ,
which fulfils

Py, (Y € A) = /Afmix(y; U.)dy .
Define the function H : R x R x [0,1] x (0,00) x R — [—2, 2],
H(y,t,0) =sin ((y — p)t) + (1 —p) pj(ot) sin(ut) (4.2.6)
that has a contrast property as follows.

Proposition 4.2.13. Let f fulfil (I2) and a parameter 9, = (Piy O, 1, f*)T € X fulfil
(I1) and (I3). Then for 6 € [0,1] x (0,00) x R, we have

By [H(Y,t,0)] =0 VteR < 0= *z(p*,o*,u*)T

In order to lose dependence of H on t, we integrate H with respect to some strictly
positive density ¢ that is chosen a priori, giving the non-negative contrast

M(6;9,) = /]R Ey, [H*(Y,t,0)]q(t)dt, (4.2.7)

which adopts the contrast property from 6 — Ey_ [H(Y7 t, 9)] as g > 0.
Corollary 4.2.14. Let f fulfil (I12) and a parameter 0, = (p*,a*,u*,f*)T fulfil (I1)
and (I8). Then, the function M(-;9.) : [0,1] x (0,00) x R — [0,4] defined in (4.2.7) is

a discrepancy function, i.e. for 6 € [0,1] x (0,00) x R, we have

M(6;9.) =0 < 0=0.= (pe,0u, i)
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Let us reintroduce the covariates. The asymptotic contrast is now given by the function
M0, x;7) ::/IE7 [H*(Y,t,0)|X = z]q(t)dt - £*(z) , (4.2.8)
R

where once again E. denotes the expectation with respect to the distribution P, which
is defined in (4.1.2), i.e

B ((ViX) € 4) = [ Q0@ dma) . 1= (0.0.65°0)

In order to estimate the contrast M, we use an empirical U-statistic estimator localized
around z, i.e.

M (0,2 h) = Z /HY t,0)H (Yi,t,0)q(t) At Ky (X, — ) Kp(Xy — ) |
3’;,; (4.2.9)

where K : RY — R is a kernel, h € (0,00) is a bandwidth parameter. The contrast
functions M and M,, adopt smoothness from the function H whenever the kernel K and
the density ¢ are smooth.

Finally, our estimator 6, : I — R3 for the parameter function 0.(-) is proposed by the
minimizer of M, i.e.

0,,(2; h) € argmin M,, (0, z; h) , (4.2.10)
0co

which exists for example when © is compact since My, (-, x; h) is continuous.

4.2.3 Uniform rates of convergence

In order to achieve a setting in which the estimator 6,, defined in (4.2.10) estimates the
parameter functions p.(-), w«(+), o«(-) with non-parametric uniform convergence rates,
we need to make further assumptions on the model. We will only consider those models
in which the functions p.(-), p«(+), o«(-) and the covariate density ¢ are Holder-a-smooth
as defined in Section 2.4.

Let us denote the parameter space by © = U, x U, x U, C (1/2,1) x (0,00) x R\{0} for
some sets U, C (1/2,1), U, C (0,00), U, C R\{0} and the set of admissible parameter
functions by

A(a, LUy, Uy, Uy) = {0() = (p(-), (), u(-))" : T — ©|
p() € H(a,L, U,), u() € H(a, L,U,), o(-) € H(a, L, U,)}

for any «, L > 0. The set of admissible covariate densities is given by

L(o, L,Ug) = {l € H(a,L,Uy) : [¢(zx)dz =1}
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4.2 A two-component mixture of location scale regressions

for some Uy C (0, 00). Note that under these assumptions, for every 6(-) € A(a, L, U, Uy, U,)
and every = € I, the parameter 6(z) fulfils Assumption (I1).

Furthermore, we fix some family of component densities (f*).c; fulfilling certain smooth-
ness and shape conditions. The model parameters must come from the class

I'(a) == A, L,U,, Uy, Uy,) x L(cv, L, Up) % {(f:)xel} .

The following assumptions will ensure uniform consistency of én(, h.) with convergence
—a 1
rate (L) 2a+d for the bandwidth choice h,, = (loﬁ) 2atd

logn n

Assumption 4.2.15.

(R1) The sets I, Uy, U,, U,, Uy are compact cuboids or intervals containing open
subsets. For every x € I, the characteristic function ¢y of the density f; is

positive and for any y € R, we have f*(y) € H(«, L(y), U) for some integrable
and bounded function L(-) and some compact set U C [0, 00).

(R2) The known component density [ fulfils Assumption (I2) and the maps y — yf(y),
fand 9% are bounded as well as limjy|_, tdp7(t) = 0.

(R3) The kernel K : R — R is Lipschitz continuous with Lipschitz constant Lx > 0
and has support [—1, 1],

(R4) The kernel K is of order «, cf. Definition 2.5.1.
(R5) The probability density ¢ has a finite third absolute moment and is bounded.

Theorem 4.2.16. Under Assumption 4.2.15, given a compact cuboid J C int(I) con-
i "
taining an open subset, if we let h,, = (10%) 2e¥d the estimator 0,(+; hy,) has the uniform

1 saxd
convergence rate (25%)%*F e we have that

Zatd .
lim limsup sup P’v(( 1 ) sup ||0n (2; h) — 6. ()| > 77) =0.
zeJ

N0 nsoo yel(a) logn
The proof of this result can be found in Section 5.3.2.
Remark 4.2.17.

(i) We only stated results tailored to the identifiability Assumption 4.2.3. If one wishes
analogous results under Assumption 4.2.9, one chooses U, C (0,1) and modifies
the assumptions on the family of functions (f)er.

(ii) Ome can also formulate a non-parametric class containing a variety of families
of component densities (f),c; and inserting this class into I'(«). Assumptions
and notation become quite lengthy. Particularly, compactness of those classes can
become an intricate problem. As the unknown component density is not estimated
here, we refrain from pursuing this in detail. Considerations for the specific case
a <1 can be found in the appendix, cf. Section A.5.
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4.2.4 Uniform adaptive estimation

Once again, following the Lepski method for the gradients described in Section 3.1.1, we
propose an adaptive estimator for parameters coming from

A(a, LUy, Up, Uy) = | Ale, LU, Uy, Uy)
a€la,b]

for some known 0 < a < b < 00, i.e. for the case in which the true smoothness parameter
« is only known to come from an interval [a,b]. Note that L, U., U,, U,, O, I are
assumed not to differ for varying « and to have the same properties from the last section.
The equality in the display above follows directly from inclusion of the Holder classes as
described in Remark 2.4.5 (i). Particularly, the set of all model parameters is now given
by

I(a) = U Ia) .
a€la,b]

As in Section 3.1.1, define
Sn(eaxah) :aGMn(aamvh) ) 5(973377) :80M(9,1‘,’Y) 3

Bi :a+kb;[“, k=0,...,N, N=/[logn],
1 —a
o) = ()7 v =nte) = (ZE) T =, =)
Subsequently, define the adaptive data driven grid point by
by, = B,
where
k = max {0 <k<N: sup HS,L(G,;E;hk) — S0, x; hl)” <Creprt V0L L k} ,

zel,0€e0

where the Lepski constant Crep < 00 is to be chosen large enough. A specific lower
bound on the Lepski constant can be derived from the discussion in the previous chapter,
particularly Assumption (B7) and Lemma 3.2.9.

This construction yields the adaptive estimator

03P (z) = axgmin My, (0, ; hy) -
0cO

In order to make use of the highest possible smoothness order b, we need to assume the
kernel K to be of order b, cf. Definition 2.5.1. Therefore, we formulate the following
alteration of Assumption (R4).

Assumption 4.2.18.
(ﬁ4) The kernel K is of order b.

Now, we can state the main result.
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4.2 A two-component mixture of location scale regressions

Theorem 4.2.19. Let 0 < a < b < 0o, K be a kernel fulfilling Assumptions (R3) and
(R4). Then, under Assumptions (R1), (R2), (R5), for any compact cuboid J C int(I)
containing an open subset, there is a Crep > 0 so that

1200 oo aclab] vel(a) logn

Zard ~
lim limsup sup sup P, <(n) sup Hﬁf;dap(x) - 9*(1‘)H > n) =0.
xzeJ

In order to prove Theorems 4.2.16 and 4.2.19, it is enough to prove that conditions (]§1)—
(]~37) in the appendix hold, cf. Assumption A.2.2. This set of assumptions is equivalent
to Assumption 3.1.11 for identified models. A complete proof can be found in Section
5.3. An outline is given here.

Just like in the mixture of normal regressions model in Section 4.1, introduce some
bounded, convex and open set

O C = (1/2,1) x (0,00) x R\{0} with =c (1/2,1) x (0,00) x R\{0}.

(B1) is given by Assumption (R1) and Remark 2.4.5 (i) and (iv). Note that we use
the Holder norm || -[|,/2 once again. The latter part of (B1) is given by Remark 3.1.5 (i).

The continuity of M in (]§2) is given by the fact that the function H defined in (4.2.6)
is continuous and bounded, which allows for application of Lebesgue’s theorem. The
contrast property is given by Proposition 4.2.13 and the continuity of the parameter
function 0,(-) by the coordinates of 6,(-) being Holder-a-smooth.

In order to prove that the Hessian matrix of M evaluated at the true parameter 6, (z)

is positive definite, cf. (]?’)3)7 one uses that the function H is zero at the true parameter
so that the Hessian matrix V,, is of the form

Vi, (0-(2);) :2/ [89H(Yt 0.( ‘X _ xr [agH(Yt 0. ( ’X _ x} (t)dt - (z) .
When examining the equation system
0=0"V,(0(2);7)v, v=(vi,v2,03) €R?
one directly derives that for all t € R,
0 =viB, [0, H(Y.,6.(2)| X = o] + va, [0, 1 (¥:1,0.()) [ X = a]
0By [0, (Y:1,0. () | X = 2]

= — w1y (o-(@)t) sin (1 (2)1) + 02t (1 = pa () Do 7 (o (2)1) sin (pa (2)8) — v3tpe (@) (1)
(4.2.11)

The first and second summand in (4.2.11) are zero for ¢ € 72 Z so that vz = 0. Differ-
entiating the remaining summands in ¢ and examining the behav1our in a neighbourhood
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4 Applications

around 0 yields v; = vy = 0 as well.

In this model, the Lipschitz continuity of the Hessian matrix in (]§4) is a matter of
direct calculation.

In order to derive the uniform L? convergence rates in (]§5), the common technique of
decomposing the estimation error in squared bias and variance works. The bias term is
mainly handled by the convolution technique described in Lemma 3.2.1. The variance
term is treated directly by applying Theorem 3.2.7 for p = 2 to the gradients. The
conditions in the theorem are easily verified as H is smooth and bounded. Subsequently,
(B7) is directly given by Lemma 3.2.10.

As H is bounded, Theorem 3.2.7 applied to the contrast functions M,, yields that the
contrast’s uniform stochastic estimation error fulfils

sup  sup ]P&,(sup |My, (0, 5 hiy () — Eqy [ My (60, ;5 hn ()| = 77) =o(l), n>0
a€la,b] yeTl'(a) 0,x

by Markov’s inequality. A direct calculation gives that the bias converges to zero as well
so that the contrast M, is uniformly consistent. Hence, (B6) is fulfilled as well and
Theorems 3.1.6 and 3.1.13 yield the desired results.
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5 Proofs and auxiliary results

5.1 Proofs for Chapter 3

Proof of Theorem 3.1.2. Because of én(:c;'y) = argming M, (0, z;7) and M being con-
stant on &, we have for all, y € T, 0, (2;7) € &4,

0 < sup [M(én(w;’y),x;v) - M(9*($;7)7x;7)]

xzel

< sup [M(én(xw),xw) - M, (én(xw),xw)}

+ sup {Mn (O (7)), 257) — M (0. (257), 23 7)]

< supsup |M (0, x;y) — My (0, ;)| + sup {Mn (0u(2;7), 57) — M (0 (w; 7),56;7)}
0cO zel zel
<2supsup [M(0,z;7) — My (0, 2;7)] .
0cO zel

Fix € > 0. Because of () there is an n > 0 so that for any v € I, .(z;v) € &y, the
inequality

Sup [M(én(:v;v)w;v) - M(Q*(:E;v),x;v)] <n
implies

sup min ||f,(x:v) -0
zGII)Q*EGEWH n( 77) *

<e,
giving

{ii?eféléﬂw |6 (23 7) = 6.]| = 6} C{ sup [M(én(:c;v),x;v) - M(G*(x;v),x;v)} > n}

C{ supsup [M (0, z;v) — Myp(0,z;7)] > 77/2} :
0€O zel

Thus, by uniform consistency of the random functions M,,,

I P, ( in [[6u(zi7) —0.] 2 ) =0
Jm o (s, iy [nei ) =00 2

O

The general idea for the proof of Theorem 3.1.3 is similar to the one of van der Vaart
and Wellner (1996, Theorem 3.2.5) but the details are a bit more involved.
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5 Proofs and auxiliary results

Proof of Theorem 3.1.3. For everyn € Nz € I, v € I, we can define a disjoint partition
of O\&y;y by Ujey Sinary, Where

Sin :{9 ©:2"1 <r,. min |06, <2j}.
jnay € < Tnxy 9*216152;7 | | <
Let us define for any N,n € N, v € I the sets

Anpy = {rnﬂ ité}:}) e*rélériw ||én(x,7) - G*H > QN}

and show that limy o limsup,, , o sup. cr Py (Anny) = 0. In order to do that, we show
for any 1 > 0 the inequality

Py (ANny) < Z Pw(sup sup  min [Mn(e*,x;v) - Mn(ﬁ,x;v)} > 0)

i>N 2€I 0€ESjnapy 0+EGaiy
e (5.1.1)

+P, <2sup min Hén(x,w) —9*|| > 77) )

xel 0. [SICPY
Therefore, let

w e ﬂ {Sup sup min {Mn(ﬁ*,x;v) - Mn(97x57)] < 0}

J>N €I 0€Sjnay 0.€6:;

2j§777"n-,’v
N {28;;11)‘9*%%2W Hén(:c,fy) — 0] < 7)} . (5.1.2)

Then, for all j > N with 27 < nr, , and all z € I we have O, (2;7) (W) ¢ Sijnz~y because

A

0, (x;~) minimizes M, (-, z;). Hence, for all = € I, either

Ty, Iin Hén(x;'y)(w)—Q*

N-1 : ) . l
, 1nin <2 O Ty e*rgériw [0 (23 7) (w) = 6.]] > 2",

(5.1.3)

where 1, = max{j > N : 27 < nr, ,} if such an [, exists. The latter case needs to be
disproved. Therefore, assume that for some = € I, J > N with 27 > Ny, We have

Ty mén Hén(x,fy)(w) — 0. > 271,

0+ €S54
Then,

2771 < Tngy, Iélén ||§,L(x;7)(w) —0.]| <rnqym/2< 271,

* 5y

according to the right-hand side of (5.1.2), a contradiction. Hence,

s min (o)) =0 <277 < 2
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5.1 Proofs for Chapter 3

according to (5.1.3), giving w € A%, and via subadditivity we deduce (5.1.1). The
second summand on the right-hand side of (5.1.1) converges uniformly over all v € T to
zero for all n > 0 according to assumption (ii), i.e.

fim s P (2 min i)~ z0) =0, G
Hence, we only need to handle the first summand. Choose 1 > 0 so that (i) is fulfilled.
Then, because every 6. (z;v) € &, minimizes M (-, x;7), for any j > N so that 279 <
NTn.~, which is equivalent to 27 /r,, , < n and any v € I', we have

sup sup min {M(ﬁ*,x;’y) - M(@,x;’y)}
2€I €S nay 9+ EGain

= sup sup sup [M(G*(w;v),x;v) - M(G,xw)}
xzel se(gjfl/rnﬂgj/rn),y] *
= sup sup sup [M(é)*(x; V), x;y) — M(0, x; 7)]
&S (27'*1/7“”,4,,21'/7"71,,} zel «
2i=1\?
< sup —e2=—_C ( )
€€ (27_1/Tn,7,2j/rnw:| T,y

according to the first part of (i), where the suprema indexed with * are taken over
{peo:! , mén 0 —6.|| = e}. Now, the fact that M (-, z;) is constant on &, (5.1.1),
€6y

(5.1.4), the display above and Markov’s inequality give

lim limsupsup Py (Anny)
N—=oo nsoo yel

= lim limsupsup Pw(rn,ysup min ||9n(17;7)*9*
N—oo ns00 ~el z€l 0+€6a;y

>2")

< lim lim sup sup E Pv(sup sup  min [Mn(e*,x;’y) —Mn(G,x;fy)} > 0)
r
j>N

N—=oo poeo Y€ z€l 0€ESjnay 0+ €6 ,;y

QjS;I"‘n,'y
= lim limsupsup Pw(sup sup  min [Wn(é*,x;v)—Wn(H,x;y)
N—oo nyoo ~yell 4 2€I OESjpyy I+ €y
ji=zN
20 <nrp
+ M(0.wi7) — M(6,3:7)] > 0)
< lim limsupsup Pw(sup sup min |Wy(0«,x;7v) — Wi(0,z;7)|
N—oo nyoo ~er 4 2€I OESjpyqy I+ ECmiy
izN
20 <nrp

+sup sup min [M(G*,x;'y) — M (6, x;w)} > 0)

€I 0E€Sjppry 0+ ECaiy

922
SA}im lim sup sup Z Pv(sup sup  min |[Wy(0x,z5v) — Wa(0,z;7)| > Ch )

2
= posoo el J=N 2€I 0E€Sjppny O+ ECaiy

Tn,y
20 <nry
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5 Proofs and auxiliary results

2

T
< . . . n,y . . . o . . .
< JVleréo hﬂsolip g supl ,; e E, itggesg;gm O*Iélérzlw [Wa (0, 257) — Wi(8, 2;7)]

i>N ~YET  7Tn,y

(5.1.5)

We will use the second point in (i) in order to treat the limsup,,_,., term in (5.1.5)
for fixed N € N by Fatou’s lemma for the counting measure on {N,N +1,...}. To be
precise, we need to show that the summands in (5.1.5) are uniformly bounded in n > ng
by a function in j > N that is summable for some ng € N.

The second point in (i) gives

123
limsupsup sup ——="——E.|sup sup min |W,(0.,2;7) — W,(0,z;7)|| < Cs.
n—oo ~v€l ;=N ¢”(2j/r”17) R xeleeSjnm"*EGz;v| n( s Ly ) n( ) )|
27 <,,]
e S

In particular, for any x > 0, there is an ny € N so that for every v € ', n > ng, j > N
with 27 < nry, ,, we have

Co+k 27 r
E,|sup sup min |W,(8s,x;7v) — W,(6,z;7)]| < (C2 4+ 1)on (2 /rnr) .
€l 0€ES jnay 0.€60:y tn,'y

Hence, for every v € ', n > ng, j > N with 27 < N, the summands in (5.1.5) can be
treated by

2
rn, . . .
Crazi—z B [ SUP pup ,min (W (0, 57) = Wi (6, 257))
r2 C (27 /7,
< _Tnn (CotR)on@/raa) (5.1.6)
C122i-2 tn,~y
Since the function ¢, (-)/-* is decreasing, for any z > 1, y > 0, we have
On(20) < Only) so that ¢, (2y) < 2%n(y) -

As 27 > 1, this implies

r2 o (Cot W) 20u(Uras) _4(Catr) (1
0122j72tn7,y - Ol 22—« )

(5.1.6) <

which clearly is summable in j > N. Hence, we can apply Fatou’s lemma, so that for
some ~ independent of N, we have

(5.1.5)
r2 ~

< lim limsupsup 1 ,; — 2T . |sup sup min |[W,, (0., z;v) — Wa(0,z;y

N—>ooj>N n—oo el ﬁ:iﬂi <n(,22i—2 Y |:er 0€ S mns G*GGmW‘ n( ) n( )|

4(02 + K) 1 7
< li . =0.
_NE;I})O C4 22—«
=N
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5.1 Proofs for Chapter 3

Proofs for the uniform stochastic L”-errors

The first technical lemma gives a discretization method that will be used for deriving
uniform L*-errors.

Lemma 5.1.1. Let J C R? be a compact cuboid, © C R™ be compact and convex with
O = int(0), &, — 0 be a zero-sequence, T,, : © x I — R be functions. Then there are
nets O, x J, C © x J so that

sup inf ||z —y| < dp , sup inf |9 — 0| < 6, , #(0,, x J,) < Co y6,4™
z€J YEIn 9eco 0€Es,

where Cg  is independent of n. Furthermore,

sup |15, (0,2)|”
reJ,0€O

P p
§2p71 sup |Tn(071') - Tn(ﬁvy)> + 2p71( Sup |Tn('l9,1')|) ’
z,y€J,9,0€0 r€J,, €0,
le—yll, 19—0l1<én

Proof of Lemma 5.1.1. The set © x J is compact, hence totally bounded, so that for any
n € N there are finite sets J, C J,0,, C O so that

sup inf ||z —yl|| < én , sup inf ||[¢—0] <6
;ceIJ) ves l yll n ﬂeg 9€6., | | n
and we can choose O,, x J,, so that
#(On X Jn) < Co y6,7™

and Cg s is independent of n. That is because J is a cuboid and for © we can examine
a superset that is a compact cuboid. Since for any monotone and continuous function
0:A— R, where A C R is compact, we have

o(sup A) = sup ox) ,  olinf 4) = inf o(z)
z€A zEA

and because s — s” is monotone, convex and especially continuous on [0, c0), we achieve
the representation

sup |T(0,z)|°

z€eJ,0€0
P
—( s |T(6,2)])
zE€J,0€0
P
—( sw T@0 - sw L@+ sw Ty
z€eJ,0€0 yEJ,L,19€@n yEJ”,ﬂEQ,L
>0
P P
<2l swp L0 - s L@l +207 (s T@a)l)
z€J,0€0 yEJn, €O, reJ,, €0,

(5.1.7)
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5 Proofs and auxiliary results

The first summand of (5.1.7) is handled by the fact that the term’s base is non-negative,
that s — s” is monotone and that

sip [T,(0a)|~  sup  [Lu@y)l = sup [[Tu6,2) = sup  [Tu(0.y)]
reJ,0€0 YEJn, €O, r€J,0€0 YEJn, €O,

= su inf {Tn 0,x)| — |Tn(9, }
ZEJ,&@yeJmoeen‘ (0,2)] = [T (9, )]

< sup inf
2€J,0€0 YE€JIn,9€0,

[T.(60.2)| = [T2(0,)|

< inf  |Tw(0,7) — Tn(¥ ‘

7zeSJ],JepéeyeJir,lﬁe@n ( ’:C) ( »Y)

< sup inf Tn(e,x)an(ﬁyy)’
z€J,0€0

YEJIn,9€EO
lle—yll,[l9—6l1<én
< sup T (0, 2) — Tn (9, y)|
z,y€J,9,0€0©
lle—yll.|l9—6]<é5

by means of the reverse triangular inequality. O

Proof of Theorem 3.2.5. We will drop dependence of the bandwidth parameters on a and
n for convenience but only give a hint where it comes into play. Note that throughout
the proof, we will only use the notation a,, < b, if there is a constant C' > 0 and an
ng € N so that for all n > ng we have a,, < Cb,, and the constant depends only on I', C7,
Cy, Cry 7, |K||oos Li, p, I, ©, A or is universal. Also note that all calculations below

hold independently of v € T". Let us define
T,(0,z;h) :==M,(0,z;h) — E, [Mn(ﬂ, x; h)]
1 n
== > (Y, 0) K (X, = x) — By [7(Ye, 0) K (X — )] .
k=1

By using Lemma 5.1.1, for a sequence d,, — 0 specified later, there are nets ,, x J,, C
O x J so that

sup inf ||z —y| < dn , sup inf ||9—0| <, , #(0, x J,) < Co j6,47™ |

zeJ YEIn 9€0 0€6n

where Cg ;s is independent of n. We further achieve the representation

sup [ T(6,; h)|?
z€J,0€©

P
P
<or~1 sup |Tn(97$§h)_Tn(19yy;h)|> +2p_1( Jsug)e |T"(19’$;h)|) '
z,y€J,9,0€0 TEJn,VEO,
o2y D=6 <6

(5.1.8)

Let us treat the first summand of (5.1.8). By Jensen’s inequality for sums and mono-
tonicity and continuity of s — s on (0, 00), we deduce

p
E, |:( sup |Tn (0, 25 h) — T0 (9, v h)|> :|
z,y€J,9,0€0

lz—yll,|l9—6]<on
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5.1 Proofs for Chapter 3

)]

%Z ( (Yi,9) — T(Yk,e))Kh(Xk —x)

sup
xz,ycJ,9,0cO

lz—yll,I9-611 <5y

1 P
+]E sup — Yk, Kh Xk—x Kh Xk—y
K x,y€J,9,0€0 n Z: )~ ( ))
[lz—yll; |9 —0]|<én -

1
z,y€J,9,0€0 n P
lz=yll,19—0]<dn -

1
—|—IE7 sup —
z,yEJ,9,0€0 n

le—yll,[9-011<s,  *=1

+E, < sup EW[(T(Yk,ﬂ) = 7(Yk,0)) Kn (X 73:)} D”]

T

—_

{IE.,|:< sup ‘(T(Yk,ﬁ)—T(Yk,Q))Kh(Xk —x)’) ] (5.1.9)

by mESD,0€0
[lz=yll,19—01|<én

3

+E, [( sup |7(Ye, 0) (Kn(Xy — 2) — Kn(Xi —y)) |> } (5.1.10)

o, ©uESD.0€0
lle— yH [l9=6l1<én

P
v swp (]EW[’(T(Yhﬁ) — (%1, 0)) Kn(X: —;r)”) (5.1.11)
z,y€J,9,0€0
lz—yll,[[9—0[|<én

©,y€J,9,0€0
lle— yH [19=0]|<én

+  sup (]EW[|T(Y1,6)(K;L(X1 —2) = Kn(Xa y))”)p}. (5.1.12)

Again by Jensen’s inequality for sums,

(5.1.9) + (5.1.10)

SEv[iZ sup (1 (¥ ) — (32, 0) K (X~ o)

€J,9,0€0
e~ .7!|| l9—611<én

+E, EZ sup |7 (Y, 0) (K (X, — ) —Kh(Xk—y))lp]

z,y€J,9,0€0
Ulz—yll, 19611 <5,

z,y€J,9,0€0

=E, sup |(7(Y1,9) = 7(Y1,0)) Kn (X1 — x)|p] (5.1.13)
llz—yll,[19—0]| <6,

+E, { sup |7(Y1,0) (Kn(X1 — z) — Kn(X1 —y)) ﬂ : (5.1.14)
x,y€J,9,0€0
llz—yll,ll9—61<5n

By Jensen’s inequality, monotonicity and continuity of s +— s on (0,00) and (3.2.13),
we get

~ P
(:110) < (5.113) < K], [ sup 920,0.0) sup fw(ylx)dy:0<6")

d
0,6c0 ver,zel hr
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5 Proofs and auxiliary results

and additionally applying Lipschitz continuity of the kernel K and (3.2.12), we deduce

(5.1.12) < (5.1.14) <—" 4P~ L. C, = O(éﬂ)

— ho( d+1 hp(d+1)

This gives a bound for the discretizing error in (5.1.8), i.e

Now, let us focus on the discretized term sup,¢ ;. geco, |Tn(0,;h)| in (5.1.8). According
o (3.2.15), for any fixed 6, x, h, n, we have that

1
1 2 2logn . 1d
P’Y<|Tn(9>$§h)| >W< 0%:) ) <2exp | — W a1 .
n Oy + wCs (logn)2

P oP
S Tn(9,z;h)| — S T.00,y;h =0 —2—). 5.1.15
s [T - s [T (0 >|\] (hp(d+1)) (5.1.15)

w?logn

B 1
Oy +wCs (257)

=2exp

We will apply the estimate

E[|[W]7] < / pP T IP(IW] > w) dw < a” +/ p? T IP(IW] > w)dw, a>0
0

a

1
to W = sup,c ;. gco, |Tn(0,; h)|(%) 2 in order to obtain a bound on the remainder
n (5.1.8) as follows.

E, [ sup  |T,(0,z; h)|”]
zeJ,,0€0,

logn\ % < logn\ 3
< p p—1p ( T (0.2:h ( ) )d
<(loem) [+/ pr B (s (0] > () ) d

1 5 oo 1 N
<(Gnt)” [“”*/ p ™Y B (0] > (g ) ) dw]
“ z€Jn,0€0,
logn\ § , e [ W’ logn
S(nhd) a? +2Ceg j0,“ "p wP ™ exp | — - | dw
a oen \ 2
Oy +wCs (1257
logn 5 cdem [T 1 wlogn
<(=27) [aP+QO@,J6n p/a W texp (= SET ) dw (5.1.16)

1

for C,, Cl + 1 and n so large that (k’g") Cy < 1. Because then, for w € [a, 00),

1 3
Cow = Cé+w>01+w02 oen
nhd
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5.1 Proofs for Chapter 3

Note that there is some ng so that this holds uniformly over all « for n > nyg.

The integral on the right-hand side of (5.1.16) is handled by the representation for the
incomplete rho integral, i.e.

e’} J
/ w! exp(—w) dw = j!exp(— Z% jeEN, a>0.
a k:

Deduce that for j = [p — 1], a > 1, n so large that logn > C,, we have
e 1 < 1
/a wPtexp (— wgfn) dw S/a w’ exp ( — wgfn) dw
Ca j+1 S )
S( ) / w’ exp(—w) dw
logn alogn

C, ' alogn) <& (alogn)k
() (- 22) £
ogn

=0
c, V' (logn)? _ .
a | ]7 -
<(logn) G+ Dla i n T
J(q | a
<Mn*m 7
ogn
where the last inequality holds because & = %ia and C1 + a < 2max{Cy,1}a. By

choosing &, =n"°/2, a = 5(d + m) max{C1, 1} and using

or _n_5”/2 < logn 5 1 < logn 1 < logn 5
B+ — pld+Dp ~ \ hd " n2ehd+2)p/2 ~ \ T pd " n2eh2de ~ \ ppd ’

(5.1.17)

W

we deduce

EW[ sup |Tn(9,m;h)|p}
z€J,0€0

5° logn\% C.a’Ce,s(j+1)! flogn
<0( g )+ (i) s G )
_O<h(d+1)p> ta nhd + logn nhd

~o((222)").

concluding the proof.

L
2

—d—m PR« —
) n 2max{Cy,1}

O

Proof of Theorem 3.2.7. We will drop dependence of the bandwidth parameters on «
and n for convenience but only give a hint where it comes into play. Note that through-
out the proof, we will only use the notation a,, < b, if there is a constant C > 0 and an

~
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5 Proofs and auxiliary results

ng € N so that for all n > ng we have a,, < Cb,, and the constant depends only on ||7]| s,
L, |K||oos Lk, p, J, ©, ', A or is universal. Also note that once again all calculations
below hold independently of v € I'.

Let us decompose the centred process M,, — E,[M,,] into a canonical U-statistic and a
linear process as described in (3.2.6)-(3.2.10). For any fixed = € J,0 € © write

M, (0,z;h) —E,[M,(6,x; h)] Zk,ﬂ,x;h)

n—l

-
M:

_|_

S

z": [ (Z;,0,z;h) — [un(Zl,Zz,Q,x;h)H

=:THO,x;h) +T2(0,2;h) ,
where for 2z = (z1,20)7y = (y1,y2)T € R x J,

Un(z,y,0,2;h) :=un(2,y,0,2;h) —uy(z,0,z;h) — u)(y,0,z;h)
+E,[un(Zy1, Z2,0,2;h)] ,
un(z,y,0,2;h) :=7(21,91,0)Kn(22 — ) Kn(y2 — ) ,
uh (2,0, 33 h) =By [un(Z1, 2,0, 25 h)] = By [7(21, Y1, 0) Kp (X1 — 2)] - Kp(22 — @) .

Since s +— s” is convex, we have

|Mn(t9,a:; h) — EW[M,L(O,x;h)Hp < ‘Tﬁ(@,x; h) + T2(0, x; h)|p
1 1 P
<2 §T1(9,x; h) + §T3(0,a:; h)

n

)

=2

(QTg(e @i h) + 2T2(9 z; h)) ’

)

<2

Lt . Lo : 8
(51746, )|+ 5 |T2(6,:m))
§29_1(|T$(9,x;h)|” + |T3(9,x;h)\p> . (5.1.18)

The linear error process T2 in (5.1.18) can be directly treated by Theorem 3.2.5. Note
that (3.2.13) and (3.2.14) are given by Lipschitz continuity of 7. Moreover, (3.2.12) is
given by boundedness of 7, and (3.2.15) is given by Bernstein’s inequality, cf. Lemma
3.2.2.

Let us deal with the term T} in (5.1.18). By using Lemma 5.1.1, for a sequence &,, — 0
specified later, there are nets ©,, X J,, C © x J so that

sup mf |z =yl < 6n , sup inf ||9—0| <6, , #(0, x J,) < C@7J5;d7m ,
zeJ YEJ, 9€0 €0

84



5.1 Proofs for Chapter 3

where Cg ; is independent of n. We further achieve the representation

sup T, (6, x;h)|?
zeJ,0€O

P
P
gzpl( sup T,tw,x;h)Tm,y;hn) +27 (s (mi@mn))”
xz,yeJ,9,0€O x ns On
ool 106l <o
(5.1.19)

The first summand in (5.1.19) is treated by applying Jensen’s inequality for sums, yielding

P
E, [( sup T (0,23 h) — T, (9, h)) }
z,yeJ,9,0€0
lle—yll,[19—6]| <6

n P
_ 1
<3 1]&[( sup ‘n(nl) Zun(Zj7Zk,97x;h)_un(Zj7Zk7'l97y;h)‘> ]

z,yeJ,9,0€0 k=1
- _ol< ik=
o=yl 19611 <5n ot

n P
+3”1Ewl< sup ‘ZZUZ(Zj»ﬁ,x;h)—uZ(Zjﬁ,y;h)D ]

xz,y€J,9,0€0 i—1
le—yll,|9=0[|<5n 7=

p
+391E7l( sup ‘Ev[un(ZhZL@,x;h)—un(Z1,Zz,197y;h)]‘> ‘|

©,y€J, 9,060
le—yll,|9=0[|<5n

Ce—q, TYEJV,0€0
T =yl 190l <on

n P
-1 1 . .
<3 EKW_D > sup |un(Zj,Zk,0,x,h)—un<Zj,Zk,ﬁ,y,h)|> ]

(5.1.20)
2 n P
+377 B (2> suwp [un(Z5,0,h) — un(Z,0,y; h)| (5.1.21)
n 1 ®WEJV,0€0
=0 le—yll I19-0]1<én
P
+3°7! sup E, [un(ZhZz,H,x;h) — un(Zth,ﬁ,y;h)] . (5.1.22)
x,y€J,9,0€0
le—yll,[[9—0]|<dn

Let us bound the occurring summands directly. The summands of the term (5.1.20) are
bounded by

sup
z,y€J,9,0€0
lz—yll,[19—-0]<dn

(Y5, Yy, ) - (Kh(Xj — ) Kp(Xy — 2) = Kp(Xj — y) Kp(Xy — y)) ’

+ sup
xz,ycJ,9,0cO
lz—yll;l19—01<dn

b

(7Y, Vi 9) = 75, Y5 0)] - K (X = ) Kn (X — 1)

of which the first factor in the first summand is bounded by ||7||». The first kernel terms
are handled by the equality ab—cd = ab— ac+ac— cd, ||[Kplloo = ||K||so 7 and the fact
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5 Proofs and auxiliary results

that K is Lipschitz continuous, i.e.

1 9,
sup  |Kp(Xj —2) = Kn(X; —y)| < L3 -+,
zyed he h
lz—yll<én
yielding
sup |7(Y5, Vi, 9) - (Kn(X; — 2) Kn(Xy — @) — Kn(X; — y) Kn(Xy, — )|

xz,y€J,9,0€0
Hmf?f”v”ﬂfellgén

on

§2HT||00LK||K||OOW .

By using the Lipschitz continuity of 7 in its third argument, we derive for the second
summand that

Sup HT(E’Ykaﬁ)—T(Yj»Ykﬁ)} Kn (X5 — 9) Kn(Xi —y)
z,y€J,¥,0€0
lz—yll,|[9—-0]I<sx

On
S Lron sup  [K(X; = y) Kn(Xi = y)| < LK% 555 -
@,y
lz—yl<én
Hence,
- On 2 0\ o
(5120) S 3 2HT||OOLK||K||Othd+1 +LT||K||ooh2d ~ h(2d+1)p N

Using similar arguments, we observe that the summands of (5.1.21) are bounded by

sup un(Z;,0,2; h) —u:‘L(Zj,97m;h)|

®,y€J,0,0€0
llz—yll:19—0<én

+ sup |u;kL(Zj>07x;h) 7“;(Zj’07y;h)|
x,y€J,9,0€0
lle—=yll,[19—0]<dn

< swp \Ei [(T(Y,Y1,9) = 7(Y, Y1,0)) Kn(X — 2)] Kn (X1 — 2)
o961l <6

+ s B[ Y, 0) (Ku(X - 2)Ku(X1 - 2) — Kn(X — ) Ka(X1 — )] |
z,y€J,9,0cO
llz—yll:19=01[<én

< IElloo Lrlly loodn  ITlloollslloo Licdn  ITlloo Il K115 Lic O
- hd h2d h2d+1 ’

where we used the notation

EZ[f(Y, 1, X, X))] = / / F i, X0) £y (yle) by () dy da
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5.1 Proofs for Chapter 3

Thus, we conclude (5.1.21) < o

n
N p@athe

The term (5.1.22) is bounded by (5.1.20) according to Jensen’s inequality, i.e.

(5.1.22)
1 - ’
=31 sup e By \un(Zj, Z, 9, x; h) — un(Zj, Zy, 0, y; h
( it U n(n—l) Z| v[ ( J ) ( J Y )H
le—yll, 19011 <5n iy

ik

- P
- 1
<3 M E, | —— su Un(Zj, Zr, 9,23 h) — un(Zj, Zi, 0,95 h
< ( Wln(n—l) Z sk N |un(Z;, Z ) (Z;, Zy.,0,y; 1) >
h)

- P
- 1
<3, R i su Un(Z;, Z, 9, x;h) —un(Z;, Zx, 0, y;
< Wl(n(n—l) Z z,yeJ,f,ee@ |un(Z;, Zi ) (Z;, Zi, 0,y |> ]

T eyl l0—6l<én

T eyl l0—6l<én

=(5.1.20) .

This finally gives a bound on the discretization error in (5.1.19), i.e.

P KY4
E 2p1< sup |TY(9,z:h)|— sup |THO,y;h )}g"
e (s imoani= s i) | S
Now, let us focus on the discrete error sup,¢ s gee. |Tn(0,x;h)|?. First we notice that
TY(0,2;h) is a canonical U-Statistic in Zy, ..., Z, because U, is symmetric in its first
two arguments. In order to bound the error

sup |TT}(9, x;h)|,
z€J,,0€0,

we will need to examine the tail behaviour of [T} (6, x; h)|, which can be done by means of

the Bernstein-type inequality for canonical U-statistics introduced by Giné et al. (2000),

given in Lemma 3.2.4. In order to derive the terms A, B, C' described in (3.2.2), we first

observe that when taking the expectation of a term involving a random K} term, we
lose one factor % by integration, e.g.

E, [[Kn(X1 = 2)[] <14;]ls
1 1
B, (K30~ 2)] <palltle [ K2 S 5

This yields

K2 1
A= Ualle S Tunlloe < 7l o 5 1o
B2 :nHE’Y [U"QL(ZI’ ',(9,37; h)] Hoo 'S nHEV [Ui(Zl, ~,6,.’17;h)] Hoo ~ % '

The same arguments apply to C2, giving

C? =n(n - 1)E,[UX(Z1, Za,0,z; )]
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—n(n—1) (EW[uZ(Zl, Zo. 0,23 1)] + A B [un (Z1, Zo, 0, 23 W)U’ (21,0, 2 )]
+ 4 (By[un(Z1, 22,0, 2 1)))* + 4By [ul (21,60, 23 1)
4B, [u;, (21,60, 05 W), (Za, 0,23 )

7’L2

Sn(n = DE,[|un(Z1, Zo, 0,23 h) || unlloe S -

Now, the Bernstein-type inequality given in Lemma 3.2.4 and the monotonicity of exp
give for any fixed 6, x, h, v and any w > 0,

P, (T (0,25 h)| > w)
Z Un(Z;, Zk, 9, x; h)’ > n(n — 1)w>

i#k

gTexp(—T_lmin{n(ng«l)w’ (n(nt—?l)w>§’ gw)é})

1 1
— nhdw) Twepo,) + T exp ( — Tnh”lwé ) Loet,00)

where T" > 0 is a universal constant. We will apply the estimate

[e.e] (oo}
E[|[W|7] < / pwP T IP(IW] > w) dw < a” +/ p? T IP(IW] > w)dw, a>0
0

a

1
T, z;h)| (ﬁgi) % in order to obtain an estimate of the remainder

to W =sup,c; oco,
by
E,

sup |T;<e,x;h>|ﬂ
z€J,,0€0,

logny [ o
S(nhd)Q a”—&-/a pw’ 1]Ph,( sup  |TL(0,2;h)| >
n

TE€Jn,0€O,

(S )
< (o) :ap +/aoo p ™3 B (1T h) > (t;;)éw) dw]

z€J,,0€O,

logny\ 5[ aem 1 ,/logny3
g(nhd> _QP+C@)J6,,L /a pw’ Texp<ffnh(nhd> w)]lwe[o,("hd)l/2)dw

Togn

& 1 logn\1 1
—d—m p—1 - d 5
+ Ce,j9,, /a pw Texp( Tnh (nhd ) wz>lwe[("hd)l/2,oo) dw

Tog
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5.1 Proofs for Chapter 3

max { (f(’)gi ) Lz }

logn\ % Cdem ) 1
S ( nhd ) {ap + Co, 9, /a pw?” T exp ( -7 log(n)w> dw
cdem [T _ 1 1
+ Co,s6,* s { (g{;‘i)l/2,a} pw” T exp ( -7 log(n)w?) dw] ) (5.1.23)

where we used

Y logn %_ nhd %10 n Y logn %_ nh %10 n
nhd ~ \logn S nhd ~ \logn &

and the fact that sup, n,iogég)d — 0 implies inf, nh,(a)? > logn for large enough n.

The integrals on the right-hand side of (5.1.23) are handled by the representation for the
incomplete rho integral, i.e. for I € N,a > 0

l
a

/ w'exp(—w) dw = Il exp(— k' .
For a choice of a > 1 that will be specified later on and [ := [p—17, this and a substitution
yield

pw” ' Texp (— T 'log(n)w) dw

max { (5) "0}
J

< / pw' T exp (- 7! log(n)w) dw
a

Tl+2 ee] . )
zpi/ w'exp ( —w)dw
log(n)l“ T—1log(n)a (
T2 (T log(n)a)” B
:plog(n)l'H i ( Kl > ~exp(—T"" log(n)a)
—T 'a
on
logn
By using the transformation w — W we get

oo

e (2

/max{(

o { (2

pwP T exp (- 7! log(n)w%) dw

7)*al

)}
207243 )

W
)% a% }T*l logn (IOg n)2l+2

M‘H

pw' T exp (-1t log(n)w%) dw

exp ( — w) dw
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k
9pT2+3 241 (max{(logn)%,a%}T_llogn)
= (log n)2+2 (20 +1)! Z K
k=0

a1
-exp(—max{(nh ) 7a;}T_llogn>
logn

< 1 L PR, =T,
~logn "
sne

)

1
) 1, a%} converges to oo so that the last bound holds for any ¢ > 0.

where b,, = max { (logn

—1

By choosing 6, = n T , a > 1 so large that independently of «,

P
0P T 1ap logn \?2
n - - —(2d+1)p <
By () 24100 n=awm hy(a) N <nhn(a)> ;

¢ > T~ 1a and using that sup,, né’jﬁ% — 0 implies sup,, W < &, we get
4 logn\ % logn\ 3 n-T 'a :
E x| < ey + (G )+ () 0™ -
i, 5 1@ el S ez, + U )+ () 0" (Togn 17
(ogn)% (logn>§ 1
nhd logn

COR

concluding the considerations of sup,¢ ;gee [Th (6, 2; h)|?.

A

A

O
Proofs for Section 3.2.3
Proof of Lemma 3.2.9. We have to show that for any Crep, > C_, we have
limsup sup sup sup n“(CLEP)ﬁU < 00
n—0o0 a€fa,b] vel'(a) 0<I<j<k,(x)
with
oy =By sup (T8, )]| > (Crep)r)
zeJ,0e
:1}»7( sup || T (0, x: )| > w(C’Lep)hl“’> : (5.1.24)

z€J,0€0

where for abbreviation, we define the function  : [cfl(CQ +1),00) = [1,00), ¥(ClLep) :=
¢1CLep — c2 and note that ¢ grows linearly in Cpep.
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We will deal with the term (5.1.24) by using a discretization approach similar to the one
in the proof of Theorem 3.2.5. According to Lemma 5.1.1 with p = 1, for any sequence
dn — 0, there are nets ©,, x J, C © x J with

sup inf ||z —y| < 6n , sup inf |9 —0| < 6, , #(0, x Jp) < C’@J(Y;dfm ,
zeJYEIn 9e0 0€0,

where Cg s is independent of n. Furthermore, for any h > 0,

sup || T (6, z; h)||
z€J,0€0
< s |Tu@ash) - T@yh) + swp |[Tu(0a3h)] (5.1.25)
z,y€J,9,0€0 z€Jn,0€0,
le—yll,[9—0l|<dn
The sequence d,, will be specified later on in order to balance convergence rates. Now
we may handle (5.1.24) by

Py( sup IT(O.i k)| > (Crop)hi")

z€eJ,0€0
gPV( sup HTn(97x;hj)||>¢(CLep)hla’/2) (5.1.26)
zeJ,,0€EO,
m( sup ||Tn<e,x;hj>an,y;hm>w<chp>h;”/2> (5.1.27)
z,y€J,9,0€0
el 19-0l1<s.

according to (5.1.25). The term (5.1.26) can by handled by (3.2.15), i.e.

Po(  sup Tu(0.3h)| > (Crep)h /2)
z€J,,0€EO,

< Y Py(ITn(0, 35 k)] > (Crep)hi /2)

z€J,,0€0,

(5.1.28)

|1 03 (Chep) b )
4 C'1 + C2w(CLep)h;ll

Now, by using C1 + C21p(CLep) < 2max{C1, C2}9(CLep), SUPaea b men hla) < 1, hy =
1
(1"%) 2t and the fact that h; > hy, we deduce

<Co, 0, ™2exp (

(Crep)hi*nhd
8 maX{Cl s CQ}

Q/J(CLep)nthaﬁd
8 maX{C’l y CQ}

(5.1.28) <Ceo, 10, " ™2 exp ( —

SC@,J(S;d_m2 exp ( —

¥(CLep)

=2Cg, 70, 9™ n~ Smax(c1.67 (5.1.29)

The term (5.1.27) is handled by arguments similar to the ones found in the proof of
Theorem 3.2.5. Using Markov’s inequality, h; > h; and the arguments used to treat
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(5.1.9)-(5.1.12) for p = 1 that showed that the expectation in the following display is
O((thj_d_l), we deduce that there is a constant C' so that

lim sup sup 6;1h;’l+d+1m( sup | T(8, 25 h3) — T (9,3 hy)|| > ¥(CLep)hi! /2)
n—oo * z,y€J,9,0€0©
lz=yll,[[9—0l|<dn

sup HTn(O,x;hj) —Tn(9,y; hj)“ <C<oo, (5.1.30)
z,y€J,9,0€0
le—yll,[|9=0l|<én

20, LAt
< lim sup sup ———2—
- n~><x>p *p w(CLeP) K |:

where the suprema are taken over a € [a,b], v € T'(a), 0 <1 < j < ky(a). Combining
(5.1.29) and (5.1.30) yields

limsup sup sup sup n“(CLCP);ﬁlj
n—o0  a€la,b] yel(a) 0<I<j<ky (o)
__ ¥(CLep)
<limsup sup sup 2Cg jn"(Crer)§d=my~ FmaTor oo (5.1.31)
n—00 a€la,b] 7€l ()
+ limsup sup sup sup Cn“(CLeP)énhfa17d71 , (5.1.32)
n—00  a€la,b] yET (ar) 0<I< <k (o)
which will be finite by choosing
¥ (Crep) c1CLep —¢2
5n — 5n(CLep) = 16max{C1,Ca}(d+m) = g 16max{C1,Ca}(d+m) |

In order to treat (5.1.31), we see that

w(CLep)
log,, (n"(CLep)égd_mn_ §max{C1,C2} )

_ c1CLep — C2 n €1C0Lep —c2 1CLep — €2
32max{Cy,Co}(d+m) 16max{Ci,C2} 8max{Cy,Cs}
(Q(d +m) — 1) . (Cchcp — cz)
32max{C1, Ca}(d +m)
(2(d+ m) — 1) . (ch_ — 02)
= 32max{Cy,Co}(d+ m)
<1

because

32max{Cy,Co}(d +m)
2(d+m)—1

C_ 201_1 co +

Hence, for all Crep, > C_, we have

% (CLep)
(5.1.31) =limsup sup sup 2C97Jn“(CLep)égd*mnfsmax{Cf%}
n—00  a€la,b] yel(e)

<limsupn~!' =0.
n—oo
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Ad (5.1.32). Because

a21+{f:11
ay btdt1
—ay—d—1 __ n

h, = (logn Snozedd

we have
logn (nu(CLop)(thl—az—d—l)
€1CLep — 2 _ c1CLep — C2 n b+d+1
~ 32max{C1,C2}(d+m) 16 max{Cy,Co}(d+m) 2a+d
CICLep_CQ b+d+1
= - +
32max{Cy,Co}(d +m) 2a +d
caC_ —c +b+d+1
—  32max{C,C2}(d+ m) 2a +d
< -1
because

b+d+1

C_ch_l{@—i_( 2a + d

+ 1) 32max{Cy,Ca}(d +m)

Hence, for all Cr,ep > C_, we have
(5.1.32) =limsup sup sup sup én“(CLep)énhl_al_d_l
n—o0  a€la,b] yel(a) 0<I<j<ky(a)

<limsupn~! =0,
n—oo

concluding the proof.
O

Proof of Lemma 3.2.10. The general scheme of this proof coincides with the one of
Lemma, 3.2.9. We have to prove that for any Cre, > C_, we have

limsup sup sup sup n"(CL“")ﬁlj < 00,
n—o0  a€la,b] yel(a) 0<I<j<ky(a)

where

By =Py sup Ta(0,5hy)] > U(Crap)re) |
z€J,0€0

where for abbreviation, we define the function 1 : [¢; ! (5 +4),00) — [4,00), ¥(CLep) :=
¢1CLep — €2 and note that v grows linearly in Crep. Let us use the decomposition of the

process T}, into a canonical U-statistic 7! and a linear process T2 as described in (3.2.6)
- (3.2.10), i.e.

T(0, 25 h) =T, (0,2 h) + T (0, 3 h)
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1
- (2,2
n(n—1) ;1[] 321, 0,3 k)
Jj#k
+ = Zu (Z;,0,2;h) — By [un(Z1, Z2,0,x;h)] ,

where for z = (z1,20)7,y = (y1,y)T € R x J

Un(z,y,0,2;h) =un(z,y,0,2;h) —u)(2,0,z;h) —u) (y,0,z; h)
+E,[un(Z1,Z2,0,z; k)],
Un(2,y,0,2;h) =007(21,y1,0) Kn(22 — ) Kp(y2 — ) ,
un(z,0,z;h) =Ey[un(Z1,2,0,2;h)] = E, [897'(21, Y1,0)Kp (X, — x)} - Kp(zg — ).

This decomposition yields

Py =By sup |T,(0,2:h)] > ¥(Crep)ry)

z€eJ,0€0

<P, ( sup |TH0 2l > ¥(Crep)ri/2)

zeJ,0€0

+ 2y sup (0,03 h5)]) > $(Crep)ri/2)
x€J,0cO

=: Pl + Py, - (5.1.33)

The assumptions of Theorem 3.2.7 imply all assumptions of Theorem 3.2.5 for the linear
process T2, particularly the exponential deviation inequality

9 t2nhd

so that Lemma 3.2.9 with ¢; = & /2, co = /2 gives

nu(CLep)ﬁz

limsup sup sup sup i < 00.

n—o0o  aela,b] el (o) 0<I<j<kn(a)

We will deal with the term ﬁllj defined in (5.1.33) by using a discretization approach once
again. According to Lemma 5.1.1 with p = 1, for any sequence d,, — 0, there are nets
0, x J, C © x J with

sup 1nf lz =yl < dn, sup inf || —6] < d, , #(0, x J,) < Co s6,4™
zeJ YEJ 9eo 00,

where Cg s is independent of n. Furthermore, for any h > 0,

sup ||T,1(9,ac;h)\|

z€J,0€0
< s ITOmh-T@uhl+ s TGz (5.1.31)
z,yeJ,9,0cO z€Jp,0€0,

le=yll,[19=0]|<én
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The sequence d,, will be specified later on in order to balance convergence rates. Now
we may handle pj; by

By sup T30 2| > 0(Crep)h/2)

zeJ,0e
<Py sup  ITH0 2 k)l > @(Crep)hi" /4) (5.1.35)
x€J,,0€0,
+Pw< sup T;w,x;hj)—Tsw,y;hj)||>w<cLep>h?l/4> (5.1.36)
xz,yeJ,9,0€©

lz—yll,|9—0]|<5n

according to (5.1.34). The term (5.1.35) can by handled by Bernstein’s inequality for
U-statistics, cf. Lemma 3.2.4, just like we did in the proof of Theorem 3.2.7 and the fact
that h; > hy, i.e.

Py sup ITEHO ) > U(Crop) g /4)
2E€Jn,0€0,

< Y B (ITh(0, 25 hy)] > ¢(Crep)hi /4)

z€J,,0€0,

< Y P(Uu(Z1, Z2, 0,25 05)|| > n(n — 1)¢(CLep) by /4)
zeJ,,0€OQ,

<Ce,J5Ed_m{TeXP ( - T_lnhfw(CLep)h?l/‘l) Ly(Crop)nct jac(0,1)

+ Texp (= T 0k U(Crep) b /4) Ly ey /46[1,00)}

SCe,J5ndm{T exp ( - Tflnw(CLep)hfﬁd/‘l) L y(Crep)n?t jac(0,1)

_ ap/2+d
+ T exp ( — T '/ Y(Crep)h; 1/2+ /2) ]lw(CLep)h;ll/4e[1yoo)} . (5.1.37)

1
By using h; = (10%) ZouFd we get that

1 =i 1
nh/2TE > ppeitd :n(ﬂ) ke S NOBR o0

n

yielding
(5.1.37) <Ce 416, %™ (nT‘lw(Cch)M 4T /¢(Cch)/2)

<2Ce ;T84 =T V¥ (Cren)/2 (5.1.38)

because ¢(Crep) > 4. The term (5.1.36) is handled by arguments similar to the ones
found in the proof of Theorem 3.2.7. Using Markov’s inequality, h; > h; and the argu-
ments used to treat (5.1.20) - (5.1.22) for p = 1 that showed that the expectation in the
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following display is O((thj_zd_l)7 we deduce that there is a constant C' so that

lim sup sup 6;1hf"+2d+1P7 sup HT& (0,5 hy) — T (9, y; hy) || > w(CLCp)hf”/éL)
n—o00 * z,y€J,9,0€EO
lz—yll,[[9—0[|<én

48, 'R ~
<limsup sup ——2—E,, sup HT&(O,x;hj)—Tﬁ(ﬂ,y;hj)H <C< oo,
n—oo * ,lp(OLeP) xz,y€J,9,0€0
lz—yll,[9—-0]<én
(5.1.39)

where the suprema are taken over «a € [a,b], v € T'(a), 0 <1 < j < k,(a).

Combining (5.1.38) and (5.1.39) yields

limsup sup sup sup n“(CLeP)ﬁllj
n—00  a€la,b] yEN (o) 0<I< s <k ()
<limsup sup sup 2Cg ;T n“(CLep)égd_mn_Tﬂ\/w(CLep)/2 (5.1.40)

n—oo  a€la,b] yel'(a)

+ limsup sup sup sup én“(CLCP)énhI_al_Qd_l, (5.1.41)
n—oo agla,b] vEr (@) 0<I<j <kn(a)

which will be finite by choosing

T~ /9 (CrLep) 71 [e1CLep—c2

8n =00 (CLep) =n~ 3@ =p 1@
In order to treat (5.1.40), we see that
log,, (n“(CLCP)égd*mn*T_lm/ﬂ
IV (Ce) T‘l\/@ - T‘l\/@

~  8(d+m)
2 +m) - )T /Y (Crep)
8(d +m)
- (2(d+m)—1)T1\/6,C- — &
- 8(d+m)
<—-1

because

c_>é! {&2 + T%M)Q} .

Hence, for all Cr,cp > C_, we have

(5.1.40) = limsup sup sup 2Ce jT n“(CLeP)(5;‘1_’”71_T71 V¥(CLep)/2

n—oo  a€la,b] yel'(a)
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< lim sup nl=0
n—oo

Ad (5.1.41). Because

a;+2d+1
hfa172d71 _ n 2o +d < nb;rji:] 7
! logn -
we have
logn (nu(Cch)énhl_al_Qd—l)
< TVP(Cep)  T71/P(Crep) | b+2d+1
—  8(d+m) 4(d+m) 2a+d
_ T_l 1p(C’Lep) + b + 2d+ 1
N 8(d+m) 2a+d
< T-'/&6C_—é  b+2d+1
- 8(d+m) 2a+d
< -1
because

2d + 1 2
c >t 52+64T2(d+m)2(%+1> } .

Hence, for all Crep > C_, we have
(5.1.41) = limsup sup sup sup én“(CL"p)(thl_“l_M_l
n—00  a€la,b] vET (@) 0<I<j<ky (a)

< limsupnf1 =0,
n— o0

concluding the proof.

O

5.2 Proofs for Section 4.1
5.2.1 Proofs for the identifiability results
Proof of Theorem 4.1.2. Assume there is another representation

v

FCle) =Y M@)o (- [ro(@),02(x)) , €0

v=1

with m > V > 2, continuous functions Aq,..., Ay > 0 and differentiable functions

Vl,...,l/v,él,...,(S\/.
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Let
S:={z € 0: (pe(2),0c(z)) = (e (2

ow(x)) , for some ¢ # '} .

),
First of all, for any u € O with (uc(u), oc(u)) # (per(u), 0o (w)) for all e, ¢ € {1,...,m},
¢ # ¢, Teicher (1963, Proposition 1) gives m = V and a permutation 7, so that

Aru(e) (W) = me(w) s e (W) = pe(u) , Or, o) (1) = 0c(u) -

Fix some = € S°. By continuity of the parameter curves p., o. and S¢ being open, there
is a neighbourhood U C 5S¢ of = so that for all u,u’ € U, ¢, € {1,...,m}, c £

(NC(U)»UC(U)) i (uc/(u’),ac/(u’)) .
Hence, 7, = 7, for all w € U by continuity of the v, and 6., c=1,...,m. As S is open,

we get that for every connected component U’ of S¢ there is a permutation 7 fulfilling
(4.1.1) for all w € U’

Now, fix any z € S. There is some r € {1,...,(m —1)!} and ¢; # ¢}, ..., ¢, # ¢ so that
for any j € {1,...,r}

(tte, (2), 0c,(2)) = (ptes (2), 001 (2)) , DY (x) := D (2) <d — 1
and that for all other pairs ¢ # ¢/, we have
(pe(x),00(2)) # (e (2), 00 (x)) , (5.2.1)
where
D% () := max {k c{l,...,d}3z1,...,2 € R ||zi]| = 1, 2 linearly independent :

Vi€ {1, ..k} 0 pie(2) = 0oy pir () , 02, 00(2) = Oy, 000 (x)} .

Accordlng to our assumptions, for any j € {1 ,7} there are linearly independent
vectors 1, ..., o7, () SO that for all s € {1,. DJ( )}

axi (/‘LC]' (.T), Oc; (:E)) = 83;2 (,uc; (1’)7 Jc; (LU))
and for any directional vector z € A; := {z € RY||z|| = 1}\span{z], ... 7:erj(gc)}

82(#@ (x)agcj (I)) # 62(.“03 (I),ch (I)) :

Now, as for any j € {1,...,r} we have dim(span{x{,...,zgj(w)}) < d -1, it follows
that
A= m Aj 7é @ .
j=1
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5.2 Proofs for Section 4.1

Hence, for any z € A and any j € {1,...,7}
9. (pe, (), 0¢,(2)) # 0. (,uC; (x), o (z)) . (5.2.2)

Fix any z € A. By continuity of the curves and (5.2.2), there is an £(z) > 0 so that for
any y € (x —e(2)z,x + (2)2)\{z}, j € {1,...,r}, we have

(,qu (y)a Oc; (y)) 7é (MC; (y)v o'c} (y)) .

Again by continuity of the parameter functions and by (5.2.1), for any other pair ¢ # ¢/,
there is an e>® > 0 so that for any y € (z — €% z,x 4+ €%° z)\{z}, we have

(Nc(y)yac(y)) # (.Uc’(y)vac/(y)) :

By choosing € > 0 minimal, we get that
((x —ez, 0+ Ez)\{x}) ns=4>0.

According to our prior observations, there are permutations 7, 7— so that for all ¢ =

1,....,m
Ve ()W) = pic(u) ,  0r_(oy(u) = 0c(u), ue(r—eczx),
VT+(C)(U) = pe(u) , 6T+(C)(u) =oc(u), ue€(x,x+ez).
Hence, for any ¢ € {1,...,m}, u € (z — ez, x + €z)\{z}, we have

Vc(u) :/’LT:I(C) (u)]lue(asfez,w) + M-,—J:l(c)(u)]lue(z,mjtsz)
55(”) :Jr:l(c) (u)lue(z—sz,m) + 0—7—;1(0) (u)lue(z,z—i-sz)
By continuity of the parameter functions v, and d., we have

iy (11,10 = 120, 0,2 (@ = 02)) = lim (vl = 12), bl = )

= lim (ve(z + 1), dc(@ +112))
= limy (i (2 4 12), 0, (2 + 712))
so that
(110 (), 0,1 (7)) = (MT;I(C)(x)vUT;I(c)(QC)) .
So either, 7' (c) = 7! (c) or
(0=t () (), 020,30 () # (Oatty =2y (2,80, (2))

a contradiction to the differentiability of the parameter functions v, and d., as it implies

Ho=t oy (T = M2) = pi—1(2) (z—n2) — v,
lim — © - = lim Ve(® = 12) — ve(x)
n—0 n n—0 n
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— lim Ve(® +12) — ve(w)
n—0 n
~ lim 22 1(0)(1’ +nz) — MTJ:l(C)(@
n—0 n
lim ‘7fr*1(c)(5C nz) —o ) (x) — lim dc(x —nz) — de(2)
n—0 n n—0 n
— lim dc(x 4 1nz) — 0c(x)
n—0 n
Hence, 7 = 7_, completing the proof.

\4

The proof of Theorem 4.1.3 is an easier version of the one for Theorem 4.1.2.
01, .

Proof of Theorem 4.1.3. Assume there is another representation

FCl2) =D A(@)o (- [wo(x),00(x)) , z el
.0y

with m > V > 2, positive functions Aq,

., Ay and continuous functions v,
any two points z,z’ € I.

NN
Like before, we see that for any « € I there is a neighbourhood U of x within the compact
space I so that there is a permutation 7 fulfilling (4.1.1) for all w € U. This concludes the
proof as there are at most countably many disjoint open intervals on the path between

5.2.2 Proofs for the estimation results

O

In order to prove both Theorems 4.1.6 and 4.1.8, it is enough to prove Assumptions
the assembly of the lemmata and proofs in this section.
where

(B1) - (B9) according to Theorems 3.1.6 and 3.1.13. The complete proof is given by

Fix some bounded and convex open © C = C R®™~! 5o that

E=Ap X [/lfu;qu]m X [U*vUJr]m )
for some

Apm = {(7?1, S Tme1) € [r_,my ™ HL =Y

m—1
100

c=1 Te €

il }
B < ot s

0<o_<op <0

O<m_<1l/m<my <1,

(5.2.3)



5.2 Proofs for Section 4.1

Note that for fixed x, v, h the contrast functions M(-,z;v) and M, (-, x;h) are deﬁned
on X =38, xR™ x (0,00)™, which is a superset of =. The model is identifiable over = up
to relabeling and the contrast property of M also holds over = because it was established
over S;, x R™ x (0,00)™ as briefly discussed in Section 4.1.2.

Throughout the proofs in this section, let us use the notation ay < b, only if a, < Cb,
for n > ng and C depends only on I, Z, U, Uy, Uy, Uy, Uy, L, [a,b] or is universal. In
particular, the constant C' then is independent of specific 6, x, h, « or .

Auxiliary results

Remark 5.2.1. We will deal with second-order derivatives of the log-likelihood function.
Therefore, let us differentiate g twice. By minding the dependence 7, =1 —m — -+ —

Tm—1, We see that for any t1,t2 € {71,.. ., Tim=1,01, -+, Om, 41, - - - 5 b }, W€ have
at fmix(y;e)
On9(y;0) = ————~
' ( ) fmiX(y;e)
atl atzfmix(y; 9) . (atl fmix(y; )) (8t2fmix(y; 9))

at1 6tzg(y7 9) =

fmix(y; 9) gnx (y7 9) ’
where for any ¢, ¢’ € {1,...,m},&¢& € {l,.... m—1},y€R, € E,

fmix(y; 0 chqﬁ ylpe, 0?)

¢(y|ua o2) — ¢(ylpm. o)
(e =)o 2d(Ylpe, 02)
((y = pe)® = 02)o 2 d(Ylpes 07)

O frnix (Y3 0)
8,uc fmix(ya 9)
0o, fmix (y3 0)
(y;0)
(y;0)

aﬂ'g a7r5/ fmix Y;
a[LCaTI'al fmix Y;

)

Te
Te
0
]]‘C C’aﬂc¢(y|ﬂca O—E) - 10:m8ﬂm,¢(y|ﬂmvafn) )
1

]1026’ - ]lc:m) : (,uc - y)ac_ng(y“’(‘w 0-3) ’
aacawél fmix(y§ ‘9) = c:&’aac¢(y|MCa Ug) - lc:maam¢(y|ﬂm7 Ur2n)
= (]lc:a/ - llc:m) ((y = pe)® = 02)0 2P (ylpe, 02)

aﬂcaﬂc/ Jinix (Y3 0) = Le=cr { ({WC He — y)Uc_2}2 + WCUC_Q)QS(yWCa Uf)} )
0o O,y frnix (3 0) = Lo—er { ( [(wc(uc —~ y))UZQ} [ﬂc((y — pe)? — 03)053}
— 27 (e — y)UJ?’)d)(yluc, Uf)} :

8%806/ Jmix(y;0) = Le=cr { (71‘60'3 + Te(y — pe)oe — Ug —me(y — Nc))ac_4¢(y‘/~‘cv Uz)} .
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Let us start with some auxiliary results that are proved in Section 5.2.3. The following
lemma gives integrability of the log-likelihood function and its derivatives with respect
to the model mixture densities.

Lemma 5.2.2. Under Assumption (N1), for any p € [1,00) and any function T €
{9,0:,9,0:,01,9}, where t1,to € {1, ..., Tm—1,01,-«,Om, b1y, m}, we have

P .
sup/ (sup |T(y; 9)|) sup ff,*‘g()(yb:) dy < o0, (5.2.4)
yel pc= zel
p
/ (SUB |T(y;0)|> sup fmix(y;¥) dy < oo . (5.2.5)
9c= 9EE

Additionally, for any normal density ¢(-|0,s?), we have
p
/ (suE IT(y;G)‘) ¢(y|0752) dy < o0 (5.2.6)
0e=
The following lemma gives Lipschitz continuity of the mixture density and derivatives of
the log-likelihood in § with integrable Lipschitz constant.
Lemma 5.2.3. Let Assumption (N1) hold.
(i) For any 6,0 € Z, we have
|fmix(y; 0) - fmix(y; é)‘ ng(ya 97 é)”a - é”l )

where fz is a non-negative function so that

sup fg(a 97 g) < C*¢(|O, 33)
0,0e=

for some constants 0 < ¢, s, < 00.

(ii) Let 0 < a < b < oo. There is a constant L* depending only on I, =, a, b and the
Hélder constant L so that for any « € [a,b], 1 >§ >0

sup | fy ¥ wle) — f11F (la')] < sup fo(50,0)Lremin{ted

@2’ €1 0,0cE

where fz is defined in (i).
(iii) For any functions T € {0, g,0;, 0,9}, where ti,ta € {1, .., Tm—1, 1, -+, fm;
O1y--,0m}t and any y € R, 0,0 € 2, we have
|7(y:0) — 7(y:0)| < f-(y;0,0)]10 — 0] ,

where f; is a non-negative function so that F*(-;E) := supy 5oz, f£(0,0) is in-
tegrable with respect to supy.z fmix(y; 0) for every p > 1.
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Lemma 5.2.4. Let 0 < a < b < o0 and (hy(a))nen for a € [a,b] be sequences of
bandwidth parameters so that

sup hy(a) sup _logn_
aclat] 0 aelap nhn(a)?

Under Assumption (N1), for any compact J C int(I) and any function
7 €1{9,0%.9,01.9,05.9} ,

we have that

> (Vi 0)Kn (X, — 1:)) =0(1).

k=1

S

sup  sup nh,(a)? sup Var7<
a€la,b] €T (a) zE€J,0€E

The following lemma gives an exponential deviation inequality for the empirical contrast’s
gradient.

Lemma 5.2.5. Under Assumption 4.1.4, for any compact J C int(I), there are constants
C1,Cs > 0 independent of n, h, 0, x, v so that for any t € s T S S P T,
Olye-yOm}, 0 €E, ¢ € J, h >0, we have

P (

Main proofs

w?nh?
Oy M, (0,5 h) — Ey [3tMn(97$§ h)]’ > w) <2exp| — m , w>0.

Let us first prove that the polytope
m—1 m—1
A, = {(m, ey Tm—1) € [T, 7] ‘1 — D el T € [7r_,7r+}}

as defined in (5.2.3), fulfils the latter part of Assumption (B1) for any 0 < 7_ < 1/m <
74+ < 1, which in particular implies this property for

O ={(m,....Tm1) € U;”_l‘l - Y € Unf x U X UL
as Uy, Uy, U, are compact intervals with 1/m € int(U,) by Assumption (IN1).

Lemma 5.2.6.

(i) For every Ag € O Ay, and any € > 0, there are some 1 <1 <m—1, Ay,..., N\ € Ay,
so that

)\k+1_)\k:Ck€jk7 k=0,...,1—1, )\lEth(Am)

) . . -1
for some unit vectors e;, and some coefficients ¢, € R with Y-, |cx| < e.
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(ii) For every Mo, N € Ay, Ao # N, there is somel € N, \y,..., N\ € A, so that with
Ai+1 = N, we have

)\k+1_)\k:Ck€jk7 k:07...,l7
for some unit vectors e;, and some coefficients ¢, € R with

l
D lerl < @m =)o = N1 -
k=0

Proof. (i) Denote A\g = (71,...,Tm—1)T. As A\g € Ay, it holds that

m—1

H)\0||1:Z7TC€{1—7T+,1—7L} vV FJeed{l,....m—-1}: m. € {n_,m1}.

c=1
We will distinguish between the cases
W Mol =1=mr, @ Poli=1-7m—, 3) [Mollie(1—m,1-7).

We first show that cases (1) and (2) can be reduced to case (3). This is because for vec-
tors Ag fulfilling (1), there needs to be a component 7. that can be increased by a small
amount without leaving A,,, resulting in a vector fulfilling (3). The reduction from (2) to
(3) works analogously. In case \g fulfils (3), sufficiently small changes to the components
of Ag that are either m_ or 7 results in a vector A\; with || N]]; € (1 — 74,1 —7_) and
components in (m_, ).

Let us prove this rigorously. First show the reduction from (1) to (3). Assume |[Ao]|1 =
1 — m_. Then, there is some ¢ € {1,...,m — 1} so that m. > m_. Because otherwise we
would have

-7 = [Aoll = (m— r_,

a contradiction as m_ < 1/m. Define

. £ TMe— T—
&= —mln{2,2}ec

for the c-th unit vector e, € R™~!. Then, the vector
A =X +E&& €A,

fulfils
T—my <[ Mfli<1—=7_, A1 = Xolls = ||€c]lr < €/2.

Let us consider case (3), i.e. ||[Ao]l1 € (1 — 74,1 —7_).
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Define 7 = %, the sets
T :{06{1,...,m—1}:ﬂ'62ﬁ'},
Jo=J7 s
Ji=#T; i=1,2

and set 1/J; =0 for J; =0, i = 1,2. Furthermore, define

S min{||)\0|1 —2(1 —m) 1 —7&2— ||)\0|1}

and subsequently the step width by
. _ .
sizjimm{s/Q,e}, i=1,2.

The directional vectors are defined by

&= (i(—l)ia‘hem) ec

i=1

for the c-th unit vector e, € R™~1. Then, the vectors

k
Me=Xo+» &, k=1..m-1

c=1

fulfil the postulated properties as

[ V)

MEAN,, kE=1,...m—1, )\m,leint(Am), ||)\k+1_>\k||1§5-
k=0

(ii) First note that for Ao, A" € 9 A, (i) gives appropriate finite sequences of line segments

within A,, from g, N to vectors Ao, \' € int(A,,) with lengths of at most & = M
In particular, we have

Ao = Nl < Ao = Xollr + 1A = Xl + [N = Nl < 2[[Ao = N1 -

This means, it is enough to show that for Ag, A" € int(A,,), there are Ay, ..., \; € int(A,,)
so that with A\;; 1 = X, we have

)\;H_l—)\k:ckejk, kZO,...,l,

for some unit vectors e;, and some coefficients ¢, € R with EL:O lek] < (m=1)||Ao—X]1-

Therefore, deduce that there is some £ > 0 so that the closed e-neighbourhood B, ([Ag, A'])
of the line segment [Ag, \'] is a subset of int(A,,). This is because int(A,,) is open and
convex. Indeed, let £ > 0 so that B.(\o), B:(\') C int(A,,). Then, any

vE BE([/\O,)\’D = {p)xo +(1=pN+z: pe0,1],z€ R™ ! |2]leo < s}
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must be an element of the line segment [Ao + 2, A’ + 2] C int(A,,) for a proper choice
of z by convexity of int(A,,). This already proves the result by deducing that one can
make appropriate changes of a length smaller than ¢ in single components of Ay without
leaving the neighbourhood BE([)\O7 )\']) so that after at most m — 1 steps, the resulting
vector again lies in the line segment. O

The following lemma gives the conditions that are easy to verify.

Lemma 5.2.7. Under Assumptions (N1), (N2) and (N?{), Conditions (B1), (B2),
(B3) and (B6) are fulfilled. In particular, the constant C' in (B1) is given by C =
4m — 1.

Proof. Prove (B1). The compactness of © and I is given by (N1). The compactness
of the parameter function sets I'(«) is given by Remark 2.4.5 (ii) when using the Holder
norm || - ||o/2. The fact that the parameter function sets I'(«) are the intersections of all
sets T'(B) with § < « follows from Remark 2.4.5 (iv). Note that © fulfils the latter part
of (B1) for C = 4m — 1 according to Lemma 5.2.6 (ii) and Remark 3.1.5 (i).

As the mixture density fnix is invariant under relabeling, i.e. permutation of the com-
ponents, so are the contrast functions M and M, so that (B2) is naturally fulfilled.

Prove (B3). The continuity of M in its first two arguments is obvious. Hence, it is
enough to fix ¥ € Z, € I and examine a sequence (V,)nen C I'(a), Yo = (0n(-),4n)
with v, — v = (0(:),¢) € T'(a). Especially, ||0,(-) — 0(-)|lcos [|€n. — €|loc — 0. For those
sequences, we deduce

|M (9, 5 9m) — M (0, 257)] S/Ig(y;ﬁ)I | frnix (43 00 (@) 0 (@) — Frnix (3 0(2) ) ()| dy

S/Ig(y;ﬁ)l +SUP fix (1 0) dy - || — £]| (5.2.7)
0e=

+/|y(y;19)| | fomix (3 0 (2)) = funix (33 0(2)) | dy - [1€]] 0 -
(5.2.8)

(5.2.7) is directly treated by Lemma 5.2.2 and the fact that ||¢, — £||cc — 0, whereas by
Lemma 5.2.3 (i) and Lemma 5.2.2 once again, we deduce

(5.28) < / |9(y;9)|ex0(y10, 57) Ay - [[6,() = 0()loo - ||l — O -

The coordinates of the parameter functions 6,(-) are Holder-a-smooth, especially con-
tinuous so that (B3) is dealt with.

Condition (B6) holds because €2 > 0 is independent of x, v and a.
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Now, we treat conditions (B4), (B5), (B7), (B8) and (B9) that are a bit more involved.

Lemma 5.2.8. Let Assumption (N1) hold, 0 < a < b < oo and J C int(I) be compact.
Then (i) (B4) and (i) (B5) hold. That is:

(i) For allx € J, a € [a,b], v € T'(«), the Hessian matriz
Vi (02(2);7) = 0 M (0.(), 2;7)

is positive definite. Especially, the eigenvalues )‘i:,'y > )\fm > )\iﬁ of Va(04(x);7)
are positive.

(i) The Hessian matrices Vy(0;) are uniformly Lipschitz continuous in 0, i.e. for all
0,0 € =, we have

sup  sup sup ||Va(6;7) — Va(60'57)|| < Laess||0 — 0|1,
a€la,b] vel' (o) z€J

where Lyess depends only on =, I and T'(a).

Proof of lemma 5.2.8. (i) According to Lemma 5.2.2, integration under the integral sign
gives

BgzM(H*(:r), x; w)
E {822 i (Y50:(2)) (D0 funine (Y5 04(2))) (D0 frnin (Y5 04 (2)))

T

fruix (V5 0.(2)) Frnix (Y30.())
fmix (y; 9* ('T))

. [(69 Fnin (Y30-(2))) (90 frnin Q(Y; 0.0 | ’”D U(z)
Sfmix (Y§ 9*(37))

_ (52 s 0o (x 3 (90 fnix (Y3 04(2)) ) Q0 fmix (Y5 04 () )
B <802 /fmlx (y, 9*( )) dy ]E’Y |: fmiX (Y7 0+ (m))z

X :m} l(x)

Funix (3 0+ () dy

T

Xz:c}) -l(x)

__E, [(Mmix (0. 2)) @olos (Vi 0.0) | _ 4 () .
fuix (Y50:(2))
Now assume there is a v = (vy,...,v3,_1) € R3~! so0 that vTagzM(H*(a:)w;v)v =0,

which is equivalent to

1 (90 Foi (V5 0.(2))) (90 fnin (V3 6.())) ©
fmix (Ya 0* ((ﬂ))2

-5 ()

OzEy{v UX::U]

X =4
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implying that

(s

:/ |(89fm1x(y79*(x)))TU} dy .

O:Ew[ ’X:%

As the integrand is non-negative and continuous, we get that
69fmix(y; 9*(33))T’U =0, VyeR. (5.2.9)

Let p1,p2 be any polynomials and o # o/, then

p1(y) oylue, o)  pi(y) exp ((05 — 02y +2(0% pe — 0P e )y + o2u? — 03/@)

p2(y) d(ylper, 02)  p2(y) oo
2 2
N S St (5.2.10)
Yy—00 O 5 UC < O—C,

Now, if p1,pe are any polynomials and o, = 0. as well as . # pe, then

n(y) ¢lpe,a2) _pi(y) exp (2(uc — pe )y + p2 — u?)

p2(y) ¢(ylper,02)  pa(y) a2
) c > et
— {OO fe = Her (5.2.11)
y—oo [0, Pe < e

We give an iterative procedure to show v = 0. For notational simplicity insert a 0 be-
tween the (m — 1)-th and m-th component of v. Let C C {1,...,m}. If max.cco?
is unique, define ¢ = argmax . 02, otherwise define ¢ = argmax, ¢ fic, which is then
unique by Assumption (N1).

By (5.2.9), for all y € R, we have

Z Ucaﬂc fmix (yv 0* (I)) + vm+caucfmix (y, 0* (I’)) + v2m+caac fmix (y7 0* (:L'))
ceC\{¢}

= - (’115871—6 fmix (y, 9* (x)) + Um-}—éaua fmix (y’ 9* (J?)) + U2m+660'5 fmix (y7 9* (J?))) .
As

871’5 fmix (97 9* (l’)) 8/15 fmix (yy 9* (.’E)) afrg fmix <y7 9* (l‘))
Do fix (43 04(2)) w200 7 Oop frnix (Y5 05 (@) v=o0 7 Oy frnix (5 0u(2)) y—o0

m(x) > 0 for all ¢, x and because of (5.2.10) and (5.2.11), we get that

{ 3 Ore fumix (y: 0:(2)) X Opue fonix (5 0 () ) - oo frnie (3 0 (2) )
oo fanin (U:05(2)) " O fuin (43 04(2)) T o fomin (3 05 () )

0= lim
y—00
cec\{&}
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é + Um+e
Do Furie (0-@)) " Do frnve (4 0:(2)
and subsequently

Ore fmix (y§ 0~ (:E)) Ope frmix (y,ﬂ*(x)) Opuc fmix (%0* (m))

O = l. c 7 N + m c_—_ . 7 N + m+c— 7 . N
yi’r&{cecz\{é}v auafmix(?ﬁa*(x)) ot 6Hafmix(y;0*(x)) e (%Efmix(y;@*(it))}

e fix (i 0-(@)

s fonix (13 04 () e

| O fot (4 00 (2) Ope fenix (43 0+ () Ope fonix (413 0= () ) }

0=1 c———————< tUntpe—————— + "t (1 0.(2))
lm { Z v 67rafmix (y7 0. ({E)) ot 6"5 fmix (y7 0. (l’)) o aﬂ'éfmix (y’ ‘- (:E))

+v

v e

= — Ve .

(ii) In order to prove Lipschitz continuity of the Hessian matrix, repeat the arguments
used in the proof of Lemma 5.2.7, especially the proof of (B3) and use Lemma 5.2.3.
According to Lemma 5.2.3 (iii), there is a function F(-,Z) that is integrable with respect
to sup,.z fmix(y; 6) so that

sup sup sup||Vi(6;7) — Vi (0';7)]]
a€la,b] yel'(a) z€J

IN

sup sup sup E, [H@gzg(Y;G) - 8g2g(Y;§)H’X = x} l(x)
a€la,b] vel'(a) z€J

< sup sup sup/F(y;E)fmix(y;H*(x)) dy - ||0 — é||€(:13)
a€la,b] vl (o) x€J

< / F(y;5) sup fuie(y;0)dy - sup  sup [|€]lso - 16— 8]
0= a€la,b] vEl (o)

<le-al .
0

The following lemma shows that the deterministic and stochastic estimation errors of
the empirical contrasts’ gradients are of the usual non-parametric order.

Lemma 5.2.9. Let 0 < a < b < oo. Under Assumption (N1), for some kernel K ful-
filling Assumptions (N2) and (N3) and sequences of bandwidth parameters (hy,(c))nen,
a € [a,b] so that
logn
sup hn(a), sup ——— — 0,
a€la,b] a€la,b] nhn(a)d

Conditions (B7) and (B9) hold for any compact cuboid J C int(I) containing an open
subset. To be specific on (BT), for any compact cuboid J C int(I) containing an open
subset, we have that

limsup sup sup sup hn(o¢)70‘||IEAY [Sn (0,I;hn(o¢))] — S(O,x;’y)” <Cy, (5.2.12)

n—oo «a€la,b] yel'(a) z€J,0€0
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limsup sup sup < logn ) ]EW[ sup ||S (0 Z; hn (a0 )) [S (6 Z; hn( )]H}

n—oo aclab] vel(a) \ Mn(a)? ©€J,0€0
<CstocH - (5.2.13)

The constant C > 0 depends only on a, b, I'(a), ©, I and K ; the constant Cstocu > 0
1
depends only on I'(a), || K||s, Lk, I, ©. Particularly, for h,(a) = (log") 2atd " we have

2a
1 T 2a+d
limsup sup sup <0gn> EA,{ sup ||Sn (0,2 hn(a ))—S(H,x;v)”ﬂ < 00
n—o0  «a€la,b] yET () n z€J,0€0

Note that the assertion on the stochastic error (5.2.13) is stated uniformly over all v €
T'(a). The respective degrees of smoothness of the true parameter curves only play a role
in determining the convergence rates of the bias terms.

Proof of Lemma 5.2.9. By using the shape of the log likelihood’s derivatives given in
Remark 5.2.1 and differentiating under the integral sign, which is allowed according to
Lemma 5.2.2, we get that for any 8 € ©, x € J, v € T'(a), h € (0,00), the gradients
Sn(0,2;h) = 09 M, (0, x;h) and S(0,z;7) = 09 M (0, x;~) have the components

_ 1 o(Yilpe, 02) — ¢(Velpm, 07,)
On. M, (0, 2; h) S oc) Im) i, (Xy — ,
Z 17TV¢(Y1€|NW ) h( g )

3

WC(HC - Yk)”; ¢(Yk|l‘m 0'2)

O Mn20) = i; T T AT B
o) = 3 )
st = (S Sl o
)= | e DA <.
st =, PO e

where c € {1,...,m}, ¢e {1,...,m—1}.

Prove (5.2.12). Note that the following calculations are independent of 8, x, v and a.
Write A, () = h. For some ¢ € {71, ..., Tpm—1, 1, - lbms Ty -« -, Tm }, We have
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5.2 Proofs for Section 4.1

E, [0: M, (0,235 h)] — 8, M (6, z; )
[ AL (s ) @y [ PR (. 0) )

Funie(4:9) Fonie (4 0)
Ot fmix (y3 6) . .
~ [ Amelul. {(Kh i i (53.09)€) (2) = (B % 0) (@) fi (36 ()

[0 ) = 1) 50 0) f .

Now

0, mix\Y; 0
i S0

is integrable according to Lemma 5.2.2 and we have
(K0 — 10| S
Thus, according to Lemma 3.2.1, it suffices to show that
(5 i (530-)€) @) = (i 5 ) @) i (9:.0: ()|
| [ ) (0.5 ) = a3 0) ) 0

_ / S (2) £ + ) | frmi (45 0 (B2 + 3)) — fanie (31 0, (2)) ] dz
< eud(y)0, ) / K (2)|(hz + )

Z {||7Tp(hz +x)— WP(I)H + Hac(hz +x)— crc(z)H + ||,uc(hz +x)— uc(x)H}dz
So(yl0,52) h

which is true according to Lemma 5.2.3 (i) and Lemma 3.2.1 once again because the
parameter functions are Holder-a-smooth. Now, Lemma 5.2.2 gives integrability of

atfmix(y; 9)

2
Fasel:8) 7105

concluding the proof of (5.2.12).

In order to prove (5.2.13) and (B9), we only need to show that all assumptions of The-
orem 3.2.5 are met for p = 2, because then (5.2.13) holds and (B9) is given by Lemma
3.2.9.

According to the model assumptions, it suffices to show the integrability and exponential
deviation requirements for p = 2. (3.2.12) is given by Lemma 5.2.2; (3.2.13), (3.2.14)

111
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by Lemma 5.2.3 (iii); and the exponential deviation inequality is given by Lemma 5.2.5.
Hence, Theorem 3.2.5 gives for every ¢ € {m1, ..., Tm—1,01,- -, Cmyfh1,- -, fbm} SOME
constant C; < oo so that

limsup sup sup
n—oo  «a€la,b] v€l'(a)

logn -1 2
<W> E, |:i1é.8 21618 |8tMn (9,:5; hn(a)) -E, [@Mn (H,x;hn(a))” <0 <.

Finally, (5.2.13) is given by the equivalence of norms on R3™~1, the triangular inequality
and maximizing over t.

O

Lemma 5.2.10. Let 0 < a < b < 00 and (hp(@))nen for a € [a,b] be sequences of
bandwidth parameters so that
logn

sup hp(a), sup ——— —0.
aclab] acla,b] Mhn(a)?

Under Assumption (N1), for some kernel K fulfilling Assumptions (N2) and (N3),
Condition (B8) holds for any compact cuboid J C int(I) containing an open subset,
i.e. the empirical contrast function M, is uniformly consistent for the asymptotic contrast
M. To be specific, for any compact J C int(I), and for all € > 0, we have

sup sup IP’A,( sup | My (60, @ hy (@) — M (6, 2;7)| > 5) =o(1).
a€la,b] vl (a) z€J,0€0

For the proof, one would typically want to decompose the estimation error into a stochas-
tic and a non-stochastic term. However, note that we cannot use Theorem 3.2.5 for the
stochastic error directly because (3.2.13) does not seem to be fulfilled. Luckily, (3.2.15)
is fulfilled so that we can work around that.

Proof of Lemma 5.2.10. Fix any 6 € © throughout the whole proof and define the func-
tion T5,(0, x; h;y) = My, (0,2;h) — M(0, ;7). For any § € ©, (B1), Lemma 5.2.6 and
Remark 3.1.5 (i) give an ly € Ny and 6,(6),...,0,,(0) € © so that with § = 6y(6),
0 = 0;,+1(6), we have

§k+1(9) — ék(ﬂ) = ckejk , k = 0, e ,l@
for some unit vectors e;, and some coefficients c;, € R with

lo
S Jewl < (4m — 10 — ] < (4m — 1) diam(©) .
k=0

Write
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According to the fundamental theorem of calculus, using the notation t = (t1,. .., t3m—1),
we may write for any n, a, 7,

9€%up€]|T (axh ( ) )‘

< sup|T, (9:5 B (@0); ) |
xeJ

lo

+ sup Z|T (Or+1(0), 23 hn () y) — T (04(0), 25 B (@);7) |

€0,z |
19R+1 0
—sup‘T(th 7|+ " Oy, T (t, ;3 by ()5 ) dt
zeJ 0€0,ze] |
< sup|T, (0 z; ho ()3 )| + (4m — 1)d1am(@) sup }319 (0,23 b (a); )|
xzeJ €O,z J,j=1,....3m—
= sup ‘Mn(é,x; hn(a)) — M(é,x;v)| (5.2.14)
zeJ
+ (4m — 1) diam(©) sup ||, (0, z; hn(e)) — S(Q,x;v)”oo . (5.2.15)

0€O,xeJ

Make a bias variance decomposition for both (5.2.14) and (5.2.15). For the bias term
of (5.2.15), making use of the calculations proving (5.2.12) and Lemma 3.2.1 for the
function class H(a, L,U), we deduce

sup sup hn(a)” sup ||BEq [Sn (0,25 ha(e))] — S(0,2;7)| = O(1)
a€la,b] vET'(a) 0O, xcJ

so that according to inf,e[q,p) hn () ~* — 00, we have

sup sup sup HE [ (9,33; hn(oz))] - S(O,x;’y)”oo =o(1).
a€la,b] vl (a) 0€O©,xcJ

The variance term of (5.2.15) is directly dealt with by (5.2.13) because according to
Markov’s inequality and Jensen’s inequality, we have for any € > 0
2 6)
1

N
i

1

( logn ) 2 (
sup sup | —F/—— P, sup
a€la,b] vel'(a) nhn (o) z€J,0€0
1
1 1 2
< - sup sup (()gnd) E, { sup
€ agla,b] vel(a) nh"(a) z€J,0€0

_1

1 logn 2
< — sup sup E sup
8a€[a,b]“{€f‘(a)<nhn(a)d> { K z€J,0€0

=0(1)

n (9, x; hn(oz)) -E, [Sn (0, x; hn(a))]

n (6, x; hn(a)) -E, [Sn (0, Z; hn (a))]

(0,23 ha (@) = By [Sn (0, 5 hin () |

_1
so that inf,epq,p) (nhl(:;%) 2 — o0 leads to the conclusion

sup  sup IE”W< sup 0 (0,25 hyy (@) — By [Sn (6, 23 hn () ] Hl > E) =o(1).

a€la,b] y€Tl'(a) z€J,0€0
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Thus, it remains to show that (5.2.14) is op_ (1) uniformly over all a € [a,b], v € I'(a).
Therefore, let us decompose

sup [ M, (0, z; hn(a)) — M(Gw;v)’
zeJ

< sup |M, (é,x; hn(a)) -E, [Mn (é,x;hn(a))]‘ + sup |E, [Mn (é,x; hn(a))] - M(é,m;y)’ .
xzeJ xzeJ

(5.2.16)

For the second summand in (5.2.16), deduce that for any a, 7, z, we have
(B, (Mo (8,25 ha(@))] = M (0,337
=| [ 90050 (Rt Foie350.0)) @)l [ 90053560 )
< [ 1000 | (i * o (038.)€) ) = (K 05 £) ) o 0. 0)
- / i (3 0. () | (K #€) () =€) | dy

so that we once again deduce from Lemma 3.2.1 for the function class H(a, L,U) and
Lemma 5.2.3 (i) that

sup sup h,(a) “sup |E, [Mn(é,x;hn(a))] — M(é,xw)‘ =0(1)
a€la,b] y€T'(a) z€J

and by inf,cjq,p) hn(a) ™ — 00, we derive

sup sup sup |E, [Mn(é,x; hn(a))] — M(é,x;'y)‘ =o(1).
a€la,b] yel(a) z€J

Treat the first term in (5.2.16) by Theorem 3.2.5 with © = {0}. (3.2.13) is naturally
fulfilled. Once we proved (3.2.15), Theorem 3.2.5 gives

logn \"* 5 o 5 o _
oo (i) B s MG @) — s (3 @) = 0.

_1
Since infqe(q,) (%) 2 — 00, Markov’s inequality gives for any ¢ > 0

sup sup ]P’7<sup Mn(é,x; hn(a)) -E, [Mn (é,x; hn(a))]‘ > z—:)
a€la,b] veT'(a) zeJ

< 1 sup sup E, [sup M, (é, x; hn(a)) -E, [Mn (é, x; hn(a))] H
€ a€la,b] vET(a) zeJ

=o(1) .
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In order to prove (3.2.15), we proceed similarly to the proof of Lemma 5.2.5 with
1 -
Zk,h = Eg(Yk;H)Kh(Xk — .’IJ) .

We need to show that there are constants Cy,Cs depending only on O, J, K, [a,b] and
I'(a) so that for all ¢ > 2

Cq ) 2o,

E, [‘Z’@’h —-E, [Zk’h]ﬂ < q!<nhd n2h

because then Lemma 3.2.3 gives the existence of constants Cp,Cs independent of n, «,
7 so that

w?nhn(a)?
P7(|Mn(0,x;hn(a))—E[ (0,25 hn(0))]| > w ) < 2exp it o) w0

By proceeding similarly, we see that

Ey || Zkn — By [Zkn] "] <29B, (| Za]]
<2 [ ot 0ysntc — )| 19011802

sf;(/lg(y;é)lqzzgfm y; 0 ) (/IKq z—)ll(z)d )

< 27U K& [1€]|oo diam (] gy )]
—_ nqhd(q 1 g y’

SUp fimix(y;0) dy
0c=

where we can treat the integral by (5.2.19) and convexity of y + |y[?, i.e. there is a
constant Cz > 0 depending only on = so that

/Ig y;0)|7 sup fuix(y; 0) dy

6=

< 3‘1‘105{ / (t = 1) Sup fiaix(y: 0) dy + / (= 1) Sup funie(: 6) dly

ez 0c=

+/su9fmix(y;9) dy} . (5.2.17)

fe=

By repeating the subsequent considerations in the proof of Lemma 5.2.5 as well as
(5.2.30), we get

(5.2.17) < 397" 2Czc. / ’y}2q0*¢(y|0,si)dy
+377Cz /sup fmix(y; 0) dy < 37C5C.s29¢, 24!

ez

for some constants 0 < ¢y, $., Cy < 0.
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5.2.3 Proofs for auxiliary results

Proof of Lemma 5.2.2. Note that (5.2.4) follows from (5.2.5) directly. So, let us only
show the latter.

Note that there are points y; < y» depending only on the compact parameter set = so
that

Ly<y, SUD funix (4 9) < Ly<y, dYli—,0%) » Lysy, SUD frnix (45 9) < Tysy, d(ylpy, 03)

VEE 9eE
1
Lyefy, o] SUP fumix (43 0) < Dyepy, yol 7= -
9= 2mo_
so that in conclusion
1
SUBfmix(y;ﬁ) §1y<y1¢(y|ﬂ—a Ui) =+ 1y>y2¢(y|ﬂ+7‘7-21-> + lye[yl,yz]m =: f(y) .
YEE -
(5.2.18)
First, consider 7 = ¢g. For any y € R we have
sup |9(y; )| =sup | log (Zﬂc¢(y|uc,af)>’
0cE 0€E o—1
<supmaX{ — _min_log (¢(ylpe,07)), max log( (ymc,ac))}
gez U emlaom NI ooy
(y—ne)® (y — pe)?
:sugmax{ max ez + log(V2mo.), max —==——p—— —10g(\/27rac)} ,
0c= c=1,..., m c=1,..., m c

where we can treat the terms in the maximum by

_nax (y2l;c) + log(v2mo,.)

< o U8R oy B

2
<  max M—Hog(\ﬂﬂ'ag
pe{p—uy} 202

(y — ps)? (py — p)? (y —p)? /o
S5 1 5 Lyelu_uy) T T1y>u+ + log(v2mo )

202 y<u-t 20
and
(y — pe)?
max —-———"— —log(v2wo.) < —log(v2mo_)
c=1,..., m 20’?

Hence

sup | g(y; 0)]

(=5
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(s = 1)y (y—

<= pt)? p—)?
<oz Lu<us o Lyl g T 5 e Lysuy +log(V2moy)

20 2
+ | log(v2mo )|, (5.2.19)

which is integrable with respect to f(t)d¢. As all moments of normal and uniform dis-
tributions exist, we deduce (5.2.5) for 7 = g.

Similar arguments including that for any 0 € =, y € R

‘ med(Ylpte, 02)

Zc 1 T (Yl ptes o?)
e o) |11
Zc 17Tc¢ y‘,ucv c) ST T—

treat the other cases of 7.

(5.2.6) can be directly concluded from the considerations after (5.2.19).

O
Proof of Lemma 5.2.3. Show (i). By means of the triangular equality,
‘fmix(y; 0) — fuix(y; 5)‘
<3 red(uhies0?) — 7epllies 32|
e=1
where each of the summands is treated by
Tep(Ylpic, 07) — Fed(ylhic, 57)
<|me = 7e|¢(yle, o2) (5.2.20)
n \/igc exp (— W —pe)” ;ngc)z) —exp (— W —fie)]” ;0’;;0)2)‘ (5.2.21)
Lo ( Wy ;U§C)Q> _ \/%66 exp (— W) : (5.2.22)

where [T — Tm| < Zc_l |me — | and the function sup,_z ¢(-|pc, 02) is integrable as
= is compact so that (5.2.20) is dealt with.

As the inequality exp(t) > 1+t, t € R implies 1—exp(t) < —t, we deduce for z, y € [0, 00)

‘ exp(—x) — exp(— ‘ =exp ( — min{z, y}) (1 — exp (min{x7 y} — max{x, y}))

<exp ( — min{z, y})(max{x y} — min{x, y})
=max { exp(—z), exp(— }|JL‘ — y| (5.2.23)
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Hence, (5.2.21) is dealt with by

(y - Nc)z (y B [Lc)2
exp < To0z exp 02
2 RY 2 PRY
exp (Y —pe)” exp [ - (y — fic) (y —pe)®  (y— fie)
C 202 202 202 202
(y — Nc)2 (y — ﬂc)2 1 2 -2 ~
{exp( 202 )’GXP(_W ﬁ‘ﬂc_ﬂc*’?y(ﬂc—ﬂc”
— pe)® (y — fic) _ _
{ 507 >,eXp( 507 )}203 (Iuc+ucl+2y)|uc—uc|,

where this first factor is uniformly integrable.

Similar arguments and

L 1| _lo2—=a2
o2 &2 0252
20 5
<—loc— 6|

by compactness of = yield the corresponding bound for (5.2.22). Similar arguments to
the ones used in the proof of Lemma 5.2.5 yield the constants ¢, and s,.

(ii) By noting that for Holder-a-smooth functions F, we have |F(x) — F(2')| < L|jz —
o' ||mir{he} as they are continuously differentiable for a > 1, we deduce (ii) directly from

(i).

(iii) First note that for integrability with respect to sup,.z fmix(y;0) it is enough to
show boundedness on compacta and integrability with respect to any normal distribution
outside of those compacta because according to (5.2.18), there are constants y; < ya so
that

1
SUQfmix(% 0) <Ly<y, d(ylp-, Ui) + 1y>y2¢(y|/~"+vai) + lye[yl,yz]m :
0= _

Let us only prove this result for the partial derivative d,,,g. The arguments for the other
functions work similarly.

Write
0 = (7T1,...,7Tm,1,/1,1,...,/J,m,Ul,...,O'm), 0:(71'1,...,7Tm,1,,u/1,...,/Jm,O'l,...,Jm)
as well as for r=0,...,m —2
” - - - - . -
0"(0) = (T1y ooy Ty Torgdy e ooy Tty oy v oy Moy g dy e v oy fhmy Oly - v oy Ory Orgly e o vy Om)
1 - ~
0" (0) = (M1, -y 1y s - -y 1y fhm, O1y - - -y Tm—1,0m) ,
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5.2 Proofs for Section 4.1

0m(0)=0.

Observe

S

0, 9(y;0) — 0,1, 9(y; 0 ‘ Z ‘ 1,93 07(0)) — 3ujg(y;9”1(9))’ :

r=0

Without loss of generality let » = j — 1, otherwise the calculations simplify. The main
trick now is to insert terms of the shape min {¢(y|f1;,5%), d(ylu;, 07)}. Observe

00,9y 071 (9)) = 0y, 989 0))|
(A = y)5; 2 ¢Wlag, 33 mi(us — y)oj *e(ylu;, o3)

Fmix(y; 0771(0)) Fumix (309 (0))
M (M _y)a ¢(y|/jﬁ]7 j)frmx(y, ( ) _7Tj(,uj

Fin 5 07 1(0)) Frie (3
(#(ylis,52) —min {o(yls, 52), @yl 02)} ) 7 (s —

fmix(y;éjil( )) finix (y; 0 Z 7(6)
(ﬁj(ﬁj — )55 = mi(u; —y)oy ) min {¢(ylfi;,
(v

)05 2P (ylhs, 02) frmise (53 677 1(6)) ‘
7(0))
)&j_zfmi)c(y; 07 (0)) ‘

y
10 (0

IN

(5.2.24)

)

. 5‘ ) (ylﬂj;o-]z)}fmix(y;éj(e))’
fmiX(%e] 1(0)) fmix é( )
(5.2.25)
N (fmix(y;éj(a» - fmix(y;éjil(e ) mln{¢ y‘:“‘]v ])7¢(y|ﬂjaag2')}7rj(:uj - y)o—j_Q
fmix(y;ej 1( ))fmlx(ghej(e))
(5.2.26)
. (min {oWli;,62), d(ylps, o2)} — d(ylu;, 0?))%(#;‘ — )0 fanise (3 67 1(6)) ‘
Fuie(y3 09 71(9)) i (3 67 (6)) '

(5.2.27)

Now, treat (5.2.24) by the fact that

0wy, 32) — min {$(yl75,52), 6(ulus )}

{qs(ymj,&;) . if oyl 52) > 6(yluy, 02)
0,

else
and the fact that

o(ylij, 67)
fmix(y; 0371(0))

is uniformly bounded over all §, 6, so that (5.2.24) is bounded on a compact set around
0 and bounded by a linear function on the compact set’s complement. As such, this
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5 Proofs and auxiliary results

function is integrable with respect to any normal density. The term (5.2.27) is treated
accordingly.

For (5.2.25), we particularly use that

min{aﬁ(ylﬂj,&z),é(yluj,ai)}< $(yliis, 53)
Funix (y; 09-1(0)) T fumix(y:0771(0))

For (5.2.26), we also make use of the fact that

’fmix (4;07(0)) — funix (u3 5j‘1(9))’
— [R50 (1, 5) — mio(ylig, o3)|
< |7 — il o(yliig, 62) + 7| o(ylig, 52) — d(ylus, o) |
where

|(¢(y‘ﬂj7 5]2) - (b(y‘:uﬁ 032)|
1 1 (y — ﬂj)2>
< — ex _—
o ‘ V2re; 270 P ( 2532-
Lo
V2no;

— 1:)2 )2
exp(_(y f;;))_exp(_(y gg))‘
20% 20%
J J
and by (5.2.23), we deduce

J

< max L exn (= W= (@ m)P\ ) (= )
<m0 |

2 2 ~2
20j 20j 20j

< max {6 (175, 62), 6(wlig, o)} (| = | + o5 = 5]

so that

(fmix(y; 07(0)) — fnix (; 5j_1(9))) min {$(ylfij, 57), p(ylps, 03)}
‘ Fnix (43 6771(6) ) Fmix (67 (9)) ‘
¢(y|~ﬂj, 5?)¢(y|ujvffj2;)
Fonioe (43 0771(8)) fomix (93 67 (6)) 7
where the right-hand factor is uniformly bounded on a compact set around zero due to

the compactness of = and uniformly integrable with respect to any normal density as
well.

S (175 =il + | = | + oy = 34])

O
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5.2 Proofs for Section 4.1

Proof of Lemma 5.2.4. Minding the integrability result (5.2.5) in Lemma 5.2.2, we get
that independently of « € [a,b], v € I'(a), for any 7 € {g,0x.9,0,.9, 0s. g}, we have

n

sup Vary <71L Z T(Yi; 0) K (X — m))

z€J,0€E —1
2
= supi{ / 7(9.0) (K7 1779 )1 ) (@) dy - ( / T(y;m(m*fi*;)(y~>é)(x>dy) }
zeJ,0e=
S% sup (K, # ) (x) /Sug 72(y;0) sup fumix(y; 9) dy
z€J 0e= VEE

+ 1 sup ((Kh * é) (:r)>2 (/sup I7(y; 0)| sup fmix(y; 7) dy) 2

N zes 0e= €=

=0(n'"hH+0mn™).

In order to prove Lemma 5.2.5, we first observe that the functions

(g =)oy 2oyl oF)
> ey Ted(Ylpte, 02)

(1.6) > 0, gly:) = Y )2 = 7)o ol o)

(y,0) = 0, 9(y;0) =

Zznzl Wc¢(y|ﬂc, Ug)
are bounded, whenever 6,,,; = 0; < max{o.:c¢=1,...,m} because then
¢(y|:u‘ja 032)

Dot Tep(Ylpe; 02)

converges to zero exponentially fast, |y| — oo and because = is compact. For those 6,
one could use Lemma 3.2.2.

However, if 0,,4; = 0; > max {o.:c=1,...,m}\{o;}, then

¢(y|#j7032') = ‘y| 0o
22';1 7TC¢5(y‘,uC,UZ) Ty 7 7

so that the derivatives with respect to p; or o; are not bounded. That means that for
those 0, one cannot use Lemma 3.2.2. Particularly, as the derivatives are continuous
in y, 6, the exponential bound one gets for 0,,,; = 0; < max{o. : ¢ = 1,...,m} must
depend on 6 in the term R, where then sup, R = oo, which does not suffice.

Hence, we need to use an alternative approach, that is, using Bennett’s inequality,
cf. Lemma 3.2.3.
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5 Proofs and auxiliary results

Proof of Lemma 5.2.5. Let us first treat the case when ¢ = 7. for some c. As for all

y €R, 6 € =, we have

671'«' mix ;9 ’a0-2' - m70’3n, 2
 Jmix (y )‘ _ ‘ab(ylujm ) — oylp : )‘ <2 (5.2.28)
fmix(y; 9) Zc:l '/Tc(b(y‘:ufm Uc)

and because K is a bounded kernel, Lemma 5.2.4, the monotonicity of w +— exp(—1/w)
and Lemma 3.2.2 give for all 0 € E, z € J, v € I'(a), w > 0,

|0, 9(y; 0)| =

}P’,y(|8tMn(0,o:; h) — E,[0: M, (8, x; h)| > w)
2

w
< _
_QGXP( 2 sup — Var (lzn 09 (Yi; 0) K (X —x))—i—SlKI""w)
r€J,0e= Y\n k=1 9tg\Xk; h k 2w _nhd
w?nh? )

<9 -
= eXp( C1 + Cow

when C1, Cs are chosen large enough.

Now, treat the case t = u. for some c. Write

1 (Mj - Yk> 7 ¢(Yilpj, 07)
>

Zgp = —
’ n ‘7]2' T:l WC‘ZS(YkLUng)

Kh(Xk - x) .

We need to show that there are constants Cy,Cy depending only on =, J, K, [a,b] and
T'(a) so that for all ¢ > 2

i\ C
E, || 20— By (2] | <q!<n{d> "

because then Lemma 3.2.3 gives

2 d
Py (|00 (8,23 1) = By [0,0M (0, 33 1)]| > w) < 2exp (— ;ijgw) . w>0.

As the function y — |y|? is convex, we have that |y; — y2|? < 2971y |9 + 297 yo ]9, so
that according to (5.2.28)

By (120 — By [ Zr )] ]
<297'E, [| Z,n]] + 297 H(Ey [ Zk )"
<27E, [|Zk,h|q]

<l
<l

Hi—y 7Tj¢(]j|,uj70'j2-)
032‘ ZT:1 WCd)(y“j'Ca 03)

L q
B Y Rz = )| % wl2)(2) dyd=
J

Kn(z —a)| 20 (y]2)6(2) dydz

g
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5.2 Proofs for Section 4.1

by Jensen’s inequality and (5.2.28). Now, the integral can be treated by the transforma-
tion y — oy + pj, i.e.

I/

= [[ 112550 (02 + 1) Kz — )| *6(2) e

i ? 2 1\ z2—x
<o} [ |ul"ed(wl0.s3) dy - ( - (e

where ¢, and s, will be specified later. Now, as absolute moments of centred normal
distributed variables N with variance s? are bounded by E[|[N|?] < (¢ — 1)!ls{, we get
that

f9 C(yl2)0(z) dyd=

Al ;yKh(z —x)

q

(z)dz,

/ ly|e. 8410, %) dy < sleuq!

x(57)

furthermore, we have that

1
hd

so that finally for all ¢ > 2

q

0(z)dz

sup
zeJ

<K €)loo diam ()

o\
q 1 2
12k~ E: 2l ] () o
with C7,Cy chosen appropriately.
In order to find c., s2, we observe that for any y € R
0. (- 0. (-
fY|.(X) (szy—’_'uj‘z) < sup fy|g() (Jg’y'i_,uc"z)
zed, R
c’:f,‘..,m
m
= sup > 7e(2)p(02y + perlpe(2), 02(2))
2€J e, 0c
c’E—’},L...,m c=1
He — Her o?
< sup og/gb(y‘ S, — > . (5.2.29)
HecsTcsHntT .1 Uc/ Uc’
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5 Proofs and auxiliary results

as well as 64 = argmax{o? € ¥y}, 6_ = argmin{o? € Sy}, jiy = max Xy, ji_ = min Y,

that exist due to the compactness of =. Then, by compactness of 31, Y5 and (5.2.10)
there is a constant y; > 0 so that for all y € R

o o 1
(5.2.29) < 02 ($(ulfis, 53 Ly + W-,53) Ly< s + = Lyelyin])
V2mo_

Furthermore, if s, > &, (5.2.10) gives

Slo,s7) _ o ol0,s)
m -—————ap< = Il —————a" =
lyl—oo (Y|4, 0%)  lyl—oo (yli—,02)
hence, there is a constant y2 > y; > 0 so that for all y > |ya|
o(y0,52) > max{(y|fiy, 5% ), d(yli—,53)} -

If we finally define

{ i)
Cy t=maxq 1, — ,
21— ¢(ca0, 53)

we have that
0. (-
R (0 + pjl2) <ead(ylo,52) .

For the derivatives with respect to some o, the proof works analogously, except that
one examines 2m-absolute moments of centred normal variables, i.e.

/ |y e (10, %) dy < slc,(2q — DN < s29e,27g) (5.2.30)

Conclude by choosing C1,Cs < oo large enough and noting that they can be chosen
independently of 6, z, h, n, ~.
O

5.3 Proofs for Section 4.2

5.3.1 Proof for the identifiability result

The following simple lemma states that it is enough to prove u = p, in order to deduce
¥ = ¥, under the assumptions in Theorem 4.2.4.

Lemma 5.3.1. Let 91,92 € X, 9; = (pi, 0, pis f)T,i=1,2. If py € (0,1), 1 = pa # 0,
and fmix(¥;91) = fmix(y;92) for almost all y € R, then (p1,01,p1) = (p2, 02, u2) and
f1 = fa almost surely.

The proof of this lemma is straightforward. Calculate the first three moments of the
mixture densities frmix(+;9;), ¢ = 1,2, which need to coincide. From this system of
equations, equality of the parameters follows directly. A complete proof can be found in
Werner (2015).
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5.3 Proofs for Section 4.2

Proof of Theorem 4.2.4. Since f € £3 has a finite second-order moment, we may assume
without loss of generality that it is normalized to one, i.e.

/y2f(y) dy = 1.

Denote ¥ = (p, o, 1, )T, Taking the Fourier transform in (4.2.1), using that the Fourier
transforms of f, fi, f are real-valued because of their symmetry and considering real
and imaginary part separately gives for all ¢ € R that

(1 = p)epflost) — (1 = p)ps(at) + ps cos(ust)py, (t) = peos(ut)pr(t) , (5.3.1)
pesin(uat) . (t) = psin(ut)p(t) - -

Multiplying these equations by sin(ut) and cos(ut), respectively, and using the trigono-
metric addition formula

sin (p.t — pt) = sin(p.t) cos(ut) — cos(p.t) sin(ut)
yields
[(1=p)gj(o.t) = (1 =p)ps(at)] sin(ut) = p.py, (t)sin ((ne —p)t) ,  teR. (53.2)
As the first moments of fiix(;19) and fuix(+; 9%) have to coincide, we have

DU = Dafhs (5.3.3)

™

which gives p,u # 0. Hence, t = s a zero of the left-hand side of (5.3.2), giving
sin (%ﬂ') =0 as p«, @y, > 0, so that % € Z. The latter is true if and only if there
is a k € Z so that p. = ku. By (5.3.3), we have kp, = p, particularly

1<k<p'<2
because p, > 1/2 and p € (0,1]. Hence, k¥ = 1 and we deduce 1 = p., concluding the
proof by Lemma 5.3.1. O

5.3.2 Proofs for the estimation results

The proofs of Theorems 4.2.16 and 4.2.19 once again will be based on Theorems 3.1.6 and
3.1.13. Hence, it is enough to show that Assumption A.2.2 in the appendix is fulfilled.
Again, the complete proof is given by the assembly of the lemmata and proofs in this
section.

Fix some bounded and convex open © C E C (1/2,1) x (0,00) x R\{0} so that

— [ pi] x o, o] X [y ua] € (1/2,1) x (0,00) x R\{0}

(1]

for some
1/2<p_<pr<l, 0<o_<oy<o00, p_<ps.
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Note that for fixed x, 7, h the contrast functions M (-, z;~) and M,,(-,z; h) are defined on
[0,1] x (0, 00) x R, which is a superset of =. In particular, the model is identifiable over Z.

Throughout the proofs in this section, let us use the notation a,, < b, only if a,, < Cb,

for n > ng and C depends only on I, E, U, U, Uy, U,, U, L, [a,b], f the Holder
constant function L(-) of (fX(-))zer or is universal. In particular, the constant C' then is
independent of specific 6, x, h, a or .

Let us start by proving the contrast property of the function H.

Proof of Proposition 4.2.13. The fact that for all t € R
Eg, [H(Y,t,0.)] =0
is clear as stated in (4.2.5). Now, let 6 € [0,1] x (0,00) x R so that for all ¢ € R
0=Ey, [H(Y,t,0)] =Ey, [sin (Y —p)t)] +(1—p) prlot) sin(tp) .
By using
Ey. [sin (Y — p)t)] = %(/e”(y‘“)fmix(y; 0..) dy> = (P fue (a0 (1))
and
3 (145 (y @) = ([ o T an) = (o) st
we conclude that for all t € R
— — <k
0= 0. [HOL00] =3 (9, o)) ®) -
Hence, the function
l—p2/-+
T('; 0|79*) = fmix(' + 15 19*) - f<u>
o o
is symmetric about zero. Taking the Fourier transforms on both sides of
1—p /-
e f(g) +T(7.u“70|19*) *fmix('vﬂ*)

once again yields equation (5.3.1), i.e.

(1 =pa)pplost) — (1 = p)ps(at) + p« cos(pxt) ey, (t) = pcos(ut) oz (010, (1)
pssin(pat)py, () = psin(ut)er(op9.)(t) -
Multiplying the first equation by sin(ut) and the second one by cos(ut) once again gives
(1= p.)e(out) — (1 = p)pj(at)] sin(ut) = pepy, () sin (e — p)t) .
As Assumption 4.2.3 is fulfilled we can repeat the proof of Theorem 4.2.4 starting after

(5.3.2). Note that we cannot use Theorem 4.2.4 to confirm the result because 7(-; 0|9.)
does not have to be a density. O

The same procedure works under Assumption 4.2.9.
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5.3 Proofs for Section 4.2

Auxiliary results

Let us examine the contrast functions M and M,, on a basic level. For theoretical
purposes, we first deduce an alternative form of H by

E, [sin (Y — p)t) ‘X = x}
= [ (ew - 00) (2 () + 00 - ) )

=(1 = pu(2)) sin(—pt)p 7 (ox(2)t) + ps(z) sin (i (@) — p)t)os: (1) (5.3.4)

so that

E, [H(Y,t,@)‘X - x}

=sin(ut) ((1 —p)pjot) = (1= p(z))pf(o. (w)t)) + pe (@) sin ((pa () = pa)t) 5 ()
(5.3.5)

yielding an alternative form of M by definition.

Let us use representation (5.3.5) in order to differentiate the function H, directly yielding
the derivatives of the contrast M by differentiating under the integral sign, i.e.

oM (0, 2:7) :2/1EV (10| x = 2] B, [0 (v1,0)|X = 2] () dt- ()
Vo (6;7) :2/ (E7 [agH (Y, t,0) ’X - x} E, [89H(Y, t,@)’X - z}
+E, [H(Y,t, 9)‘){ - x} K, [8§2H(Y,t, e)‘x - xDq(t) at - 2(z)
where V, (6;7) denotes the Hessian matrix of M (-, ;) evaluated at 6.

The derivatives of the function H are easily computed and given by

H(y,t,0) = — pp(ot) sin(ut) ,
H(y,t,0) = t(1 - )390f(0t) sin(ut) ,
H(y,t,0) = —tcos ((y — p)t) +t(1 — pf(at) cos(put) ,
E, [@,H(Y,t,ﬂ)‘X = x} — pp(ot)sin(ut) , (5.3.6)

E, [8(,H(Y,t, 9)‘){ - x] P)dp ;(ot) sin(uit) ,
E, [@H(Y,t,ﬂ)’X:x} _tE {cos((Y )t ’X*x} +t(1— p)p(ot) cos(ut)
= teos(ut) (1= p)pg(ot) = (1= p.(@)) (0 (@)t))
— pu (@)t ps (t) cos ((pa () — p)t) (5.3.7)
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E { (Ytﬂ)X:a;} —0,
E, |0,0, H(Y,1,0)|X = 2| = ~ 10 (o) sin(ut) .
E.[0,0,H(Y,t,0)|X = . ti 7 (o) cos(ut) |
EW{ LH(Y, 1, 0)| X = x} — (1 - p)d®p(ot) sin(ut) ,
E, a O, H(Y,t,0)|X = z| = t*(1 — p)dps(ot) cos(ut) ,
[ H(Y,t,0)| X = x = —E, [sin (v = p)t) ‘X - x} — (1 — p)p(ot) sin(ut) .

The following lemma gives basic results on the function H.

Lemma 5.3.2. Under Assumptions (R1) and (RZ) there is a constant C' > 0 depending
only on Z and f so that for allt € R, 0,0 € = we have

(i) Supy ter SuPee§|H(y=t79)| <C,

t,0) <C(1+t]),

(ii) sup,cp Supy =
(iii) sup,cgsup, = ||07.H(y,t,0)|| < C(1+1¢%),

(iv) sup,cp |H(y,t,0) — H(y,t,0)] < C(1+t]) |0 -],

(v) sup,cg ||9oH (y,t,0) — 95H (y,t,0)|| < C(1+ )]0 - 4] ,

(UZ) SupyeR Hag2H(yat79) - 8§2H(yat7é)u < C(l + |t‘3)||0 - é“

Lemma 5.3.3. Let 0 < a < b < oo, K be a kernel fulfilling Assumptions (R3) and

(f{4) Then, under Assumptions (R1), (R2), for any compact J C int(I), there is
some constant C' > 0 so that

sup b~ sup B, [H(Y,t,0)|X = 2] — (E7 [H(Y,,6)|x =] *Kh)(x)‘ <c(i+1t),

reJ,0€0

sup h™% sup

E, [00H(Y,t,0)|X = o] - (]Ey (B0 (Y,1,0)| X =] + Kh>(m)’ <c(1+8),
z€J,0€O©

where the suprema are taken over « € [a,b], v € T'(a), h € (0, 00).

Main proofs

The proofs of Theorems 4.2.16 and 4.2.19 once again will be based on Theorems 3.1.6 and
3.1.13. Hence, it is enough to show that Assumption A.2.2 in the appendix is fulfilled.

Lemma 5.3.4. Let 0 < a < b < oco. Under Assumptions (R1), (R2), (R5), Conditions
(i) (B3) and (ii) (B4) hold for any compact J C int(I). That is:

(i) For allx € J, a € [a,b], v € T'(a), the matriz V,(0.(x);~) is positive definite.
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(ii) The Hessian matrices V,, are uniformly Lipschitz continuous in 0, i.e. for all 0,0" €
=, we have

sup sup sup [|V,(6;7) = Vo (0';9)[ < Cll0 = 6’1,
a€la,b] vel'(a) z€J

where C depends only on Z, I and q.

Proof of Lemma 5.3.4. (i) Let us start by showing that for all € J, the Hessian matrix
V(0. (x); ) is positive definite.

Because E, [H(Y,t,0.(x))|X = 2] =0 for all t, the Hessian matrix V(6. (x);7) reduces
to

Ve (0+(2);7)
:/ oor (vt 0.0) (X_x] ook (v, 0.) [x = ooy de - 2(a)

When inserting the true parameter 6, (), the derivatives (5.3.6) - (5.3.7) reduce to

E, [5pH(Y, t,0.(z)) ‘X = z] = fgaf(a* (z)t) sin (p.(2)t) |
E, [&,H(Y, t,0.(x)) ‘X = a:} = t(1 = pu(2)) (0 (2)t) sin (pa(x)t) ,
E, [@LH(Y,L 0.,(x)) (X - x] = —tp.(2) 0y (1) .

Since M (-, ;) attains a minimum at 6, (z), the Hessian matrix V(0. (x);~) is positive
semidefinite. So assume there is a v = (vy, v2,v3) € R? so that

o:uTV$(e*(x);7)u:2/( [aHH(Yt 0.( ’X—x] ) () At (z) .

Since ¢,£ > 0 and the function ¢t — E, [89H(Y, t,O*(z))‘X = x} is continuous, we

conclude
0 =k, [a H(Y,t,0.(2 ’X—x]+v2E [a H(Y,t,0.(2 ‘X—m}
+ w3k, [a H(Y,t,0.(x ‘X—x}

= —vips (0 (2)t) sin (s (@)t) + v2t (1 = pu(2)) I (04 (2)t) sin (11 (2)t) — vatps(x) sz (¢)
1 g(t) (5.3.8)

for all t € R. It remains to show that v = 0.

First note that the first and second summand in (5.3.8) are zero for t € ( )Z Hence,
we have v3 = 0 as @y, p.(z) > 0. Since g is zero on R, so is its first derlvatlve, which
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exists as f and f* have finite third moments. Now let us differentiate g at ¢t = 0. The
derivative is determined by

Ot ( —©F (a* (x)t) sin (u* (:c)t))

= — p=(7)p7(0) cos(0) = —px(z) |

o (t(l — pu(@)) 5 (04 (2)t) sin (u*(fv)t» —
O ( — tp« (m)(pf; (t)) ‘tzo = — p*(a:) ,
giving
v = —zi((i))’l)g ,

because p (), p«(z) # 0. Minding vs = 0, we derive v1 = 0. And since the function

t—t(1—p. (x))&pf(a*(x)t) sin (1 (2)t)

is non-zero in a neighbourhood around 0 excluding 0, we get vy = 0 by (5.3.8), so that
the matrix V,,(04(x);v) is indeed positive definite.

Note that under the identifiability Assumption 4.2.9, the arguments would work analo-
gously.

(ii) By using the identity
V. (6;) :2/ (E, [a(,H(Y,t, 9)‘){ - x} E, [aQH(Y,t, 9)‘X - x}
+E, [H(Y, t,@)‘X - x} E, [agzﬂ(x t, 9)‘){ - xDq(t) at- %(z)

Lemma 5.3.2 and minding the fact, that ¢ has finite moments of order up to 3, we deduce
the result.
O

The following lemma shows that the deterministic and stochastic estimation errors of
the empirical contrast are of the usual non-parametric order.

Lemma 5.3.5. Let 0 < a <b < oco. Under Assumptions (R1), (R2), (R5), for some
kernel K fulfilling Assumptions (R3) and (R4) and sequences of bandwidth parameters
hn(a), a € [a,b] so that

I
sup hp(a), sup ogn

8N Ly,
a€la,b] a€la,b] nhn(Oé)d

Conditions (B5), (B6) and (BT) hold for any compact cuboid J C int(I) containing
an open subset. To be specific on (B5), we have for any compact cuboid J C int(I)
containing an open subset

limsup sup sup sup hn(a)fo‘HIEv [Sn (G,m;hn(a))} — S(G,x;’y)” < Cy, (5.3.9)

n—oo a€la,b] yel'(a) z€J,0€0
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5.3 Proofs for Section 4.2

-1

. logn ) B ) 2
L € o B e RO R U]

(5.3.10)

< CsrtocH -

The constant C, > 0 depends only on a, b, the function classes T'(«), ©, I, q and K; the
constant Cstocu > 0 depends only on ||K||s, Lk, Us, I, © but is free from a and b.

1
Particularly, when h,(a) = (k’%) 2ot there is a constant C > 0 so that

2a
logn T
limsup sup sup <ogn) EW[ sup HSn(O,x;hn(a)) —S(H,x;’Y)H2 <C.
n—oo a€la,b] yel'(a) n reJ,0cO

(5.3.11)

Proof of Lemma 5.3.5. First, let us prove (5.3.9). We will show that for all 0, z, «, v,
h, we have

HEV [Sn(97$§ h)] - S(ﬁ,x;’y)H
§2/H((1E7[H(Y,t,9)|X =]0) *Kh)(a:). ((EV[%H(Y,LHHX _ 'V) *Kh)@

— (@)Ey [H(Y,t,0)| X = 2] - Ey[0H(Y,t,0)|X = ]||q(t)dt . (5.3.12)

She
Let us make a zero addition of the term
0(2)E, [H(Y,1,0)| X = 2] - ((EW [00H (Y, 1,0)|X = -]z) * Kh)(x)
within the norm in (5.3.12). Since ¢ is bounded by sup U, and the functions H and
OpH(-,t,-)/(1 + |t|) are uniformly bounded according to Lemma 5.3.2 (i) and (ii), it is
enough to examine occurring differences.

First deduce that

‘((IE,Y [H(Y,t,0)|X =-]¢) « Kh)(x) — Ua)Ey [H(Y,1,0)|X = 2]

(5.3.13)

< ‘ ((Ev [H(Y,1,0)|X =-]¢) « K;L)(:E) - z(:z;)((Ev [H(Y,t,0)|X =]) * Kh)(x)

)

+ ‘K(m)((EA, [H(Y,t,0)|X =]) = Kh)(x) — U(z)Ey [H(Y,1,0)| X = 2]

where the first summand is treated by Lemma 5.3.2 (i) and the fact that ¢ is Holder-a-
smooth, in particular,

|(0x Kp)(z) — ()| S h™ .
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5 Proofs and auxiliary results

The second summand is dealt with by Lemma 5.3.3 directly so that in conclusion
(5.3.13) S h*(1+1t]) .

Analogously, we derive that

H [0 H(Y,1,0)| X =] )*Kh)(x) — U(@)Ey [0 H(Y, 1,0)| X = 2]

H L[OeH(Y,1,0)|X =] )*Kh>(x) —e(m)((E7 [00H(Y,1,0)|X =]) *Kh)(x)

H O H (Y, 4,0)[X =)+ K ) (2) = L()E, [0, H(Y, 4,0)| X = a]

Sh(1+¢%) (5.3.14)

and since g has finite third moments, conclude the bias examination.

In order to prove (5.3.10) and (B7), we only need to show that all assumptions of
Theorem 3.2.7 are fulfilled. The gradient of the empirical contrast M, is given by
S, (6, z; h) Z /H Y, t,0)0p H (Y, t,0)q(t) At Ky, (X; — ) Kp(Xg — ) .

]k:l

J#k

n—l

According to Lemma 5.3.2 (i), (ii), (iv) and (v), each of the coordinates of the function
0 /H Y;,t,0)9H (Yi, t,0)q(t) dt

fulfils all of the assumptions postulated on the function 7 in Theorem 3.2.7, so that
application of Theorem 3.2.7 concludes the proof of (B5).

(]§7 ) is subsequently given directly by Lemma 3.2.10.

In order to prove (]~36), make a bias variance decomposition for the contrast’s estimation
eITOT SUPgcg peg | Mn(0, x5 h)—M (0, ;)| and repeat the arguments above. In particular,
by using Lemma 5.3.3 as well as Lemma 3.2.1, deduce that

sup sup h,(a)”® sup ’Ew (M, (6, 2; b ()] —M(G,x;'y)} =0(1)
a€la,b] vel'(a) 0EO,ze

yielding

sup sup  sup ‘IEA, [Mn(H,J;;hn(oz))] - M(H,x;w)‘ =o(1)
a€la,b] y€l'(a) 0€O,xzeJ

Use Theorem 3.2.7 for the empirical contrast M, in order to deduce

1
logn \ 2 [
sup sup | ——— E sup |Mn(6,x;hn(a)) — Ey| My (0, x; hn(a ’ =0(1),
a€la,b] veT'(a) (nhn(a)d> v 0co,zcJ ( ( )) 7[ ( ( ))} M
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5.3 Proofs for Section 4.2

which gives

sup sup IPW( sup

My (0,5 hn (@) — By [ M (0,75 hn(a))] ‘ > s> =o(l), >0
a€la,b] y€T'(a) 0cO,xcJ

by Markov’s inequality. O

5.3.3 Proofs for auxiliary results

Proof of Lemma 5.3.2. The proofs of (i)-(iii) are deduced from the fact that the func-
tions sin, cos, ¢, 6<pf and 6290]; are bounded.

For (iv)-(vi), we additionally use the Lipschitz continuity of sin, cos, ¢, dpf and 0% Iz
In particular, the Lipschitz continuity of ¢ — exp(it) with Lipschitz constant 1 yields

0 5 (at) — 0 pf(a't)] < / | exp(ioty) — exp(io’ty)| - [i*y* f(y)|dy
<tlo—o| [P fwdy, k=012 (5315)

O

Proof of Lemma 5.8.8. (i) Fix some « € [a,b], v € ['(a), h € (0,00), © € J. Use the
alternative representation (5.3.4), the fact that characteristic functions are bounded by

1, boundedness and Lipschitz continuity of sin, cos, the compactness of = and (5.3.15)

for £ = 0 in order to deduce that there is some C' > 0 independent of «, v, h, z, t so
that

E, [H(Y,t,0)|X =z] - (JEW [H(Y,t,0)|X =] « Kh>(x)

= /(EW [H(Y,t,0)|X = a] —E,[H(Y,t,0)|X =z +z] ) Kn(2) dz

= /(Ey[sin ((Y—u)t)|X :x] —]Ev[sin ((Y—u)t)’X :z+m])Kh(z)dz

= / (sin(f,ut) (1 — Ps (m))apf(a*(x)t) — sin(—pt) (1 —pu(z+ m))apf(o*(z + m)t)

+sin (ke (@) = p)t)pe(@) sz (8) = sin ((na (2 + 2) = )t)pa(z + 2)ppr (t)) Kn(2)dz

<C(1+1) ’/((mm (et 2)) + (00 (@) = a2+ 2) + (11e (@) = a2+ 2) ) Kin(2) dz
(5.3.16)

—I—C‘/(gpf;(t)—gpf;rz(t))l(h(z)dz : (5.3.17)
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5 Proofs and auxiliary results

The term (5.3.16) is directly treated by Lemma 3.2.1. The term (5.3.17) is handled
by the fact that z — f(y) is Holder-a-smooth with Hoélder constant L(y) that is inte-
grable in y so that Holder-a-smoothness extends to the family of characteristic functions
(@f:)zer. Note that the k-th partial derivatives of f*(y) are bounded by L(y), |k| < [o]
so that Lemma 3.2.1 is applicable again.

(i) Since
<<Y )| x =]
/ Rexp(iy —00) (T ) 4 o)zl - e ) d
(- pule )) cos(~ut)ip (5 (2)t) + a ) €08 ((1a ) — 1)0) o1 (1)
we can proceed just like we did in (i). 0
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6 Simulations

In this section, we illustrate the asymptotic results of the estimator ,,(-; h), cf. (4.1.4),
for the mixture of normal regressions model, cf. Section 4.1. Let us conduct a simulation
series for two different models of this kind.

Regime 1: Consider the two-component mixture of regressions model with conditional
model densities

fillz) = (@) (- |pa(2), 0% (@) + (1 = 7(2)) (- [u2(2), 03(2)) ,
where the parameter functions are given by

p1(z) =3+ 0.5sin(0.2z) , pa(z) = —0.5sin(z) ,
() =0.9+4 0.2sin(0.2x) , oa(x) = 0.8 4+ 0.2sin(0.3x) ,

01
7(z) = 0.3+ 0.03sin(0.5z) .

Regime 2: Consider the three-component mixture of regressions model with conditional
model densities

3
folelz) = pe(@)d( - [Ac(), 62(2))
c=1

where the parameter functions are given by

M) =m(z),  A(z) = p2(z), As(@) = =5+ 0.25exp(0.4z) ,
01(x) = o1(x) d2(x) = o9(x) , d3(z) = 0.9+ 0.1exp(0.1z) ,
pi(x) =7(z), p2(x) = 0.25 4+ 0.02 cos(0.25z) , p3(x) =1 —pi(x) — pa(x) .

In both regimes, the univariate covariate values are drawn from a U(—4,4) distribution.
For each regime, we generate 400 datasets with n = 1000, n = 5000, n = 10000 obser-
vations to which the estimation method is applied.

For the estimation procedure, we assume that the number of components m is known
beforehand. Let us use the triangular kernel K : R — R, K(z) = (1 — [2])1|3<1. We
propose bandwidth parameters to come from the set {0.1,0.2,...,1} in order to demon-
strate the influence of the bandwidth on performance of the method. The uniform
asymptotic results are illustrated by estimating all parameter functions on the grid
G =1[-3,3]N(0.05-Z).
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6 Simulations

In order to approximate the maxima of the local log-likelihood functions, we apply the
EM algorithm proposed by Huang et al. (2013) using perturbed true values as initial
values. The estimation results for both regimes are given in the Tables A.1-A.3 in which
mean and standard deviation of the estimators’ supremum errors are displayed. Figure
6.2 displays boxplots for the empirical distribution of the supremum errors of the es-
timators 7 (-), fia(+), 62(-) in Regime 1. The influence of the bandwidth parameter on
the estimation results can be seen quite clearly. Figure 6.1 displays typical estimated
parameter curves.

We conclude that the method works quite well for a variety of sample sizes and bandwidth
parameters. In particular, the means of the empirical L°°-errors approach zero with
increasing sample size, while the standard deviations also decrease. This affirms the
theoretical results stated in Section 4.1.3.
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Figure 6.1: Typical estimated parameter curves (blue circled lines) of parameter curves (red solid lines)
in Regime 1 with bandwidth parameter h = 1.
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Figure 6.2: Boxplots of the supremum error of estimators in Regime 1 for n = 1,000, n = 5,000,
n = 10,000 observations. In each graph, the values on the horizontal axis correspond to
the bandwidth parameters h being used.
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Appendix

A.1 Notation

Let us briefly discuss notation used throughout this thesis.

We will use the notation || - || for norms on any normed space. The context should make
clear on which space it lives. Sometimes, we will use specific norms, such as

16]1: = Z; D50, 6lleo = max [, 0= (01,....0)" R
J:

.....

Note that norms on R™ are equivalent in the sense that for any norms || - ||, || - ||« on R™,
there are constants ¢y, co > 0 so that

allfl <0l <cloll, 6eR™.

When using a norm || - || for matrices A € R™*™, we assume that it is compatible with
the norm being used on R™, i.e.

[A0| < [lAll- el , 6 eR™.

For functions f : Q@ — R™ for some non-empty set (2, we will use the notation

supyeo [f(Wllee,  m>1,

Flle = {supweg @), m=1,

which is a norm on the set of bounded R™-valued functions on 2.

For a vector § = (91,...,9,,)T € R™ and a permutation ¢ on {1,...,m}, write
C(0) = (Weys -+ Fem) " -
For vectors 6,6’ € R™ denote the line segment between 6 and 6’ by
[0,0') = {X0+ (1—N)¢'|x € [0,1]}
and for £ > 0, the e-ball with respect to || - || around 6 by

B.(0) = {0 €R™: [0 — 0] <} .
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Moreover, for sets A C R™, define the e-neighbourhood with respect to || - ||« around A
by
B.(A) = {6 e R™ : dist(0, A) < ¢},

where the metric that is induced by || - ||« is being used.

For complex numbers z = ai + b € C denote the imaginary part of z by $(z) = a and
the real part of z by R(z) = b.

For a metric space (£2,d) and sets A, B C ), we use the notation

ist(A,B) = inf
dist(A, B) zeg}yeBd(ﬂc,y),

dist(z, B) = iglfg d(z,y), =€,
y

diam B = diam(B) = sup d(z,y) .
z,yeEB

Further denote B the closure, int(I) the interior and 8I the boundary of B.

For a vector k = (ki,...,ky) € Ni* with 377 k; = n denote |[k| = n as well as
k' =ki!-... kp! Fora vector § = (J1,...,9,)T € R™ write 0% = 19’1“ o9k

For partially differentiable functions f : U — R, U C R™ open, denote the partial
derivative of f with respect to ¥y at the point 8 = (91, ...,9,,) by 0y, f(8). For a vector
z € R™, ||z|| = 1, the directional derivative along z is denoted by 0, f if it exists. When
m = 1, write 3f for the derivative of f. Now, let f be n-times partially differentiable
with continuous n-order partial derivatives. For a vector k = (k1,...,kn) € Ni* with
|k| = n denote the k-th partial derivative of f by

oFf(0) =05 ... 05mf(0), €U,

where order of differentiation is arbitrary. Furthermore, if existent, denote the gradient
and Hessian matrix of f by

T

o f() = (Do, f()s-v B9, (),
832f() = (aﬁiaﬂjf(.ni,j:l ..... . c R™X™

For an integrable function f : R — R denote its Fourier transform by
wr(t) = /exp(itz)f(z) dz, teR.
Whenever f is a density, we shall also call ¢y the characteristic function of f.

For a € (0,00), we define

la] =max{n € Ng:n<a}, [a]=min{neN:n>a}.
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Note that our definition differs from the predominant one for |a] as we demand it to be
the largest natural number that is strictly smaller than « not smaller or equal to «.

For sets 2, #£) denotes the number of elements of 2.

For sequences (ap)nen, (bn)neny C (0,00), we use the notation
an Sby, or ap, =0(by,)

when there is an ng € N and a constant C' > 0 so that for all n > ng, we have a,, < C'b,,.
We also use the notation a,, = o(b,,) when a,,/b, — 0, n — oco. For sequences of random
variables (X, )nen, use the notation X, = Op(b,) when X,, /b, is tight and X,, = op(by,)
when X, /b, converges to 0 in probability.

For random variables XY, Z we write X 1L Y|Z when X is conditionally independent
of Y given Z.

Denote the density of the univariate normal distribution N (u, 0?) with mean y € R and
variance a2 > 0 by ¢(-|u, 0?).
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A.2 Sets of alternative assumptions

The following assumptions are an alteration of Assumption 3.1.4 for deriving uniform
convergence rates when the model is identifiable.

| - ||) be a normed space, M :

Assumption A.2.1. Let © ¢ Z Cc R™, I C R?, (T,]
= x I — R be random functions,

Z2x I xT — R be a deterministic function, M, :
(rn)nen C (0,00) be sequences with r,, — 0.

(A1) Assume that © is compact and convex with © = int(0), Z is open and convex,
I is compact and (I, || - ||) is a compact normed space. Furthermore, there is a
constant C' < oo so that for all 6,0’ € ©, there is an | € Ny and 64,...,60;, € © so
that with § = 6, 8’ = 6,1, we have

Opr1 — Ok =crej, , k=0,...,1
for some unit vectors e;, and some coefficients ¢; € R with Eic:o lex| < C|160—¢'].
(A2) The function M is continuous, i.e. the map
(0, 237) = M(0,2;7)

is continuous. For every z € I, v € I', the contrast M(-,x;~y) attains a unique
minimum at 6, (x;7), where (z;v) — 0.(x;7) is continuous.

(;‘13) For all z € I, € T, the function M (-, x;~) is twice continuously differentiable in
its first argument and the Hessian matrix

V., (9*(33;7);’)/) = 8§2M(9*(:E;7),x;’y)

is positive definite. Particularly, the eigenvalues )\glw > 2 AR of Vy (9* (z57); 7)
are positive. Furthermore, the map (z,7) — V, (0*(x; v); fy) is continuous.

(A4) The Hessian matrices V,(-; ) are uniformly Lipschitz continuous in 6, i.e. for all
0,0" € =, we have

Sup sup ||VL(077) - VL(6/77)H < LHessHe - HIH )
~yel' zel

where Lyess depends only on =, [ and T'.

(A5) The empirical contrast is continuously differentiable in its first argument and for
the gradients

Sn(0,2) = 0gM,(0,2), S(0,x;7) = 0gM(0,x;7)

it holds that

limsupsupr,E, | sup HSn(H,:):;'y) — S(G,x;’y)” <00
n—oo ~el zel,0cO
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(.&6) The empirical contrast M, is uniformly consistent for M, i.e.

lim supIP,Y< sup ’Mn(e,x) —M(G,m;’y)| > 5) =0, €>0.
N—=00 Nl z€l,0€0

The following list of assumptions is the simplified version of Assumption 3.1.11 for iden-
tified models.

Assumption A.2.2. Let 0 <a<b<oo,® CECR™ I CR? (I'(a),]|a) be normed
spaces, a € [a,b], M : Ex T X yepay (P(@) x {a}) — R be a deterministic function,

M, : 2 x I x [a,b] = R be random functions; S, r(«), k be defined as in (3.1.6), (3.1.7)
and (3.1.8), respectively; &, = ;. Continuity of functions taking v as arguments is to
be understood with respect to the maximum of norms in the other arguments and || - || -

(B1) Assume that © is compact and convex with © = int(©), = is open and convex, I
is compact, and (I'(a), || - ||«) are compactly nested spaces, i.e. I'(a) C T'(a’) and
I'(«) is compact with respect to || - |- whenever o/ < «. Furthermore, I'(«) is
closed with respect to || - ||o. Additionally, for any a, a, ' «, it holds that

() T(an) =T(a).

neN

Moreover, there is a constant C < oo so that for all #,6" € ©, there is an [ € Ny
and 01,...,0; € © so that with 0 = 6y, 0’ = 0,51, we have

ék;Jrl_ék:Ckejk, kZO,,l

for some unit vectors e;, and some coefficients ¢; € R with Z;:O ek < CJ160—¢'].

(B2) The function M is continuous, i.e. the map
(0,237 ) = M(0,2;7; @)

is continuous. For every x € I, a € [a,b], v € T'(a), the contrast M (-, z;v; @)
attains a unique minimum at 6, (z;vy; o), where the map (z;7v; ) — 0. (z;7y; ) is
continuous.

(]§3) For all x € I, a € [a,b], v € T'(a), the function M(-, x;~; @) is twice continuously
differentiable in its first argument and the Hessian matrix

Vi (0 (57 )3 ;s @) 1= 0o M (04 (575 @), 373 )

is positive definite. Particularly, the eigenvalues Al > .. > A\ of the

T, = Ty
matrices V. (9*(37; ¥ Q) ; a) are positive. Furthermore, the map

(w575 @) = Vo (0. (257 )5 7; @)

is continuous.
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(B4)

(B5)

(B6)

(B7)
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The Hessian matrices V. (+;7; «) are uniformly Lipschitz continuous in 6, i.e. for
all 0,0’ € 2, we have

sup sup sup ||Vu(0;7;a) — Vo (0';7;0)|| < Luess||0 — 6],
a€la,b) vel'(a) z€1

where Lyess depends only on E, I, a, b and T'(a).

The empirical contrast is continuously differentiable in its first argument and for
the gradients

Sn(0,z;a) := 0g M, (0, 2;) , S(0,x;7v; ) :== 0gM (0, x;7v; @)

it holds that

limsup sup sup r(oz)2IE7{ sup HSn(H,x;a) S0, x;v; « || } < C* < 0.
n—oo  a€la,b] yET () z€l,0EO

The empirical contrast M, is uniformly consistent for M, i.e.

lim sup sup P ( sup ‘Mn(H,x;a) —M(G,x;’y;aﬂ 25) =0, >0.
n—=0 nela,b] yel'(a) xel,0eO

There is a constant C_ > 0 and a monotone function u : [C_,00) — (1,00) with
u(t) — 00, t — 0o so that for every Cre, > C_,

limsup sup sup sup n(Crep)

n—o0  agla,b] vel(a) 0<I<j<kn(a)

plj<007

where p;; is defined in (3.1.12) and 0 < k(o) < N — 1 with N = [logn] is chosen
so that By (o) < a < B, (o) + 1.
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A.3 Tables

In this section, we give tables from the simulation study in Chapter 6.

Table A.1: Means and standard deviations of the supremum error of proportion estimators
in both regimes. The first column gives the respective bandwidth parameter, the
second row gives the respective sample size.

SUP,eg | (z) — m(2)| SUpgeg |P1(x) — p1(@)] | sup,eg h2(x) — pa(z)]
1000 5000 10000 1000 5000 10000 | 1000 5000 10000
mean || 0.329 0.149 0.106 0.306 0.142 0.101 | 0.315 0.142 0.100
sd 0.067 0.027 0.018 0.055 0.024 0.016 | 0.058 0.026 0.018
mean || 0.220 0.099 0.070 0.205 0.093 0.066 | 0.210 0.094 0.066
sd 0.050 0.022 0.013 0.037 0.018 0.012 | 0.042 0.019 0.013
mean || 0.168 0.076  0.053 0.162 0.072 0.051 | 0.165 0.071  0.051
sd 0.039 0.017 0.012 0.033 0.016 0.010 | 0.035 0.016 0.011
mean || 0.139 0.062 0.044 0.136 0.060 0.043 | 0.138 0.059 0.042
sd 0.035 0.015 0.011 0.029 0.014 0.009 | 0.033 0.014 0.009
mean || 0.120 0.053  0.039 0.117 0.052 0.037 | 0.118 0.051  0.036
sd 0.031 0.014 0.010 0.027 0.013 0.009 | 0.029 0.013 0.008
mean || 0.106 0.048 0.035 0.103 0.046 0.033 | 0.104 0.045 0.032
sd 0.029 0.013 0.009 0.026 0.012 0.008 | 0.027 0.012 0.008
mean || 0.096 0.043 0.032 0.093 0.042 0.030 | 0.093 0.041 0.029
sd 0.027 0.013  0.009 0.024 0.012 0.008 | 0.025 0.011 0.008
mean || 0.088 0.040 0.030 0.084 0.038 0.028 | 0.084 0.037 0.027
sd 0.026 0.012 0.009 0.023 0.011 0.007 | 0.024 0.011  0.007
mean || 0.081 0.038 0.029 0.078 0.036 0.026 | 0.077 0.035 0.025
sd 0.025 0.012 0.009 0.022 0.011 0.007 | 0.023 0.010 0.007
mean || 0.076 0.036 0.028 0.072 0.033 0.024 | 0.072 0.033 0.023
sd 0.024 0.011  0.008 0.021 0.010 0.007 | 0.022 0.010 0.007

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9
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Table A.2: Means and standard deviations of the supremum error of location estimators in both regimes. The first column gives the
respective bandwidth parameter, the second row gives the respective sample size.

SUP,eg |1() — p1(@)] | supgeg |fia(z) — pa(z)] SuP,eg [A1(®) = A (@)] | supgeg[r2(®) — Ao(@)] | supgeg A3 (@) — As(@)]

1000 5000 10000 | 1000 5000 10000 1000 5000 10000 | 1000 5000 10000 | 1000 5000 10000

01 mean || 1.547 0.611 0.422 0.785 0.325 0.228 1.461 0.576  0.400 1.748 0.609 0.402 1.196 0.464 0.324
’ sd 0.437 0.127  0.080 0.165 0.063 0.043 0.425 0.115 0.069 | 0.616 0.152 0.084 | 0.311 0.079  0.058
0.2 mean || 0.919 0.395 0.276 0.494 0.209 0.149 0.873 0.377 0.264 | 0.992 0.382 0.259 | 0.716 0.297 0.211
’ sd 0.233 0.098 0.057 | 0.115 0.043 0.031 0.202 0.083 0.054 | 0.325 0.096 0.060 | 0.166 0.057 0.041
03 mean || 0.693 0.304 0.214 | 0.375 0.160 0.115 0.666 0.290 0.203 | 0.705 0.288 0.198 | 0.532 0.229 0.162
’ sd 0.191 0.072 0.050 | 0.095 0.036 0.026 0.166 0.069 0.046 | 0.213 0.073 0.048 | 0.129 0.047 0.034
0.4 mean || 0.567 0.252 0.179 | 0.309 0.133  0.096 0.554 0.239 0.169 | 0.565 0.235 0.164 | 0.436 0.189 0.133
sd 0.164 0.063 0.047 | 0.084 0.033 0.023 0.151 0.059 0.041 0.181 0.062 0.043 | 0.108 0.042 0.030

05 mean || 0.487 0.219 0.156 0.264 0.117 0.085 0.475 0.207 0.146 | 0.476 0.202 0.143 | 0.375 0.162 0.114
’ sd 0.149 0.060 0.045 | 0.076 0.031 0.022 0.132 0.055 0.038 | 0.159 0.055 0.040 | 0.097 0.038 0.027
06 mean || 0.430 0.196 0.142 | 0.232 0.107 0.079 0.416 0.183 0.130 | 0.416 0.180 0.131 | 0.330 0.143 0.100
’ sd 0.138 0.057 0.043 | 0.069 0.030 0.021 0.119 0.051 0.036 | 0.141 0.050 0.038 | 0.090 0.036 0.025
0.7 mean || 0.387 0.180 0.133 | 0.209 0.101  0.077 0.372 0.166 0.118 | 0.373 0.166 0.124 | 0.296 0.128  0.090
sd 0.129 0.055 0.042 0.065 0.029 0.020 0.109 0.049 0.034 | 0.129 0.047 0.037 | 0.084 0.034 0.024

08 mean || 0.356 0.168 0.126 0.193 0.097 0.077 0.338 0.152 0.109 | 0.343 0.158 0.122 0.269 0.117  0.082
’ sd 0.123 0.053 0.040 | 0.062 0.028 0.019 0.102 0.047 0.033 | 0.121 0.045 0.036 | 0.079 0.033 0.023
0.9 mean || 0.330 0.159 0.122 | 0.181 0.097 0.079 0.311 0.142 0.103 | 0.319 0.154 0.123 | 0.248 0.108 0.076
’ sd 0.114 0.051 0.039 | 0.059 0.027 0.019 0.097 0.045 0.031 | 0.114 0.043 0.036 | 0.074 0.031 0.022
1 mean || 0.309 0.153 0.118 | 0.173 0.099 0.083 0.289 0.134 0.098 | 0.302 0.152 0.126 | 0.230 0.100 0.071
sd 0.109 0.050 0.038 0.057 0.027 0.019 0.094 0.044 0.030 | 0.109 0.042 0.035 0.071 0.030 0.021

150



A.3 Tables

9100  €e0°0 ¥»50°0 | Lg0'0 T¥0°0 ¥OT'0 | 020°0 8200 T90°0 G100 6100 €¥0°0 | 7600 6800 6900 ps I
¢S00  ¥20°099T°0 | S80°0  ¥IT'0O 6€¢°0 | 8900 T60°0 0020 LS00 2900 €¢T'0 | 62400 TOT'0 €Ig'0 || Ueswr
9100  €e0°0  L60°0 | Lo0'0 <¢¥0'0 601°0 | 0c0°0  6¢0°0  €90°0 Gr0’0 6100 ¥v0°0 | 600 0€0°0 €L0°0 ps 60
9600 6200 O8T'0 | 9800 STT'0 LSc¢'0 | TA000 L60°0 91c¢0 $60°0 2900  O€T°0 | &80°0  L0T°0 6¢¢’0 || ueow
L10°0 ¥¢0°0 0900 | 6600 ¥¥0°0 GIT'O | Tc00 T€E0°0 99070 GT0'0 0200 G¥0'0 | G200 TEO00 8LO0 ps 30
0900 9800 L61°0 | 6800 G2I'0 082’0 | 9200 S0T'0  ¥€TO €900 6900 6€T°0 | 2800 V¥ITO 6¥c0 || Uesw
8100 Ge0°0 ¥#90°0 | 1T€0'0 9¥0°0 GeI'0 | ¢c0'0 <¢e0'0 000 G100  Tc0'0 L¥0OO | 9200 CEO'0 €800 ps 10
9900 ¥60°0 ATc0 | ¥60°0 ¥ET'0  60€0 | €80°0 GIT'0 LST0 $S0°0  ¢L0°0  TST'0 | ¢60°0 €CI'0 ¢Lg'0 || Uesw
6100 Le0'0 <¢L00 | €00 6700 ¢vI'0 | ¥¢0'0 ¥E€O'0 GL00 G100 ¢c0'0 0S%0°0 | Lg0'0O  ¥EO0 ¥60°0 ps 90
¥2000  G0T°0 ¥PcO | €0T°0  9¥T°0  L¥PE€0 | 1600 LCI'0 L8CO 2600 8200 ®9T°0 | O0T'0 VET'0 €0€'0 | Ueow
1¢0°0 8200 6.0°0 | LEO'0O PSO°0  LST°0 | 9¢0°0 L€0°0  080°0 910'0  G¢0°'0 €900 | 8¢0'0  LE00 <0T0 ps ¢
€80°0  6IT'0 8420 | GIT'0  ¥9T°0 G6€0 | €0T°0 SPI'0  9¢€0 ¢90'0  280°0 06T°0 | TIT'O OST'0 gGpe0 || Ueow
¢c0'0  T€0°0 6800 | ¢¥0'0 @900 691°0 | 8200 0¥0'0 9800 L7100 Lc0'0 8500 | TEOO0 T¥0O'0 OITO ps 70
L60°0  8ET0  ¥c€0 | PET'0  ¢6T'0  8GP'0 | 6110 6910 6LE°0 1000 00T'0 ¢¢c0 | AcT'0  ¢LT'0  €6£0 | UrowW
Gc0'0  G€0°0 9600 | 8¥0°0  €L0°0 99T°0 | 000 G¥VO'0 €60°0 0c0'0  T€0'0 ¥90°0 | ¥€0'0  LVO'O 0CI0 ps e
6TT°0 8910 06€0 | €910 9€¢0 SGPS'0 | SPI'0  G0C0 LSVO G800 0cI'0  T22°0 | €410 9020 0LyQ || Urowt
0€0°0  ¢v0'0 LIT'O | 8300 @600 9¢c’0 | S€0°0 9500 860°0 ¥¢0'0  8¢0°0 9200 | 6£0°0 2900 9€ET0 ps z0
PST°0 0¢¢0 0TS0 | P10 ¥IE0 G690 | A8T0  99C°0 GLS0 OTT'0  ZST'0_ PS€0 | S6T°0 69¢0 1090 || Ueowt
Iv0°0  850°0 GE€T'0 | €80°0 P¥ET'0 TIEO0 | L¥O'0  ¥80°0 8ET'O €600  6¥V0°0 €0T°0 | €900 9200 S¥I0 ps 0
L€C°0  8EE0  GLL°0 | TEE0 €670 2960 | €8¢°0 90F'0 S¥80 89T°0  6€¢'0 L€S'0 | 160 TIP'0 €98°0 || Ueew
0000T 000G 0O0OT | OOOOT 000 000T | 00OOT 000G 000T 0000T 000S% 000T | O0OOT 000S 000T

[(2)59 — (x)7] P>"dus

o)} m®>_w uwmnpod jsiyg oy I, .mwgﬁmwh 730Q ur sIojeuur)}so o[eos JO IO0.II9 wmuwexdns 9%} JO SUOI}RIASD pJepUR]S pu®R SURI\ m< olqel,

[(2)29 — (2)2g] P"dns

[(2)T9 — (2)1g[ P"dns

[(z)e0 — (x)eg] 57"dus

[(2) 10— (2) 6] P"dus

-9z1s o[dures oA1300dsal oY) SOAIS MOI PU0ILS oY} ‘Iojouwrered Yipimpue( oA1300dsox

151



Appendix

A.4 Proof of the alternative identifiability result

The proof for Theorem 4.2.10 is given in Werner (2015) and presented here with minor
changes for completion purposes.

Proof of Theorem 4.2.10. Denote ¥ = (p, o, i, f)*. We may repeat the proof of Theorem
4.2.4 up until (5.3.2), i.e.

[(1=p.)eflowt) = (1—p)ps(ot)] sin(ut) = ppy, () sin (1. — p)t) teR. (A41)
We further note the first moment equation
DI = Dxfhs (A.4.2)

which directly implies p, u # 0.

First suppose that Condition 4.2.5 holds. Assume ¢ to be so large that ¢y, (t) # 0 holds.
Dividing (A.4.1) by ¢y, (t) and taking limits in ¢ gives

Jim psin ((pe — p)t) =0

according to Condition 4.2.5. As p,. > 0 and sin is periodic, it follows p,. = p and since
sy # 0, we obtain ¥, = 9 by Lemma 5.3.1.

Since for p,. = p # 0 identification follows directly by Lemma 5.3.1, we assume p. # u
and derive a contradiction to show identification under the other conditions.

Suppose that Condition 4.2.6 holds. We need to consider three cases.

Case 1: 0 = o,. If we divide (A.4.1) by ¢f(0.t) and let t — oo, the right-hand side
tends to 0 and hence

lim ((1—p.) — (1 —p))sin(ut) =0.

t—o0

As p # 0, this is only possible if p = p., in which case (A.4.2) implies © = ., a contra-
diction.

Case 2: 0 < 0,. If we divide (A.4.1) by p(ot) and let t — oo, we obtain
tlggo(l —p)sin(ut) =0.
It follows that p = 1 because u # 0, so that (A.4.1) reduces to

(1= p)gj(o.t)sin(ut) = pepy. () sin ((ue — p)t) , teR. (A.4.3)
Dividing by ¢7(o.t) and letting ¢ — oo gives
lim (1 — p,)sin(ut) =0,

t—o0

152



A.4 Proof of the alternative identifiability result

thus g = 0 or p, = 1, a contradiction.

Case 3: 0 > o, If we divide (A.4.1) by ¢ (0.t) and let t — oo, we get

lim (1 — p.)sin(ut) =0,

t—o0
a contradiction as above.
Now suppose that Condition 4.2.7 holds. If o¢ < o, 04, the arguments used under Condi-
tion 4.2.5 apply, while if oy > 0, 04, so do those under Condition 4.2.6. So let us consider
the following cases.

Case 1: 0, < 09 < 0. We divide (A.4.1) by ¢(0.t) and take limits to conclude

pr(at)
pi(ost)

O:tlim (1—p*—(1—p)

— 00

) sin(ut) ,

giving

0=lim 1—p, —(1 —p)w
as p # 0 and sin is periodic. According to (4.2.3) we conclude p, = 1, a contradiction.

Case 2: 0 < 0g < 0, we divide (A.4.1) by ¢ (at) to deduce p = 1 so that (A.4.1) reduces
to (A.4.3) again. Dividing by ¢y, (t) and letting ¢ — co gives pt = 1., a contradiction.

If c =0 or ¢ = o0, the cases 0 = gg or 0, = 0 or both may be dealt with similarly.
Hence, suppose that ¢ ¢ {0, c0}.

Case 3: 0, < 0 = 0. Divide (A.4.1) by @f(a*t), giving p, = 1 like above, a contradic-
tion.

Case 4: 0 < 0, = 09 yields p = 1 by dividing by ¢;(ot), which leads to a contradiction
like before.

Case 5: 0, > 0 = 0p. Divide (A.4.1) by ¢y, (¢) to conclude that

lim (1 — p) Lf(a()t)

t—00 vr.(t)

sin(pt) + psin (e — p)t) = 0.

Letting g(t) = (1 — p)esin(ut) + pa sin((p. — p)t), an almost periodic function, we also
have

(1-p) @(;;*U(zi) sin(ut) + p.sin ((pe — p)t) — g(t)| =0, = oo,
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so that in particular g(¢) — 0, which is only possible for an almost periodic function if
g(t) =0 for all t € R, so that

(1 —p)esin(ut) + pesin ((ue —p)t) =0, teR.

If p=1, we get p = px, yielding 0 = o, by Lemma 5.3.1, a contradiction. Thus assume
p < 1. Then the zeros of sin(ut) must coincide with those of sin((u« — p)t), so that
s = 24 and we may cancel sin(ut) and find ¢(1 — p) + p. = 0, so that ¢ = —p, /(1 — p)
would be negative, contrary to our assumption.

Case 6: 0 > 0, = 0g. This case works just like case 5.

Case T: 0 = 0, = 0¢. Dividing (A.4.1) by ¢y, (t) and arguing as above gives
esin(ut) (1 =p) = (1 = ps)) +pesin((pe —p)t) =0, teR.

Thus, either p = p,, and we conclude p = u. by (A.4.2), a contradiction, or p # p, and

the zeros of sin(ut) must coincide with those of sin ((u. — p)t). This implies p, = 2

so that 2p, = p by (A.4.2). Therefore, —cp, + p» = 0, so that ¢ = 1, contrary to our
assumption. O
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A.5 Component density considerations

Let us briefly discuss how one can approach modelling the function families (f).cr by
a compact function class. We will restrict our considerations to the case that @ < 1
but conjecture that this can be extended to higher degrees of smoothness by arguments
similar to the ones in the proof of Driver (2003, Theorem 5.14).

Lemma A.5.1. Let I ¢ R? be a compact cuboid containing an open subset, g1, gs : R x
I — (0,00) be continuous bounded functions so that for all x € I the map y — ¢;(y,x) is
a density, that for alle > 0, there are constants Ce > 0 so that sup|(, »)|>c. g9i(y,x) < e
and that for some ¢1,co > 0 and for all x,y, we have cags(y,x) — c191(y, ) > 0. Further
let g: R — (0,1) be a function. Let U C [0,00) be bounded, L(-) be a positive bounded
function of y and L* > 0 be a constant. Then, for any « € (0,1], the function class

Fla, f,L(-),U,L*, g1, g2, c1,2)
={f.(): IxR—= Uz €I: fu(-) €&, fu(-) is Lipschitz continuous with constant L*,
¢r. 29, Yy eR: f(y) € H(a, L(y), V),
Va,y:cagi(y,z) < fo(y) < 6292(3/7@} )

is compact with respect to the supremum metric.

Note that every f.(-) € F(a, f, L(-),U, L*, g1, ga,c1,co) fulfils Assumption (I3). The
functions g;, go and g can be chosen in a way that F(a, f, L(-), U, L*, g1, g2, ¢1, c2) con-
tains a large variety of density families. Consider for example light-tailed densities like
double exponential densities for g; and heavy tailed densities like Student-t densities
for go. Furthermore note that this result also holds when tailoring the function class
Fla, f,L(-),U,L*, g1, ga,c1,c2) to Assumption 4.2.9. Minor adjustments need to be
made.

Proof of Lemma A.5.1. Write F(a, f, L(-),U, L*, g1, g2, ¢1,¢2) = F. First we note that
the conditions that define the function class F are limit invariant, i.e. if every member
of a sequence of functions f,, € F fulfils those properties and if || f,, — f|jcoc — 0 for some
continuous function f, then f fulfils those properties as well. Hence, F is closed with
respect to the supremum metric.

Furthermore, F is complete because it is a closed subset of the set of bounded continuous
functions on I x R, which is complete. It remains to show that F is totally bounded,
i.e. we need to show that for any ¢ > 0, there are open balls M, ..., M, of radius € so
that F C U, M;.

Fix € > 0. Then for any ||(y,z)|| > C we have max{ci, c2}gi(y, x) < € so that

[ S—
max{cq,ca}

Ae = {(ya‘r) teage(y, ) — crg1(y, x)| > 6}
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is bounded and further closed as (y,x) — |c292(y, ) — c191(y, x)| is continuous. Thus,
A. is compact. Since for any function fi, fo € F, we have Hf1|AE - f2|AE ||C>O < egitis
enough to show that

Fly, = {fla|f € F}

can be covered by such open balls M; because then the open balls of the corresponding
functions in F cover F. We will prove this by showing a stronger property, i.e. that
F | A, is compact. Therefore, we use the well-known Arzela-Ascoli theorem. The set
F A
is equicontinuous as for any f € ]:|A5’y1’ Yo, X1, T2, We have

is closed as are F and A.. Furthermore, F ’ 4 is bounded, as is U. Finally, F ’ A

|f(yl,9€1) - f(y2,$2)| < |f(y17$1) - f(y1,$2)| + |f(yh$2) - f(y2,$2)|
< L(y1)[ler — 22| + L*[y1 — y2|
<NLO) oo llzr — z2l|* + L y1 — y2l -
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A.6 Zusammenfassung auf Deutsch

Mischungsmodelle spielen in vielen statistischen Anwendungen eine wichtige Rolle, da
sie einen natiirlichen Ansatz darstellen, Heterogenitdt zu modellieren. Insbesondere
in Zusammenhang mit Regressionsmodellen wurden Mischungsmodelle in den letzten
Jahrzehnten intensiv studiert.

In dieser Arbeit werden zunéchst theoretische Mittel erarbeitet, die zur Untersuchung
von Schétzern in nichtparametrischen Regressionsmodellen auf gleichméflige Konver-
genzraten und gleichméfiige Adaptivitdt beziiglich der Glattheit der Parameterfunktio-
nen dienen. Diese werden spéter auf nichtparametrische Regressionsmischungsmodelle
angewendet.

Dazu seien I', I beliebige Mengen und © ein normierter Parameterraum. Fiir jedes
~ € T sei eine deterministische Kontrastfunktion M (-, -;7) : © x I — R definiert, welche
fir jedes € I, v € I" ausschlielich von Parametern aus einer endlichen Menge &,.,
minimiert wird. Um diese Parametermengen zu schitzen, seien zuféllige Kontrastfunk-
tionen M, (-,-) : © x I — R gegeben, deren Minimierer im ersten Argument 6, (z) als
Schétzer dienen. Hierbei kann man I als Kovariablenwerte und I' als Menge aller Mo-
dellparameter interpretieren. Typischerweise sind v € I" Tupel aus Parameterfunktionen,
Kovariablendichten und moéglicherweise weiteren Modellparametern. Das Einfiihren der
Menge &,., erlaubt die Untersuchung von Schétzern auf asymptotische Eigenschaften
in Modellen, die nicht vollstdndig identifiziert sind. Dies ist ein hdufiges Problem in Mi-
schungsmodellen, da typischerweise das Umlabeln der Komponenten keine Verdnderung
der Verteilung zur Folge hat. In identifizierbaren Modellen sind die Mengen &, typi-
scherweise einelementig.

In Kapitel 3 verallgemeinern wir ein typisches Konsistenzresultat von M-Schétzern,
vgl. van der Vaart (2000, Theorem 5.7), siche Theorem 3.1.2, sodass es Aussagen iiber
gleichméBige Konsistenz iiber I, gleichméBig {iber den Modellparametern I' zulésst, auch
wenn das Modell nicht vollstdndig identifiziert ist. Des Weiteren verallgemeinern wir
ein klassisches Konvergenzratenresultat, vgl. van der Vaart und Wellner (1996, Theo-
rem 3.2.5), sieche Theorem 3.1.3. Die Voraussetzungen des zweiten Resultats beinhalten
gleichméflige Konsistenz der zufilligen Kontrastfunktion, gleichméfige Wegbeschriankt-
heit der deterministischen Kontrastfunktion vom Minimum auflerhalb Umgebungen um
die Minimierer, und eine Lipschitzeigenschaft von erwarteten Schétzfehlerinkrementen

M, (7'7:) _M(7Z‘a’}/) :

Insbesondere die letzten beiden Voraussetzungen sind mitunter schwer nachzuweisen.
Deshalb formulieren wir im Anschluss speziellere Annahmen an Modelle, welche die
Voraussetzungen von Theorem 3.1.3 implizieren, sieche Annahme 3.1.4. Diese Annah-
men beinhalten im Wesentlichen Glattheitsannahmen an die Kontrastfunktionen, deren
Ableitungen und der Parameterfunktionen, die positive Definitheit der Hesse Matrix
von M am wahren Parameter, die gleichméBige L' Konvergenz des Gradienten von M,,
gegen den Gradienten von M mit entsprechender Rate und die gleichméfiige Konsistenz
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der zufalligen Kontrastfunktion M,,.

Im Weiteren geben wir ein auf Lepskii (1992) basierendes Verfahren zur gleichméfigen
adaptiven Schétzung der Parameterfunktionen an, fiir den Fall, dass ein unbekannter
Storparameter wie die Glattheit o von Holder-a-glatten Funktionen vorliegt. Dieses
Verfahren schétzt adaptiv an den unbekannten Storparameter «. Genauer gesagt wird
angenommen, dass a € [a,b], fir beliebige Intervallgrenzen 0 < a < b < oco. Auf
das Intervall [a, b] wird ein in der Anzahl der Beobachtungen logarithmisch wachsendes
dquidistantes Gitter gelegt, aus dem ein Punkt ay, gewédhlt wird, welcher zu einer adap-
tiven Wahl des Storparameters fithrt. Zu beachten ist, dass die adaptive Wahl nicht
wie {iblich basierend auf dem Verhalten der Schétzer fiir verschiedene Stoérparameter
gewahlt wird, da fiir diese keine exponentielle Fehlerungleichung zur Verfiigung steht.
Alternativ kénnen die Gradienten der empirischen Kontrastfunktionen mit verschiedenen
Storparametern zu Vergleichszwecken herangezogen werden. Fiir diese stehen derartige
Ungleichungen zur Verfiigung, sieche Lemmata 3.2.2, 3.2.3 und 3.2.4.

Im Anschluss erweitern wir Annahme 3.1.4, sodass diese gleichméflige Adaptivitéit eines
Schétzers implizieren, siehe Annahme 3.1.11. Insbesondere muss fiir jeden Storparameter
der Gradient der zufilligen Kontrastfunktion den Gradienten der entsprechenden deter-
ministischen Kontrastfunktion mit korrekter Rate gleichmifig in L? schitzen. AufBer-
dem miissen wir polynomielles Abklingen der Tail-Wahrscheinlichkeiten des gleichméfigen
Bias des Gradienten von M, unter verschiedenen Storparametern annehmen.

Des Weiteren geben wir theoretische Mittel, mit denen man fiir gewisse Typen von
zufilligen Kontrastfunktionen obere Schranken fiir den stochastischen gleichméfigen LP-
Fehler der Kontrastfunktionen bestimmen kann. Bei diesen Typen handelt es sich um
lineare und U-Statistik Schétzer, also

n(0,x;h) lnTYk, X, —x), oder
w27l )
Mo (0,33 h) = ——— 5" 7(¥;, Vi, 0) K (X — ) K (X — )
Y n(n—1) = o ’
s

wobei 7 jeweils eine deterministische Funktion, K : R? — R ein Kern und h € (0, 00)
eine Bandbreite ist.

In Kapitel 4 stellen wir zwei Regressionsmischungsmodelle vor und wenden die vorher
erarbeiteten theoretischen Mittel an.

Bei dem ersten Modell, siehe Abschnitt 4.1, handelt es sich um eine Mischung von
Gaufy’schen Regressionen. Das heifit, zwischen beobachteten Zufallsvariablen Y und
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stetigen Regressoren X mit Triager I C R¢ besteht der funktionale Zusammenhang

m

Y =3 Ince(ou(X)ee + (X))
c=1

wobei II eine latente Zufallsvariable mit Werten in {1,...,m} ist, sodass P(IT = ¢|X =
z) = 7.(x) fir Mischungsfunktionen m, : I — (0,1) mit Y..*, m. = 1; die Zufallsvari-
ablen e, bedingt auf X = z unabhéngig von Il und standardnormalverteilt sind; und
te: I = R, o.: I — (0,00) Lokations- bzw. Skalenfunktionen sind. Anders ausgedriickt,
die bedingte Verteilung von Y auf X = z ist eine Mischung von Normalverteilun-
gen, wobei Mischungs-, Lokations- und Skalenparameter von den Kovariablen abhéngen.
Dieses Modell wurde bereits von Huang et al. (2013) untersucht. Die Autoren konnten
nichtparametrische Identifizierbarkeit mit univariaten Regressoren unter Differenzier-
barkeitsannahme der Lokations- und Skalenfunktionen mit Transversalitdtsargumenten
zeigen. Ferner waren sie in der Lage, mit der lokalen Log-Likelihood Methode punktweise
asymptotisch normale Schatzungen fiir zwei-mal differenzierbare Parameterfunktionen zu
etablieren.

In Abschnitt 4.1.1 werden verchiedene Identifizierbarkeitsresultate gegeben, von denen
eines die Grundlage fiir gleichméaflig konsistentes Schétzen in Abschnitt 4.1.2 bildet. Wir
untersuchen Schitzungen von Holder-a-glatten Parameterfunktionen, vgl. Abschnitt 2.4,
mit der von Huang et al. (2013) vorgestellten Log-Likelihood Methode. Dabei kénnen
wir die gleichméBige Konsistenz des Schétzers iiber Kompakta J C int(I) mit Rate

(lo%) % ynd Adaptivitdt mit einer der Lepski-Methode entsprechenden Bandbreiten-
wahl etablieren, vgl. Abschnitte 4.1.3, 4.1.5.

Bei der Anwendung der in Kapitel 3 erarbeiteten Methoden ist zu beachten, dass dieses
Modell in der Tat nur bis auf Umlabeln der Komponenten identifizierbar ist. Entspre-
chend ergeben sich in der Praxis zunéchst nur punktweise Schétzungen auf endlichen
Gittern im Kovariablentriager, deren Komponentenlabel nicht zwingend tibereinstimmen.
Um eine sinnvolle Schétzung der Parameterfunktionen zu erhalten, muss man sicher-
stellen, dass die Label an verschiedenen Kovariablenstellen korrekt zugeordnet werden.
Dadurch, dass der Schéitzer gleichméBig konsistent ist, konnen wir eine Methode angeben,
mit der man mit gegen eins strebender Wahrscheinlichkeit die Label der Schétzer an be-
nachbarten Gitterpunkten korrekt zuordnet, vgl. Abschnitt 4.1.4.

Bei dem anderen Modell, sieche Abschnitt 4.2, handelt es sich um eine Mischung zweier
Regressionen. Zwischen beobachteten Zufallsvariablen Y und stetigen Regressoren X
mit Triger I C R? besteht der funktionale Zusammenhang

Y =W(uX)+e)+(1-W)o(X)ea,

wobei W eine latente Zufallsvariable mit bedingter Verteilung W|X = = ~ Ber(p(z)),
mit p: I — (0,1) ist; die Zufallsvariablen £; und €5 bedingt auf X = 2 unabhingig von
W sind und symmetrische bedingte Dichten haben, wobei 1| X = z ~ f, eine unbekann-
te Dichte und £5|X = = ~ f eine bekannte Dichte ist; und p: I - R, o : I — (0,00)
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eine Lokations- bzw. Skalenfunktion ist.

Ein dhnliches Modell wurde bereits von Butucea et al. (2017) untersucht. Die Autoren
konnten punktweise Konsistenz und asymptotische Normalitdt unter Undersmoothing
eines auf der Symmetrie der Komponenten basierenden Schétzers zeigen.

Da sich im Modell mit zwei Komponenten die beiden symmetrischen Komponenten-
dichten unterscheiden und eine Komponente skaliert und die andere translatiert wird,
ergibt sich in diesem Modell nicht das Problem des Umlabelns wie zum Beispiel im
Gaufi’schen Mischungsmodell oder im Modell von Butucea et al. (2017). Entsprechend
erhalten wir stdrkere Identifizierbarkeitsresultate. Ein Resultat basiert auf der Idee, die
charakteristischen Funktionen beider Komponentendichten in den Tails unterscheidbar
zu machen. Ein anderes Resultat basiert darauf, den Wertebereich der Mischungsfunk-
tion p auf (1/2,1) einzuschranken.

In Abschnitt 4.2.2 konstruieren wir fiir das Mischungsmodell mit zwei Komponenten
basierend auf der Symmetrie der Komponentendichten einen asymptotischen Kontrast
M, vgl. (4.2.8), welcher nicht-negativ ist und ausschlieflich am wahren Parameter null
wird. Dieser Kontrast wird empirisch durch eine Funktion M, vgl. (4.2.9) geschétzt,
deren Minimierer als Schétzer fiir die Holder-a-glatten Modellparameterfunktionen dient.
Dieser Schéatzer ist ebenfalls auf jedem Kompaktum J C int(I) gleichméBig konsistent

und konvergiert gleichméfig mit Rate (k’%) 2“a+”’, siehe Abschnitt 4.2.3. Auflerdem
kénnen wir auch hier die Lepski-Methode anwenden, um eine adaptive Bandbreitenwahl
zu erhalten, sieche Abschnitt 4.2.4.
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