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1 Introduction
Finite mixture models

A commonly used tool to model hidden heterogeneity is given by finite mixture dis-
tributions, i.e. for a fixed number of components m ∈ N, the mixture of densities
fc : R→ [0,∞), c = 1, . . . ,m is given by

m∑
c=1

πcfc , (1.0.1)

where π1, . . . , πm ≥ 0,
∑m
c=1 πi = 1 are mixing parameters. Suppose there are m different

latent subpopulations present and observations from each subpopulation are distributed
according to some density fc. Then a mixture of the form (1.0.1) is a natural way to
model the data.

Early work on finite mixture distributions goes back to Newcomb (1886) who recognized
that the presupposition ”that there must always be some one ’most probable value’ of a
quantity determined by observations, lacks generality” and therefore proposed the idea
of ”modified curves of probability” that he formalized by introducing mixture distribu-
tions. Pearson (1894) used a mixture of two normal distributions in order to describe
evolutionary phenomena and was subsequently able to detect clusters within populations
of crabs. Parameter estimation was done with the method of moments.

In most models, the component densities fc are considered to come from a parametric
family, i.e. there are sets Θc ⊂ Rdc and families of probability measures {Pcθ : θ ∈ Θc}
so that fc ∼ Pcθc∗ for some θc∗ ∈ Θc, c = 1, . . . ,m. The most common example is given
by mixtures of normal distributions, although mixtures of most well-known distribu-
tions have been studied extensively, for a broad overview cf. Titterington et al. (1985)
or McLachlan and Peel (2004). Depending on the statistical application however, the
usage of parametric families can be too restrictive, particularly because many estimation
methods are sensitive to violation of distributional model assumptions.

When dropping the parametric assumption, identifiability of the model becomes an intri-
cate issue. The less constraints one imposes on the component densities, the more often
the model becomes non-identifiable, making consistent estimation impossible. Symmetry
turns out to be a viable constraint for retaining identifiability. Bordes et al. (2006b) and
Butucea and Vandekerkhove (2014) considered two-component mixture models in which
both components are given by the translation of one single unknown zero-symmetric
density. Bordes et al. (2006a), Bordes and Vandekerkhove (2010) and Hohmann and
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1 Introduction

Holzmann (2013a) considered two-component mixture models in which one component
density is known a priori and the other is an unknown translated zero-symmetric density.
All those models are identifiable and estimation methods were established. Hunter et al.
(2007) even gave identifiability conditions for mixtures of three symmetric components
belonging to the same location family and additionally conjectured identifiability for
mixtures with more components. Multivariate two-component mixtures with indepen-
dent marginal components were considered by Hall and Zhou (2003) who proved that
the model is non-parametrically identifiable for three-variate mixtures. Two-variate mix-
tures are only identifiable up to a parametric family of two parameters.

√
n-consistent

estimators for the univariate marginal distribution functions of the components and the
mixing proportions were introduced.

Finite mixtures of regressions

The concept of finite mixtures of regressions (FMR) combines finite mixture distributions
and regression models. Regression models are used to study the relationship of explana-
tory variables or covariates X on response variables Y . Assume one draws observations
from a population (Y,X) taking values in R× Rd having the functional relationship

Y = g(X) + ε ,

where ε is an error generally assumed to fulfil E[ε|X] = 0 and g is the regression function.
The most prominent regression type is the linear regression where g(x) = βT1 x+ β0 is a
linear function.

In the case of FMR, one assumes there are multiple explanatory relations and a latent
random variable choosing the explanatory relationship for every single observation. To
be more precise, let there be a functional relationship of covariates and response in the
shape of

Y =
m∑
c=1

Wc

[
gc(X) + εc

]
,

where (W1, . . . ,Wm)|X = x ∼ Mult
(
1; (π1(x), . . . , πm(x))

)
with

∑m
c=1 πc = 1, the mix-

ing functions πc may be predictor-dependent and conditionally on X, the εc and Wc are
independent as well as again E[εc|X] = 0, c = 1, . . . ,m. Here, for each latent subpopu-
lation, gc is the regression function and describes the regression relationship within the
subpopulation. A slight variation of this model are mixtures of location scale regressions.
They typically have the form

Y =
m∑
c=1

Wc

[
µc(X) + σc(X)εc

]
,

where the locations µc and scales σc may be predictor-dependent, cf. Huang et al. (2013)
or Butucea et al. (2017).
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Early work on a two-component mixture of linear regressions model with normally dis-
tributed errors was done by Quandt (1958). A formalization in the context of FMR was
discussed by Quandt (1972) who introduced the idea that switching occurs according to
some random variable that determines from which regime observations are drawn. Esti-
mation in FMR models was first considered by Quandt and Ramsey (1978) who examined
a model with normally distributed errors and estimated parameters using the method of
moments. Extensions of this model were considered by Jordan and Xu (1995), Young and
Hunter (2010) and Huang and Yao (2012) resulting in the most general model of mixtures
of normal regressions by Huang et al. (2013). In their model, any finite number of com-
ponents is allowed and mixing, location and scaling functions are predictor-dependent
and modelled non-parametrically. A local log-likelihood estimator and an EM algorithm
were proposed and asymptotic normality of the estimator was derived.

There are also considerations of FMR in which the error distributions need not be normal.
Hunter and Young (2012) considered mixtures of linear regressions with any finite number
of components, each of which is supposed to have the same error distribution. The
authors were able to prove identifiability by making use of the additional information
carried by the covariates. Vandekerkhove (2013) examined a two-component mixture
of linear regressions with zero-symmetric error distributions. Kasahara and Shimotsu
(2009) and Hohmann and Holzmann (2013b) considered regression on the model of Hall
and Zhou (2003). In a very recent paper, Butucea et al. (2017) considered a FMR model
with two components in which proportions and locations are predictor-dependent and
both errors are distributed according to a single unknown zero-symmetric distribution.
They proposed a local contrast M-estimator for the parameter functions that turns out
to be asymptotically normal under reasonable conditions. Furthermore, they proposed a
kernel type estimator for the error distribution. Its asymptotic properties are still under
consideration.

Organization of this thesis

In Chapter 2, we review some existing FMR models and methods from the literature. We
further briefly discuss the models that are later thoroughly examined in Chapter 4. In
Chapter 3, we give a general set of conditions under which local M-estimators have non-
parametric uniform convergence rates and further give a uniform adaptive estimation
procedure. Both are applicable to a variety of models, e.g. the models in Butucea et al.
(2017) or Huang et al. (2013). In Chapter 4, we apply the methods to the model in
Huang et al. (2013) and a regression model based on an alteration of the model without
covariates in Bordes and Vandekerkhove (2010). Chapter 5 accumulates most of the
proofs for Chapters 3 and 4. Furthermore, in Chapter 6, we conduct a simulation study
of the local log-likelihood estimator for the model in Huang et al. (2013) that displays
the finite sample properties of the supremum errors of the estimators.
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2 Preliminaries
In this chapter, we will review some literature and theory relevant to this thesis. We first
give classical asymptotic results on M-estimators as described by van der Vaart (2000)
and van der Vaart and Wellner (1996) and subsequently briefly discuss the concept of
local M-estimation. Furthermore, we discuss literature on mixture of regressions models,
briefly recall function classes broadly used in non-parametric estimation and shortly
discuss kernel density estimation.

2.1 M-estimation
A well-studied concept for parameter estimation is M-estimation. Suppose one draws
observations Y1, Y2, . . . from a distribution Pθ∗ coming from an identifiable statistical
model (Pθ)θ∈Θ depending on some parameter set Θ. Further suppose one can find a
contrast function, that is, a function M : Θ → R that has a unique maximum at
the true parameter θ∗. Moreover, assume one can estimate M by a random function
Mn(·) = Mn(·;Y1, . . . , Yn) : Θ→ R. Then a natural approach to estimate the model pa-
rameter θ∗ is to maximize the random function Mn over the parameter set Θ if possible
and to use the point of maximum as an estimator.

The first estimator of this type, the maximum likelihood estimator, was introduced by
Fisher (1922) and has been studied extensively since, e.g. Huber et al. (1967). The log-
likelihood estimator is a commonly used variation of this. Assume every Pθ possesses a
density pθ. Given i.i.d. observations Y1, . . . , Yn, one chooses the parameter as estimate
that is most likely to produce the observations at hand, if existent, i.e.

θ̂n = argmax
θ∈Θ

Mn(θ) , Mn(θ) = 1
n

n∑
j=1

log
(
pθ(Yj)

)
. (2.1.1)

Other examples are least square estimators or estimators that use model specific prop-
erties like symmetry to construct contrast functions, cf. Hall and Zhou (2003), Bordes
et al. (2006b), Hunter et al. (2007), Bordes and Vandekerkhove (2010), Hohmann and
Holzmann (2013a) as well as Butucea and Vandekerkhove (2014).

A fundamental criterion for the quality of an estimator is the concept of consistency. We
call a sequence of estimators θ̂n consistent for (every possible model parameter) θ∗ ∈ Θ
if

‖θ̂n − θ∗‖ = oP(1) ,
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2 Preliminaries

where the estimators θ̂n depend on Y1, . . . , Yn, which are distributed according to Pθ∗ .

In the context of M-estimators, consistency is often achieved by the contrast function
M taking a unique and well-separated global maximum at the true parameter and the
random functions Mn estimating the contrast M uniformly consistently, so that points
of global maxima of Mn need to converge to points of global maxima of M . Uniform
consistency of Mn often turns out easy to prove when the parameter space Θ is compact.
This result is summarized in the following theorem, cf. van der Vaart (2000, Theorem
5.7).

Theorem 2.1.1 (van der Vaart (2000)). Let d be a metric on Θ, Mn be random functions
and let M be a fixed function of θ such that for every ε > 0

sup
θ∈Θ

∣∣Mn(θ)−M(θ)
∣∣ = oP(1) , sup

θ∈Θ:d(θ,θ∗)≥ε
M(θ) < M(θ∗) .

Then any sequence of estimators θ̂n with Mn(θ̂n) ≥ Mn(θ∗) − oP(1) converges in prob-
ability to θ∗.

After consistency of an estimator θ̂n is established, the question arises at which rate the
estimator converges, that is, one wishes to identify a deterministic sequence rn →∞ so
that

rn‖θ̂n − θ∗‖ = OP(1)

for every possible model parameter θ∗ ∈ Θ. The sequence rn is then an upper bound of
the convergence rate.

A general convergence rate result can be found in van der Vaart and Wellner (1996,
Theorem 3.2.5). Suppose that θ∗ ∈ Θ ⊂ Rm. Under suitable differentiability conditions,
the gradient of M at θ∗ has to be zero and its Hessian matrix V (θ) = ∂2

θ2M(θ) evaluated
at θ∗ is always negative semidefinite. If one assumes that it is in fact negative definite,
a Taylor expansion around θ∗ gives for some θ̃ ∈ [θ, θ∗] that

M(θ)−M(θ∗) = (θ − θ∗)T ∂θM(θ∗)︸ ︷︷ ︸
=0

+ 1
2(θ − θ∗)TV (θ̃)(θ − θ∗) .

By additional regularity conditions, such like Lipschitz continuity of the Hessian matrix,
one can often achieve that the distance of M(θ) and M(θ∗) behaves like the squared
distance of θ and θ∗. Combining this with a condition on the expectation of the continuity
modulus of Mn −M can give upper bounds on the convergence rate of the maximizers
of Mn. The latter condition often happens to be Lipschitz continuity with Lipschitz-
constant decreasing at rate r−1

n .

Theorem 2.1.2 (van der Vaart and Wellner (1996)). Let Mn be stochastic processes
indexed by a semimetric space (Θ, d) and M : Θ→ R a deterministic function, such that
for every θ in a neighbourhood of θ∗,

M(θ)−M(θ∗) . −d2(θ, θ∗) .

6



2.2 Local M-estimation

Suppose that, for every n and sufficiently small δ, the centred process Mn −M satisfies

E∗
[

sup
d(θ,θ∗)<δ

∣∣(Mn −M)(θ)− (Mn −M)(θ∗)
∣∣] . φ(δ)√

n
,

for functions φn such that δ 7→ φn(δ)/δα is decreasing for some α < 2 (not depending
on n). Let

r2
nφn

(
1
rn

)
≤
√
n , for every n.

If the sequence θ̂n satisfies Mn(θ̂n) ≥Mn(θ∗)−OP(r−2
n ) and converges in outer probability

to θ∗, then rnd(θ̂n, θ∗) = OP∗(1).

Note that we use outer expectation E∗ and outer probability P∗ in case there are problems
with measurability. This theorem may be generalized in order to allow for convergence
rates differing from

√
n and be applied to models with covariates, cf. Theorem 3.1.3.

2.2 Local M-estimation
When one aims to estimate the influence of covariates X on a response Y , M-estimation
is typically not directly applicable because one cannot draw observations from the con-
ditional distribution Y |X. However, one can often use local M-estimation, which uses a
localization strategy like weighting observations with the help of a kernel function.

To be precise, suppose one draws i.i.d. observations (Y1, X1), . . . , (Yn, Xn) from a popu-
lation (Y,X), where X is supported on I ⊂ Rd and Y is real-valued. For every x ∈ I, one
suspects that the conditional distribution of Y |X = x given by Pθ∗(x) is determined by
some unknown θ∗(x) ∈ Θ where Θ is a parameter set. Then the objective is to estimate
the parameter function θ∗(·).

For now, consider the respective model without covariates, i.e. one has observations
Z1, Z2, . . . with distribution Pθ∗ and like in Section 2.1, there is a function

M̃n(·;Z1, . . . , Zn) : Θ→ R

estimating a function M̃ : Θ→ R that has a unique maximum at the true parameter θ∗.
Further assume that M̃n is a linear estimator in the sense that it is of the shape

M̃n(θ;Z1, . . . , Zn) = 1
n

n∑
j=1

mθ(Zj)

for some function mθ, like a log-likelihood estimator defined in (2.1.1).

7



2 Preliminaries

Then, returning to the model with covariates, the localization strategy can be applied
by using a kernel function Kh = K(·/h)/hd, cf. Section 2.5. That is, define the local
M-estimator as

Mn(θ, x;h) := Mn

(
θ, x;h; (Y1, X1), . . . , (Y1, X1)

)
:= 1

n

n∑
j=1

mθ(Yj)Kh(Xj − x) .

The most prominent estimator of this kind is the local log-likelihood estimator that was
first described in a broad sense by Fan et al. (1998). Assume that all conditional distri-
butions Pθ possess densities pθ, θ ∈ Θ. Given i.i.d. observations (Y1, X1), . . . , (Yn, Xn),
one chooses for every x the parameter that maximizes the local log-likelihood function

θ̂n(x) = argmax
θ∈Θ

Mn(θ, x;h) = argmax
θ∈Θ

1
n

n∑
j=1

log
(
pθ(Yj)

)
Kh(Xj − x) . (2.2.1)

2.3 Mixture of regressions models
In this section, we outline mixture of regressions models from the literature that are
related to the models examined in the main part of this thesis.

Let us start by considering the mixture of linear regressions models with normally dis-
tributed errors. Quandt (1972) considered such a switching linear regressions model.
Assume one observes the n× (k+ 1) random matrix (Y,X), where the vector Y consists
of response variables and the rows of X are k independent explanatory variables so that
there is a subset I ⊂ {1, . . . , n} so that

Yi = Xiβ1 + ε1,i , i ∈I ,
Yi = Xiβ2 + ε2,i , i ∈Ic ,

where Xi is the i-th row vector, εk,i ∼ N (0, σ2
k) and βi = (βi1, . . . , βik)T , i = 1, 2 are

parameters of interest so that (β1, σ
2
1) 6= (β2, σ

2
2). Quandt (1972) was the first to model

this by postulating that ”there is an unknown probability λ that nature will choose
Regime 1 for generating observations and a probability 1− λ that it will choose Regime
2”. In a more rigorous fashion, one could postulate that there is a random variable
Wi that, conditionally on the covariates, is independent of the εk,i and has conditional
distribution Ber(λ) so that

Yi = Wi

(
Xiβ1 + ε1,i

)
+ (1−Wi)

(
Xiβ2 + ε2,i

)
, i ∈ {1, . . . , n} .

Quandt (1972) directly concluded that, conditionally on Xi = (x1i, . . . , xki), the response
Yi has a conditional mixture of two normal densities, i.e.

f
(
yi|(x1i, . . . , xki); θ

)
=λφ

(
yi
∣∣xTi β1, σ

2
1
)

+ (1− λ)φ
(
yi
∣∣xTi β2, σ

2
2
)
, (2.3.1)

where θ = (β1, β2, σ1, σ2, λ)T , giving the log-likelihood function

θ 7→
n∑
i=1

log
(
f(Yi|Xi; θ)

)
,

8



2.3 Mixture of regressions models

which is to be maximized under the constraints σ1, σ2 > 0, 0 ≤ λ ≤ 1. The estimation
method was tested empirically. In a later paper, Quandt and Ramsey (1978) gave an
estimation procedure based on the moment generating function.

This model is commonly applied in economics, see for example, DeSarbo et al. (1992),
Ramaswamy et al. (1993) or Helsen et al. (1993).

Generalizations

There are several ways to generalize the model given by the conditional model density
(2.3.1). We distinguish between two possibilities, namely (1) retaining normal errors and
(2) dropping the assumption of normally distributed errors. In both cases, natural ways
to generalize the model are

• allowing a higher or even unspecified finite number of components;

• allowing the mixing proportions and the scaling parameters to depend on the co-
variates as well;

• allowing for different regression function structures like polynomials or even drop-
ping parametric shape constraints entirely by letting parameter functions come
from non-parametric function classes.

2.3.1 Models with normally distributed errors
Goldfeld and Quandt (1973) proposed a Hidden-Markov approach in order to model
regime switches and proposed likelihood estimators in the framework of Quandt (1972).
Bayesian approaches for models with more than two components were given by Viele
and Tong (2002) and Hurn et al. (2003).

Young and Hunter (2010) extended the model of mixtures of linear regressions with nor-
mal errors in the sense that mixing proportions are allowed to be predictor-dependent.
That is, in the framework of mixtures of linear normal regressions with m ≥ 2 compo-
nents, where the conditional densities are given by

f(y|x; θ) =
m∑
c=1

πcφ
(
y
∣∣xTβc, σ2

c

)
,

the mixing proportions πc are assumed to depend non-parametrically on the covariate
values. Let πc : I → (0, 1), c = 1, . . . ,m,

∑m
c=1 πc = 1 be functions giving the mixing

proportions for fixed covariate values x. Then, the conditional model densities are given
by

f(y|x; θ) =
m∑
c=1

πc(x)φ
(
y
∣∣xTβc, σ2

c

)
.

9



2 Preliminaries

Young and Hunter (2010) gave an iterative global/local estimation (IGLE) algorithm for
estimating the mixing proportion functions πc(·) along with the other global parameters
βc, σc.

Huang and Yao (2012) proposed a slight variation of the model by Young and Hunter
(2010). The mixing proportions are assumed to depend on another explanatory variable
Z. The log-likelihood is given by

n∑
i=1

log
( m∑
c=1

πc(Zi)φ
(
Yi
∣∣xTi βc, σ2

c

))
, (2.3.2)

so that the conditional model densities are given by

f(y|x, z; θ) =
m∑
c=1

πc(z)φ
(
y
∣∣xTβc, σ2

c

)
.

Huang and Yao (2012) proved identifiability of the model when the proportion functions
are continuous, the support of the covariate X contains an open subset and the support
of the other covariate Z has no isolated points.

In order to estimate the model parameters, the authors first proposed a local log-
likelihood estimation approach in the sense of (2.2.1) by localizing around z for pre-
estimation. That is, for fixed z, maximize the function

n∑
i=1

log
( m∑
c=1

πcφ
(
y
∣∣xTi βc, σ2

c

))
Kh(Zi − z) . (2.3.3)

The global parameters βc, σc, c = 1, . . . ,m are estimated with this procedure as well but
cannot have parametric convergence rate because they are estimated locally. Plugging in
the non-parametric estimates for the mixing proportions into the log-likelihood function
(2.3.2) and maximizing ensures

√
n-consistency of the parametric part of the estimator.

Plugging in the global parametric estimates into (2.3.3) and maximizing improves the
estimate of the proportion functions. This estimator is pointwise asymptotically normal
with non-parametric convergence rate. Furthermore, they gave an EM-type algorithm
for practical approximation of the maxima.

Huang et al. (2013) extended the model by letting all parameters be predictor-dependent
and modelling them non-parametrically by sufficiently smooth functions. That is, for any
number of components m ≥ 2, any compact covariate support I ⊂ Rd containing an open
subset and Hölder-α-smooth functions πc : I → (0, 1),

∑m
c=1 πc = 1, σc : I → (0,∞),

µc : I → R, the conditional model densities are given by

f(y|x; θ(·)) =
m∑
c=1

πc(x)φ
(
y
∣∣µc(x), σc(x)2) ,

10



2.3 Mixture of regressions models

where
θ(·) =

(
π1(·), . . . , πm−1(·), µ1(·), . . . , µm(·), σ1(·), . . . , σm(·)

)T
is the model parameter function.

Huang et al. (2013) proved non-parametric identifiability under the assumption that the
covariates are compactly supported in R, the proportion functions are positive and con-
tinuous, the location and scaling functions are differentiable and pairs of those functions
are transversal, i.e. for any components c 6= c′, one has(∥∥(µc(x), σc(x)

)
−
(
µc′(x), σc′(x)

)∥∥+
∥∥(∂µc(x), ∂σc(x)

)
−
(
∂µc′(x), ∂σc′(x)

)∥∥) 6= 0 .

This means that the pairs of parameter functions may only intersect nontangentially.

The authors proposed a local log-likelihood estimation method in the sense of (2.2.1).
By assuming amongst other things that the parameter functions are twice continuously
differentiable, the authors proved that the estimator is pointwise consistent and asymp-
totically normal with non-parametric convergence rate. One should note that the authors
provided no proof of positive definiteness of the Fisher information, which, in fact, can-
not be true at intersection points of at least two pairs of parameter curves

(
µc(·), σc(·)

)
because the estimation problem is then locally overparametrized. Hence, the asymptotic
properties of the estimator are only valid at covariate values x at which no parameter
curves intersect.

This model will be discussed later in this thesis, cf. Section 4.1. We will give conditions
under which the model with multivariate covariates is non-parametrically identifiable.
Furthermore, we will show that for Hölder-α-smooth parameter functions as defined in
Definition 2.4.1, the local log-likelihood estimator is uniformly consistent over compact
sets within the interior of the compact covariate support I ⊂ Rd and has non-parametric
L∞ convergence rate. We will briefly discuss the benefits of uniform consistency in
the context of curve estimation and the relabeling problem. Moreover, we will give
an estimation procedure based on Lepskii (1992) that is adaptive with respect to the
smoothness α.

2.3.2 Models with unspecified errors
When dropping the assumption of normally distributed errors and instead assuming the
error distributions to be unknown, identifiability typically becomes harder to prove. Let
us first consider mixtures of linear regressions in which the errors are unspecified.

Hunter and Young (2012) considered a finite mixture of linear regressions with unspecified
errors, i.e. the conditional model density is given by

f(y|x; θ) =
m∑
c=1

πcf
∗(y − xTβc) ,

11
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where x, βc ∈ Rd, θ = (π1, . . . , πm−1, β
T
1 , . . . , β

T
m, f

∗)T is the unknown parameter of
interest. The authors provided an identifiability result that only requires the support of
the covariates to contain an open subset and no two different regression hyperplanes to
be parallel, i.e. βj 6= βk for j 6= k. One should note that the model without covariates,
i.e. mixtures

f(y) =
m∑
c=1

πcf
∗(y − µc)

are in general not identifiable. Additional information carried by the covariates enables
identifiability. The authors also provided a semi-parametric EM-type algorithm that es-
timates both the parametric part of the parameter and the non-parametric error density.

Bordes et al. (2013) considered a two-component mixture of linear regressions in which
one component error distribution is known, call its density f̄ . They formulated an
equivalent estimation problem in which the conditional model density is given by

f(y|x; θ) = (1− p)f̄(y) + pf∗(y − α− βx) ,

where θ = (p, α, β, f∗)T . They proposed an asymptotically normal estimator for the
parametric part (p, α, β) and an estimator for the unknown component distribution func-
tion of f∗ that is derived from the empirical distribution function of the observations
Yi − α− βXi. This estimator was shown to be asymptotically Gaussian.

Note that in the models of both Hunter and Young (2012) and Bordes et al. (2013),
the shape of the component densities are not constrained, particularly, they need not be
symmetric. However, the assumption of symmetry is a viable restriction often ensuring
identifiability in mixtures of regressions with more complex parameter structures and
in mixture models without covariates. Let us consider models of the latter kind before
discussing regression on one of them.

Bordes et al. (2006b) considered a two-component mixture model in which both compo-
nents come from the same location family of a symmetric density, i.e. the model density
is given by

f(y; θ) = pf∗(y − µ1) + (1− p)f∗(y − µ2) , (2.3.4)

where the parameter of interest is given by θ = (p, µ1, µ2, f
∗)T . They distinguished

between two cases. In the first case, location parameters are a priori known, in the
other case they are model parameters to be estimated. For both cases, they presented
estimators both for the parametric part (p, µ1, µ2) and the non-parametric part f∗ and
proved asymptotic properties. Additionally, the authors constructed an M-estimator for
the parametric part by representing the component distribution function F ∗ as a func-
tion of the mixture distribution function F and the parameter. The non-parametric part
is estimated by inverting this relationship and directly using the empirical distribution
function of the accordingly transformed observations in order to estimate F ∗ or kernel

12



2.3 Mixture of regressions models

density estimators of the transformed data in order to estimate f∗.

Hunter et al. (2007) considered two- and three-component mixtures in which all compo-
nent densities come from a location family of one zero symmetric density f∗. Hence, the
model density is given by

f(y; θ) =
m∑
c=1

πcf
∗(y − µc) ,

where m ∈ {2, 3},
∑m
c=1 πc = 1 and the parameter of interest is given by

θ = (π1, . . . , πm−1, µ1, . . . , µm, f
∗)T .

The authors provided an identifiability result for these models and further conjectured
that identifiability can be achieved for models with any number of components but re-
frained from tackling the proof because of increasing complexity for higher number of
components.

Bordes et al. (2006a) considered a two-component mixture model in which one component
density is a priori known and zero-symmetric and the other one comes from a location
family of an unknown zero-symmetric density. That is, for a known density f̄ , the model
density is given by

f(y; θ) = (1− p)f̄(y) + pf∗(y − µ) ,

where the parameter of interest is given by θ = (p, µ, f∗)T . The authors showed that
the model is identifiable basically if either the density f̄ is compactly supported or if it
is positive and is dominated by f∗ in the tails.

Based on symmetry and the relation

f∗(y) = p−1(f(y + µ; θ)− (1− p)f̄(y + µ)
)
, (2.3.5)

Bordes et al. (2006a) were able to build a contrast for the location µ yielding a plug-in
estimator for p. The unknown component density f∗ can be estimated by estimating the
right-hand side of (2.3.5) with a kernel density estimator when plugging in the estimators
of the parametric part. The corresponding distribution function can be estimated once
again by the empirical distribution function of the right-hand side of (2.3.5). In addition,
the authors proved strong consistency of the parametric part, uniform consistency of the
empirical distribution function estimator as well as L1 convergence of the kernel density
estimator.

Bordes and Vandekerkhove (2010) provided estimators for the model in Bordes et al.
(2006a) that are asymptotically normal in the sense that the deviations of the estima-
tors from the true parameters have convergence rate

√
n and when scaled appropriately

13
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converge in distribution to a Gaussian process.

Hohmann and Holzmann (2013a) extended the model in Bordes et al. (2006a) by in-
troducing a location parameter to the component with the known density. The authors
provided results on identifiability based on symmetry of the component distributions and
the assumption that the Fourier transforms of the component distribution functions are
distinguishable in the tails. Additionally, Hohmann and Holzmann (2013a) introduced
asymptotically normal estimators both for the parametric part and the component dis-
tribution function.

Butucea and Vandekerkhove (2014) once again considered the model in Bordes et al.
(2006b), cf. (2.3.4). For the parametric part, the authors proposed a smooth U-statistic
estimator that is based on the characteristic functions of the component density f∗,
which needs to be real-valued as f∗ is symmetric. The estimator is asymptotically nor-
mal with parametric convergence rate

√
n. The non-parametric part is estimated with a

kernel estimator. For Sobolev functions, the estimator was shown to have non-parametric
convergence rate, which is in fact the minimax rate for the model.

Let us discuss the model of Butucea et al. (2017) who considered regression on the model
in Butucea and Vandekerkhove (2014) in more detail. Suppose one draws observations
from a population (Y,X), where X is a Rd-valued explanatory variable with density `
for the scalar response variable Y . Furthermore, assume the relation

Y = W
(
a(X) + ε1

)
+ (1−W )

(
b(X) + ε2

)
,

where conditionally on X = x, W has distribution Ber(p(x)) for some mixing function
p : Rd → (0, 1) and is independent of ε1 and ε2, which have common zero-symmetric
conditional density fx. Additionally, a, b : Rd → R are location functions to be estimated
along with the mixing function p and the conditional densities fx.

For every point in the interior of the covariates’ support x ∈ supp(`)◦, the conditional
density of Y |X = x is given by

f
(
y|x; θ(·)

)
= p(x)fx

(
y − a(x)

)
+
(
1− p(x)

)
fx
(
y − b(x)

)
.

Due to the relabeling problem, the parameters (p(x), a(x), b(x)) and (1−p(x), b(x), a(x))
yield the same mixture density. In order to deal with this label switching problem for
a fixed x, one can allow a(x) and b(x) to coincide only if one restricts the mixing para-
meter to a compact subset of either (0, 1/2) or (1/2, 1); or one can demand the location
parameters to be ordered, i.e. a(x) < b(x) or b(x) < a(x).

There are also strategies to overcome label switching when examining global identifia-
bility, that is identifiability of the parameter functions on supp(`). Butucea et al. (2017)
were able to give identifiability of the parameter curves for univariate covariates by im-
posing transversality constraints on the location functions. In detail, they required the
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location functions to be differentiable and to intersect nowhere tangentially, i.e.

‖a(x)− b(x)‖+ ‖∂a(x)− ∂b(x)‖ 6= 0 , x ∈ supp(`) ,

as well as the existence of an x0 so that a(x0) < b(x0) and the mixing function p to be
continuous. This allows for intersections of the location functions, meaning local non-
identifiability. At a point of intersection x, however, the labels are identifiable by the
labels in the neighbourhood of x. That is because switching labels at x would then make
the parameter curve non-differentiable due to transversality.

The estimation procedure proposed by Butucea et al. (2017) was adopted from the work
on the model without covariates by Butucea and Vandekerkhove (2014). It is strongly
based on symmetry of the component density fx, which particularly implies that its
characteristic function ϕfx is real-valued. By linearity of the Fourier transform, the
characteristic function of f(·|x) is then given by

ϕf(·|x)(t) =
(
p(x)eita(x) +

(
1− p(x)

)
eitb(x)

)
ϕfx(t) , t ∈ R . (2.3.6)

Denote the parameter function by θ(·) =
(
p(·), a(·), b(·)

)T . For any x ∈ supp(`) and an
a priori fixed density q, the function

S(θ) =
∫
=
(
ϕf(·|x)(t)

(
pe−ita + (1− p)e−itb

))2
q(t) dt · `2(x) ,

is a non-negative contrast function under the identifiability assumptions, i.e. S(θ) = 0
iff θ is the true parameter θ(x) or a label switched version thereof. When inserting the
true parameter, the second factor in the argument of the imaginary part is the complex
conjugate of the first factor in (2.3.6), leaving the real-valued characteristic function ϕfx
scaled by a positive real number within the imaginary part, hence a zero.

An empirical version of S was constructed by estimating

=
(
ϕf(·|x)(t)

(
pe−ita + (1− p)e−itb

))
locally and using these estimates to build a U-statistic. Therefore, a kernel K : Rd → R
along with a bandwidth parameter h was being used to propose the estimate

Zk(θ, t, h) = =
(
eitYk ·

(
pe−ita + (1− p)e−itb

)) 1
hd
K

(
Xk − x
h

)
for i.i.d. observations (Yk, Xk) coming from the population (Y,X). The first factor in the
argument of the imaginary part function can be interpreted as the empirical estimate of
the characteristic function of Y |X = x so that choosing θ such that the imaginary part
is close to zero should translate to θ being close to θ(x) with probability approaching one
under usual assumptions. The M-estimator in the form of a U-statistic type empirical
contrast was then defined by

Sn(θ) = − 1
n(n− 1)

n∑
j,k=1
j 6=k

∫
Zk(θ, t, h)Zj(θ, t, h)q(t) dt .
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A minimizer θ̂n of Sn was proposed as the estimator for the model parameter.

Butucea et al. (2017) proved that the estimator is asymptotically normal with conver-
gence rate

√
nhd when h→ 0, nhd →∞ as well as

h2α+d = o(n−1) (2.3.7)

under usual assumptions. Particularly, the parameter functions are assumed to be
Hölder-α-smooth with α > 1, so that the balanced bandwidth choice h = n−

1
2α+d does

not fulfil (2.3.7). Hence, asymptotic normality is achieved by undersmoothing. However,
in Theorem 4, the authors pointed out that the estimator has convergence rate n

α
2α+d

when balancing the bandwidth. This convergence rate also turns out to be the lower
bound on the L1 minimax risk in this model.

Two-component mixture of location scale regressions

Let us finally give a variation of the mixture of regressions model in Butucea et al. (2017)
that is studied in the main part of this thesis, cf. Section 4.2. Consider regression in the
framework of Bordes et al. (2006a) when adding an unknown scaling parameter to the a
priori known component. The regression relationship is then given by

Yi = Wi

(
µ(Xi) + ε1,i

)
+
(
1−Wi

)
σ(Xi)ε2,i , i ∈ N ,

for sequences of i.i.d. random vectors (Xi)i∈N having support I ⊂ Rd, where I is a
compact cuboid containing an open subset, d ≥ 1 and i.i.d. random variables (Yi)i∈N,
(Wi)i∈N, (ε1,i)i∈N and (ε2,i)i∈N. The explanatory variables Xi and the response variables
Yi are observable, the latent variables Wi and the error variables ε1,i and ε2,i are not.
The covariates Xi are assumed to have a Lebesgue density ` : I → (0,∞).

The unknown location and scaling functions µ : I → R, σ : I → (0,∞) are functions to be
estimated as they partially determine the distributional relation between the explanatory
and response variables along with the unknown mixing function p : I → (0, 1). That
is because conditionally on Xi = x, the variables Wi are assumed to have a Bernoulli-
distribution with parameter p(x), i.e.

P(Wi = 1|Xi = x) = p(x) and P(Wi = 0|Xi = x) = 1− p(x) .

Let us further assume that conditionally on Xi = x, the vectors ε1,i and ε2,i have zero-
symmetric conditional densities denoted by fx and f̄ , respectively, where we assume that
f̄ is known and fx is not. If we furthermore have the conditional independence relations

ε1,i ⊥⊥Wi|Xi and ε2,i ⊥⊥Wi|Xi ,

then, conditional on Xi = x, the random variables Yi have the conditional density

f
(
y|x;ϑ(·)

)
= p(x)fx

(
y − µ(x)

)
+ 1− p(x)

σ(x) f̄
( y

σ(x)

)
, y ∈ R ,
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where the parameter function of interest is given by ϑ(·) =
(
p(·), µ(·), σ(·), f·

)T .

We will prove identifiability of the model by showing that for every x ∈ I, the conditional
mixture density f

(
· |x;ϑ(·)

)
is identifiable within all mixture densities of the postulated

type while making mild assumptions.

We propose an estimation procedure that is strongly based on symmetry of the com-
ponent densities and the idea of making use of a relationship analogous to (2.3.5) that
was used by Bordes et al. (2006a) in their model without covariates. The M-estimator
minimizes a smooth U-statistic and is shown to be uniformly consistent over compact
sets within the interior of the covariate support. It especially has the typical uniform
non-parametric convergence rate

( logn
n

) α
2α+d for Hölder-α-smooth parameter functions.

Additionally, an estimation procedure that is adaptive with respect to the smoothness
parameter α is proposed which is based on Lepskii (1992).

2.4 Function classes
When decomposing estimation errors of non-parametric estimators into bias and vari-
ance terms, upper bounds on the variance term can often be obtained without shape or
smoothness constraints on the model parameter function, e.g. variance of kernel density
estimators, cf. Tsybakov (2008, Proposition 1.1). However, bounds on the bias term
typically rely on smoothness conditions. Classically, the parameter functions are as-
sumed to be continuous and particularly to come from a smoothness class within the set
of continuous functions. The predominant smoothness classes are Sobolev- and Hölder
classes. In the main part of this thesis, we will work with Hölder classes as defined below.

Definition 2.4.1 (Hölder class). Let α,L ∈ (0,∞) and I ⊂ Rd be compact so that
I = int(I). The class of Hölder-α-smooth functions H(α,L, U) on I ⊂ Rd taking values
in some set U ⊂ R is defined by the set of all functions ` : I → U that are continuous,
bαc-times differentiable in int(I) and fulfil

|∂k`(x)− ∂k`(y)| ≤ L‖x− y‖α−bαc , |k| = bαc, x, y ∈ int(I) ,

as well as

‖∂k`‖∞ ≤ L , 1 ≤ |k| ≤ bαc .

In the main part of this thesis, Hölder classes are used to model smoothness of parameter
functions. Therefore, let us discuss some relevant properties. First, we briefly discuss
Hölder classes as subsets of Banach spaces. For a more general and extensive overview,
cf. Driver (2003). Driver (2003) introduces Hölder spaces on open sets and extends func-
tions and their derivatives to the boundary. We will define functions for compact sets I
so that I = int(I), which leads to the same objects.
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Definition 2.4.2. For any α ∈ (0, 1] and any compact I ⊂ Rd with I = int(I), a
continuous function ` : I → R is called Hölder-α-continuous if [`]α <∞, where

[`]α = sup
x,y∈int(I)
x6=y

|`(x)− `(y)|
‖x− y‖α

.

The map [·]α is a seminorm on all continuous functions ` with [`]α <∞. It is not a norm
because all constant functions are mapped to zero.

Definition 2.4.3 (Hölder norm and Hölder-α-continuous functions).
Let I ⊂ Rd be a compact set with I = int(I), α > 0. For any continuous function `
having continuous bαc-order derivatives, define the Hölder-α-norm as

‖`‖α = ‖`‖∞ + [`]α , α ∈ (0, 1]

‖`‖α =
∑

0≤|k|≤bαc

‖∂k`‖∞ +
∑
|k|=bαc

[∂k`]α−bαc , α ∈ (1,∞) . (2.4.1)

The set of Hölder-α-continuous functions Cα(I) on I, call it Hölder-α-space, is defined
as the set of all continuous functions ` that are bαc-times continuously differentiable in
int(I) with ‖`‖α <∞.

Remark 2.4.4.

(i) The map ‖ · ‖α is a norm since it is the sum of norms and seminorms.

(ii) For any compact I ⊂ Rd with I = int(I) and any α > 0, (Cα(I), ‖ · ‖α) is a Banach
space, cf. Driver (2003, Theorem 5.8).

(iii) By definition of the Hölder-α-norm (2.4.1), any ` ∈ Cα(I) is bounded, i.e. ‖`‖∞ <
∞.

(iv) Regarding Hölder classes in Definition 2.4.1, whenever U is bounded, we have that

sup
`∈H(α,L,U)

‖`‖∞ ≤ max{− inf U, supU} <∞ .

(v) For any compact set I ⊂ Rd with I = int(I) and any compact U ⊂ R, we have
H(α,L, U) ⊂ Cα(I). Particularly, for ` ∈ H(α,L, U), we have that

‖`‖α ≤ max{− inf U, supU}+
{(

dbαc+1−d
d−1 + dbαc

)
L , d > 1

(bαc+1)L , d = 1

}
<∞ ,

because
∑bαc
k=1 d

k = dbαc+1−d
d−1 .

(vi) The Hölder class H(α,L, U) is closed with respect to ‖ · ‖α. In order to see this,
define the functions Ψk, Ψ̃k : Cα(I)→ [0,∞)

Ψk(`) = ‖∂k`‖∞ , 1 ≤ |k| ≤ bαc , Ψ̃k(`) = [∂k`]α−bαc , |k| = bαc
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and observe that they are continuous with respect to ‖ · ‖α. Then

H(α,L, U) = ‖ · ‖−1
∞

([
0,max{− inf U, supU}

])
∩

⋂
1≤|k|≤bαc

Ψ−1
k

(
[0, L]

)
∩

⋂
|k|=bαc

Ψ̃−1
k

(
[0, L]

)
.

(vii) For compact I ⊂ Rd with I = int(I), the Hölder-α-spaces Cα(I) are compactly
nested in the sense that for 0 < α < β <∞, we have

Cβ(I) ⊂ Cα(I)

and the unit disk {` ∈ Cβ(I) : ‖`‖β ≤ 1} is compact with respect to ‖·‖α, cf. Driver
(2003, Theorem 5.14).

Unlike Hölder-α-spaces, Hölder classes are not nested in general. However, they are
whenever the diameter of the domain I is at most one. For domains with larger diameters,
it can be useful to transform the domain appropriately in order to get inclusion of the
Hölder classes.

Remark 2.4.5.

(i) When diam I ≤ 1 the Hölder classes are nested, i.e. we have the inclusion property

H(β, L, U) ⊂ H(α,L, U) , α ≤ β .

In order to see this, fix ` ∈ H(β, L, U). If bαc < bβc, the functions ∂k`, |k| = bαc
are continuously differentiable with respect to any argument xi, hence Lipschitz
continuous with Lipschitz constant maxi ‖∂xi∂k`‖∞ ≤ L so that

|∂k`(x)− ∂k`(y)| ≤ L‖x− y‖ ≤ L‖x− y‖α−bαc .

Whenever bαc = bβc, we directly conclude

|∂k`(x)− ∂k`(y)| ≤ L‖x− y‖β−bβc ≤ L‖x− y‖α−bαc , |k| = bαc = bβc .

If diam I > 1, we transform I into I∗ = I
diam I inducing new Hölder classes on I∗,

i.e.

H∗(α,L, U) =
{
` : I∗ → U

∣∣ ` is continuous and bαc-times differentiable in int(I∗),
|∂k`(x)− ∂k`(y)| ≤ L‖x− y‖α−bαc , |k| = bαc, x, y ∈ int(I∗)
‖∂k`‖∞ ≤ L , 1 ≤ |k| ≤ bαc

}
.

We directly see that ` ∈ H(α,L, U) corresponds to `∗ ∈ H∗(α, (diam I)α · L,U),
where `∗(x) = `((diam I)x). Indeed, for 1 ≤ |k| ≤ bαc, it holds that

‖∂k`∗‖∞ = (diam I)|k|‖∂k`‖∞ ≤
(

diam I
)α
L ,
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and for |k| = bαc, we have∣∣∂k`∗(x)− ∂k`∗(y)| ≤
(

diam I
)bαc∣∣∂k`((diam I)x

)
− ∂k`

(
(diam I)y

)∣∣
≤
(

diam I
)α
L‖x− y‖α−bαc .

Furthermore, we see that for any 0 < a < b < ∞, we have that every ` ∈⋃
α∈[a,b]H(α,L, U) corresponds to some

`∗ ∈
⋃

α∈[a,b]

H∗(α, (diam I)α · L,U) ⊂
⋃

α∈[a,b]

H∗(α, (diam I)b · L,U)

⊂ H∗(a, (diam I)b · L,U) ,

so that results stated uniformly over H∗(a, (diam I)b · L,U) especially give the
corresponding results uniformly over

⋃
α∈[a,b]H(α,L, U).

(ii) According to Remark 2.4.4 (v) - (vii), H(α,L, U), α ∈ [a, b], are compact with
respect to ‖ · ‖a/2, defined in (2.4.1).

(iii) Whenever continuity of a functional Ψ : H(α,L, U) → Rk, k ∈ N, α ∈ [a, b] with
respect to ‖ · ‖a/2 is to be proven, it is enough to show continuity with respect to
the sup-norm ‖ · ‖∞ since the sup-norm, as a norm on the domain space, is weaker
than ‖ · ‖a/2.

(iv) Assume diam I ≤ 1. For any α > 0 and sequences αn ↗ α, we have⋂
n∈N

H(αn, L, U) = H(α,L, U)

as one can simply assume that αn > bαc for all n and observe that the map

β 7→ [`]β−bαc = sup
x,y∈int(I)
x 6=y

|`(x)− `(y)|
‖x− y‖β−bαc

, β ∈
(
bαc, α

]
is continuous.

2.5 Kernel density estimation
Kernel density estimators are broadly used in order to estimate probability densities. For
i.i.d. observations X1, X2, . . . with common probability density function ` : Rd → [0,∞),
take some probability density K : Rd → [0,∞) as kernel function and define the kernel
density estimator of ` as

ˆ̀
n(x) := 1

n

n∑
k=1

Kh(Xk − x) := 1
nhd

n∑
k=1

K

(
Xk − x
h

)
,
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where h is a bandwidth parameter typically converging to 0 in n that crucially influences
the asymptotic properties of the method.

Kernel density estimators have been first studied by Rosenblatt (1956) for indicator
kernels and in a more general setting by Parzen (1962) who proved consistency, uniform
consistency, asymptotic normality for the mode and studied the mean squared error of
kernel density estimators. Silverman (1978) proved strong uniform consistency of kernel
density estimators and their derivatives. Silverman (1981) used kernel density estima-
tors in order to detect multimodality in a distribution. Lepskii (1992) gave a method
for choosing bandwidth parameters adaptive to the smoothness of Hölder classes. Giné
and Guillou (2002) gave uniform convergence rates for kernel density estimators. For
extensive overviews cf. Tsybakov (2008), Scott (2015) or Silverman (2018).

In order to exploit smoothness of higher order, e.g. α > 2 for Hölder classes, one needs
to drop the assumption of non-negativity of the kernel function.

Definition 2.5.1 (Higher order kernels).
Let α > 0, K : Rd → R be a kernel. K is said to be of order α if for all k = (k1, . . . , kd) ∈
Nd0 with |k| ∈ {1, . . . , bαc}, we have∫

K(z) dz = 1 ,
∫
zkK(z) dz = 0 ,

∫
‖z‖α|K(z)|dz <∞ . (2.5.1)

The mixed moments of order 2 in (2.5.1) can only be zero if K takes negative values.
Hence, kernels of order α > 2 always take positive and negative values.

Univariate kernels of order α having support [−1, 1] can be constructed from orthogonal
polynomials, such as Legendre polynomials, cf. Tsybakov (2008, Section 1.2.2). d-variate
kernels of order α can then easily be obtained by multiplying d univariate kernels of
order α, i.e. for univariate kernels K1, . . . ,Kd of order α define K : Rd → R by

K =
n∏
j=1

Kj .
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3.1 General methods for deriving uniform convergence
rates

In order to judge the quality of non-parametric estimation methods, global risk measures
are of particular interest. Typical examples are mean integrated squared error, i.e. L2-
risk or the sup-error, i.e. L∞-risk.

The main results in this thesis regard local M-estimation in mixture of regressions mod-
els. Particularly, asymptotic results are given for the L∞-error of the estimators as well
as uniformly over the whole parameter class. In one of the models, cf. Section 4.1, we
have to deal with a model that is not fully identifiable. In fact, it is only identifiable
up to label switching of the mixture components. In the following, we give variations of
Theorems 2.1.1 and 2.1.2 that are tailored to those problems as well as a set of assump-
tions allowing assertions regarding convergence rates of estimators in those models.

Let Γ, I be arbitrary sets and let Θ be a normed space with norm ‖ · ‖. For every γ ∈ Γ
introduce a deterministic function M(·, ·; γ) : Θ× I → R that, for any x, γ, is minimized
in its first argument by θ ∈ Θ iff θ ∈ Sx;γ , where Sx;γ ⊂ Θ is a non-empty finite set.
If the model is identifiable, the sets Sx;γ only contain one element each, namely θ(x; γ),
the minimizer of M(·, x; γ), i.e.

θ(x; γ) ∈ argmin
θ∈Θ

M(θ, x; γ) . (3.1.1)

Those parameter sets Sx;γ are to be estimated.

Assume we have a statistical model
(
Ω,A, (Pγ)γ∈Γ

)
and a sequence of random functions

Mn : Θ× I × Γ× Ω→ R, where we use the abbreviation

Mn(θ, x; γ) = Mn(θ, x; γ; ·) , θ ∈ Θ, x ∈ I, γ ∈ Γ .

Further suppose that, for any x ∈ I, the random functions Mn(·, x; γ) are minimized by
some θ̂n(x; γ), i.e.

θ̂n(x; γ) ∈ argmin
θ∈Θ

Mn(θ, x; γ) .

We will give conditions sufficient for uniform consistency of θ̂n(·; γ) as well as for θ̂n(·; γ)
having uniform convergence rate rn,γ both uniformly over the whole class Γ. That is, we
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give conditions under which we have

lim
n→∞

sup
γ∈Γ

Pγ
(

sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ ε) = 0 , ε > 0 ,

lim
δ→∞

lim sup
n→∞

sup
γ∈Γ

Pγ
(
rn,γ sup

x∈I
min

θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ δ) = 0 .

Remark 3.1.1.

(i) The set Γ typically consists of all model parameters. The random functions Mn

are generally independent of γ as proper estimators do not depend on unknown
model parameters. However, we will later discuss estimators that depend on some
nuisance parameter like the smoothness α in regard of Hölder-α-smooth functions
and include α in the parameter γ. We will formulate asymptotic results for families
of estimators indexed by the nuisance and subsequently propose a method to make
a data driven choice for the nuisance parameter so that the resulting estimator
is in fact again independent of the model and nuisance parameters. Note that
this is why convergence rates rn,γ also depend on γ. For notational simplicity in
the following two general results, we use this unusual notation in which random
functions take model parameters as arguments and interpret γ ∈ Γ to consist of
model parameters of which the random functions are independent and nuisance
parameters on which they may depend.

(ii) In regression models for example, Γ might consist of tuples (θ(·), `, α), where θ(·)
are parameter functions coming from some Hölder classes, cf. Section 2.4, α is
the Hölder smoothness and ` are covariate densities also coming from some set of
functions.

(iii) Whenever a model is not identifiable, the set Sx;γ helps formalizing asymptotic
properties of estimators that cannot be consistent due to non-identifiability. Con-
sider for example mixture of regressions models that often are only identifiable up
to label switching. In those models Sx;γ usually consists of the model parameter
and all label switched versions thereof.

Let us start with a uniform consistency result. The following result is a rather direct
extension of Theorem 2.1.1 in the sense that uniform consistency of the random functions
Mn and the minima of M being well-separated also yield uniform consistency in this
context.

Theorem 3.1.2 (Uniform consistency). Let Θ be a normed space with norm ‖ · ‖ and
assume that

lim
n→∞

sup
γ∈Γ

Pγ
(

sup
θ∈Θ

sup
x∈I

∣∣Mn(θ, x; γ)−M(θ, x; γ)
∣∣ ≥ η) = 0 , η > 0

as well as that
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(∗) for all ε > 0 there is an η > 0 so that for every θ ∈ Θ, x ∈ I, γ ∈ Γ with
M(θ, x; γ)−M(θ∗, x; γ) < η for some θ∗ ∈ Sx;γ , we have minθ∗∈Sx;γ ‖θ− θ∗‖ < ε.

Then the estimator θ̂n(·; γ) is uniformly consistent for Sx;γ , i.e. for all ε > 0, we have

lim
n→∞

sup
γ∈Γ

Pγ
(

sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ ε) = 0 .

The following theorem is a generalization of Theorem 2.1.2 that gives conditions for uni-
form convergence rates uniformly over the model parameters γ for possibly unidentifiable
models.
Theorem 3.1.3. Let the following assumptions be true:

(i) There is an η > 0 and constants C1, C2 > 0 so that for every ε ≤ η,

inf
γ∈Γ

inf
x∈I

inf
∗

[
M(θ, x; γ)−M(θ∗(x; γ), x; γ)

]
≥ C1ε

2

lim sup
n→∞

sup
γ∈Γ

sup
ε≤η

tn,γ
φn(ε)Eγ

[
sup
x∈I

sup
∗

min
θ∗∈Sx;γ

∥∥Wn(θ, x; γ)−Wn(θ∗, x; γ)
∥∥] ≤ C2 ,

where the third infimum is taken over {θ ∈ Θ : min
θ∗∈Sx;γ

‖θ − θ∗‖ = ε}, the fourth

supremum is taken over {θ ∈ Θ : min
θ∗∈Sx;γ

‖θ − θ∗‖ ≤ ε} and θ∗(x; γ) ∈ Sx;γ is

any minimizer of M(·, x; γ). Furthermore, Wn(θ, x; γ) := Mn(θ, x; γ)−M(θ, x; γ),
φn : (0,∞) → (0,∞) are functions so that φn(·)/·α is decreasing for some α < 2
and tn,γ →∞ for every γ ∈ Γ.

(ii) For all δ > 0, we have supγ∈Γ Pγ
(

supx∈I min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ δ) = o(1).

If sequences (rn,γ) satisfy r2
n,γφ(1/rn;γ) ≤ tn,γ for all n, γ as well as infγ rn,γ →∞, then

lim
δ→∞

lim sup
n→∞

sup
γ∈Γ

Pγ
(
rn,γ sup

x∈I
min

θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ δ) = 0 .

The proof of both results can be found in Section 5.1.

Application to local M-estimation

Let us give a more specific set of conditions that yield assertions on M-estimators hav-
ing uniform convergence rates rn. The first assumption in (i) of Theorem 3.1.3 can
be provided by a Taylor expansion of M of order two around its minimizer θ∗(x; γ).
Hence, differentiability assumptions need to be made. The second assumption in (i)
holds whenever the gradients of the random functions Mn have uniform L1 convergence
rate rn. Uniform consistency follows from compactness of all sets, continuity of M and
the uniform consistency of Mn by Theorem 2.1.1. Note that the set of assumptions sim-
plifies when the model is identified, cf. Assumption A.2.1. Moreover, note that we will
drop dependence of the random functions Mn and the convergence rates rn on γ from
now on.
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Assumption 3.1.4. Let Θ ⊂ Ξ ⊂ Rm, I ⊂ Rd, (Γ, ‖ · ‖) be a normed space, M :
Ξ × I × Γ → R be a deterministic function, Mn : Ξ × I → R be random functions,
(rn)n∈N ⊂ (0,∞), be a sequence with rn →∞.

(A1) Assume that Θ is compact and convex with Θ = int(Θ), Ξ is open and convex,
I is compact and (Γ, ‖ · ‖) is a compact normed space. Furthermore, there is a
constant C̄ <∞ so that for all θ, θ′ ∈ Θ, there is an l ∈ N0 and θ̄1, . . . , θ̄l ∈ Θ so
that with θ = θ̄0, θ′ = θ̄l+1, we have

θ̄k+1 − θ̄k = ckejk , k = 0, . . . , l

for some unit vectors ejk and some coefficients ck ∈ R with
∑l
k=0 |ck| ≤ C̄‖θ−θ′‖.

(A2) There is a set of permutations

Z ⊂ {ζ : {1, . . . ,m} → {1, . . . ,m} : ζ bijective} ,

so that M and Mn are invariant under permuting the first argument by ζ ∈ Z.

(A3) The function M is continuous, i.e. the map

(θ, x; γ) 7→M(θ, x; γ)

is continuous. For every x ∈ I, γ ∈ Γ, the contrast M(·, x; γ) attains a minimum
at θ∗(x; γ) iff

θ∗(x; γ) ∈ Sx;γ ,

where Sx;γ = ζ(Sx;γ) ⊂ Θ, ζ ∈ Z and #Sx;γ = #Z. Furthermore, for any
x ∈ I, γ ∈ Γ, θ∗(x; γ) ∈ Sx;γ , there is a permutation ζx;γ ∈ Z so that the maps
(x; γ) 7→ ζx;γ(θ∗(x; γ)) are continuous.

(A4) For all x ∈ I, γ ∈ Γ, the function M(·, x; γ) is twice continuously differentiable in
its first argument and the Hessian matrix

Vx
(
θ∗(x; γ); γ

)
:= ∂2

θ2M
(
θ∗(x; γ), x; γ

)
is positive definite for all θ∗(x; γ) ∈ Sx;γ . Particularly, the eigenvalues λ1

x,γ ≥ · · · ≥
λmx,γ of Vx(θ∗(x; γ); γ) are positive. Furthermore, the map (x, γ) 7→ Vx

(
θ∗(x; γ); γ

)
is continuous.

(A5) The Hessian matrices Vx(·; γ) are uniformly Lipschitz continuous in θ, i.e. for all
θ, θ′ ∈ Ξ, we have

sup
γ∈Γ

sup
x∈I
‖Vx(θ; γ)− Vx(θ′; γ)‖ ≤ LHess‖θ − θ′‖ ,

where LHess <∞ depends only on Ξ, I and Γ.
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3.1 General methods for deriving uniform convergence rates

(A6) There is an ε∗ > 0 so that for all 0 < ε < ε∗, x ∈ I, γ ∈ Γ, the balls {θ ∈ Ξ :
‖θ − θ∗‖ ≤ ε}, θ∗ ∈ Sx;γ are disjoint.

(A7) The empirical contrast Mn is continuously differentiable in its first argument and
for the gradients

Sn(θ, x) := ∂θMn(θ, x) , S(θ, x; γ) := ∂θM(θ, x; γ) (3.1.2)

it holds that

lim sup
n→∞

sup
γ∈Γ

rnEγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x)− S(θ, x; γ)
∥∥] <∞ .

(A8) The empirical contrast Mn is uniformly consistent for M , i.e.

lim
n→∞

sup
γ∈Γ

Pγ
(

sup
x∈I,θ∈Θ

∣∣Mn(θ, x)−M(θ, x; γ)
∣∣ ≥ ε) = 0 , ε > 0 .

Remark 3.1.5.

(i) The latter part of Assumption (A1) lets us bound increments |f(θ) − f(θ̃)| of
functions f on Θ by sums of increments for which arguments only differ in one
component. Note that for those vectors θ̄k, we have [θ̄k, θ̄k+1] ⊂ Θ as Θ is convex.
Also note that the assumption is fulfilled by every compact cuboid Θ ⊂ Rm con-
taining an open subset because for any θ′ = (ϑ′1, . . . , ϑ′m)T , θ = (ϑ1, . . . , ϑm)T ∈ Θ,
the vectors

θ̄j = (ϑ1, . . . , ϑj , ϑ
′
j+1, . . . , ϑ

′
m)T ∈ Θ , j = 0, . . . ,m

fulfil the postulated properties. Particularly, one can choose C̄ = m.

(ii) Whenever the model is identifiable, the set of Assumptions 3.1.4 shrinks drastically.
(A2) and (A6) can be dropped entirely. (A3) reduces to M being continuous, the
minima being unique and the parameter functions being continuous. A complete
list of altered assumptions can be found in the Appendix, cf. Assumption A.2.1.

(iii) We will consider estimation only for parameters in Θ but introduced Ξ so that
differentiation of the contrast functions on the boundary of Θ is well-defined and
so that particularly S(θ∗(x; γ), x; γ) = 0 when θ∗(x; γ) ∈ Sx;γ is a boundary point
of Θ. The latter is true because points of minima of Mn on the boundary of Θ are
especially local minima on the open set Ξ.

Theorem 3.1.6. Under Assumption 3.1.4, any sequence θ̂n(x) = argminMn(·, x) has
uniform convergence rate rn, i.e.

lim
δ→∞

lim sup
n→∞

sup
γ∈Γ

Pγ
(
rn sup

x∈I
min

θ∗∈Sx;γ

∥∥θ̂n(x)− θ∗
∥∥ ≥ δ) = 0 .
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Proof of Theorem 3.1.6. We need to check the assumptions of Theorem 3.1.3 for

φn = id and tn,γ = rn,γ = rn .

We obviously have that tn,γ → ∞, t 7→ φn(t)/t 3
2 = t−

1
2 is decreasing on (0,∞),

r2
n,γφn(1/rn,γ) = rn,γ = tn,γ .

First, observe that there is a bounded open set Θ ⊂ Ξ̃ ⊂ Ξ so that

dist(Θ, ∂ Ξ̃) =: ε̄ > 0 .

Indeed, assume ε̄ = 0, then there is a sequence (θn)n∈N ⊂ Θ so that dist(θn, ∂ Ξ̃) → 0.
As Θ is compact, there is a subsequence (θnk)k∈N of (θn)n∈N so that θnk → θ̄ ∈ Θ. Since
θ 7→ dist(θ, ∂ Ξ̃) is continuous, ∂ Ξ̃ is closed and dist(θnk , ∂ Ξ̃)→ 0, we deduce θ̄ ∈ ∂ Ξ̃, a
contradiction. We can without loss of generality assume that Ξ̃ is convex as the convex
hull of Ξ̃ is bounded and a subset of Ξ.

Fix some ε < min
{
ε∗, ε̄

}
. Then, this implies that for any γ ∈ Γ, x ∈ I,{

θ ∈ Ξ : ‖θ − θ∗(x; γ)‖ ≤ ε
}
⊂ Ξ , θ∗(x; γ) ∈ Sx;γ

and according to (A6), the balls are in particular disjoint.

Let us prove the first point of (i). For any γ ∈ Γ, x ∈ I, our considerations above and
(A2) give some θ∗(x; γ) ∈ Sx;γ so that a second-order Taylor approximation around
θ∗(x; γ) yields for every θ ∈ Ξ with ‖θ − θ∗(x; γ)‖ = ε the existence of a ξx,θ,γ ∈
[θ, θ∗(x; γ)] so that

inf
γ∈Γ

inf
x∈I

min
θ∗∈Sx;γ

inf
θ∈Θ:

‖θ−θ∗‖=ε

[
M(θ, x; γ)−M(θ∗, x; γ)

]
≥ inf

γ∈Γ
inf
x∈I

min
θ∗∈Sx;γ

inf
θ∈Ξ:

‖θ−θ∗‖=ε

[
M(θ, x; γ)−M(θ∗, x; γ)

]
= inf

γ∈Γ
inf
x∈I

inf
θ∈Ξ:

‖θ−θ∗(x;γ)‖=ε

[
M(θ, x; γ)−M

(
θ∗(x; γ), x; γ

)]
≥ inf

γ∈Γ
inf
x∈I

inf
θ∈Ξ:

‖θ−θ∗(x;γ)‖=ε

1
2
(
θ − θ∗(x; γ)

)T
Vx
(
θ∗(x; γ); γ

)(
θ − θ∗(x; γ)

)
− sup
γ∈Γ

sup
x∈I

sup
θ∈Ξ:

‖θ−θ∗(x;γ)‖=ε

∣∣∣∣12(θ − θ∗(x; γ)
)T(

Vx
(
θ∗(x; γ); γ

)
− Vx

(
ξx,θ,γ ; γ

))(
θ − θ∗(x; γ)

)∣∣∣∣
≥ inf

γ∈Γ
inf
x∈I

1
2ε

2λmx,γ −
LHess

2 ε3 ,

according to (A4) and (A5), where λmx,γ is the smallest eigenvalue of Vx
(
θ∗(x; γ); γ

)
.

Since eigenvalues of a matrix depend continuously on its entries, the entries of the Hessian
matrices Vx

(
θ∗(x; γ); γ

)
depend continuously on (x; γ) by (A4), so that we can deduce

inf
γ∈Γ

inf
x∈I

λmx,γ > 0
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by compactness of Γ× I, cf. (A1). Conclude by choosing η ≤ min
{
ε∗, ε̄

}
small enough.

Prove the second part of (i). Because of the invariance of the contrast functions under
permutations ζ ∈ Z, cf. (A2), we only need to show that for some η < min

{
ε∗, ε̄

}
and

for any θ∗(x; γ) ∈ Sx;γ ,

lim sup
n→∞

sup
0<ε≤η

sup
γ∈Γ

rn
ε
Eγ
[

sup
x∈I

sup
θ∈Θ:

‖θ−θ∗(x;γ)‖≤ε

∣∣Wn(θ, x; γ)−Wn(θ∗(x; γ), x; γ)
∣∣] ≤ C2 ,

for some constant C2 > 0, where Wn(θ, x; γ) := Mn(θ, x)−M(θ, x; γ).

For any θ ∈ Θ, there is some lθ,x;γ ∈ N0, θ̄1(θ, x; γ), . . . , θ̄lθ,x;γ (θ, x; γ) ∈ Θ with the
properties described in (A1). By using the notation

θ = θ̄0(θ, x; γ) , θ∗(x; γ) = θ̄lθ,x;γ+1(θ, x; γ) ,

θ̄k(θ, x; γ) =
(
ϑ̄k1(θ, x; γ), . . . , ϑ̄km(θ, x; γ)

)T
, k = 0, . . . , lθ,x;γ + 1

as well as t = (t1, . . . , tm), the fundamental theorem of calculus gives for any n, γ that

sup
x∈I

sup
θ∈Θ:

‖θ−θ∗(x;γ)‖≤ε

∣∣Wn(θ, x; γ)−Wn

(
θ∗(x; γ), x; γ

)∣∣
≤ sup

x∈I
sup
θ∈Θ:

‖θ−θ∗(x;γ)‖≤ε

lθ,x;γ∑
k=0

∣∣Wn

(
θ̄k+1(θ, x; γ), x; γ

)
−Wn

(
θ̄k(θ, x; γ), x; γ

)∣∣
= sup

x∈I
sup
θ∈Θ:

‖θ−θ∗(x;γ)‖≤ε

lθ,x;γ∑
k=0

∣∣∣∣ ∫ ϑ̄k+1
jk

(θ,x;γ)

ϑ̄k
jk

(θ,x;γ)
∂tjWn(t, x; γ) dtj

∣∣∣∣
≤ C̄ε sup

x∈I
sup
θ∈Θ

∥∥Sn(θ, x)− S(θ, x; γ)
∥∥ ,

so that the second part of (i) is given directly by (A7).

We will prove (ii), i.e. the uniform consistency of θ̂n(·), by using Theorem 3.1.2. As
uniform consistency of the contrast Mn is given by (A8), only (∗) in the assumptions of
Theorem 3.1.2 needs to be proved.

Assume (∗) does not hold. Then there is an ε > 0 so that for any sequence ηn → 0, we
find xn ∈ I, θn ∈ Θ, γn ∈ Γ so that for every n ∈ N

M(θn, xn; γn)−M
(
θ∗(xn; γn), xn; γn

)
< ηn , min

θ∗(xn;γn)∈Sxn,γn

∥∥θn − θ∗(xn; γn)
∥∥ ≥ ε .
(3.1.3)

As Θ×I×Γ is compact according to (A1), there is a subsequence
(
(θnk , xnk , γnk)

)
k∈N of(

(θn, xn, γn)
)
n∈N converging to a point (θ′, x′, γ′) ∈ Θ×I×Γ. By continuity of (θ, x; γ) 7→
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M(θ, x; γ) that is given by (A3) as well as the continuity of (x; γ) 7→ ζx;γ(θ∗(x; γ)), we
have M(θ′, x′; γ′) = M(θ∗(x′; γ′), x′; γ′), which implies that θ′ ∈ Sx′,γ′ Now, according to
the right-hand side of (3.1.3) and the continuity of the functions (x; γ) 7→ ζx;γ(θ∗(x; γ)),
we have

min
θ∗(x′;γ′)∈Sx′,γ′

∥∥θ′ − θ∗(x′; γ′)∥∥ ≥ lim inf
k→∞

min
θ∗(xnk ;γnk )∈Sxnk ,γnk

∥∥θnk − θ∗(xnk ; γnk)
∥∥ ≥ ε ,

a contradiction as θ 7→M(θ, x′; γ′) is only minimized by elements of Sx′,γ′ , cf. (A3).

3.1.1 Uniform adaptive estimation methods
As Lepskii (1991) pointed out, there is no optimally adaptive pointwise estimator for
estimating signals identified by a function coming from univariate Hölder classes in the
Gaussian white noise model whenever the smoothness parameter is only known to come
from a set A with at least two elements. That is, there is no estimator estimating all
functions within H(α,L, U), α ∈ A at the respective minimax rates. The author further
gives a weaker notion of quality of adaptive estimation.

Lepskii (1992) gave general conditions under which estimators are adaptive according
to the notion in Lepskii (1991). This theory is applicable to a variety of estimation
problems, e.g. kernel density estimation. Under those conditions, he particularly gave a
method for constructing adaptive estimators from estimators that each estimate func-
tions coming from one nuisance class with minimax rate, the Lepski method.

Assume one has estimators corresponding to every possible nuisance parameter fulfilling
certain conditions, cf. Lepskii (1992). Proceed by laying a finite ordered net on the set
of nuisance parameters and examine how estimators corresponding to the net points
improve with respect to a certain loss function when choosing net points of higher order.
Then choose the last estimator that still improves. As he further shows, inserting a
multiplicative logarithmic punitive term into the convergence rate suffices in many models
in order to achieve adaptivity, e.g. kernel density estimation with densities coming from
Hölder classes.

Uniform adaptive estimation in local M-estimation

Proving adaptivity for specific estimators according to the Lepski method requires estab-
lishing exponential deviation inequalities for the estimators, cf. Lepskii (1992, Lemma
1). While inequalities of this type are available for a variety of estimators under mild
conditions, e.g. estimators in the form of sums of i.i.d. random variables like the kernel
density estimator, this is not the case for all estimators. We will give an approach on
uniform adaptive M-estimation when there is no exponential deviation inequality for the
estimators at hand.
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Assume that in the general M-estimation setting described at the beginning of this chap-
ter, the parameter function θ(·; γ) defined in (3.1.1) depends on some nuisance parameter
α like the smoothness α in regard of Hölder classes. If this nuisance is unknown a priori,
a pointwise optimal adaptive estimator in the sense described by Lepskii (1991) should
be unattainable as mentioned above. However, it can be possible to obtain estimators of
this type when examining the L∞-errors because a logarithmic punitive term typically
is already present.

Assume one knows estimators

θ̂n(x;α) = argmin
θ∈Θ

Mn(θ, x;α) ,

where Mn now depends on the nuisance parameter α, to have uniform convergence rates(
n

logn
) α

2α+d , i.e.

lim
η→∞

lim sup
n→∞

sup
γ∈Γ(α)

Pγ
((

n

logn

) α
2α+d

sup
x∈I

min
θ∗∈Sx;γ;α

∥∥θ̂n(x;α)− θ∗
∥∥ ≥ η) = 0 , α > 0 ,

where Γ(α) as well as Sx;γ;α now depend on α as well. Note that this is the most common
uniform non-parametric convergence rate depending on nuisance parameters. Consider
γ ∈ Γ(α) to also model dependency of the parameter θ∗(·; γ) and the asymptotic criterion
function M on α. Nonetheless, let the functions M and S depend on α in notation to
make it more obvious to which nuisance class the respective γ belongs, i.e.

M(·, ·; γ;α) := M(·, ·; γ) , S(·, ·; γ;α) := S(·, ·; γ) , γ ∈ Γ(α) .

Further assume one knows the nuisance parameter to come from a compact interval
[a, b] ⊂ (0,∞), the contrast functions to be differentiable and that (A7) holds uniformly
over all α ∈ [a, b], i.e.

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

(
n

logn

) α
2α+d

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;α)− S(θ, x; γ;α)
∥∥] ≤ C∗ <∞ .

(3.1.4)

Remember that Sn and S are the gradients of Mn and M , cf. (3.1.2). The general idea is
to use the Lepski method first described in Lepskii (1992) for the gradients Sn in order
to obtain a data driven nuisance parameter α̂n ∈ [a, b] so that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

(
n

logn

) α
2α+d

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x; α̂n)− S(θ, x; γ;α)
∥∥] <∞ ,

(3.1.5)

that is, Sn(·, ·; α̂n) being an adaptive estimator for the asymptotic gradients S with nui-
sance coming from [a, b].
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Under Assumptions similar to Assumption 3.1.4, it is reasonable to assume that the
adaptivity extends from the gradient to the estimator θ̂n(·; α̂n) itself by using Theorem
3.1.3. Note that the convergence rates should typically remain identical because a loga-
rithmic punitive term is already present due to examining L∞-errors.

The application of the Lepski method now works as follows. Let us first lay a grid over
[a, b] that grows logarithmically in n, i.e.

βk = a+ k
b− a
N

, k = 0, . . . , N, N = dlogne , (3.1.6)

where dxe is the smallest integer strictly larger than x. Let us further use the notation

r(α) =
(

logn
n

) α
2α+d

, rk = r(βk) . (3.1.7)

Subsequently, define the adaptive data driven grid point by

α̂n = βk̂,

where

k̂n = k̂ = max
{

0 ≤ k ≤ N : sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk)− Sn(θ, x;βl)
∥∥ ≤ CLeprl ∀ 0 ≤ l ≤ k

}
,

(3.1.8)

where the Lepski constant CLep < ∞ is to be chosen large enough. It will be model-
dependent and gets specified within the proof of the adaptivity of the corresponding
empirical gradient

Sn(·, ·; α̂n) , α̂n = βk̂ , (3.1.9)

i.e. (3.1.5). All parameters above actually depend on n. However, we choose to drop the
dependence in notation for convenience.

Remark 3.1.7.

(i) Note that k̂ is a random variable with values in {0, . . . , N}.

(ii) Also note that we implicitly expanded the domain of the functionsMn and Sn to Ξ×
I× [a, b] although Θ× I× [a, b] would suffice throughout this section. Additionally,
we expanded the domain of the functions M and S to Ξ×I×

⋃
α∈[a,b]

(
Γ(α)×{α}

)
.

This construction yields the estimator

θ̂adap
n (x) = θ̂n(x; α̂n) = argmin

θ∈Θ
Mn(θ, x; α̂n) , (3.1.10)

that, under mild conditions, attains adaptivity from the empirical gradients by Theorem
3.1.3, i.e.

lim
η→∞

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ

((
n

logn

) α
2α+d

sup
x∈I

min
θ∗∈Sx;γ;α

∥∥θ̂adap
n (x)− θ∗

∥∥ ≥ η) = 0 .
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3.1 General methods for deriving uniform convergence rates

Let us discuss the intuition behind this construction in further detail. Under the as-
sumption that Γ(α) ⊂ Γ(α̃) for α > α̃, which particularly implies⋃

α∈[a,b]

Γ(α) = Γ(a) ,

we make the following observations.

Remark 3.1.8. For some α ∈ [a, b] and 0 ≤ kn(α) ≤ N so that βkn(α) ≤ α ≤ βkn(α) +1,
we have:

(i) For a sequence (ln) of grid points so that ln < kn(α) for all n ∈ N, we have

Γ(α) ⊂ Γ(βkn(α)) ⊂ Γ(βln)

and thus, according to (3.1.4),

sup
γ∈Γ(α)

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βln)− S(θ, x; γ;α)
∥∥] .C∗rln ,

sup
γ∈Γ(α)

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βkn(α))− S(θ, x; γ;α)
∥∥] .C∗rkn(α)

and hence

sup
γ∈Γ(α)

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βln)− Sn(θ, x;βkn(α))
∥∥] .C∗(rln + rkn(α))

. 2C∗rln .

This means that the sequence kn(α) behaves like a deterministic asymptotic Lepski
choice for CLep = C∗ and the actual Lepski choice k̂ should be at least kn(α)
with probability approaching one as n → ∞. The detailed formalization and
formal proof of this turns out to be rather difficult. It involves the aforementioned
exponential deviation inequalities.

(ii) If the Lepski parameter is too big, i.e. for any γ ∈ Γ(α), we have k̂n > kn(α) for
n ∈ J ⊂ N, #J =∞, then, by definition of k̂n, we have

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂n)− Sn(θ, x;βkn(α))
∥∥ ≤ CLeprkn(α) , n ∈ J

as well as

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βkn(α))− S(θ, x; γ;α)
∥∥] .C∗rkn(α) ,

because Γ(α) ⊂ Γ(βkn(α)), giving

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂n)− S(θ, x; γ;α)
∥∥]
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≤Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂n)− Sn(θ, x;βkn(α))
∥∥]

+ Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βkn(α))− S(θ, x; γ;α)
∥∥]

. (CLep + C)∗rkn(α)

and as we will see in the proof of the following lemma, the sequences rkn(α) and
r(α) are equivalent. This basically means that a too large Lepski parameter results
in an alteration of the convergence rate that is asymptotically negligible.

Let us formalize our observations.

Lemma 3.1.9. Let 0 < a < b < ∞, Γ(α), α ∈ [a, b] be sets, Γ(α) ⊂ Γ(α̃) whenever
α̃ < α; Θ ⊂ Rm, I ⊂ Rd and Sn : Θ × I × [a, b] be random functions so that (3.1.4)
holds. Then, for any CLep > 0,

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x; α̂n)− S(θ, x; γ;α)
∥∥]

≤ (CLep + C∗) exp(d(b− a))
+ C∗ lim sup

n→∞
sup
α∈[a,b]

sup
γ∈Γ(α)

sup
a≤β≤α

r(α)−1
(
Eγ
[(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;β)− S(θ, x; γ;α)
∥∥)2]) 1

2
· log(n)

3
2 sup

0≤l≤j≤kn(α)
p

1
2
lj ,

(3.1.11)

where

plj = 2Pγ
(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ [Sn(θ, x;βj)]
∥∥ > CLep−3C∗∗

2 rl

)
. (3.1.12)

In order to prove adaptivity, one needs to show that the second summand in (3.1.11)
is finite. Whenever one has an appropriate exponential deviation inequality for the
gradients Sn at hand and the sets Θ, I are compact, the terms plj converge to zero
at polynomial rate with exponent tuned by the Lepski constant CLep. Two estimation
problems in which this is true can be found in Sections 4.1 and 4.2. Techniques for
deriving this can be found in Section 3.2.3. Note that the exponent will converge to ∞
for CLep →∞. This means that it is enough to assume that the L2-error above converges
to ∞ with at most polynomial rate, if at all, i.e.

n−T sup
α∈[a,b]

sup
γ∈Γ(α)

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;α)− S(θ, x; γ;α)
∥∥2
]
<∞

for some T > 0. As the uniform L1-error converges uniformly to zero at rate
( logn

n

) α
2α+d ,

it is reasonable to expect the L2 error to converge to zero at the same rate, which is the
assumption in the following lemma.
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3.1 General methods for deriving uniform convergence rates

Lemma 3.1.10. Let 0 < a < b < ∞, Γ(α), α ∈ [a, b] be sets, Γ(α) ⊂ Γ(α̃) whenever
α̃ < α; Θ ⊂ Rm, I ⊂ Rd be compact and Sn : Θ× I × [a, b] be random functions so that
the L2 version of (3.1.4) holds, i.e.

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−2 Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;α)− S(θ, x; γ;α)
∥∥2
]
≤ C∗∗ <∞ .

(3.1.13)

Further, let there be a monotone function u : [C−,∞) → [0,∞) with u(t) → ∞, t → ∞
and a constant C− > 0 so that for every CLep ≥ C−,

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)plj <∞ , (3.1.14)

where plj is defined in (3.1.12) and depends on CLep. Then, for any CLep ≥ C− with
u(CLep)/2 > b

2b+d −
a

2a+d ,

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x; α̂n)− S(θ, x; γ;α)
∥∥]

≤(CLep + C∗∗) exp(d(b− a)) .

The function u typically depends on C∗∗, Θ, I, a, b, the exponential deviation inequality
and possibly more model parameters. By Jensen’s inequality, (3.1.13) implies (3.1.4) with
C∗ = C∗∗. The proofs of both lemmata are straightforward and given here. In Sections
3.2.1 and 3.2.2, we will give tools that help determining the uniform L2 convergence rate
for specific types of contrast functions. Techniques for treating the gradient deviation
probabilities (3.1.14) are given in Section 3.2.3.

Proof of Lemma 3.1.9. Let for all α ∈ [a, b], 0 ≤ kn(α) ≤ N − 1 so that βkn(α) ≤ α ≤
βkn(α)+1. Then we have for any α ∈ [a, b], γ ∈ Γ(α)

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ;α)
∥∥]

≤Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ;α)
∥∥1k̂≤kn(α)−1

]
(3.1.15)

+ Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ;α)
∥∥1k̂≥kn(α)

]
. (3.1.16)

The term (3.1.16) can be handled by a zero-addition of the term Sn(θ, x;βkn(α)) within
the supremum according to our prior observations in Remark 3.1.8, i.e.

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ;α)
∥∥1k̂≥kn(α)

]
≤Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− Sn(θ, x;βkn(α))
∥∥1k̂≥kn(α)

]
+ Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βkn(α))− S(θ, x; γ;α)
∥∥1k̂≥kn(α)

]
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.CLeprkn(α) + C∗rkn(α)

= (CLep + C∗)rkn(α) ,

where we used that Γ(α) ⊂ Γ(βkn(α)).

Now let us show that the convergence rates rkn(α) and r(α) are asymptotically equivalent
by deriving that for all n, α,

1 ≤
rkn(α)

r(α) =
(

n

logn

) α
2α+d−

βkn(α)
2βkn(α)+d

=
(

n

logn

) αd−βkn(α)d
(2α+d)(2βkn(α)+d)

≤
(

n

logn

)d(α−βkn(α))

≤nd(α−βkn(α))

≤nd
b−a
logn

= exp(d(b− a)) <∞ ,

where we used that the net over [a, b] grows logarithmically. We get the desired bound
on (3.1.16), i.e.

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ;α)
∥∥1k̂≥kn(α)

]
≤(CLep + C∗) exp(d(b− a)) .

So let us examine (3.1.15). By using Cauchy-Schwarz’ inequality, we get for all α ∈ [a, b],
γ ∈ Γ(α) that

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ;α)
∥∥1k̂≤kn(α)−1

]
=
kn(α)−1∑
j=0

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− S(θ, x; γ;α)
∥∥1k̂=j

]

≤
kn(α)−1∑
j=0

(
Eγ
[(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− S(θ, x; γ;α)
∥∥)2]) 1

2Pγ(k̂ = j) 1
2

≤ sup
a≤β≤α

(
Eγ
[(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;β)− S(θ, x; γ;α)
∥∥)2]) 1

2 ·
kn(α)−1∑
j=0

Pγ(k̂ = j) 1
2 .

By definition of k̂, we have

Pγ(k̂ = j) ≤
j∑
l=0

Pγ
(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj+1)− Sn(θ, x;βl)
∥∥ > CLeprl

)
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≤
(
j + 1

)
max
l=0,...,j

Pγ
(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj+1)− Sn(θ, x;βl)
∥∥ > CLeprl

)
. log(n) max

l=0,...,j
Pγ
(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj+1)− Sn(θ, x;βl)
∥∥ > CLeprl

)
,

as the set of grid points grows logarithmically in n. Hence, we further deduce by index
shifting that

Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ;α)
∥∥1k̂≤kn(α)−1

]
≤ sup
a≤β<α

(
Eγ
[(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;β)− S(θ, x; γ;α)
∥∥)2]) 1

2

· log(n) 3
2 sup

0≤l<j≤kn(α)
Pγ
(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Sn(θ, x;βl)
∥∥ > CLeprl

) 1
2

In order to treat the last factor, we first observe that for l < j we have rj ≤ rl, yielding

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l<j≤kn(α)

r−1
l sup

x∈I,θ∈Θ

∥∥Eγ[Sn(θ, x;βl)
]
− Eγ

[
Sn(θ, x;βj)

]∥∥
≤ lim sup

n→∞
sup
α∈[a,b]

sup
γ∈Γ(α)

r−1
l sup

0≤l<kn(α)
sup

x∈I,θ∈Θ

∥∥Eγ[Sn(θ, x;βl)
]
− S(θ, x; γ;α)

∥∥
+ lim sup

n→∞
sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤j≤kn(α)

r−1
j sup

x∈I,θ∈Θ

∥∥Eγ[Sn(θ, x;βj)
]
− S(θ, x; γ;α)

∥∥
≤ 2 lim sup

n→∞
sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1 sup
x∈I,θ∈Θ

∥∥Eγ[Sn(θ, x;α)
]
− S(θ, x; γ;α)

∥∥
≤ 2C∗∗

because Γ(α) ⊂ Γ(βj). Hence, there is an n0 ∈ N so that for all n ≥ n0, 0 ≤ l < j ≤
kn(α), we have

sup
α∈[a,b]

sup
γ∈Γ(α)

r−1
l sup

x∈I,θ∈Θ

∥∥Eγ[Sn(θ, x;βl)
]
− Eγ

[
Sn(θ, x;βj)

]∥∥ ≤ 3C∗∗ .

Subsequently, deduce that for any n ≥ n0, α ∈ [a, b], γ ∈ Γ(α), 0 ≤ l < j ≤ kn(α), we
have

Pγ
(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Sn(θ, x;βl)
∥∥ > CLeprl

)
≤Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ
[
Sn(θ, x;βj)

]
)
∥∥

+ sup
x∈I,θ∈Θ

∥∥Eγ[Sn(θ, x;βl)
]
− Eγ

[
Sn(θ, x;βj)

]∥∥
+ sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βl)− Eγ
[
Sn(θ, x;βl)

]∥∥ > CLeprl

)
≤Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ
[
Sn(θ, x;βj)

]∥∥
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+ sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ
[
Sn(θ, x;βl)

]∥∥ > (CLep − 3C∗∗)rl
)

≤Pγ
(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ
[
Sn(θ, x;βj)

]∥∥ > CLep−3C∗∗
2 rl

)
+ Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βl)− Eγ
[
Sn(θ, x;βl)

]∥∥ > CLep−3C∗∗
2 rl

)
≤ 2 max

i∈{j,l}
Pγ
(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;βi)− Eγ
[
Sn(θ, x;βi)

]∥∥ > CLep−3C∗∗
2 rl

)
.

Proof of Lemma 3.1.10. As all assumptions of Lemma 3.1.9 are fulfilled, we only need
to prove that the second summand in (3.1.11) is zero, i.e. that

0 = lim sup
n→∞

{
sup
α∈[a,b]

sup
γ∈Γ(α)

sup
a≤β≤α

r(α)−1
(
Eγ
[(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;β)− S(θ, x; γ;α)
∥∥)2]) 1

2

(3.1.17)

· log(n)
3
2 sup

0≤l≤j≤kn(α)
p

1
2
lj

}
. (3.1.18)

The factor (3.1.17) is asymptotically dominated by the rate r(a)r(b)−1 as can be seen
by inserting r(β)r(β)−1 so that

(3.1.17) ≤ r(a)r(b)−1 sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1
(
Eγ
[(

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;α)− S(θ, x; γ;α)
∥∥)2]) 1

2
,

where the supremum is asymptotically bounded by C∗∗ according to (3.1.13). The second
factor (3.1.18) can be dealt with by

sup
α∈[a,b]

sup
γ∈Γ(α)

log(n) 3
2 sup

0≤l≤j≤kn(α)
p

1
2
lj

≤ log(n) 3
2n−u(CLep)/2 sup

α∈[a,b]
sup

γ∈Γ(α)
sup

0≤l≤j≤kn(α)
nu(CLep)/2p

1
2
lj

and as u(CLep)/2 > b
2b+d −

a
2a+d , we get

r(a)r(b)−1 log(n) 3
2n−u(CLep)/2 =

(
n

logn

) b
2b+d−

a
2a+d

log(n) 3
2n−u(CLep)/2 = o(1) ,

concluding the proof by (3.1.12).

Extending adaptivity from the gradient to the estimator

Let us give a specific set of conditions under which the gradient Sn(·, ·; α̂n) defined in
(3.1.9) is in fact adaptive and the adaptivity extends to the estimator θ̂adap

n (·) defined
in (3.1.10). This set of assumptions extends Assumption 3.1.4 by assuming that most of

38



3.1 General methods for deriving uniform convergence rates

the conditions hold uniformly over the nuisance parameter α as well. We further have to
assume uniform L2 convergence of the gradients and an exponential deviation inequality
for the gradients as pointed out in the previous section. The extension of the convergence
rates works by using Theorem 3.1.3 once again.

Assumption 3.1.11. Let 0 < a < b < ∞, Θ ⊂ Ξ ⊂ Rm, I ⊂ Rd, (Γ(α), ‖ · ‖α) be
normed spaces, α ∈ [a, b], M : Ξ × I ×

⋃
α∈[a,b]

(
Γ(α) × {α}

)
→ R be a deterministic

function, Mn : Ξ×I×[a, b]→ R be random functions; βk, r(α), k̂ be defined as in (3.1.6),
(3.1.7) and (3.1.8), respectively; α̂n = βk̂. Continuity of functions taking γ as arguments
is to be understood with respect to the maximum of norms in the other arguments and
the norm ‖ · ‖a.

(B1) Assume that Θ is compact and convex with Θ = int(Θ), Ξ is open and convex, I
is compact, and (Γ(α), ‖ · ‖α) are compactly nested spaces, i.e. Γ(α) ⊂ Γ(α′) and
Γ(α) is compact with respect to ‖ · ‖α′ whenever α′ < α. Furthermore, Γ(a) is
compact with respect to ‖ · ‖a. Additionally, for any α, αn ↗ α, it holds that⋂

n∈N
Γ(αn) = Γ(α) .

Moreover, there is a constant C̄ < ∞ so that for all θ, θ′ ∈ Θ, there is an l ∈ N0
and θ̄1, . . . , θ̄l ∈ Θ so that with θ = θ̄0, θ′ = θ̄l+1, we have

θ̄k+1 − θ̄k = ckejk , k = 0, . . . , l

for some unit vectors ejk and some coefficients ck ∈ R with
∑l
k=0 |ck| ≤ C̄‖θ−θ′‖.

(B2) There is a set of permutation functions

Z ⊂ {ζ : {1, . . . ,m} → {1, . . . ,m} : ζ bijective} ,

so that M and Mn are invariant under permuting the first argument by ζ ∈ Z.

(B3) The function M is continuous, i.e. the map

(θ, x; γ;α) 7→M(θ, x; γ;α)

is continuous. For every x ∈ I, α ∈ [a, b], γ ∈ Γ(a), the contrast M(·, x; γ;α)
attains a minimum at θ∗(x; γ;α) iff

θ∗(x; γ;α) ∈ Sx;γ;α ,

where Sx;γ;α = ζ(Sx;γ;α) ⊂ Θ, ζ ∈ Z and #Sx;γ;α = #Z. Furthermore, for any
x ∈ I, α ∈ [a, b], γ ∈ Γ(α), θ∗(x; γ;α) ∈ Sx;γ;α, there is a permutation ζx;α;γ ∈ Z
so that the maps (x; γ;α) 7→ ζx;α;γ(θ∗(x; γ;α)) are continuous.

(B4) For all x ∈ I, α ∈ [a, b], γ ∈ Γ(a), the function M(·, x; γ;α) is twice continuously
differentiable in its first argument and the Hessian matrix

Vx
(
θ∗(x; γ;α); γ;α

)
:= ∂2

θ2M
(
θ∗(x; γ;α), x; γ;α

)
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3 M-estimation and supremum distance

is positive definite for all θ∗(x; γ;α) ∈ Sx;γ;α. Particularly, the eigenvalues λ1
x,γ;α ≥

· · · ≥ λmx,γ;α of Vx
(
θ∗(x; γ;α); γ;α

)
are positive. Furthermore, the map

(x; γ;α) 7→ Vx
(
θ∗(x; γ;α); γ;α

)
is continuous.

(B5) The Hessian matrices Vx(·; γ;α) are uniformly Lipschitz continuous in θ, i.e. for
all θ, θ′ ∈ Ξ, we have

sup
α∈[a,b]

sup
γ∈Γ(a)

sup
x∈I

∥∥Vx(θ; γ;α)− Vx(θ′; γ;α)
∥∥ ≤ LHess‖θ − θ′‖ ,

where LHess <∞ depends only on Ξ, I, a, b and Γ(a).

(B6) There is an ε∗ > 0 so that for all 0 < ε < ε∗, x ∈ I, γ ∈ Γ(a), α ∈ [a, b] the balls
{θ ∈ Ξ : ‖θ − θ∗‖ ≤ ε}, θ∗ ∈ Sx;γ;α are disjoint.

(B7) The empirical contrast Mn is continuously differentiable in its first argument and
for the gradients

Sn(θ, x;α) := ∂θMn(θ, x;α) , S(θ, x; γ;α) := ∂θM(θ, x; γ;α)

it holds that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−2Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;α)− S(θ, x; γ;α)
∥∥2
]
≤ C∗∗ <∞.

(B8) The empirical contrast Mn is uniformly consistent for M , i.e.

lim
n→∞

sup
α∈[a,b]

sup
γ∈Γ(a)

Pγ
(

sup
x∈I,θ∈Θ

∣∣Mn(θ, x;α)−M(θ, x; γ; a)
∣∣ ≥ ε) = 0 , ε > 0 .

(B9) There is a constant C− > 0 and a monotone function u : [C−,∞) →
(
1,∞

)
with

u(t)→∞, t→∞ so that for every CLep ≥ C−,

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)plj <∞ ,

where plj is defined in (3.1.12) and 0 ≤ kn(α) ≤ N − 1 with N = dlogne is chosen
so that βkn(α) ≤ α ≤ βkn(α) + 1.
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Remark 3.1.12.

(i) Assumptions (B1) - (B8) imply Assumption 3.1.4 for any α ∈ [a, b] so that for
any α, the estimators θ̂n(·;α) ∈ argminθ∈ΘMn(θ, ·;α) have convergence rate r(α).

(ii) In an identifiable model, the assumptions reduce in the same way as Assumption
3.1.4 does. A complete list of altered assumptions can be found in the Appendix,
cf. Assumption A.2.2.

(iii) Note that in (B8), we assume that every empirical contrast is consistent for all
asymptotic contrasts independently of the actual nuisance parameter. In most
estimation problems, this automatically holds when

lim
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ
(

sup
x∈I,θ∈Θ

∣∣Mn(θ, x;α)−M(θ, x; γ;α)
∣∣ ≥ ε) = 0 , ε > 0 ,

as adjusting the nuisance parameter is in most cases only used in order to tweak
convergence rates, not to ensure consistency. Consider for example kernel density
estimators that are typically uniformly consistent whenever the bandwidth h fulfils

h→ 0 , logn
nhd

→ 0 ,

so that varying h depending on nuisance parameters will not ruin consistency as
long as the displayed constraints are not violated.

Theorem 3.1.13. Under Assumption 3.1.11, for any CLep ≥ C− with u(CLep) > b
2b+d−

a
2a+d , the estimator θ̂adap

n (·) defined in (3.1.10) is a uniformly adaptive estimator for
θ∗ ∈ Sx;γ;α, i.e.

lim
η→∞

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ
(
r(α)−1 sup

x∈I
min

θ∗∈Sx;γ;α

∥∥θ̂adap
n (x)− θ∗

∥∥ ≥ η) = 0 .

Proof of Theorem 3.1.13. The proof works essentially analogous to the one of Theorem
3.1.6. Let us apply Theorem 3.1.3 for Γ =

{
(α, γ) : α ∈ [a, b], γ ∈ Γ(α)

}
, which is com-

pact with respect to max{| · |, ‖ · ‖a} as can be seen by a simple topological argument,
cf. Lemma 3.1.14. Further use rn,γ = tn,γ = r(α)−1, φn = id, η = ε∗.

The first point of (i) is proved in the same way as for Theorem 3.1.6. The second part
of (i) is also proved accordingly, one only has to exchange the uniform L1-error of the
gradients with the adaptive version attained by Lemma 3.1.10, i.e.

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x; α̂n)− S(θ, x; γ;α)
∥∥]

≤(CLep + C∗∗) exp(d(b− a)) .

In order to prove uniform consistency of the estimator θ̂adap
n (·), we first use (B8), yielding

lim
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ
(

sup
x∈I,θ∈Θ

∣∣Mn(θ, x; α̂n)−M(θ, x; γ;α)
∣∣ ≥ ε)
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≤ lim
n→∞

sup
α∈[a,b]

sup
γ∈Γ(a)

Pγ
(

sup
x∈I,θ∈Θ

∣∣Mn(θ, x;α)−M(θ, x; γ; a)
∣∣ ≥ ε) = 0 , ε > 0

and then proceed analogously to the proof of Theorem 3.1.6

Lemma 3.1.14. Under Assumption (B1), the set Γ =
{

(α, γ) : α ∈ [a, b], γ ∈ Γ(α)
}

is
compact with respect to max{| · |, ‖ · ‖a}.

Proof of Lemma 3.1.14. As [a, b]×Γ(a) is compact with respect to max{| · |, ‖ · ‖a}, it is
enough to show that Γ is a closed subset thereof. Let

(
(αn, γn)

)
n
⊂ Γ converge to some

(α∗, γ∗) ∈ [a, b] × Γ(a). If there is a subsequence (nk) so that αnk ≥ α∗ for all k ∈ N,
then

γnk ∈ Γ(αnk) ⊂ Γ(α∗) , for all k ∈ N
and since Γ(α∗) is closed with respect to ‖ · ‖a, we have

γ∗ = lim
k→∞

γnk = lim
n→∞

γn ∈ Γ(α∗) .

Hence, assume that there is an n∗ ∈ N so that for all n ≥ n∗, we have αn < α∗. Without
loss of generality assume αn ↗ α∗. Then, for any ñ ∈ N and any n ≥ ñ, we have

γn ∈ Γ(αn) ⊂ Γ(αñ) ,

so that particularly γ∗ ∈ Γ(αñ) for all ñ ∈ N. Since
⋂
n∈N Γ(αn) = Γ(α∗), the assertion

follows.

3.2 Techniques for examining uniform estimation errors
Let us describe some techniques for bounding uniform estimation errors often occurring
in local M -estimation problems. These methods will be applied in Chapter 4 to mixture
of regressions models.

3.2.1 Non-stochastic errors
Hölder smoothness constraints on the function to estimate are particularly useful when
deriving bounds on the bias of an estimator. Consider for example a kernel density
estimator ˆ̀

n, cf. Section 2.5, estimating any probability density ` : Rd → [0,∞), i.e.
∫
` =

1. The bias of ˆ̀
n can always be described by

E
[ˆ̀
n(x)

]
− `(x) =

(
Kh ∗ `

)
(x)− `(x) =

∫ (
`(x+ z)− `(x)

)
Kh(z) dz

=
∫ (

`(x+ hz)− `(x)
)
K(z) dz , x ∈ Rd

(3.2.1)

because
∫
Kh = 1. Integrals like the one in (3.2.1) are particularly easy to treat when `

comes from a Hölder class and one uses a kernel of higher order, cf. Definition 2.5.1.
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3.2 Techniques for examining uniform estimation errors

Lemma 3.2.1. Let 0 < a ≤ b < ∞, K : Rd → R be a kernel of order b with support
[−1, 1]d; I ⊂ Rd, U ⊂ R be compact with I = int(I) as well as L > 0. Then, for any
compact cuboid J ⊂ int(I) containing an open subset, there is some constant 0 < CHol <
∞ depending only on [a, b], L, U and K so that

sup
α∈[a,b]

sup
h∈(0,∞)

h−α sup
`∈H(α,L,U)

sup
x∈J

∣∣∣∣ ∫ (`(x)− `(x+ hz)
)
K(z) dz

∣∣∣∣ ≤ CHol .

Proof. Fix any ` ∈ H(α,L, U), x ∈ J , α ∈ [a, b] and h ∈ (0,∞). Using the Taylor
expansion of order bαc of ` around x and using that K is a kernel of order b, we get for
some τ ∈ [0, 1] and independently of `, x, α, n and h that∣∣∣∣ ∫ K(z)

(
`(hz + x)− `(x)

)
dz
∣∣∣∣

≤
∣∣∣∣ ∑
|k|∈{1,...,bαc−1}

h|k|

k! ∂
k`(x)

∫
K(z)zk dz︸ ︷︷ ︸

=0

∣∣∣∣+
∣∣∣∣ ∑
|k|=bαc

hbαc

k!

∫
zkK(z)∂k`(x+ τhz) dz

∣∣∣∣
=
∣∣∣∣ ∑
|k|=bαc

hbαc

k!

∫
zkK(z)

(
∂k`(x+ τhz)− ∂k`(x)

)
dz
∣∣∣∣

≤
∑
|k|=bαc

Lhατα−bαc

k!

∫
‖z‖α|K(z)|dz

= Ldbαcτα−bαchα

bαc!

∫
‖z‖α|K(z)|dz

≤ Ldbhα

bac!

∫
‖z‖a|K(z)|dz

≤CHolh
α

because according to the multinomial theorem, we have∑
0≤k1,...,kd≤m
k1+...+kd=m

1
k1! . . . kd!

= 1
m! · (1 + . . .+ 1︸ ︷︷ ︸

d times

)m .

3.2.2 Uniform stochastic errors
Exponential deviation inequalities

In order to examine uniform stochastic errors, one often discretizes the supremum and
uses exponential deviation inequalities of pointwise errors. The following three inequali-
ties are used throughout this thesis.
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The first exponential deviation inequality is Bernstein’s well-known inequality. For a
proof cf. Pollard (2012). This inequality gives an exponential bound on the tail proba-
bility of sums of uniformly bounded centred random variables.

Lemma 3.2.2 (Bernstein’s inequality). Let X1, . . . , Xn be independent centred random
variables with finite second moments so that |Xj | ≤ R for some R > 0. Let Sn =∑n
j=1Xj, then

P
(
|Sn| ≥ t

)
≤ 2 exp

(
− t2

2 Var(Sn) + 3
2 tR

)
, t > 0 .

While Bernstein’s inequality is a powerful tool, it cannot be applied when the ran-
dom variables are not uniformly bounded. This is often a problem when dealing with
log-likelihood functions because the likelihood approaching zero translates to the log-
likelihood approaching −∞. The following inequality drops the boundedness constraint
by imposing constraints on all moments of the random variables. It was introduced by
Bennett (1962, p. 37-38).

Lemma 3.2.3 (Bennett’s inequality). Let X1, . . . , Xn be independent centred random
variables so that E

[
|Xj |l

]
≤ l!M l−2vj/2, for every l ≥ 2 and all j and some constants

M , vj. Let Sn =
∑n
j=1Xj and v = v1 + . . .+ vn, then

P
(
|Sn| ≥ t

)
≤ 2 exp

(
− 1

2
t2

v +Mt

)
, t > 0 .

The third inequality is a Bernstein-type inequality for canonical U-statistics, also called
”degenerate U-statistics”, that can be found in Giné et al. (2000, p. 15). We use a slightly
weaker version.

Lemma 3.2.4 (Giné et al. (2000)). Let (Xn)n be a sequence of i.i.d. Rd-valued random
variables, defining a canonical U-statistic Un with bounded canonical kernel χ : R2d → R,
i.e. for all x, y ∈ Rd

Un =
n∑

j,k=1
j 6=k

χ(Xj , Xk) , χ(x, y) =χ(y, x) , E[χ(X1, x)] =
∫
Rd
χ(z, x) dPX1(z) = 0 .

Then there is a universal constant T > 0 so that for any ω > 0, we have

P
(∣∣Un∣∣ > ω

)
≤ T exp

(
− T−1 min

{
ω

C
,

(
ω

B

) 2
3

,

(
ω

A

) 1
2
})

,

where

A := ‖χ‖∞, B2 := n
∥∥E[χ2(X1, ·)

]∥∥
∞, C2 := n(n− 1)E

[
χ2(X1, X2)

]
. (3.2.2)
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Uniform stochastic Lρ-errors

The following two theorems are convergence rate results for the uniform Lρ-error of
random processes of the shape

Mn(θ, x;h) := 1
n

n∑
k=1

τ(Yk, θ)Kh(Xk − x) , or (3.2.3)

Mn(θ, x;h) := 1
n(n− 1)

n∑
j,k=1
j 6=k

τ(Yj , Yk, θ)Kh(Xj − x)Kh(Xk − x) , (3.2.4)

where τ is a sufficiently smooth function, K is some kernel function and h some band-
width parameter and the distributions of the Yk and Xk depend on some parameter γ.
The desired result has the form

lim sup
n→∞

(
logn
nhd

)− ρ2
Eγ
[

sup
x∈J

sup
θ∈Θ

∣∣Mn(θ, x;h)− Eγ [Mn(θ, x;h)]
∣∣ρ] ≤ C <∞ ,

uniformly over the parameter γ and variations of bandwidth sequences h for some C <∞,
where J ⊂ int(I). For both types of random processes Mn, the general scheme of proof
is identical, the details differ to some degree due to the differences in structure.

First, one discretizes the estimation error by laying a grid Θn×Jn on the compact space
Θ × J getting finer at some rate δn → 0 that is used for balancing purposes. Write
Tn = Mn − Eγ [Mn] for the centred process. The discretization error

Eγ
[∣∣∣ sup
x∈J,θ∈Θ

|Tn(θ, x;h)| − sup
y∈Jn,ϑ∈Θn

|Tn(ϑ, y;h)|
∣∣∣ρ] (3.2.5)

gets small fast enough by assuming that the function τ is Lipschitz continuous and
bounded or more general versions thereof if necessary. As it turns out, being Lipschitz
continuous with integrable Lipschitz constant can replace Lipschitz continuity. An expo-
nential deviation inequality holding for the centred process Tn and uniform integrability
of τ can replace boundedness.

The exponential inequality on the tail probability is used in order to get bounds on the
discrete estimation error in the form

Eγ
[

sup
x∈Jn,θ∈Θn

|Tn(θ, x;h)|ρ
]

≤
( logn
nhd

) ρ
2
[
aρ +

∫ ∞
a

ρωρ−1Pγ
(

sup
x∈Jn,θ∈Θn

|Tn(θ, x;h)| >
( logn
nhd

) 1
2
ω
)

dω
]

≤
( logn
nhd

) ρ
2
[
aρ + CΘ,Jδ

−d−m
n ρ

∫ ∞
a

ωρ−1n−Caω dω
]
,
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where CΘ,J depends only on Θ and J . The terms δn, a and Ca need to be balanced in
a way so that the second summand and the discretization error (3.2.5) are negligible.

Note that for the U-statistic processMn defined in (3.2.4), one would typically decompose
the centred process into a canonical U-statistic and a linear process before discretizing.
By using the notation Zj = (Yj , XT

j )T , write for any fixed x ∈ I, θ ∈ Θ,

Mn(θ, x;h)− Eγ [Mn(θ, x;h)] = 1
n(n− 1)

n∑
j,k=1
j 6=k

Un
(
Zj , Zk, θ, x;h

)
(3.2.6)

+ 2
n

n∑
j=1

u∗n(Zj , θ, x;h)− Eγ [un(Z1, Z2, θ, x;h)] ,

(3.2.7)

where for z = (z1, z
T
2 )T , y = (y1, y

T
2 )T ∈ R× Rd

Un(z, y, θ, x;h) :=un(z, y, θ, x;h)− u∗n(z, θ, x;h)− u∗n(y, θ;x;h)
+ Eγ [un(Z1, Z2, θ, x;h)] ,

(3.2.8)

un(z, y, θ, x;h) := τ(z1, y1, θ)Kh(z2 − x)Kh(y2 − x) , (3.2.9)
u∗n(z, θ, x;h) :=Eγ [un(Z1, z, θ, x;h)] = Eγ

[
τ(z1, Y1, θ)Kh(X1 − x)

]
·Kh(z2 − x) .

(3.2.10)

Now, (3.2.6) is a canonical U-statistic as

Eγ [Un(Z, z, θ, x;h)] = 0 , z ∈ R× Rd

to which Giné’s inequality, Lemma 3.2.4, is usually applicable. On the other hand, (3.2.7)
is a centred linear process that can usually be treated by one of the inequalities given in
Lemmata 3.2.2 and 3.2.3 as described before.

The first theorem gives a result on functions Mn of the type (3.2.3).

Theorem 3.2.5. Let Γ be a non-empty set,
(
Ω,A, (Pγ)γ∈Γ

)
be a statistical model and

probability densities be given by

(y, x) 7→ fγ(y|x)`γ(x) , (y, x) ∈ R× I , γ ∈ Γ , (3.2.11)

where I ⊂ Rd is a compact cuboid containing an open subset and is the support of the `γ
as well as supγ∈Γ ‖`γ‖∞ <∞. Furthermore, let

(
(Yn, XT

n )T
)
n

be sequences of i.i.d. ran-
dom vectors with joint density (3.2.11) under Pγ .

Let K : Rd → R be a Lipschitz continuous and bounded L2-kernel; for some non-empty
set A, (hn(α))n∈N, α ∈ A be sequences of bandwidth parameters so that

sup
α∈A

hn(α)→ 0 , sup
α∈A

logn
nhn(α)d → 0 .
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Let τ : R×Θ→ R be a function, where Θ ⊂ Rm is compact and convex with Θ = int(Θ)
and ρ ∈ [1,∞) so that

sup
γ∈Γ

∫
(sup
θ∈Θ
|τ(y, θ)|)ρ sup

x∈I
fγ(y|x) dy =: Cτ <∞ (3.2.12)

and ∣∣τ(y, θ)− τ(y, θ̃)
∣∣ ≤ Ψτ (y, θ, θ̃)‖θ − θ̃‖ , y ∈ R, θ, θ̃ ∈ Θ , (3.2.13)

where Ψτ is a non-negative function so that

sup
γ∈Γ

∫
sup
θ,θ̃∈Θ

Ψρ
τ (y, θ, θ̃) sup

x∈I
fγ(y|x) dy <∞ . (3.2.14)

If for the function Mn : Θ× I × (0,∞)→ R given by

Mn(θ, x;h) := 1
n

n∑
k=1

τ(Yk, θ)Kh(Xk − x) ,

there are constants C1, C2 <∞ independent of θ, x, h, γ, so that

Pγ
(∣∣Mn(θ, x;h)− Eγ

[
Mn

(
θ, x;h

)]∣∣ ≥ t) ≤ 2 exp
(
− t2nhd

C1 + C2t

)
, t > 0 , (3.2.15)

then for any compact J ⊂ int(I)

lim sup
n→∞

sup
γ∈Γ

sup
α∈A

(
logn

nhn(α)d

)− ρ2
Eγ
[

sup
x∈J

sup
θ∈Θ

∣∣Mn

(
θ, x;hn(α)

)
− Eγ

[
Mn

(
θ, x;hn(α)

)]∣∣ρ] ≤ C ,

where C <∞ depends on Γ, C1, C2, Cτ , τ , ‖K‖∞, LK , ρ, I, Θ but is free from n and
the sequences of bandwidth parameters.

Remark 3.2.6.

(i) Note that assumption (3.2.15) is typically achieved by applying one of the expo-
nential deviation inequalities given by Lemmata 3.2.2 and 3.2.3. In order to use
Lemma 3.2.2, one might assume boundedness of τ as well as

sup
α∈A

sup
γ∈Γ

sup
θ∈Θ,x∈I

nhn(α)dVarγ
(
Mn(θ, x;hn(α))

)
≤ CVar , CVar <∞ .

(ii) Assumption (3.2.13) is fulfilled if for example the function τ is Lipschitz contin-
uous in its second argument uniformly over its first argument, i.e. supy |τ(y, ϑ) −
τ(y, θ)| ≤ Lτ‖ϑ− θ‖ for some Lτ <∞.

The second theorem gives a result on functions Mn of the type (3.2.4).
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Theorem 3.2.7. Let Γ be a non-empty set,
(
Ω,A, (Pγ)γ∈Γ

)
be a statistical model and

probability densities be given by

(y, x) 7→ fγ(y|x)`γ(x) , (y, x) ∈ R× I , γ ∈ Γ , (3.2.16)

where I ⊂ Rd is a compact cuboid containing an open subset and is the support of the `γ
as well as supγ∈Γ ‖`γ‖∞ < ∞. Furthermore, let (Zn)n =

(
(Yn, XT

n )T
)
n

be sequences of
i.i.d. random vectors with joint density (3.2.16) under Pγ .

Let K : Rd → R be a Lipschitz continuous and bounded L2-kernel; for some non-empty
set A, (hn(α))n∈N, α ∈ A be sequences of bandwidth parameters so that

sup
α∈A

hn(α)→ 0 , sup
α∈A

logn
nhn(α)d → 0 .

Let τ : R × R × Θ → [0,∞) be a bounded function that is symmetric in its first two
arguments as well as Lipschitz continuous in its third argument uniformly over all other
arguments, i.e.

sup
z,y
|τ(z, y, ϑ)− τ(z, y, θ)| ≤ Lτ‖ϑ− θ‖ ,

where Θ ⊂ Rm is compact and convex with Θ = int(Θ) and Lτ > 0 is a constant. Then,
for the function Mn : Θ× I × (0,∞)→ [0,∞) given by

Mn(θ, x;h) := 1
n(n− 1)

n∑
j,k=1
j 6=k

τ(Yj , Yk, θ)Kh(Xj − x)Kh(Xk − x) ,

we have for any ρ ∈ [1,∞) and any compact J ⊂ int(I)

lim sup
n→∞

sup
γ∈Γ

sup
α∈A

(
logn

nhn(α)d

)− ρ2
Eγ
[

sup
x∈J

sup
θ∈Θ

∣∣Mn

(
θ, x;hn(α)

)
− Eγ

[
Mn

(
θ, x;hn(α)

)]∣∣ρ] ≤C ,

where C < ∞ depends on ‖τ‖∞, Lτ , ‖K‖∞, LK , ρ, I, Θ, but is free from n and the
sequences of bandwidth parameters.
Remark 3.2.8.

(i) Note that Theorem 3.2.7 can be generalized similarly to the result on linear pro-
cesses, cf. Theorem 3.2.5, but it is not necessary for the remainder of this thesis.

(ii) Whenever we have a function Mn mapping to Rk, k > 1 and wish to apply one of
the Theorems 3.2.5 or 3.2.7, it is enough to assume that every coordinate projection
ψi(Mn), i = 1, . . . , k of the function Mn fulfils the respective assumptions. Because
then by Jensen’s inequality for sums,

Eγ
[

sup
x∈J

sup
θ∈Θ

∥∥Mn

(
θ, x;hn(α)

)
− Eγ [Mn

(
θ, x;hn(α)

)
]
∥∥ρ

1

]
≤ kρ−1

k∑
i=1

Eγ
[

sup
x∈J

sup
θ∈Θ

∣∣ψi(Mn

(
θ, x;hn(α)

))
− Eγ

[
ψi
(
Mn

(
θ, x;hn(α)

))]∣∣ρ] ,
which yields the result.
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3.2 Techniques for examining uniform estimation errors

3.2.3 Methods specific to adaptive estimation
In this section, we give techniques for proving (B9) for differentiable contrast functions
in the form of either a linear or a U-statistic process as defined in (3.2.3) and (3.2.4),
respectively, i.e.

Mn(θ, x;h) = 1
n

n∑
k=1

τ(Yk, θ)Kh(Xk − x) , or (3.2.17)

Mn(θ, x;h) = 1
n(n− 1)

n∑
j,k=1
j 6=k

τ(Yj , Yk, θ)Kh(Xj − x)Kh(Xk − x) . (3.2.18)

That is, for any compact J ⊂ int(I), we prove the existence of some C− ≥ 0 and a
monotone function u : [C−,∞) → (0,∞) with u(t) → ∞, t → ∞ so that for every
CLep ≥ C−,

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)plj <∞ ,

where

plj = 2P
(

sup
x∈J,θ∈Θ

∥∥Tn(θ, x;hj)
∥∥ > CLep−3C∗∗

2 rl

)
,

Tn(θ, x;h) =Sn(θ, x;h)− Eγ [Sn(θ, x;h)] ,

h(α) =
(

logn
n

) 1
2α+d

, hl = h(βl) , r(α) = h(α)α , rl = r(βl) .

The main tools for deriving u and CLep are also used when proving the results on uniform
Lρ convergence rates of stochastic errors in Section 3.2.2, namely discretization, treating
the discrete error with exponential deviation inequalities and the discretization error by
smoothness arguments.

First, assume we are dealing with a linear process as defined in (3.2.17).

Lemma 3.2.9. Let Mn be a linear process as defined in (3.2.17) that is differentiable in
θ and all assumptions of Theorem 3.2.5 hold for the coordinate projections of the gradient

Sn(θ, x;h) := 1
n

n∑
k=1

∂θτ(Yk, θ)Kh(Xk − x) .

Then, for any positive constants c1, c2 > 0,

C− = c−1
1

(
c2 + 1 + 32 max{C1, C2}(d+m) ·max

{
1

2(d+m)− 1 ,
b+ d+ 1

2a+ d
+ 1
})

,

u(CLep) = c1CLep − c2
32 max{C1, C2}(d+m) ,
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3 M-estimation and supremum distance

we have

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃lj <∞ , CLep ≥ C− , where

p̃lj = P
(

sup
x∈J,θ∈Θ

‖Tn(θ, x;hj)‖ >
(
c1CLep − c2

)
rl

)
.

Next, we are dealing with U-statistic processes as defined in (3.2.18).

Lemma 3.2.10. Let Mn be a U-statistic process as defined in (3.2.18) that is differen-
tiable in θ and all assumptions of Theorem 3.2.7 hold for the coordinate projections of
the gradient

Sn(θ, x;h) = 1
n(n− 1)

n∑
j,k=1
j 6=k

∂θτ(Yj , Yk, θ)Kh(Xj − x)Kh(Xk − x) .

For any positive constants c̃1, c̃2 > 0, let

C− = max{C̃1, C̃2} ,

C̃1 = c̃−1
1

[
c̃2 + 4 + 64T 2(d+m)2 max

{(
1

2(d+m)− 1

)2

,

(
b+ 2d+ 1

2a+ d
+ 1
)2}]

,

C̃2 = 2c̃−1
1

[
c̃2/2 + 1 + 32 max{C1, C2}(d+m) max

{
1

2(d+m)− 1 ,
b+ d+ 1

2a+ d
+ 1
}]

,

u(CLep) = min

{
T−1

√
c̃1CLep − c̃2

8(d+m) ,
c̃1CLep − c̃2

64 max{C1, C2}(d+m)

}
,

where T is the universal constant in Lemma 3.2.4 and C1, C2 are defined in Theorem
3.2.5.
Then we have

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃lj <∞ , CLep ≥ C− , where

p̃lj = P
(

sup
x∈J,θ∈Θ

‖Tn(θ, x;hj)‖ >
(
c̃1CLep − c̃2

)
rl

)
.

The constant C̃1 and the first term in the minimum in the definition of u are relevant
to the U-statistic terms when decomposing Tn. The other terms are used to treat the
linear remainder. The proofs can be found in Section 5.1.
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4 Applications

4.1 Finite mixtures of normal regressions
Consider a mixture model of m normal regressions with multivariate covariates, expand-
ing the model with univariate regressors considered by Huang et al. (2013). That is,
we have observations (Yi, Xi) taking values in R × I for some compact cuboid I ⊂ Rd
containing an open subset and a latent model variable Πi taking values in {1, . . . ,m}
for some m ≥ 2 so that P(Πi = c|Xi = x) = πc(x), where πc : I → (0, 1),

∑m
c=1 πc = 1,

are mixing functions and Xi have the common density ` : I → (0,∞). The observations
have the relation

Yi =
m∑
c=1

1Πi=c
(
σc(Xi)εc,i + µc(Xi)

)
,

where

εc,i ⊥⊥ Πi |Xi , εc,i |Xi = x ∼ N (0, 1) ,

the functions µc : I → R, σc : I → (0,∞) are location and scaling functions to be
estimated along with the mixing functions πc so that the parameter of interest is given
by the function

θ(·) =
(
π1(·), . . . , πm−1(·), µ1(·), . . . , µm(·), σ1(·), . . . , σm(·)

)T : I → R3m−1 .

Lemma 4.1.1. For all x ∈ I, the conditional density of Yi given Xi = x exists and is
given by

f
θ(·)
Y |X(y|x) :=

m∑
c=1

πc(x)φ
(
y
∣∣µc(x), σ2

c (x)
)
, y ∈ R .

Especially, the joint distribution of Yi and Xi is given by

fY,X(y, x) := f
θ(·)
Y |X(y|x)`(x)

=
[ m∑
c=1

πc(x)φ
(
y
∣∣µc(x), σ2

c (x)
)]
· `(x) , (y, x) ∈ R× I .
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Component 1
π1(x) = 0.3− 0.05 sin(0.2x) π1(x) = 0.3− 0.05 sin(0.2x)
µ1(x) = −10 + 2 sin(0.3x)2 µ1(x) = 2 sin(0.3x)2

σ1(x) = 1 + 0.2 sin(0.5x) σ1(x) = 1 + 0.2 sin(0.5x)

Component 2
π2(x) = 0.25 + 0.2 sin(0.2x) π2(x) = 0.25 + 0.2 sin(0.2x)
µ2(x) = 4 + sin(0.5x) µ2(x) = 4 + sin(0.5x)
σ2(x) = 1.5 + exp(x/8) σ2(x) = 1.5 + exp(x/8)

Component 3 µ3(x) = 12 + 0.05x2 µ3(x) = 8 + 0.05x2

σ3(x) = 0.8 + 0.1 cos(x) σ3(x) = 0.8 + 0.1 cos(x)

Figure 4.1: Samples and densities from mixture of normal regressions models. Data points are color
coded by their respective subpopulation, where red, blue and green correspond to the
components 1-3, respectively. The black curves are the conditional densities given X =
0. Dashed curves illustrate the distribution within the respective subpopulation. Both
regimes are identical up to translation of the components. In the data sample of Regime
I, the presence of three components is directly visible. In the other regime this is not the
case because the means are relatively close.
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4.1 Finite mixtures of normal regressions

4.1.1 Identifiability
A statistical model is called identifiable if there are no two parameters yielding the
same distribution. To be precise, let Θ1 ⊂ Θ2 be non-empty sets and (Pθ)θ∈Θ2 a
statistical model. The subset (Pθ)θ∈Θ1 is called identifiable within (Pθ)θ∈Θ2 if for any
θ1 ∈ Θ1, θ2 ∈ Θ2, Pθ1 = Pθ2 implies θ1 = θ2.

When dealing with mixture models, one often has to weaken the definition due to the
relabeling problem. Consider any normal mixture density

m∑
c=1

πcφ(y|µc, σ2
c ),

then any permutation of the components yields the same mixture. Hence, we will comply
with the common solution for this problem. That is, a mixture of normal distributions
is identifiable if for any θ1 ∈ Θ1, θ2 ∈ Θ2, Pθ1 = Pθ2 implies that θ1 is a relabeled version
of θ2.

We give two identifiability results. The first one imposes differentiability conditions on
the location and scaling functions and is stronger than needed for the estimation proce-
dure. Particularly when having no differentiability, we may use a weaker result deduced
directly from the classical identifiability result for normal mixture densities, cf. Teicher
(1963).

In Huang et al. (2013), the identifiability proof is based on the concept of transversal
curves, that is, differentiable curves mapping from R to R2 that may intersect, however
not be tangential at intersections. To be precise, for any components c 6= c′, one assumes
that(∥∥(µc(x), σc(x)

)
−
(
µc′(x), σc′(x)

)∥∥+
∥∥(∂µc(x), ∂σc(x)

)
−
(
∂µc′(x), ∂σc′(x)

)∥∥) 6= 0 .

As the set of intersection points S is discrete, one can show that the mixture is identifiable
on all connected components of Sc. Subsequently, by approaching all intersection points
from both sides with sequences, one deduces that the mixture is identifiable overall. We
wish to extend this idea to differentiable curves mapping from Rd to R2. As we show later,
we only need intersection points to be not tangential in one direction, i.e. for any c 6= c′

and any intersection point x of (µc, σc), (µc′ , σc′), there needs to be a direction z ∈ Rd,
‖z‖ = 1, so that ∂z(µc(x), σc(x)) 6= ∂z(µc′(x), σc′(x)). Hence, for those intersection
points x, we need to have that

d > Dc,c′(x) ,

where

Dc,c′(x) := max
{
k ∈ {1, . . . , d}|∃ z1, . . . , zk ∈ Rd, ‖zi‖ = 1, zi linearly independent :

∀i ∈ {1, . . . , k} ∂ziµc(x) = ∂ziµc′(x) , ∂ziσc(x) = ∂ziσc′(x)
}
.
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Theorem 4.1.2. Let O ⊂ Rd be an open connected set. Assume that πc : O → (0, 1)
are continuous functions with

∑m
c=1 πc = 1, and µc : O → R and σc : O → (0,∞) are

differentiable functions, c = 1, . . . ,m; any two curves (µc(·), σc(·)), (µc′(·), σc′(·)) fulfil∥∥(µc(x), σc(x)
)
−
(
µc′(x), σc′(x)

)∥∥+
(
d−Dc,c′(x)

)
6= 0 , x ∈ O.

Then the family of mixtures

f(·|x) :=
m∑
c=1

πc(x)φ
(
·
∣∣µc(x), σ2

c (x)
)
, x ∈ O

is identifiable within all families of mixtures of normals indexed by O with at least two
and at most m components, positive mixing functions and differentiable location and
scaling functions. I.e. if there are m ≥ V ≥ 2, positive mixing functions λ1, . . . , λV :
O → (0, 1) with

∑V
v=1 λv = 1, and differentiable functions νv : O → R, δv : O → (0,∞),

v = 1, . . . , V so that for all x ∈ O

f(·|x) =
V∑
v=1

λv(x)φ
(
·
∣∣νv(x), δ2

v(x)
)
,

then we have V = m and there is a permutation τ on {1, . . . ,m} so that for all c =
1 . . . ,m, x ∈ O,

λτ(c)(x) = πc(x) , ντ(c)(x) = µc(x) , δτ(c)(x) = σc(x) . (4.1.1)

The following result derived from the one on normal mixture densities by Teicher (1963)
is weaker than Theorem 4.1.2 but suffices for the uniform estimation results we aim to
prove.

Theorem 4.1.3. Let I ⊂ Rd be a compact cuboid containing an open subset. Assume
that πc : I → (0, 1),

∑m
c=1 πc = 1, µc : I → R and σc : I → (0,∞) are continuous

functions; any two curves (µc(·), σc(·)), (µc′(·), σc′(·)) with c 6= c′ fulfil(
µc(x), σc(x)

)
6=
(
µc′(x), σc′(x)

)
, x ∈ I .

Then, the family of mixtures

f(·|x) :=
m∑
c=1

πc(x)φ
(
·
∣∣µc(x), σ2

c (x)
)
, x ∈ I

is identifiable within all families of mixtures of normals indexed by I with at least two
and at most m components, positive mixing functions and continuous location and scaling
functions.

The proofs for both theorems can be found in Section 5.2.1.
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4.1 Finite mixtures of normal regressions

4.1.2 Estimation
We will use the local log-likelihood approach introduced by Huang et al. (2013). The
relevant estimation theory on local M-estimators is covered in Chapter 3.

Assume the true parameter function to be

θ∗(·) =
(
π∗1(·), . . . , π∗m−1(·), µ∗1(·), . . . , µ∗m(·), σ∗1(·), . . . , σ∗m(·)

)T
.

The log-likelihood for the conditional distribution of Y |X = x is given by the function

(
y, θ(·)

)
7→ log

(
f
θ(·)
Y |X=x(y|x)

)
:= log

( m∑
c=1

πc(x)φ
(
y
∣∣µc(x), σc2(x)

))
,

where θ(·) comes from a non-parametric function class. A local version is given by

g(y; θ) := log
(
fmix(y; θ)

)
:= log

( m∑
c=1

πcφ
(
y
∣∣µc, σ2

c

))
,

where

θ = (π1, . . . , πm−1, µ1, . . . , µm, σ1, . . . , σm)T ∈ X , X = Sm × Rm × (0,∞)m

and

Sm =
{

(π1, . . . , πm−1)T ∈ (0, 1)m−1 :
m−1∑
j=1

πj < 1
}
.

Referring to the Kullback-Leibler divergence, we know that the function

M(·, x; γ) := Eγ
[
g(Y ; ·)

∣∣X = x
]
· `(x)

is uniquely maximized by the true parameter θ∗(x) up to relabeling when the model
is identifiable up to relabeling, where Eγ denotes the expectation with respect to the
distribution Pγ , which is defined by

Pγ
(
(Y,X) ∈ A

)
=
∫
A

f
θ∗(·)
Y |X (y|x)`(x) d(y, x) , γ = (θ∗(·), `) . (4.1.2)

Hence, let us define the set Sx;γ to contain the true parameter θ∗(x) as well as all
relabeled versions, i.e.

Sx;γ =
{
θ∗ ∈ X

∣∣∣ θ∗ ∈ argmax
θ∈X

M(θ, x; γ)
}
. (4.1.3)

An empirical version of the asymptotic contrast M is given by

Mn(θ, x;h) := 1
n

n∑
k=1

g(Yk; θ)Kh(Xk − x) =
n∑
k=1

log
( m∑
c=1

πcφ
(
Yk
∣∣µc, σ2

c

))
Kh(Xk − x) ,
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so that its maximizer

θ̂n(·;h) ∈ argmax
θ

Mn(θ, ·;h) (4.1.4)

is the proposed estimator of x 7→ Sx;γ , which exists when we restrict parameters to
come from a compact subset of X. Note that both the empirical and asymptotic con-
trasts are symmetric in (π1, µ1, σ1), . . . , (πm, µm, σm) so that any relabeled maximizer
also maximizes the respective contrast.

4.1.3 Uniform rates of convergence
In order to achieve a setting in which the estimator θ̂n(·;h) defined in (4.1.4) estimates
the parameter function θ∗(·) and relabeled versions thereof with standard non-parametric
uniform convergence rate, we need to make further assumptions on the model. We will
consider models in which the parameter functions π∗c (·), µ∗c(·), σ∗c (·) and the covariate
density ` are Hölder-α-smooth as defined in Section 2.4, Definition 2.4.1. Let us denote
the parameter space by

Θ =
{

(π1, . . . , πm−1) ∈ Um−1
π

∣∣∣1−∑m−1
c=1 πc ∈ Uπ

}
× Umµ × Umσ ⊂ X

for some sets Uπ ⊂ (0, 1), Uµ ⊂ R, Uσ ⊂ (0,∞) and the set of admissible parameter
functions by

∆(α,L, Uπ, Uµ, Uσ, ε∆)

:=
{
θ(·) =

(
π1(·), . . . , πm−1(·), µ1(·), . . . , µm(·), σ1(·), . . . , σm(·)

)T : I → Θ
∣∣

∀c = 1, . . . ,m− 1 : πc(·) ∈ H(α,L, Uπ), 1−
∑m−1
c=1 πc(x) ∈ Uπ , x ∈ I ,

∀c = 1, . . . ,m : µc(·) ∈ H(α,L, Uµ), σc(·) ∈ H(α,L, Uσ) ,

∀c 6= c′, x :
∥∥(µc(x), σc(x)

)
−
(
µc′(x), σc′(x)

)∥∥ ≥ ε∆
}

(4.1.5)

for some ε∆ > 0 and any α,L > 0. The last assumption in the definition of the parameter
function set ∆(α,L, Uπ, Uµ, Uσ, ε∆) ensures that the parameter curves do not intersect
and hence implies identifiability while simultaneously making ∆(α,L, Uπ, Uµ, Uσ, ε∆)
compact with respect to the Hölder norm ‖ · ‖α/2 as stated in Remark 2.4.5 (ii) when
assuming that the sets Uπ, Uµ, Uσ are compact intervals.

Furthermore, the covariate density ` is supposed to take values in some set U` ⊂ (0,∞),
so that it is an element of the set

L(α,L, U`) =
{
` ∈ H(α,L, U`) :

∫
`(x) dx = 1

}
.

In conclusion, the relevant model parameters must come from the class

Γ(α) := ∆(α,L, Uπ, Uµ, Uσ, ε∆)× L(α,L, U`)

56



4.1 Finite mixtures of normal regressions

that determines the underlying distributions for a given α. From now on include α in
the definition of Sx;γ , cf. (4.1.3), i.e.

Sx;γ;α =
{
θ∗ ∈ X

∣∣∣ θ∗ ∈ argmax
θ∈X

M(θ, x; γ)
}
, x ∈ I, α > 0, γ ∈ Γ(α) .

The following assumptions will ensure uniform consistency of θ̂n(·;hn) with convergence
rate

(
n

logn
) α

2α+d for the bandwidth choice hn =
( logn

n

) 1
2α+d , which fulfils the assumptions

hn → 0 and logn
nhdn

→ 0 .

Assumption 4.1.4.

(N1) The sets I, Uπ, Uµ, Uσ, U` are compact cuboids or intervals containing an open
subset and ε∆ > 0. In particular, 1/m ∈ int(Uπ).

(N2) The kernel K : Rd → R is Lipschitz continuous with Lipschitz constant LK > 0
and has support [−1, 1]d.

(N3) The kernel K is of order α, cf. Definition 2.5.1.

Remark 4.1.5.

(i) According to Remark 2.4.5 (i), we can assume diam I ≤ 1 without loss of generality.

(ii) We assume 1/m ∈ int(Uπ) so that Θ and the set of model parameters are non-
empty and Θ fulfils the latter part of Assumption 3.1.4 (A1).

(iii) One assumes the parameter set Θ to be of this specific structure so that label
switched versions of parameters in Θ also lie in Θ. Particularly, for any x ∈ I,
γ ∈ Γ(α), we have Sx;γ;α ⊂ Θ.

(iv) As the kernel K is Lipschitz continuous and has bounded support, all moments
exist.

(v) The bandwidth choice comes from balancing bias and variance. The logarithmic
punitive term seems to be widely present in non-parametric estimation when ex-
amining uniform convergence rates, e.g. Giné and Guillou (2002) in kernel density
estimation.

Theorem 4.1.6. Under Assumption 4.1.4, given a compact cuboid J ⊂ int(I) containing
an open subset, if we let hn =

( logn
n

) 1
2α+d , the estimator θ̂n(·;hn) is uniformly consistent

and has uniform convergence rate
( logn

n

) α
2α+d , i.e. we have that

lim
η→∞

lim sup
n→∞

sup
γ∈Γ(α)

Pγ
((

n

logn

) α
2α+d

sup
x∈J

min
θ∗∈Sx;γ;α

∥∥θ̂n(x;hn)− θ∗
∥∥ ≥ η) = 0 .

The proof of this result can be found in Section 5.2.2.
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4.1.4 Curve estimation
In the last section, we showed that the estimator θ̂n(·) = θ̂n(·;h) estimates the set
function

x 7→ Sx;γ;α

uniformly consistently over any compact cuboid J ⊂ int(I) containing an open subset,
where we fixed γ for simplicity. Assume

sup
x∈J

min
θ∗∈Sx;γ;α

∥∥θ̂n(x)− θ∗
∥∥ ≤ ε∗ (4.1.6)

for some ε∗ > 0. Then, for every x ∈ J , there is a permutation ζx switching the labels
of θ̂n(·) so that ∣∣ζx(θ̂n(x)

)
− θ∗(x)

∣∣ ≤ ε∗ .
This permutation however depends on x as we do not have a natural way to correctly
assign labels since the parameter curve θ∗(·) is unknown.

In order to obtain estimates of the parameter curves on some finite grid G ⊂ J , one
has to overcome this problem of label switching. The fact that the estimator θ̂n(·) is
uniformly consistent allows us to formulate a procedure that ensures that the labels of
the estimates at all grid points match with probability approaching one.

Consider estimation over the subset of parameter functions

θ∗(·) ∈ ∆(α,L, Uπ, Uµ, Uσ, ε∆)

with α ≥ 1 for which

|µ∗c(x)− µ∗c′(x)| ≥ ε∆ , c 6= c′, x ∈ I , (4.1.7)

which in fact defines a closed subset of ∆(α,L, Uπ, Uµ, Uσ, ε∆) so that Theorem 4.1.6
holds with the appropriately altered Γ(α).

Write J = J1 × . . .× Jd and suppose that for some 0 < δ < 1, one wants to estimate the
parameter curves on the finite equidistant grid

Gδ =
(
x1 + δ · Nd0

)
∩ J ,

where x1 = (min J1, . . . ,min Jd)T . Furthermore, suppose one orders Gδ in a way so that
subsequent indices translate to neighbouring grid points. To be precise, suppose that
for Gδ = #Gδ, the points x1, . . . , xGδ ∈ Gδ are ordered so that ‖xi − xi+1‖1 = δ for all
i ∈ {1, . . . , Gδ − 1}.

In addition, let ε∗ in (4.1.6) and the grid width δ be so small that

ε∆ > 4ε∗ + 2Lδ (4.1.8)
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4.1 Finite mixtures of normal regressions

and let for i ∈ {1, . . . , Gδ} the estimates

θ̂n(xi) =
(
π̂1(xi), . . . , π̂m(xi), µ̂1(xi), . . . , µ̂m(xi), σ̂1(xi), . . . , σ̂m(xi)

)T
be given, where we included π̂m(xi) for notational purposes. Also insert π∗m(·) into θ∗(·).

We will now give an iterative procedure to assign labels correctly. The idea is that,
starting with some permuted estimate ζi

(
θ̂n(xi)

)
at some grid point xi, permuting the

labels of the estimate at the grid point xi+1 with a permutation ζi+1 such that

ζi+1(c) = argmin
c̃=1,...,m

∣∣µ̂ζi(c)(xi)− µ̂c̃(xi+1)
∣∣ , c = 1, . . . ,m (4.1.9)

yields a proper estimate of one of the curves in Sx;γ;α with probability approaching one.
That is, one chooses a permutation such that the location estimates of neighbouring
grid points are closest. Before deriving this rigorously, let us give some intuition why
this should work. Whenever (4.1.6) holds, for every µ∗c(xi), there is an estimate µ̂c̃(xi)
with distance of at most ε∗. Since location functions with different labels have at least
distance ε∆ according to (4.1.7), this estimate µ̂c̃(xi) needs to be unique in regard of
(4.1.8). The location functions µ∗c being Hölder-α-smooth with Hölder constant L lets us
subsequently deduce that the choice (4.1.9) exists and is unique, both with probability
approaching one.

Let us start with the rigorous derivation. According to (4.1.6), we know that for every
i ∈ {1, . . . , Gδ}, there is a permutation ζi on {1, . . . ,m} so that for all c ∈ {1, . . . ,m},∣∣µ̂ζi(c)(xi)− µ∗c(xi)∣∣ ≤ ε∗ . (4.1.10)

Without loss of generality assume that ζ1 = id and that the Hölder-α-smoothness of the
parameter functions holds with respect to the norm ‖ · ‖1 on I. As δ < 1, we have for
any i ∈ {1, . . . , Gδ − 1} that ∣∣µ∗c(xi)− µ∗c(xi+1)

∣∣ ≤ Lδ , (4.1.11)

because for α ≥ 1, µ∗c is especially Lipschitz continuous with Lipschitz constant L.
Combining (4.1.10) for i+ 1 and (4.1.11), we derive∣∣µ̂ζi+1(c)(xi+1)− µ∗c(xi)

∣∣ ≤ ε∗ + Lδ , i ∈ {1, . . . , Gδ − 1} (4.1.12)

by triangular inequality. Now, for any c′ 6= c, i ∈ {1, . . . , Gδ − 1}, combining (4.1.7),
(4.1.8) and (4.1.12), we see that∣∣µ∗c(xi)− µ̂ζi+1(c′)(xi+1)

∣∣ ≥ ∣∣µ∗c(xi)− µ∗c′(xi)∣∣− ∣∣µ∗c′(xi)− µ̂ζi+1(c′)(xi+1)
∣∣

> 4ε∗ + 2Lδ − (ε∗ + Lδ)
= 3ε∗ + Lδ . (4.1.13)

Because of (4.1.10), (4.1.12), (4.1.13) and then again (4.1.10), we deduce that∣∣µ̂ζi(c)(xi)− µ̂ζi+1(c)(xi+1)
∣∣ ≤ 2ε∗ + Lδ ,
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∣∣µ̂ζi(c)(xi)− µ̂ζi+1(c′)(xi+1)
∣∣ ≥ ∣∣µ̂ζi+1(c′)(xi+1)− µ∗c(xi)

∣∣− ∣∣µ∗c(xi)− µ̂ζi(c)(xi)∣∣
> 3ε∗ + Lδ − ε∗

= 2ε∗ + Lδ .

This especially means that on the set

Anε∗ =
{

sup
x∈J

min
θ∗∈Sx;γ;α

∥∥θ̂n(x)− θ∗
∥∥ ≤ ε∗} ,

for any i ∈ {1, . . . , Gδ − 1}, c ∈ {1, . . . ,m}, we have

ζi+1(c) = argmin
c̃=1,...,m

∣∣µ̂ζi(c)(xi)− µ̂c̃(xi+1)
∣∣ .

Hence, starting with ζ̃1 = id, let us define

ζ̃i(c) = argmin
c̃=1,...,m

∣∣µ̂
ζ̃i−1(c)(xi−1)− µ̂c̃(xi)

∣∣ , i ∈ {2, . . . , Gδ} ,

which are well-defined permutations on the set Anε∗ . In order to obtain permutations
that are also well-defined on Acnε∗ , we propose for i ∈ {2, . . . , Gδ}, c = 1, . . . ,m,

ζ̂1 = id , ζ̂i(c) = argmin
c̃∈{1,...,m}\{ζ̂i(1),...,ζ̂i(c−1)}

∣∣µ̂ζ̂i−1(c)(xi−1)− µ̂c̃(xi)
∣∣ ,

which in fact coincide with ζ̃i on Anε∗ . Now, the curve estimators are given by

θ̂ζ̂(xi) :=
(
π̂ζ̂i(1)(xi), . . . , π̂ζ̂i(m)(xi), µ̂ζ̂i(1)(xi), . . . , µ̂ζ̂i(m)(xi), σ̂ζ̂i(1)(xi), . . . , σ̂ζ̂i(m)(xi)

)T
.

Still under the assumption that ζ1 = id, we see that{
sup
x∈Gδ

∥∥θ̂ζ̂(x)− θ∗(x)
∥∥ ≤ ε∗} ⊃ { sup

x∈J
min

θ∗∈Sx;γ;α

∥∥θ̂n(x)− θ∗
∥∥ ≤ ε∗} ,

where the probability of the right-hand side converges to one due to uniform consistency
of θ̂n(·). When dropping this assumption, there must be a permutation ζ∗ independent
of x so that{

sup
x∈Gδ

∥∥ζ∗(θ̂ζ̂(x)
)
− θ∗(x)

∥∥ ≤ ε∗} ⊃ { sup
x∈J

min
θ∗∈Sx;γ;α

∥∥θ̂n(x)− θ∗
∥∥ ≤ ε∗} .

4.1.5 Uniform adaptive estimation
Following the Lepski method for the gradients described in Section 3.1.1, we propose an
adaptive estimator for parameters coming from

∆(a, L, Uπ, Uµ, Uσ, ε∆) =
⋃

α∈[a,b]

∆(α,L, Uπ, Uµ, Uσ, ε∆)
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4.1 Finite mixtures of normal regressions

for some known 0 < a < b <∞, i.e. for the case in which the true smoothness parameter
α is only known to come from an interval [a, b]. Note that L, Uπ, Uσ, Uµ, Θ, I are
assumed not to differ for varying α and are to have the same properties from the last
section. Also note that the equality in the display above directly follows from inclusion
of the Hölder classes as described in Remark 2.4.5 (i). Particularly, the set of all model
parameters is now given by

Γ(a) =
⋃

α∈[a,b]

Γ(α) . (4.1.14)

As in Section 3.1.1, define

Sn(θ, x;h) = ∂θMn(θ, x;h) , S(θ, x; γ) = ∂θM(θ, x; γ) ,

βk = a+ k
b− a
N

, k = 0, . . . , N, N = dlogne ,

h(α) =
(

logn
n

) 1
2α+d

, r(α) = h(α)α =
(

logn
n

) α
2α+d

, rk = r(βk), hk = h(βk).

Subsequently, define the adaptive data driven grid point by

α̂n = βk̂,

where

k̂ = max
{

0 ≤ k ≤ N : sup
x∈I,θ∈Θ

∥∥Sn(θ, x;hk)− Sn(θ, x;hl)
∥∥ ≤ CLeprl ∀ 0 ≤ l ≤ k

}
,

where the Lepski constant CLep < ∞ is to be chosen large enough. A specific lower
bound on the Lepski constant can be derived from the discussion in the previous chapter,
particularly Assumption (B9) and Lemma 3.2.9.
This construction yields the estimator

θ̂adap
n (x) = argmin

θ∈Θ
Mn(θ, x;hk̂) .

In order to make use of the highest possible smoothness order b, we need to assume the
kernel K to be of order b, cf. Definition 2.5.1. Therefore, we formulate the following
alteration of Assumption (N3).

Assumption 4.1.7.

(Ñ3) The kernel K is of order b.

Now, we can state the main result.

Theorem 4.1.8. Let 0 < a < b < ∞, K be a kernel fulfilling Assumptions (N2) and
(Ñ3). Then, under Assumption (N1), for any compact cuboid J ⊂ int(I) containing an
open subset, there is a CLep > 0 so that

lim
η→∞

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ

((
n

logn

) α
2α+d

sup
x∈J

min
θ∗∈Sx;γ;α

∥∥θ̂adap
n (x)− θ∗

∥∥ ≥ η) = 0 .
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In order to prove both Theorems 4.1.6 and 4.1.8, it is enough to prove that Conditions
(B1)-(B9) in Assumption 3.1.11 hold since this directly implies Theorem 4.1.8 by The-
orem 3.1.13. As discussed in Section 3.1.1, Assumption 3.1.11 implies Assumption 3.1.4
so that Theorem 4.1.6 follows from Theorem 3.1.6. A complete proof can be found in
Section 5.2.2. Here, we give some intuition and sketches.

Introduce some bounded, convex and open set Θ ⊂ Ξ ⊂ X with Ξ ⊂ X. Condition (B1)
follows directly from Assumption (N1) as well as (4.1.14) when using the Hölder norm
‖ · ‖a/2 as defined in Definition 2.4.3, cf. Remark 2.4.5 (ii) and (iv). For the latter part
of Condition (B1), the polytope

Dm =
{

(π1, . . . , πm−1) ∈ Um−1
π

∣∣∣1−∑m−1
c=1 πc ∈ Uπ

}
is the central issue. Starting with a vector on the boundary, one can make small changes
in single arguments without leaving Dm, which results in a vector in int(Dm). Hence, one
only needs to consider interior points. For two interior points λ1, λ2, a sufficiently small
ε- neighbourhood around the connecting line segment [λ1, λ2] is a subset of int(Dm) as
it is an open convex set. Note that one can make small changes in single arguments
without leaving the neighbourhood. Proceed by reducing the distance between λ1 and
λ2. As it turns out, one can choose C̄ = 4m− 1.

Condition (B2) is given because normal mixture densities are invariant under relabeling,
Condition (B6) holds because ε∆ > 0 is independent of x, γ, α. The continuity condition
(B3) holds because the log-likelihood is continuous and one can interchange limit and
integral by Lebesgue’s theorem. Further, the continuity of the parameter functions is
obvious as they all are assumed to be Hölder-α-smooth. The differentiability of the
contrast functions is provided by the fact that the likelihood function of mixtures of
normals are C∞-functions and Lebesgue’s theorem once again. In order to prove that
the Hessian matrices Vx(θ∗(x); γ) of M are positive definite as demanded by Condition
(B4), one first deduces that the Hessian matrix is in fact given by the negative Fisher
information and reduces to

Vx(θ∗(x); γ) =∂2
θ2M(θ∗(x), x; γ)

=− Eγ
[

(∂θfmix(Y ; θ∗(x)))(∂θfmix(Y ; θ∗(x)))T

fmix(Y ; θ∗(x))2

∣∣∣∣X = x

]
· `(x) .

From this, one can derive linear equations in the form of

∂θfmix(y; θ∗(x))T v = 0 , ∀ y ∈ R

and shows that R3m−1 3 v = 0 by using that there is always a component in the mixture
density fmix that is dominated by all other components asymptotically according to the
definition of ∆(α,L, Uπ, Uµ, Uσ, ε∆) and ε∆ > 0. This successively proves that the com-
ponents of v need to be zero.
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4.2 A two-component mixture of location scale regressions

For the remaining conditions, one needs to bear in mind that the log-likelihood g and
its derivatives are unbounded and the mixture density fmix and its derivatives are not
Lipschitz continuous in θ uniformly over all y. However, one can show that g and its
derivatives are integrable with respect to supθ∈Ξ fmix(·; θ) and that fmix and its deriva-
tives are Lipschitz continuous with a Lipschitz constant that is integrable in y with
respect to supθ∈Ξ fmix(·; θ) as well, which directly gives (B5).

One can use Bennett’s inequality, cf. Lemma 3.2.3 in order to attain an exponential de-
viation inequality for the gradients Sn, where bounding all moments is straightforward
but lengthy. Accordingly, the conditions of Theorem 3.2.5 are fulfilled, which gives (B7)
directly and (B9) by Lemma 3.2.9.

The application of Theorem 3.2.5 in order to prove uniform consistency of the empirical
contrast, cf. (B8), does not seem to be fruitful because the log-likelihood does not provide
a Lipschitz constant that is integrable with respect to supθ∈Ξ fmix(·; θ). However, there
is a workaround by using the fundamental theorem of calculus along edges of cuboids
spanned by parameters θ and a single parameter θ̃ so that the uniform error reduces to

sup
θ∈Θ,x∈J

|Mn(θ, x;h)−M(θ, x; γ)|

≤ sup
x∈J
|Mn(θ̃, x;h)−M(θ̃, x; γ)|

+ (4m− 1) diam(Θ) sup
θ∈Θ,x∈J

∥∥Sn(θ, x;h)− S(θ, x; γ)
∥∥
∞ . (4.1.15)

The first summand in (4.1.15) can now be treated by Theorem 3.2.5 and Lemma 3.2.1
because the supremum is only taken over the covariate values. The second summand is
shown to be oPγ (1) by using Markov’s inequality and arguments similar to the proof of
(B7).

4.2 A two-component mixture of location scale
regressions

We propose a non-parametric regression model of the form

Yi = Wi

(
µ(Xi) + ε1,i

)
+
(
1−Wi

)
σ(Xi)ε2,i , i ∈ N

for sequences of i.i.d. random vectors (Xi)i∈N having support I ⊂ Rd, where I is a
compact cuboid containing an open subset, d ≥ 1 and i.i.d. random variables (Yi)i∈N,
(Wi)i∈N, (ε1,i)i∈N and (ε2,i)i∈N. The explanatory variables Xi and the response variables
Yi are observable, the latent variables Wi and the error variables ε1,i and ε2,i are not.
The covariates Xi are assumed to have a Lebesgue density ` : I → (0,∞).

The unknown location and scaling functions µ : I → R, σ : I → (0,∞) are functions to be
estimated as they partially determine the distributional relation between the explanatory
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and response variables along with the unknown mixing function p : I → (0, 1). That
is because conditionally on Xi = x, the variables Wi are assumed to have a Bernoulli-
distribution with parameter p(x), i.e.

P(Wi = 1|Xi = x) = p(x) and P(Wi = 0|Xi = x) = 1− p(x) .

Let us further assume that conditionally on Xi = x, the vectors ε1,i and ε2,i have zero-
symmetric conditional densities denoted by fx and f̄ , respectively, where we assume that
f̄ is known and fx is not. If we furthermore have the conditional independence relations

ε1,i ⊥⊥Wi|Xi and ε2,i ⊥⊥Wi|Xi ,

we can deduce that the random vectors (Yi, Xi) have a joint density. Therefore, we
formulate the following simple lemma that was proved in Werner (2015).

Lemma 4.2.1. For all x ∈ I, the conditional density of Yi given Xi = x exists and is
given by

f
ϑ(·)
Y |X(y|x) := 1− p(x)

σ(x) f̄
( y

σ(x)

)
+ p(x)fx

(
y − µ(x)

)
, y ∈ R ,

where ϑ(x) := (p(x), σ(x), µ(x), fx). Especially, the joint distribution of Yi and Xi is
given by

fY,X(y, x) := f
ϑ(·)
Y |X(y|x)`(x)

=
[

1− p(x)
σ(x) f̄

( y

σ(x)

)
+ p(x)fx

(
y − µ(x)

)]
· `(x) , (y, x) ∈ R× I .

4.2.1 Identifiability
We will prove local identifiability, i.e. that for every x ∈ I the conditional density
f
ϑ(·)
Y |X(·|x) is identifiable within all mixture densities of the proposed type under some

reasonable constraints. Hence, it is enough to consider the model without covariates.
We need the known component density f̄ and the unknown model density f to have
finite third-order moments and be zero-symmetric. Therefore, we only examine the den-
sities

fmix(y;ϑ) = (1− p)f̄(y/σ)/σ + pf(y − µ) , y ∈ R ,

where
ϑ = (p, σ, µ, f)T ∈ X := [0, 1]× (0,∞)× R× E3,

and f̄ ∈ E3 with

E3 = {f : R→ [0,∞)| f even,
∫
f(x) dx = 1,

∫
|x|3f(x) dx <∞} .
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σ(x) = 0.4 + 0.25 sin(0.25x)
µ(x) = 1.5 + 0.5 sin(0.5x)

Figure 4.2: Samples and densities from two-component mixtures of location scale regressions. Data
points are color coded by their respective subpopulation, where red corresponds to the
a priori unknown component and blue corresponds to the known component. The black
curves are the conditional densities given X = 0. Dashed curves illustrate the distribu-
tion within the respective subpopulation. The parameter functions in both regimes are
identical. However, different error distributions are chosen.
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4 Applications

The following two examples illustrate why the model cannot be pointwise identifiable
without imposing constraints.

Example 4.2.2.

(i) Let µ = 0, σ = 1, f = f̄ . Then every p yields the same mixture.

(ii) For any p, f̄ we have(
1− p

2
)
f̄(·) + p

2 f̄(· − 2) = (1− p) f̄(·) + p f(· − 1)

when f(·) =
(
f̄(· − 1) + f̄(·+ 1)

)
/2.

We will give two identifying assumptions. Both rely on the symmetry of the component
densities. Note that whenever a density f is zero-symmetric, its characteristic function
or Fourier transform

ϕf (t) =
∫

exp(itz)f(z) dz , t ∈ R

is real-valued.

The first assumption imposes a strong constraint on the true mixing parameter p∗ but
only mild conditions on the component densities f̄ and f∗.

Assumption 4.2.3. The model parameter ϑ∗ = (p∗, σ∗, µ∗, f∗)T ∈ X and the compo-
nent density f̄ fulfil

(I1) µ∗ ∈ R\{0}, p∗ ∈ (1/2, 1), σ∗ ∈ (0,∞),

(I2) f̄ ∈ E3, ϕf̄ > 0,

(I3) f∗ ∈ E3, ϕf∗ > 0.

Theorem 4.2.4. Let Assumption 4.2.3 hold. If for any ϑ ∈ X, we have

fmix(y;ϑ∗) = fmix(y;ϑ) for almost all y ∈ R, (4.2.1)

then ϑ = ϑ∗.

Denote ϑ = (p, σ, µ, f)T . By Fourier transforming both sides of (4.2.1) and using an
addition formula for the trigonometric functions, we deduce[

(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt)
]

sin(µt) = p∗ϕf∗(t) sin
(
(µ∗ − µ)t

)
(4.2.2)

for all t ∈ R. Examining the zeros of the terms on both sides yields µ = µ∗, which in
fact implies the result, cf. Lemma 5.3.1. A complete proof can be found in Section 5.3.1.

The other identifiability result was introduced by Werner (2015) and is given for the sake
of completion. It does not impose a restriction on the mixing parameter but strongly
depends on the relationship of both component densities f̄ and f∗. That is, the charac-
teristic functions of those densities need to be distinguishable in the tails in one of the
following manners.
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4.2 A two-component mixture of location scale regressions

Condition 4.2.5. For large t ∈ R it holds ϕf∗(t) 6= 0 and for all σ > 0, we have

lim
t→∞

ϕf̄ (σt)
ϕf∗(t)

= 0 .

Condition 4.2.6. For large t ∈ R it holds ϕf∗(t), ϕf̄ (t) 6= 0 and for all σ > 0, we have

lim
t→∞

ϕf∗(t)
ϕf̄ (σt) = 0 .

Further, we have that

lim
t→∞

ϕf̄ (σt)
ϕf̄ (σ′t) = 0 , ∀ 0 < σ′ < σ . (4.2.3)

Condition 4.2.7. For large t ∈ R it holds ϕf∗(t), ϕf̄ (t) 6= 0, we have (4.2.3) and further,
there exists a σ0 ∈ (0,∞) such that

lim
t→∞

ϕf∗(t)
ϕf̄ (σt) = 0 , 0 < σ < σ0 and lim

t→∞

ϕf̄ (σt)
ϕf∗(t)

= 0 , σ0 < σ <∞ .

Moreover,

lim
t→∞

ϕf̄ (σ0t)
ϕf∗(t)

= c ∈ [0,∞] \ {1}.

Some typical examples of component densities fulfilling these conditions are given below.

Example 4.2.8.

(i) Condition 4.2.5 holds when f∗ ∼ Laplace(µ1, σ1) and f̄ ∼ N (µ2, σ
2
2), cf. Werner

(2015).

(ii) Condition 4.2.6 holds when f̄ ∼ t(ν) and f∗ ∼ N (µ1, σ
2
1), cf. Werner (2015).

(iii) Condition 4.2.7 holds when f∗ ∼ t(ν), f̄ ∼ t(ν0) for ν 6= ν0, cf. Werner (2015).

(iv) When both component densities are normals, none of the three conditions are
fulfilled. However, any centred normal density fulfils (I2) and (I3).

Admissible component densities f∗ are aggregated in the function class

E f̄3 = {f ∈ E3 : (f̄ , f) meets one of the Conditions 4.2.5− 4.2.7} .

The second identifying assumption is as follows.

Assumption 4.2.9. The model parameter ϑ∗ = (p∗, σ∗, µ∗, f∗)T ∈ X and the known
component density f̄ fulfil

(Î1) µ∗ ∈ R\{0}, p∗ ∈ (0, 1), σ∗ ∈ (0,∞),
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4 Applications

(Î2) f̄ ∈ E3,

(Î3) f∗ ∈ E f̄3 .

Theorem 4.2.10 (Werner (2015)). Let Assumption 4.2.9 hold. If for any ϑ ∈ X, we
have

fmix(y;ϑ∗) = fmix(y;ϑ) for almost all y ∈ R,

then ϑ = ϑ∗.

In order to prove this result, one examines (4.2.2) by dividing both sides by dominating
characteristic functions and letting t→∞. By using that sin is periodic, this allows for
assertions on the parameter. A full proof is given by Werner (2015) and can be found in
the appendix with some modifications, cf. Section A.4.

Remark 4.2.11. Note that in both identifiability results, the additional conditions need
only be imposed on the true parameter ϑ∗ = (p∗, σ∗, µ∗, f∗)T , it is then identifiable within
the whole class of parameters X.

Both Theorems 4.2.4 and 4.2.10 directly give identifiability in the model with covariates.

Corollary 4.2.12. Let for all x ∈ I the parameter ϑ∗(x) and the component density f̄
fulfil either Assumption 4.2.3 or Assumption 4.2.9. If for any x ∈ I, ϑ ∈ X, we have

f
ϑ∗(·)
Y |X (y|x) = fmix(y;ϑ) for almost all y ∈ R ,

then ϑ∗(x) = ϑ.

Note that under the assumptions postulated in Corollary 4.2.12, we especially have
identifiability over any subset of X. That will be useful once we restrict the parameters
to a compact set.

4.2.2 Estimation
Let us construct a contrast function based on the component densities’ symmetry that
allows for minimization yielding an M-estimator for the parameter

θ∗(x) :=
(
p∗(x), σ∗(x), µ∗(x)

)T ∈ (1/2, 1)× (0,∞)× R\{0}

with f∗x ∈ E3 under the identifying Assumption 4.2.3.

For now, consider the model without covariates. To be specific, consider a random
variable Y with density

fmix(y;ϑ∗) = 1−p∗
σ∗

f̄
(
y
σ∗

)
+ p∗f∗(y − µ∗) , y ∈ R ,

where f̄ , f∗ ∈ E3 and

θ∗ = (p∗, σ∗, µ∗)T ∈ (1/2, 1)× (0,∞)× R\{0} , ϑ∗ = (θT∗ , f∗)T .
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4.2 A two-component mixture of location scale regressions

As f̄ and f∗ are symmetric densities, their characteristic functions ϕf̄ and ϕf∗ are real-
valued. The characteristic function of the mixture fmix(·;ϑ∗) is given by

ϕfmix(·;ϑ∗)(t) = (1− p∗)ϕf̄ (σ∗t) + p∗ e
itµ∗ ϕf∗(t) .

Now, as p∗ϕf∗(t) is real-valued for all t ∈ R, so is(
ϕfmix(·;ϑ∗)(t)− (1− p∗)ϕf̄ (σ∗ t)

)
e−itµ∗ . (4.2.4)

Since ϕfmix(·;ϑ∗)(t) e−itµ∗ is the characteristic function of Y − µ∗, we deduce for the
imaginary part of (4.2.4) that

0 = =
((

ϕfmix(·;ϑ∗)(t)− (1− p∗)ϕf̄ (σ∗ t)
)
e−itµ∗

)
= Eϑ∗

[
sin
(
(Y − µ∗) t

)]
+ (1− p∗)ϕf̄ (σ∗ t) sin(tµ∗) (4.2.5)

for all t ∈ R, where Eϑ∗ denotes the expectation with respect to the distribution Pϑ∗ ,
which fulfils

Pϑ∗(Y ∈ A) =
∫
A

fmix(y;ϑ∗) dy .

Define the function H : R× R× [0, 1]× (0,∞)× R→ [−2, 2],

H(y, t, θ) = sin
(
(y − µ) t

)
+ (1− p)ϕf̄ (σ t) sin(µt) (4.2.6)

that has a contrast property as follows.

Proposition 4.2.13. Let f̄ fulfil (I2) and a parameter ϑ∗ =
(
p∗, σ∗, µ∗, f∗

)T ∈ X fulfil
(I1) and (I3). Then for θ ∈ [0, 1]× (0,∞)× R, we have

Eϑ∗
[
H(Y, t, θ)

]
= 0 ∀ t ∈ R ⇐⇒ θ = θ∗ =

(
p∗, σ∗, µ∗

)T
.

In order to lose dependence of H on t, we integrate H with respect to some strictly
positive density q that is chosen a priori, giving the non-negative contrast

M(θ;ϑ∗) :=
∫
R
Eϑ∗

[
H2(Y, t, θ)

]
q(t) dt , (4.2.7)

which adopts the contrast property from θ 7→ Eϑ∗
[
H(Y, t, θ)

]
as q > 0.

Corollary 4.2.14. Let f̄ fulfil (I2) and a parameter ϑ∗ =
(
p∗, σ∗, µ∗, f∗

)T fulfil (I1)
and (I3). Then, the function M(·;ϑ∗) : [0, 1] × (0,∞) × R → [0, 4] defined in (4.2.7) is
a discrepancy function, i.e. for θ ∈ [0, 1]× (0,∞)× R, we have

M(θ;ϑ∗) = 0 ⇐⇒ θ = θ∗ =
(
p∗, σ∗, µ∗

)T
.
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Let us reintroduce the covariates. The asymptotic contrast is now given by the function

M(θ, x; γ) :=
∫
R
Eγ
[
H2(Y, t, θ)

∣∣X = x
]
q(t) dt · `2(x) , (4.2.8)

where once again Eγ denotes the expectation with respect to the distribution Pγ , which
is defined in (4.1.2), i.e.

Pγ
(
(Y,X) ∈ A

)
=
∫
A

f
ϑ∗(·)
Y |X (y|x)`(x) d(y, x) , γ =

(
θ∗(·), `, f∗· (·)

)
.

In order to estimate the contrast M , we use an empirical U-statistic estimator localized
around x, i.e.

Mn(θ, x;h) = 1
n (n− 1)

n∑
j,k=1
j 6=k

∫
H(Yj , t, θ)H(Yk, t, θ)q(t) dtKh(Xj − x)Kh(Xk − x) ,

(4.2.9)

where K : Rd → R is a kernel, h ∈ (0,∞) is a bandwidth parameter. The contrast
functions M and Mn adopt smoothness from the function H whenever the kernel K and
the density q are smooth.

Finally, our estimator θ̂n : I → R3 for the parameter function θ∗(·) is proposed by the
minimizer of Mn, i.e.

θ̂n(x;h) ∈ argmin
θ∈Θ

Mn(θ, x;h) , (4.2.10)

which exists for example when Θ is compact since Mn(·, x;h) is continuous.

4.2.3 Uniform rates of convergence
In order to achieve a setting in which the estimator θ̂n defined in (4.2.10) estimates the
parameter functions p∗(·), µ∗(·), σ∗(·) with non-parametric uniform convergence rates,
we need to make further assumptions on the model. We will only consider those models
in which the functions p∗(·), µ∗(·), σ∗(·) and the covariate density ` are Hölder-α-smooth
as defined in Section 2.4.

Let us denote the parameter space by Θ = Up×Uσ ×Uµ ⊂ (1/2, 1)× (0,∞)×R\{0} for
some sets Up ⊂ (1/2, 1), Uσ ⊂ (0,∞), Uµ ⊂ R\{0} and the set of admissible parameter
functions by

∆(α,L, Up, Uσ, Uµ) :=
{
θ(·) =

(
p(·), σ(·), µ(·)

)T : I → Θ
∣∣

p(·) ∈ H(α,L, Up), µ(·) ∈ H(α,L, Uµ), σ(·) ∈ H(α,L, Uσ)
}
,

for any α,L > 0. The set of admissible covariate densities is given by

L(α,L, U`) =
{
` ∈ H(α,L, U`) :

∫
`(x) dx = 1

}
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4.2 A two-component mixture of location scale regressions

for some U` ⊂ (0,∞). Note that under these assumptions, for every θ(·) ∈ ∆(α,L, Up, Uσ, Uµ)
and every x ∈ I, the parameter θ(x) fulfils Assumption (I1).

Furthermore, we fix some family of component densities (f∗x)x∈I fulfilling certain smooth-
ness and shape conditions. The model parameters must come from the class

Γ(α) := ∆(α,L, Up, Uσ, Uµ)× L(α,L, U`)×
{

(f∗x)x∈I
}
.

The following assumptions will ensure uniform consistency of θ̂n(·;hn) with convergence
rate

(
n

logn
) α

2α+d for the bandwidth choice hn =
( logn

n

) 1
2α+d .

Assumption 4.2.15.

(R1) The sets I, Up, Uσ, Uµ, U` are compact cuboids or intervals containing open
subsets. For every x ∈ I, the characteristic function ϕf∗x of the density f∗x is
positive and for any y ∈ R, we have f∗· (y) ∈ H(α,L(y), U) for some integrable
and bounded function L(·) and some compact set U ⊂ [0,∞).

(R2) The known component density f̄ fulfils Assumption (I2) and the maps y 7→ yf̄(y),
f̄ and ∂2ϕf̄ are bounded as well as lim|t|→∞ t∂ϕf̄ (t) = 0.

(R3) The kernel K : Rd → R is Lipschitz continuous with Lipschitz constant LK > 0
and has support [−1, 1]d.

(R4) The kernel K is of order α, cf. Definition 2.5.1.

(R5) The probability density q has a finite third absolute moment and is bounded.

Theorem 4.2.16. Under Assumption 4.2.15, given a compact cuboid J ⊂ int(I) con-
taining an open subset, if we let hn =

( logn
n

) 1
2α+d , the estimator θ̂n(·;hn) has the uniform

convergence rate
( logn

n

) α
2α+d , i.e. we have that

lim
η→∞

lim sup
n→∞

sup
γ∈Γ(α)

Pγ
((

n

logn

) α
2α+d

sup
x∈J

∥∥θ̂n(x;hn)− θ∗(x)
∥∥ ≥ η) = 0 .

The proof of this result can be found in Section 5.3.2.

Remark 4.2.17.

(i) We only stated results tailored to the identifiability Assumption 4.2.3. If one wishes
analogous results under Assumption 4.2.9, one chooses Up ⊂ (0, 1) and modifies
the assumptions on the family of functions (f∗x)x∈I .

(ii) One can also formulate a non-parametric class containing a variety of families
of component densities (f∗x)x∈I and inserting this class into Γ(α). Assumptions
and notation become quite lengthy. Particularly, compactness of those classes can
become an intricate problem. As the unknown component density is not estimated
here, we refrain from pursuing this in detail. Considerations for the specific case
α ≤ 1 can be found in the appendix, cf. Section A.5.
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4.2.4 Uniform adaptive estimation
Once again, following the Lepski method for the gradients described in Section 3.1.1, we
propose an adaptive estimator for parameters coming from

∆(a, L, Up, Uσ, Uµ) =
⋃

α∈[a,b]

∆(α,L, Up, Uσ, Uµ)

for some known 0 < a < b <∞, i.e. for the case in which the true smoothness parameter
α is only known to come from an interval [a, b]. Note that L, Uπ, Uσ, Uµ, Θ, I are
assumed not to differ for varying α and to have the same properties from the last section.
The equality in the display above follows directly from inclusion of the Hölder classes as
described in Remark 2.4.5 (i). Particularly, the set of all model parameters is now given
by

Γ(a) =
⋃

α∈[a,b]

Γ(α) .

As in Section 3.1.1, define

Sn(θ, x;h) = ∂θMn(θ, x;h) , S(θ, x; γ) = ∂θM(θ, x; γ) ,

βk = a+ k
b− a
N

, k = 0, . . . , N, N = dlogne ,

h(α) =
(

logn
n

) 1
2α+d

, r(α) = h(α)α =
(

logn
n

) α
2α+d

, rk = r(βk), hk = h(βk).

Subsequently, define the adaptive data driven grid point by

α̂n = βk̂,

where

k̂ = max
{

0 ≤ k ≤ N : sup
x∈I,θ∈Θ

∥∥Sn(θ, x;hk)− Sn(θ, x;hl)
∥∥ ≤ CLeprl ∀ 0 ≤ l ≤ k

}
,

where the Lepski constant CLep < ∞ is to be chosen large enough. A specific lower
bound on the Lepski constant can be derived from the discussion in the previous chapter,
particularly Assumption (B̃7) and Lemma 3.2.9.
This construction yields the adaptive estimator

θ̂adap
n (x) = argmin

θ∈Θ
Mn(θ, x;hk̂) .

In order to make use of the highest possible smoothness order b, we need to assume the
kernel K to be of order b, cf. Definition 2.5.1. Therefore, we formulate the following
alteration of Assumption (R4).

Assumption 4.2.18.

(R̃4) The kernel K is of order b.

Now, we can state the main result.
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4.2 A two-component mixture of location scale regressions

Theorem 4.2.19. Let 0 < a < b < ∞, K be a kernel fulfilling Assumptions (R3) and
(R̃4). Then, under Assumptions (R1), (R2), (R5), for any compact cuboid J ⊂ int(I)
containing an open subset, there is a CLep > 0 so that

lim
η→∞

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ

((
n

logn

) α
2α+d

sup
x∈J

∥∥θ̂adap
n (x)− θ∗(x)

∥∥ ≥ η) = 0 .

In order to prove Theorems 4.2.16 and 4.2.19, it is enough to prove that conditions (B̃1)-
(B̃7) in the appendix hold, cf. Assumption A.2.2. This set of assumptions is equivalent
to Assumption 3.1.11 for identified models. A complete proof can be found in Section
5.3. An outline is given here.

Just like in the mixture of normal regressions model in Section 4.1, introduce some
bounded, convex and open set

Θ ⊂ Ξ ⊂ (1/2, 1)× (0,∞)× R\{0} with Ξ ⊂ (1/2, 1)× (0,∞)× R\{0}.

(B̃1) is given by Assumption (R1) and Remark 2.4.5 (ii) and (iv). Note that we use
the Hölder norm ‖·‖a/2 once again. The latter part of (B̃1) is given by Remark 3.1.5 (i).

The continuity of M in (B̃2) is given by the fact that the function H defined in (4.2.6)
is continuous and bounded, which allows for application of Lebesgue’s theorem. The
contrast property is given by Proposition 4.2.13 and the continuity of the parameter
function θ∗(·) by the coordinates of θ∗(·) being Hölder-α-smooth.

In order to prove that the Hessian matrix of M evaluated at the true parameter θ∗(x)
is positive definite, cf. (B̃3), one uses that the function H is zero at the true parameter
so that the Hessian matrix Vx is of the form

Vx
(
θ∗(x); γ

)
=2
∫

Eγ
[
∂θH

(
Y, t, θ∗(x)

)∣∣∣X = x
]T

Eγ
[
∂θH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
q(t) dt · `2(x) .

When examining the equation system

0 = vTVx
(
θ∗(x); γ

)
v , v = (v1, v2, v3) ∈ R3

one directly derives that for all t ∈ R,

0 = v1Eγ
[
∂pH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

+ v2Eγ
[
∂σH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

+ v3Eγ
[
∂µH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

= − v1ϕf̄
(
σ∗(x)t

)
sin
(
µ∗(x)t

)
+ v2t

(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
µ∗(x)t

)
− v3tp∗(x)ϕf∗x (t) .

(4.2.11)

The first and second summand in (4.2.11) are zero for t ∈ π
µ∗(x)Z so that v3 = 0. Differ-

entiating the remaining summands in t and examining the behaviour in a neighbourhood
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around 0 yields v1 = v2 = 0 as well.

In this model, the Lipschitz continuity of the Hessian matrix in (B̃4) is a matter of
direct calculation.

In order to derive the uniform L2 convergence rates in (B̃5), the common technique of
decomposing the estimation error in squared bias and variance works. The bias term is
mainly handled by the convolution technique described in Lemma 3.2.1. The variance
term is treated directly by applying Theorem 3.2.7 for ρ = 2 to the gradients. The
conditions in the theorem are easily verified as H is smooth and bounded. Subsequently,
(B̃7) is directly given by Lemma 3.2.10.

As H is bounded, Theorem 3.2.7 applied to the contrast functions Mn yields that the
contrast’s uniform stochastic estimation error fulfils

sup
α∈[a,b]

sup
γ∈Γ(a)

Pγ
(

sup
θ,x
|Mn

(
θ, x;hn(α)

)
− Eγ

[
Mn

(
θ, x;hn(α)

)]
| ≥ η

)
= o(1) , η > 0

by Markov’s inequality. A direct calculation gives that the bias converges to zero as well
so that the contrast Mn is uniformly consistent. Hence, (B̃6) is fulfilled as well and
Theorems 3.1.6 and 3.1.13 yield the desired results.
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5.1 Proofs for Chapter 3
Proof of Theorem 3.1.2. Because of θ̂n(x; γ) = argminθMn(θ, x; γ) and M being con-
stant on Sx;γ , we have for all, γ ∈ Γ, θ∗(x; γ) ∈ Sx;γ ,

0 ≤ sup
x∈I

[
M
(
θ̂n(x; γ), x; γ

)
−M

(
θ∗(x; γ), x; γ

)]
≤ sup

x∈I

[
M
(
θ̂n(x; γ), x; γ

)
−Mn

(
θ̂n(x; γ), x; γ

)]
+ sup
x∈I

[
Mn

(
θ̂n(x; γ), x; γ

)
−M

(
θ∗(x; γ), x; γ

)]
≤ sup

θ∈Θ
sup
x∈I
|M(θ, x; γ)−Mn(θ, x; γ)|+ sup

x∈I

[
Mn

(
θ∗(x; γ), x; γ

)
−M

(
θ∗(x; γ), x; γ

)]
≤ 2 sup

θ∈Θ
sup
x∈I
|M(θ, x; γ)−Mn(θ, x; γ)| .

Fix ε > 0. Because of (∗) there is an η > 0 so that for any γ ∈ Γ, θ∗(x; γ) ∈ Sx;γ , the
inequality

sup
x∈I

[
M(θ̂n(x; γ), x; γ)−M(θ∗(x; γ), x; γ)

]
< η

implies
sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ < ε ,

giving{
sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ ε} ⊂{ sup

x∈I

[
M(θ̂n(x; γ), x; γ)−M(θ∗(x; γ), x; γ)

]
≥ η

}
⊂
{

sup
θ∈Θ

sup
x∈I
|M(θ, x; γ)−Mn(θ, x; γ)| ≥ η/2

}
.

Thus, by uniform consistency of the random functions Mn,

lim
n→∞

sup
γ∈Γ

Pγ
(

sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ ε) = 0 .

The general idea for the proof of Theorem 3.1.3 is similar to the one of van der Vaart
and Wellner (1996, Theorem 3.2.5) but the details are a bit more involved.
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Proof of Theorem 3.1.3. For every n ∈ N, x ∈ I, γ ∈ Γ, we can define a disjoint partition
of Θ\Sx;γ by

⋃
j∈Z Sjnxγ , where

Sjnxγ =
{
θ ∈ Θ : 2j−1 < rn,γ min

θ∗∈Sx;γ
‖θ − θ∗‖ ≤ 2j

}
.

Let us define for any N,n ∈ N, γ ∈ Γ the sets

ANnγ :=
{
rn,γ sup

x∈I
min

θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ > 2N

}
and show that limN→∞ lim supn→∞ supγ∈Γ Pγ(ANnγ) = 0. In order to do that, we show
for any η > 0 the inequality

Pγ(ANnγ) ≤
∑
j≥N

2j≤ηrn,γ

Pγ
(

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

[
Mn(θ∗, x; γ)−Mn(θ, x; γ)

]
≥ 0
)

+ Pγ
(

2 sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ η) .

(5.1.1)

Therefore, let

ω ∈
⋂
j≥N

2j≤ηrn,γ

{
sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

[
Mn(θ∗, x; γ)−Mn(θ, x; γ)

]
< 0
}

∩
{

2 sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ < η

}
. (5.1.2)

Then, for all j ≥ N with 2j ≤ ηrn,γ and all x ∈ I we have θ̂n(x; γ)(ω) /∈ Sjnxγ because
θ̂n(x; γ) minimizes Mn(·, x; γ). Hence, for all x ∈ I, either

rn,γ min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)(ω)− θ∗
∥∥ ≤ 2N−1 or rn,γ min

θ∗∈Sx;γ

∥∥θ̂n(x; γ)(ω)− θ∗
∥∥ > 2lγ ,

(5.1.3)

where lγ = max{j ≥ N : 2j ≤ ηrn,γ} if such an lγ exists. The latter case needs to be
disproved. Therefore, assume that for some x ∈ I, J ≥ N with 2J > ηrn,γ , we have

rn,γ min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)(ω)− θ∗
∥∥ > 2J−1 .

Then,

2J−1 < rn,γ min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)(ω)− θ∗
∥∥ < rn,γη/2 < 2J−1 ,

according to the right-hand side of (5.1.2), a contradiction. Hence,

rn,γ sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)(ω)− θ∗
∥∥ ≤ 2N−1 ≤ 2N
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according to (5.1.3), giving ω ∈ AcNnγ and via subadditivity we deduce (5.1.1). The
second summand on the right-hand side of (5.1.1) converges uniformly over all γ ∈ Γ to
zero for all η > 0 according to assumption (ii), i.e.

lim
n→∞

sup
γ∈Γ

Pγ
(

2 sup
x∈I

min
θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ η) = 0 . (5.1.4)

Hence, we only need to handle the first summand. Choose η > 0 so that (i) is fulfilled.
Then, because every θ∗(x; γ) ∈ Sx;γ minimizes M(·, x; γ), for any j ≥ N so that 2j ≤
ηrn,γ , which is equivalent to 2j/rn,γ ≤ η and any γ ∈ Γ, we have

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

[
M(θ∗, x; γ)−M(θ, x; γ)

]
= sup

x∈I
sup

ε∈
(

2j−1/rn,γ2j/rn,γ
] sup
∗

[
M
(
θ∗(x; γ), x; γ

)
−M(θ, x; γ)

]
= sup

ε∈
(

2j−1/rn,γ ,2j/rn,γ
] sup
x∈I

sup
∗

[
M
(
θ∗(x; γ), x; γ

)
−M(θ, x; γ)

]

≤C1 sup
ε∈
(

2j−1/rn,γ ,2j/rn,γ
]−ε2 = −C1

(
2j−1

rn,γ

)2

according to the first part of (i), where the suprema indexed with ∗ are taken over{
θ ∈ Θ : min

θ∗∈Sx;γ
‖θ−θ∗‖ = ε

}
. Now, the fact that M(·, x; γ) is constant on Sx;γ , (5.1.1),

(5.1.4), the display above and Markov’s inequality give
lim
N→∞

lim sup
n→∞

sup
γ∈Γ

Pγ(ANnγ)

= lim
N→∞

lim sup
n→∞

sup
γ∈Γ

Pγ
(
rn,γ sup

x∈I
min

θ∗∈Sx;γ

∥∥θ̂n(x; γ)− θ∗
∥∥ ≥ 2N

)
≤ lim
N→∞

lim sup
n→∞

sup
γ∈Γ

∑
j≥N

2j≤ηrn,γ

Pγ
(

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

[
Mn(θ∗, x; γ)−Mn(θ, x; γ)

]
≥ 0
)

= lim
N→∞

lim sup
n→∞

sup
γ∈Γ

∑
j≥N

2j≤ηrn,γ

Pγ
(

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

[
Wn(θ∗, x; γ)−Wn(θ, x; γ)

+M(θ∗, x; γ)−M(θ, x; γ)
]
≥ 0
)

≤ lim
N→∞

lim sup
n→∞

sup
γ∈Γ

∑
j≥N

2j≤ηrn,γ

Pγ
(

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|

+ sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

[
M(θ∗, x; γ)−M(θ, x; γ)

]
≥ 0
)

≤ lim
N→∞

lim sup
n→∞

sup
γ∈Γ

∑
j≥N

2j≤ηrn,γ

Pγ
(

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)| ≥ C1
22j−2

r2
n,γ

)
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≤ lim
N→∞

lim sup
n→∞

∑
j≥N

sup
γ∈Γ

1 2j
rn,γ

≤η

r2
n,γ

C122j−2 Eγ
[

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]
.

(5.1.5)

We will use the second point in (i) in order to treat the lim supn→∞ term in (5.1.5)
for fixed N ∈ N by Fatou’s lemma for the counting measure on {N,N + 1, . . .}. To be
precise, we need to show that the summands in (5.1.5) are uniformly bounded in n ≥ n0
by a function in j ≥ N that is summable for some n0 ∈ N.

The second point in (i) gives

lim sup
n→∞

sup
γ∈Γ

sup
j≥N
2j
rn,γ
≤η

tn,γ
φn(2j/rn,γ)Eγ

[
sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]
≤ C2.

In particular, for any κ > 0, there is an n0 ∈ N so that for every γ ∈ Γ, n ≥ n0, j ≥ N
with 2j ≤ ηrn,γ , we have

Eγ
[

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]
≤
(
C2 + κ

)
φn(2j/rn,γ)
tn,γ

.

Hence, for every γ ∈ Γ, n ≥ n0, j ≥ N with 2j ≤ ηrn,γ , the summands in (5.1.5) can be
treated by

r2
n,γ

C122j−2 Eγ
[

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]

≤
r2
n,γ

C122j−2

(
C2 + κ

)
φn(2j/rn,γ)
tn,γ

. (5.1.6)

Since the function φn(·)/·α is decreasing, for any z ≥ 1, y > 0, we have
φn(zy)
zαyα

≤ φn(y)
yα

so that φn(zy) ≤ zαφn(y) .

As 2j ≥ 1, this implies

(5.1.6) ≤
r2
n,γ

(
C2 + κ

)
2jαφn(1/rn,γ)

C122j−2tn,γ
≤

4
(
C2 + κ

)
C1

·
(

1
22−α

)j
,

which clearly is summable in j ≥ N . Hence, we can apply Fatou’s lemma, so that for
some κ independent of N , we have

(5.1.5)

≤ lim
N→∞

∑
j≥N

lim sup
n→∞

sup
γ∈Γ

1 2j
rn,γ

≤η

r2
n,γ

C122j−2 Eγ
[

sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]

≤ lim
N→∞

∑
j≥N

4
(
C2 + κ

)
C1

·
(

1
22−α

)j
= 0 .
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Proofs for the uniform stochastic Lρ-errors

The first technical lemma gives a discretization method that will be used for deriving
uniform Lρ-errors.

Lemma 5.1.1. Let J ⊂ Rd be a compact cuboid, Θ ⊂ Rm be compact and convex with
Θ = int(Θ), δn → 0 be a zero-sequence, Tn : Θ × I → R be functions. Then there are
nets Θn × Jn ⊂ Θ× J so that

sup
x∈J

inf
y∈Jn

‖x− y‖ < δn , sup
ϑ∈Θ

inf
θ∈Θn

‖ϑ− θ‖ < δn , #(Θn × Jn) ≤ CΘ,Jδ
−d−m
n ,

where CΘ,J is independent of n. Furthermore,

sup
x∈J,θ∈Θ

|Tn(θ, x)|ρ

≤ 2ρ−1
(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

|Tn(θ, x)− Tn(ϑ, y)|
)ρ

+ 2ρ−1
(

sup
x∈Jn,ϑ∈Θn

|Tn(ϑ, x)|
)ρ

.

Proof of Lemma 5.1.1. The set Θ×J is compact, hence totally bounded, so that for any
n ∈ N there are finite sets Jn ⊂ J,Θn ⊂ Θ so that

sup
x∈J

inf
y∈Jn

‖x− y‖ < δn , sup
ϑ∈Θ

inf
θ∈Θn

‖ϑ− θ‖ < δn

and we can choose Θn × Jn so that

#(Θn × Jn) ≤ CΘ,Jδ
−d−m
n ,

and CΘ,J is independent of n. That is because J is a cuboid and for Θ we can examine
a superset that is a compact cuboid. Since for any monotone and continuous function
% : A→ R, where A ⊂ R is compact, we have

%(supA) = sup
x∈A

%(x) , %(inf A) = inf
x∈A

%(x)

and because s 7→ sρ is monotone, convex and especially continuous on [0,∞), we achieve
the representation

sup
x∈J,θ∈Θ

|Tn(θ, x)|ρ

=
(

sup
x∈J,θ∈Θ

|Tn(θ, x)|
)ρ

=
(

sup
x∈J,θ∈Θ

|Tn(θ, x)| − sup
y∈Jn,ϑ∈Θn

|Tn(ϑ, y)|+ sup
y∈Jn,ϑ∈Θn

|Tn(ϑ, y)|︸ ︷︷ ︸
≥0

)ρ

≤ 2ρ−1
∣∣∣ sup
x∈J,θ∈Θ

|Tn(θ, x)| − sup
y∈Jn,ϑ∈Θn

|Tn(ϑ, y)|
∣∣∣ρ + 2ρ−1

(
sup

x∈Jn,ϑ∈Θn
|Tn(ϑ, x)|

)ρ
.

(5.1.7)
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The first summand of (5.1.7) is handled by the fact that the term’s base is non-negative,
that s 7→ sρ is monotone and that

sup
x∈J,θ∈Θ

|Tn(θ, x)| − sup
y∈Jn,ϑ∈Θn

|Tn(ϑ, y)| = sup
x∈J,θ∈Θ

[
|Tn(θ, x)| − sup

y∈Jn,ϑ∈Θn
|Tn(ϑ, y)|

]
= sup
x∈J,θ∈Θ

inf
y∈Jn,ϑ∈Θn

[
|Tn(θ, x)| − |Tn(ϑ, y)|

]
≤ sup
x∈J,θ∈Θ

inf
y∈Jn,ϑ∈Θn

∣∣∣|Tn(θ, x)| − |Tn(ϑ, y)|
∣∣∣

≤ sup
x∈J,θ∈Θ

inf
y∈Jn,ϑ∈Θn

∣∣∣Tn(θ, x)− Tn(ϑ, y)
∣∣∣

≤ sup
x∈J,θ∈Θ

inf
y∈Jn,ϑ∈Θn

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣Tn(θ, x)− Tn(ϑ, y)
∣∣∣

≤ sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

|Tn(θ, x)− Tn(ϑ, y)|

by means of the reverse triangular inequality.

Proof of Theorem 3.2.5. We will drop dependence of the bandwidth parameters on α and
n for convenience but only give a hint where it comes into play. Note that throughout
the proof, we will only use the notation an . bn if there is a constant C > 0 and an
n0 ∈ N so that for all n ≥ n0 we have an ≤ Cbn and the constant depends only on Γ, C1,
C2, Cτ , τ , ‖K‖∞, LK , ρ, I, Θ, A or is universal. Also note that all calculations below
hold independently of γ ∈ Γ. Let us define

Tn(θ, x;h) :=Mn(θ, x;h)− Eγ
[
Mn(θ, x;h)

]
= 1
n

n∑
k=1

τ(Yk, θ)Kh(Xk − x)− Eγ [τ(Yk, θ)Kh(Xk − x)] .

By using Lemma 5.1.1, for a sequence δn → 0 specified later, there are nets Θn × Jn ⊂
Θ× J so that

sup
x∈J

inf
y∈Jn

‖x− y‖ < δn , sup
ϑ∈Θ

inf
θ∈Θn

‖ϑ− θ‖ < δn , #(Θn × Jn) ≤ CΘ,Jδ
−d−m
n ,

where CΘ,J is independent of n. We further achieve the representation

sup
x∈J,θ∈Θ

|Tn(θ, x;h)|ρ

≤2ρ−1
(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

|Tn(θ, x;h)− Tn(ϑ, y;h)|
)ρ

+ 2ρ−1
(

sup
x∈Jn,ϑ∈Θn

|Tn(ϑ, x;h)|
)ρ

.

(5.1.8)
Let us treat the first summand of (5.1.8). By Jensen’s inequality for sums and mono-
tonicity and continuity of s 7→ sρ on (0,∞), we deduce

Eγ
[(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

|Tn(θ, x;h)− Tn(ϑ, y;h)|
)ρ]
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≤ 4ρ−1

{
Eγ
[(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣ 1n n∑
k=1

(
τ(Yk, ϑ)− τ(Yk, θ)

)
Kh(Xk − x)

∣∣∣∣)ρ]

+ Eγ
[(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣ 1n n∑
k=1

τ(Yk, θ)
(
Kh(Xk − x)−Kh(Xk − y)

)∣∣∣∣)ρ]

+ Eγ
[(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣ 1n n∑
k=1

Eγ
[(
τ(Yk, ϑ)− τ(Yk, θ)

)
Kh(Xk − x)

]∣∣∣∣)ρ]

+ Eγ
[(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣ 1n n∑
k=1

Eγ
[
τ(Yk, θ)

(
Kh(Xk − x)−Kh(Xk − y)

)]∣∣∣∣)ρ]
}

≤ 4ρ−1

{
Eγ
[(

1
n

n∑
k=1

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣(τ(Yk, ϑ)− τ(Yk, θ)
)
Kh(Xk − x)

∣∣)ρ] (5.1.9)

+ Eγ
[(

1
n

n∑
k=1

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣τ(Yk, θ)
(
Kh(Xk − x)−Kh(Xk − y)

)∣∣)ρ] (5.1.10)

+ sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

(
Eγ
[∣∣(τ(Y1, ϑ)− τ(Y1, θ)

)
Kh(X1 − x)

∣∣])ρ (5.1.11)

+ sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

(
Eγ
[∣∣τ(Y1, θ)

(
Kh(X1 − x)−Kh(X1 − y)

)∣∣])ρ} . (5.1.12)

Again by Jensen’s inequality for sums,

(5.1.9) + (5.1.10)

≤Eγ
[

1
n

n∑
k=1

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣(τ(Yk, ϑ)− τ(Yk, θ)
)
Kh(Xk − x)

∣∣ρ]

+ Eγ
[

1
n

n∑
k=1

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣τ(Yk, θ)
(
Kh(Xk − x)−Kh(Xk − y)

)∣∣ρ]

=Eγ
[

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣(τ(Y1, ϑ)− τ(Y1, θ)
)
Kh(X1 − x)

∣∣ρ] (5.1.13)

+ Eγ
[

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣τ(Y1, θ)
(
Kh(X1 − x)−Kh(X1 − y)

)∣∣ρ] . (5.1.14)

By Jensen’s inequality, monotonicity and continuity of s 7→ sρ on (0,∞) and (3.2.13),
we get

(5.1.11) ≤ (5.1.13) ≤ δρn
hρd

4ρ−1‖K‖ρ∞
∫

sup
θ,θ̃∈Θ

Ψρ
τ (y, θ, θ̃) sup

γ∈Γ,x∈I
fγ(y|x)dy = O

(
δρn
hρd

)
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and additionally applying Lipschitz continuity of the kernel K and (3.2.12), we deduce

(5.1.12) ≤ (5.1.14) ≤ δρn
hρ(d+1) 4ρ−1LρKCτ = O

(
δρn

hρ(d+1)

)
.

This gives a bound for the discretizing error in (5.1.8), i.e.

Eγ
[∣∣∣ sup
x∈J,ϑ∈Θ

|Tn(ϑ, x;h)| − sup
y∈Jn,θ∈Θn

|Tn(θ, y;h)|
∣∣∣ρ] = O

(
δρn

hρ(d+1)

)
. (5.1.15)

Now, let us focus on the discretized term supx∈Jn,θ∈Θn |Tn(θ, x;h)| in (5.1.8). According
to (3.2.15), for any fixed θ, x, h, n, we have that

Pγ
(
|Tn(θ, x;h)| > ω

(
logn
nhd

) 1
2
)
≤ 2 exp

− ω2 logn
nhd
· nhd

C1 + ωC2

(
logn
nhd

) 1
2



= 2 exp

− ω2 logn

C1 + ωC2

(
logn
nhd

) 1
2

 , ω > 0 .

We will apply the estimate

E[|W |ρ] ≤
∫ ∞

0
ρωρ−1P(|W | > ω) dω ≤ aρ +

∫ ∞
a

ρωρ−1P(|W | > ω) dω , a > 0

to W = supx∈Jn,θ∈Θn |Tn(θ, x;h)|
(
nhd

logn
) 1

2 in order to obtain a bound on the remainder
in (5.1.8) as follows.

Eγ
[

sup
x∈Jn,θ∈Θn

|Tn(θ, x;h)|ρ
]

≤
( logn
nhd

) ρ
2
[
aρ +

∫ ∞
a

ρωρ−1Pγ
(

sup
x∈Jn,θ∈Θn

|Tn(θ, x;h)| >
( logn
nhd

) 1
2
ω
)

dω
]

≤
( logn
nhd

) ρ
2
[
aρ +

∫ ∞
a

ρωρ−1
∑

x∈Jn,θ∈Θn

Pγ
(
|Tn(θ, x;h)| >

( logn
nhd

) 1
2
ω
)

dω
]

≤
( logn
nhd

) ρ
2

aρ + 2CΘ,Jδ
−d−m
n ρ

∫ ∞
a

ωρ−1 exp

− ω2 logn

C1 + ωC2

(
logn
nhd

) 1
2

 dω


≤
( logn
nhd

) ρ
2
[
aρ + 2CΘ,Jδ

−d−m
n ρ

∫ ∞
a

ωρ−1 exp
(
− ω logn

Ca

)
dω
]

(5.1.16)

for Ca = C1
a + 1 and n so large that

(
logn
nhd

) 1
2
C2 ≤ 1. Because then, for ω ∈ [a,∞),

Caω = C1ω

a
+ ω ≥ C1 + ωC2

(
logn
nhd

) 1
2

.
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Note that there is some n0 so that this holds uniformly over all α for n ≥ n0.

The integral on the right-hand side of (5.1.16) is handled by the representation for the
incomplete rho integral, i.e.∫ ∞

a

ωj exp(−ω) dω = j! exp(−a)
j∑

k=0

ak

k! , j ∈ N, a > 0 .

Deduce that for j = dρ− 1e, a ≥ 1, n so large that logn ≥ Ca, we have∫ ∞
a

ωρ−1 exp
(
− ω logn

Ca

)
dω ≤

∫ ∞
a

ωj exp
(
− ω logn

Ca

)
dω

≤
(
Ca

logn

)j+1 ∫ ∞
a logn
Ca

ωj exp(−ω) dω

=
(
Ca

logn

)j+1
j! exp

(
− a logn

Ca

) j∑
k=0

(
a logn
Ca

)k
k!

≤
(
Ca

logn

)j+1
(j + 1)!aj (logn)j

Cja
n−

a
Ca

≤Caa
j(j + 1)!
logn n

− a
2 max{C1,1} ,

where the last inequality holds because a
Ca

= a2

C1+a and C1 + a ≤ 2 max{C1, 1}a. By
choosing δn = n−5/2, a = 5(d+m) max{C1, 1} and using

δρn
h(d+1)ρ = n−5ρ/2

h(d+1)ρ .

(
logn
nhd

) ρ
2

· 1
n2ρh(d+2)ρ/2 .

(
logn
nhd

) ρ
2

· 1
n2ρh2dρ .

(
logn
nhd

) ρ
2

,

(5.1.17)

we deduce

Eγ
[

sup
x∈J,θ∈Θ

|Tn(θ, x;h)|ρ
]

≤O
(

δρn
h(d+1)ρ

)
+ aρ

( logn
nhd

) ρ
2

+ Caa
jCΘ,J(j + 1)!

logn

( logn
nhd

) ρ
2
δ−d−mn n

− a
2 max{C1,1}

=O
(( logn

nhd

) ρ
2
)
,

concluding the proof.

Proof of Theorem 3.2.7. We will drop dependence of the bandwidth parameters on α
and n for convenience but only give a hint where it comes into play. Note that through-
out the proof, we will only use the notation an . bn if there is a constant C > 0 and an
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n0 ∈ N so that for all n ≥ n0 we have an ≤ Cbn and the constant depends only on ‖τ‖∞,
Lτ , ‖K‖∞, LK , ρ, J , Θ, Γ, A or is universal. Also note that once again all calculations
below hold independently of γ ∈ Γ.

Let us decompose the centred process Mn − Eγ [Mn] into a canonical U-statistic and a
linear process as described in (3.2.6)-(3.2.10). For any fixed x ∈ J, θ ∈ Θ write

Mn(θ, x;h)− Eγ [Mn(θ, x;h)] = 1
n(n− 1)

n∑
j,k=1
j 6=k

Un
(
Zj , Zk, θ, x;h

)

+ 2
n

n∑
j=1

[
u∗n(Zj , θ, x;h)− Eγ

[
un(Z1, Z2, θ, x;h)

]]
= : T 1

n(θ, x;h) + T 2
n(θ, x;h) ,

where for z = (z1, z
T
2 )T , y = (y1, y

T
2 )T ∈ R× J ,

Un(z, y, θ, x;h) :=un(z, y, θ, x;h)− u∗n(z, θ, x;h)− u∗n(y, θ, x;h)
+ Eγ [un(Z1, Z2, θ, x;h)] ,

un(z, y, θ, x;h) := τ(z1, y1, θ)Kh(z2 − x)Kh(y2 − x) ,
u∗n(z, θ, x;h) :=Eγ [un(Z1, z, θ, x;h)] = Eγ

[
τ(z1, Y1, θ)Kh(X1 − x)

]
·Kh(z2 − x) .

Since s 7→ sρ is convex, we have∣∣Mn(θ, x;h)− Eγ [Mn(θ, x;h)]
∣∣ρ ≤ ∣∣T 1

n(θ, x;h) + T 2
n(θ, x;h)

∣∣ρ
≤ 2ρ

∣∣∣∣12T 1
n(θ, x;h) + 1

2T
2
n(θ, x;h)

∣∣∣∣ρ
= 2ρ

∣∣∣∣(1
2T

1
n(θ, x;h) + 1

2T
2
n(θ, x;h)

)ρ∣∣∣∣
≤ 2ρ

∣∣∣∣(1
2 |T

1
n(θ, x;h)|+ 1

2 |T
2
n(θ, x;h)|

)ρ∣∣∣∣
≤ 2ρ−1

(
|T 1
n(θ, x;h)|ρ + |T 2

n(θ, x;h)|ρ
)
. (5.1.18)

The linear error process T 2
n in (5.1.18) can be directly treated by Theorem 3.2.5. Note

that (3.2.13) and (3.2.14) are given by Lipschitz continuity of τ . Moreover, (3.2.12) is
given by boundedness of τ , and (3.2.15) is given by Bernstein’s inequality, cf. Lemma
3.2.2.

Let us deal with the term T 1
n in (5.1.18). By using Lemma 5.1.1, for a sequence δn → 0

specified later, there are nets Θn × Jn ⊂ Θ× J so that

sup
x∈J

inf
y∈Jn

‖x− y‖ < δn , sup
ϑ∈Θ

inf
θ∈Θn

‖ϑ− θ‖ < δn , #(Θn × Jn) ≤ CΘ,Jδ
−d−m
n ,
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where CΘ,J is independent of n. We further achieve the representation

sup
x∈J,θ∈Θ

|T 1
n(θ, x;h)|ρ

≤ 2ρ−1
(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

|T 1
n(θ, x;h)− T 1

n(ϑ, y;h)|
)ρ

+ 2ρ−1
(

sup
x∈Jn,ϑ∈Θn

|T 1
n(ϑ, x;h)|

)ρ
.

(5.1.19)
The first summand in (5.1.19) is treated by applying Jensen’s inequality for sums, yielding

Eγ
[(

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

|T 1
n(θ, x;h)− T 1

n(ϑ, y;h)|
)ρ]

≤ 3ρ−1Eγ

[(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣ 1
n(n− 1)

n∑
j,k=1
j 6=k

un(Zj , Zk, θ, x;h)− un(Zj , Zk, ϑ, y;h)
∣∣∣∣
)ρ]

+ 3ρ−1Eγ

[(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣ 2n n∑
j=1

u∗n(Zj , ϑ, x;h)− u∗n(Zj , θ, y;h)
∣∣∣∣
)ρ]

+ 3ρ−1Eγ

[(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣Eγ[un(Z1, Z2, θ, x;h)− un(Z1, Z2, ϑ, y;h)
]∣∣∣∣
)ρ]

≤ 3ρ−1Eγ

[(
1

n(n− 1)

n∑
j,k=1
j 6=k

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣un(Zj , Zk, θ, x;h)− un(Zj , Zk, ϑ, y;h)
∣∣)ρ]

(5.1.20)

+ 3ρ−1Eγ

[(
2
n

n∑
j=1

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣u∗n(Zj , θ, x;h)− u∗n(Zj , ϑ, y;h)
∣∣)ρ] (5.1.21)

+ 3ρ−1

(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣Eγ[un(Z1, Z2, θ, x;h)− un(Z1, Z2, ϑ, y;h)
]∣∣∣∣
)ρ

. (5.1.22)

Let us bound the occurring summands directly. The summands of the term (5.1.20) are
bounded by

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣τ(Yj , Yk, ϑ) ·
(
Kh(Xj − x)Kh(Xk − x)−Kh(Xj − y)Kh(Xk − y)

)∣∣∣∣
+ sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣[τ(Yj , Yk, ϑ)− τ(Yj , Yk, θ)
]
·Kh(Xj − y)Kh(Xk − y)

∣∣∣∣ ,
of which the first factor in the first summand is bounded by ‖τ‖∞. The first kernel terms
are handled by the equality ab− cd = ab− ac+ ac− cd, ‖Kh‖∞ = ‖K‖∞ 1

hd
and the fact
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that K is Lipschitz continuous, i.e.

sup
x,y∈J

‖x−y‖≤δn

|Kh(Xj − x)−Kh(Xj − y)| ≤ LK
1
hd
· δn
h
,

yielding

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣τ(Yj , Yk, ϑ) ·
(
Kh(Xj − x)Kh(Xk − x)−Kh(Xj − y)Kh(Xk − y)

)∣∣
≤ 2‖τ‖∞LK‖K‖∞

δn
h2d+1 .

By using the Lipschitz continuity of τ in its third argument, we derive for the second
summand that

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣[τ(Yj , Yk, ϑ)− τ(Yj , Yk, θ)
]
·Kh(Xj − y)Kh(Xk − y)

∣∣∣
≤ Lτδn sup

x,y∈J
‖x−y‖≤δn

∣∣Kh(Xj − y)Kh(Xk − y)
∣∣ ≤ Lτ‖K‖2∞ δn

h2d .

Hence,

(5.1.20) ≤ 3ρ−1
(

2‖τ‖∞LK‖K‖∞
δn

h2d+1 + Lτ‖K‖2∞
δn
h2d

)ρ
.

δρn
h(2d+1)ρ .

Using similar arguments, we observe that the summands of (5.1.21) are bounded by

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣u∗n(Zj , ϑ, x;h)− u∗n(Zj , θ, x;h)
∣∣

+ sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣u∗n(Zj , θ, x;h)− u∗n(Zj , θ, y;h)
∣∣

≤ sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣EZγ [(τ(Y, Y1, ϑ)− τ(Y, Y1, θ)
)
Kh(X − x)

]
Kh(X1 − x)

∣∣∣
+ sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣EZγ [τ(Y, Y1, θ)
(
Kh(X − x)Kh(X1 − x)−Kh(X − y)Kh(X1 − y)

)]∣∣∣
≤ ‖K‖∞Lτ‖`γ‖∞δn

hd
+ ‖τ‖∞‖`γ‖∞LKδn

h2d + ‖τ‖∞‖K‖
2
∞LKδn

h2d+1 ,

where we used the notation

EZγ
[
f(Y, Y1, X,X1)

]
=
∫∫

f(y, Y1, x,X1) fγ(y|x)`γ(x) dy dx .
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Thus, we conclude (5.1.21) . δρn
h(2d+1)ρ .

The term (5.1.22) is bounded by (5.1.20) according to Jensen’s inequality, i.e.

(5.1.22)

= 3ρ−1

(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

1
n(n− 1)

n∑
j,k=1
j 6=k

∣∣Eγ[un(Zj , Zk, ϑ, x;h)− un(Zj , Zk, θ, y;h)
]∣∣)ρ

≤ 3ρ−1

(
Eγ

[
1

n(n− 1)

n∑
j,k=1
j 6=k

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣un(Zj , Zk, ϑ, x;h)− un(Zj , Zk, θ, y;h)
∣∣])ρ

≤ 3ρ−1Eγ

[(
1

n(n− 1)

n∑
j,k=1
j 6=k

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣un(Zj , Zk, ϑ, x;h)− un(Zj , Zk, θ, y;h)
∣∣)ρ]

= (5.1.20) .

This finally gives a bound on the discretization error in (5.1.19), i.e.

Eγ
[
2ρ−1

(
sup

x∈J,ϑ∈Θ
|T 1
n(ϑ, x;h)| − sup

y∈Jn,θ∈Θn
|T 1
n(θ, y;h)|

)ρ]
.

δρn
h(2d+1)ρ .

Now, let us focus on the discrete error supx∈Jn,θ∈Θn |T
1
n(θ, x;h)|ρ. First we notice that

T 1
n(θ, x;h) is a canonical U-Statistic in Z1, . . . , Zn because Un is symmetric in its first

two arguments. In order to bound the error

sup
x∈Jn,θ∈Θn

|T 1
n(θ, x;h)| ,

we will need to examine the tail behaviour of |T 1
n(θ, x;h)|, which can be done by means of

the Bernstein-type inequality for canonical U-statistics introduced by Giné et al. (2000),
given in Lemma 3.2.4. In order to derive the terms A,B,C described in (3.2.2), we first
observe that when taking the expectation of a term involving a random Kh term, we
lose one factor 1

hd
by integration, e.g.

Eγ
[∣∣Kh(X1 − x)

∣∣] ≤‖`γ‖∞ ,

Eγ
[
K2
h(X1 − x)

]
≤ 1
hd
‖`γ‖∞

∫
K2 .

1
hd

.

This yields

A = ‖Un‖∞ . ‖un‖∞ ≤ ‖τ‖∞
‖K‖2∞
h2d .

1
h2d ,

B2 =n
∥∥Eγ[U2

n(Z1, ·, θ, x;h)
]∥∥
∞ . n

∥∥Eγ[u2
n(Z1, ·, θ, x;h)

]∥∥
∞ .

n

h3d .

The same arguments apply to C2, giving

C2 =n(n− 1)Eγ [U2
n(Z1, Z2, θ, x;h)]
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=n(n− 1)
(
Eγ [u2

n(Z1, Z2, θ, x;h)] + 4Eγ [un(Z1, Z2, θ, x;h)u∗n(Z1, θ, x;h)]

+ 4
(
Eγ [un(Z1, Z2, θ, x;h)]

)2 + 4Eγ [u∗n
2(Z1, θ, x;h)]

+ 4Eγ [u∗n(Z1, θ, x;h)u∗n(Z2, θ, x;h)]
)

.n(n− 1)Eγ
[∣∣un(Z1, Z2, θ, x;h)

∣∣]‖un‖∞ .
n2

h2d .

Now, the Bernstein-type inequality given in Lemma 3.2.4 and the monotonicity of exp
give for any fixed θ, x, h, γ and any ω > 0,

Pγ
(
|T 1
n(θ, x;h)| > ω

)
=Pγ

(∣∣∣∣ n∑
j,k=1
j 6=k

Un(Zj , Zk, θ, x;h)
∣∣∣∣ > n(n− 1)ω

)

≤T exp
(
− T−1 min

{
n(n− 1)ω

C
,

(
n(n− 1)ω

B

) 2
3

,

(
n(n− 1)ω

A

) 1
2
})

.T exp
(
− 1
T

min
{
n(n− 1)hdω

n
,

(
n(n− 1)h 3d

2 ω√
n

) 2
3

,
(
n(n− 1)h2dω

) 1
2

})
.T exp

(
− 1
T
nhd min

{
ω, ω

2
3 , ω

1
2
})

≤T exp
(
− 1
T
nhdω

)
1ω∈[0,1) + T exp

(
− 1
T
nhdω

1
2

)
1ω∈[1,∞) ,

where T > 0 is a universal constant. We will apply the estimate

E[|W |ρ] ≤
∫ ∞

0
ρωρ−1P(|W | > ω) dω ≤ aρ +

∫ ∞
a

ρωρ−1P(|W | > ω) dω , a > 0

to W = supx∈Jn,θ∈Θn |T
1
n(θ, x;h)|

(
nhd

logn
) 1

2 in order to obtain an estimate of the remainder
by

Eγ
[

sup
x∈Jn,θ∈Θn

|T 1
n(θ, x;h)|ρ

]
≤
( logn
nhd

) ρ
2
[
aρ +

∫ ∞
a

ρωρ−1Pγ
(

sup
x∈Jn,θ∈Θn

|T 1
n(θ, x;h)| >

( logn
nhd

) 1
2
ω
)

dω
]

≤
( logn
nhd

) ρ
2
[
aρ +

∫ ∞
a

ρωρ−1
∑

x∈Jn,θ∈Θn

Pγ
(
|T 1
n(θ, x;h)| >

( logn
nhd

) 1
2
ω
)

dω
]

≤
( logn
nhd

) ρ
2
[
aρ + CΘ,Jδ

−d−m
n

∫ ∞
a

ρωρ−1T exp
(
− 1
T
nhd

( logn
nhd

) 1
2
ω
)
1
ω∈
[
0,
(
nhd

logn

)1/2) dω

+ CΘ,Jδ
−d−m
n

∫ ∞
a

ρωρ−1T exp
(
− 1
T
nhd

( logn
nhd

) 1
4
ω

1
2

)
1
ω∈
[(

nhd

logn

)1/2
,∞
) dω

]
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.
( logn
nhd

) ρ
2
[
aρ + CΘ,Jδ

−d−m
n

∫ max
{(

nhd

logn

)1/2
,a
}

a

ρωρ−1T exp
(
− 1
T

log(n)ω
)

dω

+ CΘ,Jδ
−d−m
n

∫ ∞
max

{(
nhd

logn

)1/2
,a
} ρωρ−1T exp

(
− 1
T

log(n)ω 1
2

)
dω
]
, (5.1.23)

where we used

nhd
(

logn
nhd

) 1
2

=
(
nhd

logn

) 1
2

logn , nhd
(

logn
nhd

) 1
4

=
(
nhd

logn

) 3
4

logn

and the fact that supα
logn

nhn(α)d → 0 implies infα nhn(α)d ≥ logn for large enough n.

The integrals on the right-hand side of (5.1.23) are handled by the representation for the
incomplete rho integral, i.e. for l ∈ N, a > 0∫ ∞

a

ωl exp(−ω) dω = l! exp(−a)
l∑

k=0

ak

k! .

For a choice of a ≥ 1 that will be specified later on and l := dρ−1e, this and a substitution
yield

∫ max
{(

nhd

logn

)1/2
,a
}

a

ρωρ−1T exp
(
− T−1 log(n)ω

)
dω

≤
∫ ∞
a

ρωlT exp
(
− T−1 log(n)ω

)
dω

= ρ
T l+2

log(n)l+1

∫ ∞
T−1 log(n)a

ωl exp
(
− ω

)
dω

= ρ
T l+2l!

log(n)l+1

l∑
k=0

((
T−1 log(n)a

)k
k!

)
· exp(−T−1 log(n)a)

.
n−T

−1a

logn .

By using the transformation ω 7→ ω2T 2

log(n)2 , we get∫ ∞
max

{(
nhd

logn

) 1
2 ,a
} ρωρ−1T exp

(
− T−1 log(n)ω 1

2
)

dω

≤
∫ ∞

max
{(

nhd

logn

) 1
2 ,a
} ρωlT exp

(
− T−1 log(n)ω 1

2
)

dω

=
∫ ∞

max
{(

nhd

logn

) 1
4 ,a

1
2
}
T−1 logn

2ρT 2l+3

(logn)2l+2ω
2l+1 exp

(
− ω

)
dω
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= 2ρT 2l+3

(logn)2l+2 (2l + 1)!
2l+1∑
k=0

(
max

{(
nhd

logn
) 1

4 , a
1
2
}
T−1 logn

)k
k!

· exp
(
−max

{(
nhd

logn

) 1
4

, a
1
2

}
T−1 logn

)
.

1
lognb

2l+1
n n−T

−1bn

.n−c ,

where bn = max
{(

nhd

logn
) 1

4 , a
1
2
}

converges to∞ so that the last bound holds for any c > 0.

By choosing δn = n
−T−1a
d+m , a ≥ 1 so large that independently of α,

δρn
hn(α)(2d+1)ρ = n−

T−1aρ
d+m hn(α)−(2d+1)ρ .

(
logn
nhn(α)

) ρ
2

,

c > T−1a and using that supα
logn

nhn(α)d → 0 implies supα 1
hn(α)d . n

logn , we get

Eγ
[

sup
x∈J,θ∈Θ

|T 1
n(θ, x;h)|ρ

]
.

δρn
h(2d+1)ρ +

( logn
nhd

) ρ
2 +

( logn
nhd

) 1
2
δ−d−mn

(
n−T

−1a

logn + n−c
)

.
( logn
nhd

) ρ
2 +

( logn
nhd

) ρ
2 · 1

logn

.
( logn
nhd

) ρ
2
,

concluding the considerations of supx∈J,θ∈Θ |T 1
n(θ, x;h)|ρ.

Proofs for Section 3.2.3

Proof of Lemma 3.2.9. We have to show that for any CLep > C−, we have

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃lj <∞

with

p̃lj =Pγ
(

sup
x∈J,θ∈Θ

‖Tn(θ, x;hj)‖ > ψ(CLep)rl
)

=Pγ
(

sup
x∈J,θ∈Θ

‖Tn(θ, x;hj)‖ > ψ(CLep)hαll
)
, (5.1.24)

where for abbreviation, we define the function ψ :
[
c−1
1 (c2 +1),∞

)
→ [1,∞), ψ(CLep) :=

c1CLep − c2 and note that ψ grows linearly in CLep.
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We will deal with the term (5.1.24) by using a discretization approach similar to the one
in the proof of Theorem 3.2.5. According to Lemma 5.1.1 with ρ = 1, for any sequence
δn → 0, there are nets Θn × Jn ⊂ Θ× J with

sup
x∈J

inf
y∈Jn

‖x− y‖ < δn , sup
ϑ∈Θ

inf
θ∈Θn

‖ϑ− θ‖ < δn , #(Θn × Jn) ≤ CΘ,Jδ
−d−m
n ,

where CΘ,J is independent of n. Furthermore, for any h > 0,

sup
x∈J,θ∈Θ

‖Tn(θ, x;h)‖

≤ sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

‖Tn(θ, x;h)− Tn(ϑ, y;h)‖+ sup
x∈Jn,θ∈Θn

‖Tn(θ, x;h)‖ . (5.1.25)

The sequence δn will be specified later on in order to balance convergence rates. Now
we may handle (5.1.24) by

Pγ
(

sup
x∈J,θ∈Θ

‖Tn(θ, x;hj)‖ > ψ(CLep)hαll
)

≤Pγ
(

sup
x∈Jn,θ∈Θn

‖Tn(θ, x;hj)‖ > ψ(CLep)hαll /2
)

(5.1.26)

+ Pγ

(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

‖Tn(θ, x;hj)− Tn(ϑ, y;hj)‖ > ψ(CLep)hαll /2
)

(5.1.27)

according to (5.1.25). The term (5.1.26) can by handled by (3.2.15), i.e.

Pγ
(

sup
x∈Jn,θ∈Θn

‖Tn(θ, x;hj)‖ > ψ(CLep)hαll /2
)

≤
∑

x∈Jn,θ∈Θn

Pγ
(
‖Tn(θ, x;hj)‖ > ψ(CLep)hαll /2

)
≤CΘ,Jδ

−d−m
n 2 exp

(
− 1

4
ψ2(CLep)h2αl

l nhdj
C1 + C2ψ(CLep)hαll

)
. (5.1.28)

Now, by using C1 + C2ψ(CLep) ≤ 2 max{C1, C2}ψ(CLep), supα∈[a,b],n∈N h(α) ≤ 1, hl =( logn
n

) 1
2αl+d and the fact that hj ≥ hl, we deduce

(5.1.28) ≤CΘ,Jδ
−d−m
n 2 exp

(
−
ψ(CLep)h2αl

l nhdj
8 max{C1, C2}

)
≤CΘ,Jδ

−d−m
n 2 exp

(
−
ψ(CLep)nh2αl+d

l

8 max{C1, C2}

)
=2CΘ,Jδ

−d−m
n n

−
ψ(CLep)

8 max{C1,C2} . (5.1.29)

The term (5.1.27) is handled by arguments similar to the ones found in the proof of
Theorem 3.2.5. Using Markov’s inequality, hj ≥ hl and the arguments used to treat
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(5.1.9)-(5.1.12) for ρ = 1 that showed that the expectation in the following display is
O(δnh−d−1

j ), we deduce that there is a constant C̃ so that

lim sup
n→∞

sup
∗
δ−1
n h

αl+d+1
l Pγ

(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∥∥Tn(θ, x;hj)− Tn(ϑ, y;hj)
∥∥ > ψ(CLep)hαll /2

)

≤ lim sup
n→∞

sup
∗

2δ−1
n hd+1

j

ψ(CLep) Eγ
[

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∥∥Tn(θ, x;hj)− Tn(ϑ, y;hj)
∥∥] < C̃ <∞ , (5.1.30)

where the suprema are taken over α ∈ [a, b], γ ∈ Γ(α), 0 ≤ l ≤ j ≤ kn(α). Combining
(5.1.29) and (5.1.30) yields

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃lj

≤ lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

2CΘ,J n
u(CLep)δ−d−mn n

−
ψ(CLep)

8 max{C1,C2} (5.1.31)

+ lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

C̃ nu(CLep)δnh
−αl−d−1
l , (5.1.32)

which will be finite by choosing

δn = δn(CLep) = n
−

ψ(CLep)
16 max{C1,C2}(d+m) = n

−
c1CLep−c2

16 max{C1,C2}(d+m) .

In order to treat (5.1.31), we see that

logn
(
nu(CLep)δ−d−mn n

−
ψ(CLep)

8 max{C1,C2}

)
= c1CLep − c2

32 max{C1, C2}(d+m) + c1CLep − c2
16 max{C1, C2}

− c1CLep − c2
8 max{C1, C2}

= −
(
2(d+m)− 1

)
·
(
c1CLep − c2

)
32 max{C1, C2}(d+m)

≤ −
(
2(d+m)− 1

)
·
(
c1C− − c2

)
32 max{C1, C2}(d+m)

≤− 1

because

C− ≥ c−1
1

[
c2 + 32 max{C1, C2}(d+m)

2(d+m)− 1

]
.

Hence, for all CLep ≥ C−, we have

(5.1.31) = lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

2CΘ,J n
u(CLep)δ−d−mn n

−
ψ(CLep)

8 max{C1,C2}

≤ lim sup
n→∞

n−1 = 0 .
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Ad (5.1.32). Because

h−αl−d−1
l =

(
n

logn

)αl+d+1
2αl+d

≤ n
b+d+1
2a+d ,

we have

logn
(
nu(CLep)δnh

−αl−d−1
l

)
≤ c1CLep − c2

32 max{C1, C2}(d+m) −
c1CLep − c2

16 max{C1, C2}(d+m) + b+ d+ 1
2a+ d

= − c1CLep − c2
32 max{C1, C2}(d+m) + b+ d+ 1

2a+ d

≤ − c1C− − c2
32 max{C1, C2}(d+m) + b+ d+ 1

2a+ d

≤ − 1

because

C− ≥ c−1
1

[
c2 +

(
b+ d+ 1

2a+ d
+ 1
)

32 max{C1, C2}(d+m)
]
.

Hence, for all CLep ≥ C−, we have

(5.1.32) = lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

C̃ nu(CLep)δnh
−αl−d−1
l

≤ lim sup
n→∞

n−1 = 0 ,

concluding the proof.

Proof of Lemma 3.2.10. The general scheme of this proof coincides with the one of
Lemma 3.2.9. We have to prove that for any CLep ≥ C−, we have

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃lj <∞ ,

where

p̃lj =Pγ
(

sup
x∈J,θ∈Θ

‖Tn(θ, x;hj)‖ > ψ(CLep)rl
)
,

where for abbreviation, we define the function ψ : [c̃−1
1 (c̃2 + 4),∞)→ [4,∞), ψ(CLep) :=

c̃1CLep− c̃2 and note that ψ grows linearly in CLep. Let us use the decomposition of the
process Tn into a canonical U-statistic T 1

n and a linear process T 2
n as described in (3.2.6)

- (3.2.10), i.e.

Tn(θ, x;h) =T 1
n(θ, x;h) + T 2

n(θ, x;h)
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= 1
n(n− 1)

n∑
j,k=1
j 6=k

Un
(
Zj , Zk, θ, x;h

)

+ 2
n

n∑
j=1

u∗n(Zj , θ, x;h)− Eγ [un(Z1, Z2, θ, x;h)] ,

where for z = (z1, z
T
2 )T , y = (y1, y

T
2 )T ∈ R× J

Un(z, y, θ, x;h) =un(z, y, θ, x;h)− u∗n(z, θ, x;h)− u∗n(y, θ, x;h)
+ Eγ [un(Z1, Z2, θ, x;h)] ,

un(z, y, θ, x;h) = ∂θτ(z1, y1, θ)Kh(z2 − x)Kh(y2 − x) ,
u∗n(z, θ, x;h) =Eγ [un(Z1, z, θ, x;h)] = Eγ

[
∂θτ(z1, Y1, θ)Kh(X1 − x)

]
·Kh(z2 − x).

This decomposition yields

p̃lj =Pγ
(

sup
x∈J,θ∈Θ

‖Tn(θ, x;hj)‖ > ψ(CLep)rl
)

≤Pγ
(

sup
x∈J,θ∈Θ

‖T 1
n(θ, x;hj)‖ > ψ(CLep)rl/2

)
+ Pγ

(
sup

x∈J,θ∈Θ
‖T 2

n(θ, x;hj)‖ > ψ(CLep)rl/2
)

=: p̃1
lj + p̃2

lj . (5.1.33)

The assumptions of Theorem 3.2.7 imply all assumptions of Theorem 3.2.5 for the linear
process T 2

n , particularly the exponential deviation inequality

Pγ
(∥∥T 2

n(θ, x;h)
∥∥ ≥ t) ≤ 2 exp

(
− t2nhd

C1 + C2t

)
, t > 0 ,

so that Lemma 3.2.9 with c1 = c̃1/2, c2 = c̃2/2 gives

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃2
lj <∞ .

We will deal with the term p̃1
lj defined in (5.1.33) by using a discretization approach once

again. According to Lemma 5.1.1 with ρ = 1, for any sequence δn → 0, there are nets
Θn × Jn ⊂ Θ× J with

sup
x∈J

inf
y∈Jn

‖x− y‖ < δn , sup
ϑ∈Θ

inf
θ∈Θn

‖ϑ− θ‖ < δn , #(Θn × Jn) ≤ CΘ,Jδ
−d−m
n ,

where CΘ,J is independent of n. Furthermore, for any h > 0,

sup
x∈J,θ∈Θ

‖T 1
n(θ, x;h)‖

≤ sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

‖T 1
n(θ, x;h)− T 1

n(ϑ, y;h)‖+ sup
x∈Jn,θ∈Θn

‖T 1
n(θ, x;h)‖ . (5.1.34)
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The sequence δn will be specified later on in order to balance convergence rates. Now
we may handle p̃1

lj by

Pγ
(

sup
x∈J,θ∈Θ

‖T 1
n(θ, x;hj)‖ > ψ(CLep)hαll /2

)
≤Pγ

(
sup

x∈Jn,θ∈Θn
‖T 1

n(θ, x;hj)‖ > ψ(CLep)hαll /4
)

(5.1.35)

+ Pγ

(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

‖T 1
n(θ, x;hj)− T 1

n(ϑ, y;hj)‖ > ψ(CLep)hαll /4
)

(5.1.36)

according to (5.1.34). The term (5.1.35) can by handled by Bernstein’s inequality for
U-statistics, cf. Lemma 3.2.4, just like we did in the proof of Theorem 3.2.7 and the fact
that hj ≥ hl, i.e.

Pγ
(

sup
x∈Jn,θ∈Θn

‖T 1
n(θ, x;hj)‖ > ψ(CLep)hαll /4

)
≤

∑
x∈Jn,θ∈Θn

Pγ
(
‖T 1

n(θ, x;hj)‖ > ψ(CLep)hαll /4
)

≤
∑

x∈Jn,θ∈Θn

Pγ
(
‖Un(Z1, Z2, θ, x;hj)‖ > n(n− 1)ψ(CLep)hαll /4

)
≤CΘ,Jδ

−d−m
n

{
T exp

(
− T−1nhdjψ(CLep)hαll /4

)
1ψ(CLep)hαl

l
/4∈[0,1)

+ T exp
(
− T−1nhdj

√
ψ(CLep)hαll /4

)
1ψ(CLep)hαl

l
/4∈[1,∞)

}
≤CΘ,Jδ

−d−m
n

{
T exp

(
− T−1nψ(CLep)hαl+dl /4

)
1ψ(CLep)hαl

l
/4∈[0,1)

+ T exp
(
− T−1n

√
ψ(CLep)hαl/2+d

l /2
)
1ψ(CLep)hαl

l
/4∈[1,∞)

}
. (5.1.37)

By using hl =
( logn

n

) 1
2αl+d , we get that

nh
αl/2+d
l ≥ nhαl+dl =n

( logn
n

) αl+d
2αl+d ≥ n logn

n
= logn

yielding

(5.1.37) ≤CΘ,JTδ
−d−m
n

(
n−T

−1ψ(CLep)/4 + n−T
−1
√
ψ(CLep)/2

)
≤2CΘ,JTδ

−d−m
n n−T

−1
√
ψ(CLep)/2 , (5.1.38)

because ψ(CLep) ≥ 4. The term (5.1.36) is handled by arguments similar to the ones
found in the proof of Theorem 3.2.7. Using Markov’s inequality, hj ≥ hl and the argu-
ments used to treat (5.1.20) - (5.1.22) for ρ = 1 that showed that the expectation in the
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following display is O(δnh−2d−1
j ), we deduce that there is a constant C̃ so that

lim sup
n→∞

sup
∗
δ−1
n h

αl+2d+1
l Pγ

(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∥∥T 1
n(θ, x;hj)− T 1

n(ϑ, y;hj)
∥∥ > ψ(CLep)hαll /4

)

≤ lim sup
n→∞

sup
∗

4δ−1
n h2d+1

j

ψ(CLep) Eγ
[

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∥∥T 1
n(θ, x;hj)− T 1

n(ϑ, y;hj)
∥∥] < C̃ <∞ ,

(5.1.39)

where the suprema are taken over α ∈ [a, b], γ ∈ Γ(α), 0 ≤ l ≤ j ≤ kn(α).

Combining (5.1.38) and (5.1.39) yields

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃1
lj

≤ lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

2CΘ,JT n
u(CLep)δ−d−mn n−T

−1
√
ψ(CLep)/2 (5.1.40)

+ lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

C̃ nu(CLep)δnh
−αl−2d−1
l , (5.1.41)

which will be finite by choosing

δn = δn(CLep) = n−
T−1
√
ψ(CLep)

4(d+m) = n−
T−1√c̃1CLep−c̃2

4(d+m) .

In order to treat (5.1.40), we see that

logn
(
nu(CLep)δ−d−mn n−T

−1
√
ψ(CLep)/2

)
≤
T−1√ψ(CLep)

8(d+m) +
T−1√ψ(CLep)

4 −
T−1√ψ(CLep)

2

=−
(
2(d+m)− 1

)
T−1√ψ(CLep)

8(d+m)

≤−
(
2(d+m)− 1

)
T−1√c̃1C− − c̃2

8(d+m)
≤− 1

because

C− ≥ c̃−1
1

[
c̃2 + T 2

(
8(d+m)

2(d+m)− 1

)2]
.

Hence, for all CLep ≥ C−, we have

(5.1.40) = lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

2CΘ,JT n
u(CLep)δ−d−mn n−T

−1
√
ψ(CLep)/2
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≤ lim sup
n→∞

n−1 = 0

Ad (5.1.41). Because

h−αl−2d−1
l =

(
n

logn

)αl+2d+1
2αl+d

≤ n
b+2d+1
2a+d ,

we have

logn
(
nu(CLep)δnh

−αl−2d−1
l

)
≤
T−1√ψ(CLep)

8(d+m) −
T−1√ψ(CLep)

4(d+m) + b+ 2d+ 1
2a+ d

= −
T−1√ψ(CLep)

8(d+m) + b+ 2d+ 1
2a+ d

≤ −
T−1√c̃1C− − c̃2

8(d+m) + b+ 2d+ 1
2a+ d

≤ − 1

because

C− ≥ c̃−1
1

[
c̃2 + 64T 2(d+m)2

(
b+ 2d+ 1

2a+ d
+ 1
)2]

.

Hence, for all CLep ≥ C−, we have

(5.1.41) = lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

C̃ nu(CLep)δnh
−αl−2d−1
l

≤ lim sup
n→∞

n−1 = 0 ,

concluding the proof.

5.2 Proofs for Section 4.1
5.2.1 Proofs for the identifiability results
Proof of Theorem 4.1.2. Assume there is another representation

f(·|x) =
V∑
v=1

λv(x)φ
(
·
∣∣νv(x), δ2

v(x)
)
, x ∈ O

with m ≥ V ≥ 2, continuous functions λ1, . . . , λV > 0 and differentiable functions
ν1, . . . , νV , δ1, . . . , δV .
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Let
S :=

{
x ∈ O :

(
µc(x), σc(x)

)
=
(
µc′(x), σc′(x)

)
, for some c 6= c′} .

First of all, for any u ∈ O with (µc(u), σc(u)) 6= (µc′(u), σc′(u)) for all c, c′ ∈ {1, . . . ,m},
c 6= c′, Teicher (1963, Proposition 1) gives m = V and a permutation τu so that

λτu(c)(u) = πc(u) , ντu(c)(u) = µc(u) , δτu(c)(u) = σc(u) .

Fix some x ∈ Sc. By continuity of the parameter curves µc, σc and Sc being open, there
is a neighbourhood U ⊂ Sc of x so that for all u, u′ ∈ U , c, c′ ∈ {1, . . . ,m}, c 6= c′(

µc(u), σc(u)
)
6=
(
µc′(u′), σc′(u′)

)
.

Hence, τu = τx for all u ∈ U by continuity of the νc and δc, c = 1, . . . ,m. As Sc is open,
we get that for every connected component U ′ of Sc there is a permutation τ fulfilling
(4.1.1) for all u ∈ U ′.

Now, fix any x ∈ S. There is some r ∈ {1, . . . , (m− 1)!} and c1 6= c′1, . . . , cr 6= c′r so that
for any j ∈ {1, . . . , r}(

µcj (x), σcj (x)
)

=
(
µc′

j
(x), σc′

j
(x)
)
, Dj(x) := Dcj ,c

′
j (x) ≤ d− 1

and that for all other pairs c 6= c′, we have(
µc(x), σc(x)

)
6=
(
µc′(x), σc′(x)

)
, (5.2.1)

where

Dc,c′(x) := max
{
k ∈ {1, . . . , d}|∃ z1, . . . , zk ∈ Rd, ‖zi‖ = 1, zi linearly independent :

∀i ∈ {1, . . . , k} ∂ziµc(x) = ∂ziµc′(x) , ∂ziσc(x) = ∂ziσc′(x)
}
.

According to our assumptions, for any j ∈ {1, . . . , r} there are linearly independent
vectors xj1, . . . , x

j
Dj(x) so that for all s ∈ {1, . . . , Dj(x)}

∂xjs

(
µcj (x), σcj (x)

)
= ∂xjs

(
µc′

j
(x), σc′

j
(x)
)

and for any directional vector z ∈ Aj := {z ∈ Rd| ‖z‖ = 1}\span{xj1, . . . , x
j
Dj(x)}

∂z
(
µcj (x), σcj (x)

)
6= ∂z

(
µc′

j
(x), σc′

j
(x)
)
.

Now, as for any j ∈ {1, . . . , r} we have dim
(
span{xj1, . . . , x

j
Dj(x)}

)
≤ d − 1, it follows

that

A :=
r⋂
j=1

Aj 6= ∅ .
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Hence, for any z ∈ A and any j ∈ {1, . . . , r}

∂z
(
µcj (x), σcj (x)

)
6= ∂z

(
µc′

j
(x), σc′

j
(x)
)
. (5.2.2)

Fix any z ∈ A. By continuity of the curves and (5.2.2), there is an ε(z) > 0 so that for
any y ∈ (x− ε(z)z, x+ ε(z)z)\{x}, j ∈ {1, . . . , r}, we have(

µcj (y), σcj (y)
)
6=
(
µc′

j
(y), σc′

j
(y)
)
.

Again by continuity of the parameter functions and by (5.2.1), for any other pair c 6= c′,
there is an εc,c

′
> 0 so that for any y ∈ (x− εc,c′z, x+ εc,c

′
z)\{x}, we have(

µc(y), σc(y)
)
6=
(
µc′(y), σc′(y)

)
.

By choosing ε > 0 minimal, we get that(
(x− εz, x+ εz)\{x}

)
∩ S = ∅ .

According to our prior observations, there are permutations τ+, τ− so that for all c =
1, . . . ,m

ντ−(c)(u) = µc(u) , δτ−(c)(u) = σc(u) , u ∈ (x− εz, x) ,
ντ+(c)(u) = µc(u) , δτ+(c)(u) = σc(u) , u ∈ (x, x+ εz) .

Hence, for any c ∈ {1, . . . ,m}, u ∈ (x− εz, x+ εz)\{x}, we have

νc(u) =µτ−1
− (c)(u)1u∈(x−εz,x) + µτ−1

+ (c)(u)1u∈(x,x+εz)

δc(u) =στ−1
− (c)(u)1u∈(x−εz,x) + στ−1

+ (c)(u)1u∈(x,x+εz)

By continuity of the parameter functions νc and δc, we have

lim
η→0

(
µτ−1
− (c)(x− ηz), στ−1

− (c)(x− ηz)
)

= lim
η→0

(
νc(x− ηz), δc(x− ηz)

)
= lim
η→0

(
νc(x+ ηz), δc(x+ ηz)

)
= lim
η→0

(
µτ−1

+ (c)(x+ ηz), στ−1
+ (c)(x+ ηz)

)
so that (

µτ−1
− (c)(x), στ−1

− (c)(x)
)

=
(
µτ−1

+ (c)(x), στ−1
+ (c)(x)

)
.

So either, τ−1
+ (c) = τ−1

− (c) or(
∂zµτ−1

− (c)(x), ∂zστ−1
− (c)(x)

)
6=
(
∂zµτ−1

+ (c)(x), ∂zστ−1
+ (c)(x)

)
,

a contradiction to the differentiability of the parameter functions νc and δc, as it implies

lim
η→0

µτ−1
− (c)(x− ηz)− µτ−1

− (c)(x)

η
= lim
η→0

νc(x− ηz)− νc(x)
η
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= lim
η→0

νc(x+ ηz)− νc(x)
η

= lim
η→0

µτ−1
+ (c)(x+ ηz)− µτ−1

+ (c)(x)
η

,

lim
η→0

στ−1
− (c)(x− ηz)− στ−1

− (c)(x)

η
= lim
η→0

δc(x− ηz)− δc(x)
η

= lim
η→0

δc(x+ ηz)− δc(x)
η

= lim
η→0

στ−1
+ (c)(x+ ηz)− στ−1

+ (c)(x)
η

.

Hence, τ+ = τ−, completing the proof.

The proof of Theorem 4.1.3 is an easier version of the one for Theorem 4.1.2.

Proof of Theorem 4.1.3. Assume there is another representation

f(·|x) =
V∑
v=1

λv(x)φ
(
·
∣∣νv(x), δ2

v(x)
)
, x ∈ I

with m ≥ V ≥ 2, positive functions λ1, . . . , λV and continuous functions ν1, . . . , νV ,
δ1, . . . , δV .

Like before, we see that for any x ∈ I there is a neighbourhood U of x within the compact
space I so that there is a permutation τ fulfilling (4.1.1) for all u ∈ U . This concludes the
proof as there are at most countably many disjoint open intervals on the path between
any two points x, x′ ∈ I.

5.2.2 Proofs for the estimation results
In order to prove both Theorems 4.1.6 and 4.1.8, it is enough to prove Assumptions
(B1) - (B9) according to Theorems 3.1.6 and 3.1.13. The complete proof is given by
the assembly of the lemmata and proofs in this section.

Fix some bounded and convex open Θ ⊂ Ξ ⊂ R3m−1 so that

Ξ = Λm × [µ−, µ+]m × [σ−, σ+]m ,

where

Λm =
{

(π1, . . . , πm−1) ∈ [π−, π+]m−1
∣∣∣1−∑m−1

c=1 πc ∈ [π−, π+]
}

(5.2.3)

for some
0 < π− < 1/m < π+ < 1 , µ− < µ+ , 0 < σ− < σ+ <∞ .
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Note that for fixed x, γ, h the contrast functions M(·, x; γ) and Mn(·, x;h) are defined
on X = Sm×Rm× (0,∞)m, which is a superset of Ξ. The model is identifiable over Ξ up
to relabeling and the contrast property of M also holds over Ξ because it was established
over Sm × Rm × (0,∞)m as briefly discussed in Section 4.1.2.

Throughout the proofs in this section, let us use the notation an . bn only if an ≤ Cbn
for n ≥ n0 and C depends only on I, Ξ, U , Uπ, Uµ, Uσ, U`, L, [a, b] or is universal. In
particular, the constant C then is independent of specific θ, x, h, α or γ.

Auxiliary results

Remark 5.2.1. We will deal with second-order derivatives of the log-likelihood function.
Therefore, let us differentiate g twice. By minding the dependence πm = 1− π1 − · · · −
πm−1, we see that for any t1, t2 ∈ {π1, . . . , πm−1, σ1, . . . , σm, µ1, . . . , µm}, we have

∂t1g(y; θ) = ∂t1fmix(y; θ)
fmix(y; θ)

∂t1∂t2g(y; θ) = ∂t1∂t2fmix(y; θ)
fmix(y; θ) −

(
∂t1fmix(y; θ)

)(
∂t2fmix(y; θ)

)
f2

mix(y; θ) ,

where for any c, c′ ∈ {1, . . . ,m}, c̃, c̃′ ∈ {1, . . . ,m− 1}, y ∈ R, θ ∈ Ξ,

fmix(y; θ) =
m∑
c=1

πcφ(y|µc, σ2
c ) ,

∂πc̃fmix(y; θ) =φ(y|µc̃, σ2
c̃ )− φ(y|µm, σ2

m) ,
∂µcfmix(y; θ) =πc(µc − y)σ−2

c φ(y|µc, σ2
c ) ,

∂σcfmix(y; θ) =πc
(
(y − µc)2 − σ2

c

)
σ−3
c φ(y|µc, σ2

c ) ,
∂πc̃∂πc̃′ fmix(y; θ) = 0 ,
∂µc∂πc̃′ fmix(y; θ) =1c=c̃′∂µcφ(y|µc, σ2

c )− 1c=m∂µmφ(y|µm, σ2
m) ,

=
(
1c=c̃′ − 1c=m

)
· (µc − y)σ−2

c φ(y|µc, σ2
c ) ,

∂σc∂πc̃′ fmix(y; θ) =1c=c̃′∂σcφ(y|µc, σ2
c )− 1c=m∂σmφ(y|µm, σ2

m)

=
(
1c=c̃′ − 1c=m

)
·
(
(y − µc)2 − σ2

c

)
σ−3φ(y|µc, σ2

c )

∂µc∂µc′ fmix(y; θ) =1c=c′

{({
πc(µc − y)σ−2

c

}2 + πcσ
−2
c

)
φ(y|µc, σ2

c )
}
,

∂σc∂µc′ fmix(y; θ) =1c=c′

{([(
πc(µc − y)

)
σ−2
c

][
πc
(
(y − µc)2 − σ2

c

)
σ−3
c

]
− 2πc(µc − y)σ−3

c

)
φ(y|µc, σ2

c )
}
,

∂σc∂σc′ fmix(y; θ) =1c=c′

{(
πcσ

2
c + πc(y − µc)σc − σ3

c − πc(y − µc)
)
σ−4
c φ(y|µc, σ2

c )
}
.
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Let us start with some auxiliary results that are proved in Section 5.2.3. The following
lemma gives integrability of the log-likelihood function and its derivatives with respect
to the model mixture densities.

Lemma 5.2.2. Under Assumption (N1), for any ρ ∈ [1,∞) and any function τ ∈
{g, ∂t1g, ∂t1∂t2g}, where t1, t2 ∈ {π1, . . . , πm−1, σ1, . . . , σm, µ1, . . . , µm}, we have

sup
γ∈Γ

∫ (
sup
θ∈Ξ

∣∣τ(y; θ)
∣∣)ρ sup

x∈I
f
θ∗(·)
Y |X (y|x) dy <∞ , (5.2.4)∫ (

sup
θ∈Ξ

∣∣τ(y; θ)
∣∣)ρ sup

ϑ∈Ξ
fmix(y;ϑ) dy <∞ . (5.2.5)

Additionally, for any normal density φ(·|0, s2), we have∫ (
sup
θ∈Ξ

∣∣τ(y; θ)
∣∣)ρφ(y|0, s2) dy <∞ . (5.2.6)

The following lemma gives Lipschitz continuity of the mixture density and derivatives of
the log-likelihood in θ with integrable Lipschitz constant.

Lemma 5.2.3. Let Assumption (N1) hold.

(i) For any θ, θ̃ ∈ Ξ, we have

|fmix(y; θ)− fmix(y; θ̃)| ≤fΞ(y; θ, θ̃)‖θ − θ̃‖1 ,

where fΞ is a non-negative function so that

sup
θ,θ̃∈Ξ

fΞ(·; θ, θ̃) ≤ c∗φ(·|0, s2
∗)

for some constants 0 < c∗, s∗ <∞.

(ii) Let 0 < a ≤ b < ∞. There is a constant L∗ depending only on I, Ξ, a, b and the
Hölder constant L so that for any α ∈ [a, b], 1 > δ > 0

sup
x,x′∈I
‖x−x′‖≤δ

|fθ∗(·)Y |X (y|x)− fθ∗(·)Y |X (y|x′)| ≤ sup
θ,θ̃∈Ξ

fΞ(·; θ, θ̃)L∗δmin{1,α} ,

where fΞ is defined in (i).

(iii) For any functions τ ∈ {∂t1g, ∂t1∂t2g}, where t1, t2 ∈ {π1, . . . , πm−1, µ1, . . . , µm,
σ1, . . . , σm} and any y ∈ R, θ, θ̃ ∈ Ξ, we have∣∣τ(y; θ)− τ(y; θ̃)

∣∣ ≤ fτ (y; θ, θ̃)‖θ − θ̃‖ ,

where fτ is a non-negative function so that F ρ(·; Ξ) := supθ,θ̃∈Ξ,τ f
ρ
τ (·; θ, θ̃) is in-

tegrable with respect to supθ∈Ξ fmix(y; θ) for every ρ ≥ 1.
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Lemma 5.2.4. Let 0 < a ≤ b < ∞ and (hn(α))n∈N for α ∈ [a, b] be sequences of
bandwidth parameters so that

sup
α∈[a,b]

hn(α) , sup
α∈[a,b]

logn
nhn(α)d → 0 .

Under Assumption (N1), for any compact J ⊂ int(I) and any function

τ ∈ {g, ∂πcg, ∂µcg, ∂σcg} ,

we have that

sup
α∈[a,b]

sup
γ∈Γ(a)

nhn(α)d sup
x∈J,θ∈Ξ

Varγ
(

1
n

n∑
k=1

τ(Yk; θ)Kh(Xk − x)
)

= O(1) .

The following lemma gives an exponential deviation inequality for the empirical contrast’s
gradient.

Lemma 5.2.5. Under Assumption 4.1.4, for any compact J ⊂ int(I), there are constants
C1, C2 > 0 independent of n, h, θ, x, γ so that for any t ∈ {π1, . . . , πm−1, µ1, . . . , µm,
σ1, . . . , σm}, θ ∈ Ξ, x ∈ J , h > 0, we have

Pγ
(∣∣∣∂tMn(θ, x;h)− Eγ

[
∂tMn(θ, x;h)

]∣∣∣ ≥ ω) ≤ 2 exp
(
− ω2nhd(

C1 + C2ω
)) , ω > 0 .

Main proofs

Let us first prove that the polytope

Λm =
{

(π1, . . . , πm−1) ∈ [π−, π+]m−1
∣∣∣1−∑m−1

c=1 πc ∈ [π−, π+]
}

as defined in (5.2.3), fulfils the latter part of Assumption (B1) for any 0 < π− < 1/m <
π+ < 1, which in particular implies this property for

Θ =
{

(π1, . . . , πm−1) ∈ Um−1
π

∣∣∣1−∑m−1
c=1 πc ∈ Uπ

}
× Umµ × Umσ ,

as Uπ, Uµ, Uσ are compact intervals with 1/m ∈ int(Uπ) by Assumption (N1).

Lemma 5.2.6.

(i) For every λ0 ∈ ∂ Λm and any ε > 0, there are some 1 ≤ l ≤ m−1, λ1, . . . , λl ∈ Λm
so that

λk+1 − λk = ckejk , k = 0, . . . , l − 1 , λl ∈ int(Λm)

for some unit vectors ejk and some coefficients ck ∈ R with
∑l−1
k=0 |ck| ≤ ε.
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(ii) For every λ0, λ
′ ∈ Λm, λ0 6= λ′, there is some l ∈ N, λ1, . . . , λl ∈ Λm so that with

λl+1 = λ′, we have

λk+1 − λk = ckejk , k = 0, . . . , l ,

for some unit vectors ejk and some coefficients ck ∈ R with

l∑
k=0
|ck| ≤ (2m− 1)‖λ0 − λ′‖1 .

Proof. (i) Denote λ0 = (π1, . . . , πm−1)T . As λ0 ∈ ∂ Λm, it holds that

‖λ0‖1 =
m−1∑
c=1

πc ∈ {1− π+, 1− π−} ∨ ∃ c ∈ {1, . . . ,m− 1} : πc ∈ {π−, π+} .

We will distinguish between the cases

(1) ‖λ0‖1 = 1− π+ , (2) ‖λ0‖1 = 1− π− , (3) ‖λ0‖1 ∈ (1− π+, 1− π−) .

We first show that cases (1) and (2) can be reduced to case (3). This is because for vec-
tors λ0 fulfilling (1), there needs to be a component πc that can be increased by a small
amount without leaving Λm, resulting in a vector fulfilling (3). The reduction from (2) to
(3) works analogously. In case λ0 fulfils (3), sufficiently small changes to the components
of λ0 that are either π− or π+ results in a vector λl with ‖λl‖1 ∈ (1 − π+, 1 − π−) and
components in (π−, π+).

Let us prove this rigorously. First show the reduction from (1) to (3). Assume ‖λ0‖1 =
1− π−. Then, there is some c ∈ {1, . . . ,m− 1} so that πc > π−. Because otherwise we
would have

1− π− = ‖λ0‖1 = (m− 1)π− ,

a contradiction as π− < 1/m. Define

ξc = −min
{
ε

2 ,
πc − π−

2

}
ec

for the c-th unit vector ec ∈ Rm−1. Then, the vector

λ1 = λ0 + ξc ∈ Λm

fulfils
1− π+ < ‖λ1‖1 < 1− π− , ‖λ1 − λ0‖1 = ‖ξc‖1 ≤ ε/2.

Let us consider case (3), i.e. ‖λ0‖1 ∈ (1− π+, 1− π−).
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Define π̄ = π−+π+
2 , the sets

J1 =
{
c ∈ {1, . . . ,m− 1} : πc ≥ π̄

}
,

J2 =J c1 ,
Ji = #Ji i = 1, 2

and set 1/Ji = 0 for Ji = 0, i = 1, 2. Furthermore, define

ε̄ = min
{
‖λ0‖1 − (1− π+)

2 ,
1− π− − ‖λ0‖1

2

}
and subsequently the step width by

εi = 1
Ji

min
{
ε/2, ε̄

}
, i = 1, 2 .

The directional vectors are defined by

ξc =
( 2∑
i=1

(−1)iεi1c∈Ji
)
ec

for the c-th unit vector ec ∈ Rm−1. Then, the vectors

λk = λ0 +
k∑
c=1

ξc , k = 1, . . . ,m− 1

fulfil the postulated properties as

λk ∈ Λm , k = 1, . . . ,m− 1 , λm−1 ∈ int(Λm) ,
m−2∑
k=0
‖λk+1 − λk‖1 ≤ ε .

(ii) First note that for λ0, λ
′ ∈ ∂ Λm, (i) gives appropriate finite sequences of line segments

within Λm from λ0, λ
′ to vectors λ̄0, λ̄′ ∈ int(Λm) with lengths of at most ε = ‖λ0−λ′‖1

2 .
In particular, we have

‖λ̄0 − λ̄′‖1 ≤ ‖λ̄0 − λ0‖1 + ‖λ0 − λ′‖1 + ‖λ′ − λ̄′‖1 ≤ 2‖λ0 − λ′‖1 .

This means, it is enough to show that for λ0, λ
′ ∈ int(Λm), there are λ1, . . . , λl ∈ int(Λm)

so that with λl+1 = λ′, we have

λk+1 − λk = ckejk , k = 0, . . . , l ,

for some unit vectors ejk and some coefficients ck ∈ R with
∑l
k=0 |ck| ≤ (m−1)‖λ0−λ′‖1.

Therefore, deduce that there is some ε > 0 so that the closed ε-neighbourhoodBε([λ0, λ
′])

of the line segment [λ0, λ
′] is a subset of int(Λm). This is because int(Λm) is open and

convex. Indeed, let ε > 0 so that Bε(λ0), Bε(λ′) ⊂ int(Λm). Then, any

v ∈ Bε
(
[λ0, λ

′]
)

=
{
pλ0 + (1− p)λ′ + z : p ∈ [0, 1], z ∈ Rm−1, ‖z‖∞ ≤ ε

}
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must be an element of the line segment [λ0 + z, λ′ + z] ⊂ int(Λm) for a proper choice
of z by convexity of int(Λm). This already proves the result by deducing that one can
make appropriate changes of a length smaller than ε in single components of λ0 without
leaving the neighbourhood Bε

(
[λ0, λ

′]
)

so that after at most m − 1 steps, the resulting
vector again lies in the line segment.

The following lemma gives the conditions that are easy to verify.

Lemma 5.2.7. Under Assumptions (N1), (N2) and (Ñ3), Conditions (B1), (B2),
(B3) and (B6) are fulfilled. In particular, the constant C̄ in (B1) is given by C̄ =
4m− 1.

Proof. Prove (B1). The compactness of Θ and I is given by (N1). The compactness
of the parameter function sets Γ(α) is given by Remark 2.4.5 (ii) when using the Hölder
norm ‖ · ‖a/2. The fact that the parameter function sets Γ(α) are the intersections of all
sets Γ(β) with β < α follows from Remark 2.4.5 (iv). Note that Θ fulfils the latter part
of (B1) for C̄ = 4m− 1 according to Lemma 5.2.6 (ii) and Remark 3.1.5 (i).

As the mixture density fmix is invariant under relabeling, i.e. permutation of the com-
ponents, so are the contrast functions M and Mn so that (B2) is naturally fulfilled.

Prove (B3). The continuity of M in its first two arguments is obvious. Hence, it is
enough to fix ϑ ∈ Ξ, x ∈ I and examine a sequence (γn)n∈N ⊂ Γ(a), γn = (θn(·), `n)
with γn → γ = (θ(·), `) ∈ Γ(a). Especially, ‖θn(·) − θ(·)‖∞, ‖`n − `‖∞ → 0. For those
sequences, we deduce

|M(ϑ, x; γn)−M(ϑ, x; γ)| ≤
∫
|g(y;ϑ)| ·

∣∣fmix
(
y; θn(x)

)
`n(x)− fmix

(
y; θ(x)

)
`(x)

∣∣ dy
≤
∫
|g(y;ϑ)| · sup

θ∈Ξ
fmix(y; θ) dy ·

∥∥`n − `∥∥∞ (5.2.7)

+
∫
|g(y;ϑ)| ·

∣∣fmix
(
y; θn(x)

)
− fmix

(
y; θ(x)

)∣∣dy · ‖`‖∞ .

(5.2.8)

(5.2.7) is directly treated by Lemma 5.2.2 and the fact that ‖`n − `‖∞ → 0, whereas by
Lemma 5.2.3 (i) and Lemma 5.2.2 once again, we deduce

(5.2.8) ≤
∫ ∣∣g(y;ϑ)

∣∣c∗φ(y|0, s2
∗) dy ·

∥∥θn(·)− θ(·)‖∞ · ‖`‖∞ → 0 .

The coordinates of the parameter functions θ∗(·) are Hölder-α-smooth, especially con-
tinuous so that (B3) is dealt with.

Condition (B6) holds because ε∆ > 0 is independent of x, γ and α.

106



5.2 Proofs for Section 4.1

Now, we treat conditions (B4), (B5), (B7), (B8) and (B9) that are a bit more involved.

Lemma 5.2.8. Let Assumption (N1) hold, 0 < a ≤ b <∞ and J ⊂ int(I) be compact.
Then (i) (B4) and (ii) (B5) hold. That is:

(i) For all x ∈ J , α ∈ [a, b], γ ∈ Γ(α), the Hessian matrix

Vx
(
θ∗(x); γ

)
= ∂2

θ2M
(
θ∗(x), x; γ

)
is positive definite. Especially, the eigenvalues λ1

x,γ ≥ λ2
x,γ ≥ λ3

x,γ of Vx(θ∗(x); γ)
are positive.

(ii) The Hessian matrices Vx(θ; γ) are uniformly Lipschitz continuous in θ, i.e. for all
θ, θ′ ∈ Ξ, we have

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J

∥∥Vx(θ; γ)− Vx(θ′; γ)
∥∥ ≤ LHess‖θ − θ′‖1,

where LHess depends only on Ξ, I and Γ(a).

Proof of lemma 5.2.8. (i) According to Lemma 5.2.2, integration under the integral sign
gives

∂2
θ2M

(
θ∗(x), x; γ

)
=Eγ

[
∂2
θ2fmix

(
Y ; θ∗(x)

)
fmix

(
Y ; θ∗(x)

) −
(
∂θfmix

(
Y ; θ∗(x)

))(
∂θfmix

(
Y ; θ∗(x)

))T
fmix

(
Y ; θ∗(x)

)2 ∣∣∣∣X = x

]
· `(x)

=
(∫

∂2
θ2fmix

(
y; θ∗(x)

)
fmix

(
y; θ∗(x)

) fmix
(
y; θ∗(x)

)
dy

− Eγ
[(
∂θfmix

(
Y ; θ∗(x)

))(
∂θfmix

(
Y ; θ∗(x)

))T
fmix

(
Y ; θ∗(x)

)2 ∣∣∣∣X = x

])
· `(x)

=
(
∂2
θ2

∫
fmix

(
y; θ∗(x)

)
dy − Eγ

[(
∂θfmix

(
Y ; θ∗(x)

))(
∂θfmix

(
Y ; θ∗(x)

))T
fmix

(
Y ; θ∗(x)

)2 ∣∣∣∣X = x

])
· `(x)

= − Eγ
[(
∂θfmix

(
Y ; θ∗(x)

))(
∂θfmix

(
Y ; θ∗(x)

))T
fmix

(
Y ; θ∗(x)

)2 ∣∣∣∣X = x

]
· `(x) .

Now assume there is a v = (v1, . . . , v3m−1) ∈ R3m−1 so that vT∂2
θ2M

(
θ∗(x), x; γ

)
v = 0,

which is equivalent to

0 =Eγ
[
vT
(
∂θfmix

(
Y ; θ∗(x)

))(
∂θfmix

(
Y ; θ∗(x)

))T
fmix

(
Y ; θ∗(x)

)2 v

∣∣∣∣X = x

]

=Eγ
[(

∂θfmix
(
Y ; θ∗(x)

)
fmix

(
Y ; θ∗(x)

) v

)2∣∣∣∣X = x

]

107



5 Proofs and auxiliary results

implying that

0 =Eγ
[∣∣∣∣(∂θfmix

(
Y ; θ∗(x)

)
fmix

(
Y ; θ∗(x)

) )T v∣∣∣∣ ∣∣∣∣X = x

]
=
∫ ∣∣(∂θfmix

(
y; θ∗(x)

)
)T v
∣∣dy .

As the integrand is non-negative and continuous, we get that

∂θfmix
(
y; θ∗(x)

)T
v = 0 , ∀y ∈ R . (5.2.9)

Let p1, p2 be any polynomials and σc 6= σc′ , then

p1(y)
p2(y)

φ(y|µc, σ2
c )

φ(y|µc′ , σ2
c′)

=p1(y)
p2(y) exp

(
(σ2
c − σ2

c′)y2 + 2(σ2
c′µc − σ2

cµc′)y + σ2
cµ

2
c′ − σ2

c′µ
2
c

σ2
cσ

2
c′

)
−−−→
y→∞

{
∞ , σ2

c > σ2
c′

0 , σ2
c < σ2

c′
. (5.2.10)

Now, if p1, p2 are any polynomials and σc = σc′ as well as µc 6= µc′ , then

p1(y)
p2(y)

φ(y|µc, σ2
c )

φ(y|µc′ , σ2
c ) =p1(y)

p2(y) exp
(

2(µc − µc′)y + µ2
c′ − µ2

c

σ2
c

)
−−−→
y→∞

{
∞ , µc > µc′

0 , µc < µc′
. (5.2.11)

We give an iterative procedure to show v = 0. For notational simplicity insert a 0 be-
tween the (m − 1)-th and m-th component of v. Let C ⊂ {1, . . . ,m}. If maxc∈C σ2

c

is unique, define c̃ = argmaxc∈C σ2
c , otherwise define c̃ = argmaxc∈C µc, which is then

unique by Assumption (N1).

By (5.2.9), for all y ∈ R, we have∑
c∈C\{c̃}

vc∂πcfmix
(
y; θ∗(x)

)
+ vm+c∂µcfmix

(
y; θ∗(x)

)
+ v2m+c∂σcfmix

(
y; θ∗(x)

)
=−

(
vc̃∂πc̃fmix

(
y; θ∗(x)

)
+ vm+c̃∂µc̃fmix

(
y; θ∗(x)

)
+ v2m+c̃∂σc̃fmix

(
y; θ∗(x)

))
.

As

∂πc̃fmix
(
y; θ∗(x)

)
∂σc̃fmix

(
y; θ∗(x)

) −−−→
y→∞

0 ,
∂µc̃fmix

(
y; θ∗(x)

)
∂σc̃fmix

(
y; θ∗(x)

) −−−→
y→∞

0 ,
∂πc̃fmix

(
y; θ∗(x)

)
∂µc̃fmix

(
y; θ∗(x)

) −−−→
y→∞

0 ,

πc(x) > 0 for all c, x and because of (5.2.10) and (5.2.11), we get that

0 = lim
y→∞

{ ∑
c∈C\{c̃}

vc
∂πcfmix

(
y; θ∗(x)

)
∂σc̃fmix

(
y; θ∗(x)

) + vm+c
∂µcfmix

(
y; θ∗(x)

)
∂σc̃fmix

(
y; θ∗(x)

) + v2m+c
∂σcfmix

(
y; θ∗(x)

)
∂σc̃fmix

(
y; θ∗(x)

)
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+ vc̃
∂πc̃fmix

(
y; θ∗(x)

)
∂σc̃fmix

(
y; θ∗(x)

) + vm+c̃
∂µc̃fmix

(
y; θ∗(x)

)
∂σc̃fmix

(
y; θ∗(x)

)} = −v2m+c̃

and subsequently

0 = lim
y→∞

{ ∑
c∈C\{c̃}

vc
∂πcfmix

(
y; θ∗(x)

)
∂µc̃fmix

(
y; θ∗(x)

) + vm+c
∂µcfmix

(
y; θ∗(x)

)
∂µc̃fmix

(
y; θ∗(x)

) + v2m+c
∂µcfmix

(
y; θ∗(x)

)
∂σc̃fmix

(
y; θ∗(x)

)}

+ vc̃
∂πc̃fmix

(
y; θ∗(x)

)
∂µc̃fmix

(
y; θ∗(x)

) = −vm+c̃ ,

0 = lim
y→∞

{ ∑
c∈C\{c̃}

vc
∂πcfmix

(
y; θ∗(x)

)
∂πc̃fmix

(
y; θ∗(x)

) + vm+c
∂µcfmix

(
y; θ∗(x)

)
∂πc̃fmix

(
y; θ∗(x)

) + v2m+c
∂µcfmix

(
y; θ∗(x)

)
∂πc̃fmix

(
y; θ∗(x)

)}
=− vc̃ .

(ii) In order to prove Lipschitz continuity of the Hessian matrix, repeat the arguments
used in the proof of Lemma 5.2.7, especially the proof of (B3) and use Lemma 5.2.3.
According to Lemma 5.2.3 (iii), there is a function F (·,Ξ) that is integrable with respect
to supθ∈Ξ fmix(y; θ) so that

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J
‖Vx(θ; γ)− Vx(θ′; γ)‖

≤ sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J

Eγ
[∥∥∥∂2

θ2g(Y ; θ)− ∂2
θ2g(Y ; θ̃)

∥∥∥∣∣∣∣X = x

]
`(x)

≤ sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J

∫
F (y; Ξ)fmix

(
y; θ∗(x)

)
dy · ‖θ − θ̃‖`(x)

≤
∫
F (y; Ξ) sup

θ∈Ξ
fmix(y; θ) dy · sup

α∈[a,b]
sup

γ∈Γ(α)
‖`‖∞ · ‖θ − θ̃‖

. ‖θ − θ̃‖ .

The following lemma shows that the deterministic and stochastic estimation errors of
the empirical contrasts’ gradients are of the usual non-parametric order.

Lemma 5.2.9. Let 0 < a ≤ b < ∞. Under Assumption (N1), for some kernel K ful-
filling Assumptions (N2) and (Ñ3) and sequences of bandwidth parameters (hn(α))n∈N,
α ∈ [a, b] so that

sup
α∈[a,b]

hn(α), sup
α∈[a,b]

logn
nhn(α)d → 0 ,

Conditions (B7) and (B9) hold for any compact cuboid J ⊂ int(I) containing an open
subset. To be specific on (B7), for any compact cuboid J ⊂ int(I) containing an open
subset, we have that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J,θ∈Θ

hn(α)−α
∥∥Eγ[Sn(θ, x;hn(α)

)]
− S(θ, x; γ)

∥∥ ≤ C∗ , (5.2.12)
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lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(a)

(
logn

nhn(α)d

)−1

Eγ
[

sup
x∈J,θ∈Θ

∥∥Sn(θ, x;hn(α)
)
− Eγ

[
Sn
(
θ, x;hn(α)

)]∥∥2
1

]
≤CSTOCH . (5.2.13)

The constant C∗ > 0 depends only on a, b, Γ(a), Θ, I and K; the constant CSTOCH > 0
depends only on Γ(a), ‖K‖∞, LK , I, Θ. Particularly, for hn(α) =

( logn
n

) 1
2α+d , we have

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

(
logn
n

)− 2α
2α+d

Eγ
[

sup
x∈J,θ∈Θ

∥∥Sn(θ, x;hn(α)
)
− S(θ, x; γ)

∥∥2
]
<∞ .

Note that the assertion on the stochastic error (5.2.13) is stated uniformly over all γ ∈
Γ(a). The respective degrees of smoothness of the true parameter curves only play a role
in determining the convergence rates of the bias terms.

Proof of Lemma 5.2.9. By using the shape of the log likelihood’s derivatives given in
Remark 5.2.1 and differentiating under the integral sign, which is allowed according to
Lemma 5.2.2, we get that for any θ ∈ Θ, x ∈ J , γ ∈ Γ(a), h ∈ (0,∞), the gradients
Sn(θ, x;h) = ∂θMn(θ, x;h) and S(θ, x; γ) = ∂θM(θ, x; γ) have the components

∂πc̃Mn(θ, x;h) = 1
n

n∑
k=1

φ(Yk|µc̃, σ2
c̃ )− φ(Yk|µm, σ2

m)∑m
ν=1 πνφ(Yk|µν , σ2

ν)
Kh(Xk − x) ,

∂µcMn(θ, x;h) = 1
n

n∑
k=1

πc(µc − Yk)σ−2
c φ(Yk|µc, σ2

c )∑m
ν=1 πνφ(Yk|µν , σν)

Kh(Xk − x) ,

∂σcMn(θ, x;h) = 1
n

n∑
k=1

πc
(
(Yk − µc)2 − σ2

c

)
σ−3
c φ(Yk|µc, σ2

c )∑m
ν=1 πνφ(Yk|µν , σ2

ν)
Kh(Xk − x) ,

∂πc̃M(θ, x; γ) = Eγ

[
φ(Y |µc̃, σ2

c̃ )− φ(Y |µm, σ2
m)∑m

ν=1 πνφ(Y |µν , σ2
ν)

∣∣∣∣∣X = x

]
`(x)

∂µcM(θ, x; γ) = Eγ

[
πc(µc − Y )σ−2

c φ(Y |µc, σ2
c )∑m

ν=1 πνφ(Y |µν , σ2
ν)

∣∣∣∣∣X = x

]
`(x) ,

∂σcM(θ, x; γ) = Eγ

[
πc
(
(Y − µc)2 − σ2

c

)
σ−3
c φ(Y |µc, σ2

c )∑m
ν=1 πνφ(Y |µν , σ2

ν)

∣∣∣∣∣X = x

]
`(x) ,

where c ∈ {1, . . . ,m}, c̃ ∈ {1, . . . ,m− 1}.

Prove (5.2.12). Note that the following calculations are independent of θ, x, γ and α.
Write hn(α) = h. For some t ∈ {π1, . . . , πm−1, µ1, . . . , µm, σ1, . . . , σm}, we have
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Eγ
[
∂tMn(θ, x;h)

]
− ∂tM(θ, x; γ)

=
∫
∂tfmix(y; θ)
fmix(y; θ) ·

(
Kh ∗ fmix

(
y; θ∗(·)

)
`
)

(x) dy −
∫
∂tfmix(y; θ)
fmix(y; θ) fmix

(
y; θ∗(x)

)
`(x) dy

=
∫
∂tfmix(y; θ)
fmix(y; θ) ·

{(
Kh ∗ fmix

(
y; θ∗(·)

)
`
)

(x)−
(
Kh ∗ `

)
(x)fmix

(
y; θ∗(x)

)
+
[(
Kh ∗ `

)
(x)− `(x)

]
fmix

(
y; θ∗(x)

)}
dy .

Now,
∂tfmix(y; θ)
fmix(y; θ) sup

θ∈Θ
fmix(y; θ)

is integrable according to Lemma 5.2.2 and we have∣∣(Kh ∗ `
)
(x)− `(x)

∣∣ . hα .

Thus, according to Lemma 3.2.1, it suffices to show that∣∣∣(Kh ∗ fmix
(
y; θ∗(·)

)
`
)

(x)−
(
Kh ∗ `

)
(x)fmix

(
y; θ∗(x)

)∣∣∣
=
∣∣∣∣ ∫ Kh(z)`(z + x)

(
fmix

(
y; θ∗(z + x)

)
− fmix

(
y; θ∗(x)

))
dz
∣∣∣∣

=
∫
|K(z)|`(hz + x)

∣∣fmix
(
y; θ∗(hz + x)

)
− fmix

(
y; θ∗(x)

)∣∣dz
≤ c∗φ(y|0, s2

∗)
∫
|K(z)|`(hz + x)

m∑
c=1

{∥∥πc(hz + x)− πc(x)
∥∥+

∥∥σc(hz + x)− σc(x)
∥∥+

∥∥µc(hz + x)− µc(x)
∥∥} dz

.φ(y|0, s2
∗)hα ,

which is true according to Lemma 5.2.3 (i) and Lemma 3.2.1 once again because the
parameter functions are Hölder-α-smooth. Now, Lemma 5.2.2 gives integrability of

∂tfmix(y; θ)
fmix(y; θ) φ(y|0, s2

∗) ,

concluding the proof of (5.2.12).

In order to prove (5.2.13) and (B9), we only need to show that all assumptions of The-
orem 3.2.5 are met for ρ = 2, because then (5.2.13) holds and (B9) is given by Lemma
3.2.9.

According to the model assumptions, it suffices to show the integrability and exponential
deviation requirements for ρ = 2. (3.2.12) is given by Lemma 5.2.2; (3.2.13), (3.2.14)
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by Lemma 5.2.3 (iii); and the exponential deviation inequality is given by Lemma 5.2.5.
Hence, Theorem 3.2.5 gives for every t ∈ {π1, . . . , πm−1, σ1, . . . , σm, µ1, . . . , µm} some
constant Ct <∞ so that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(a)(

logn
nhn(α)d

)−1
Eγ
[

sup
x∈J

sup
θ∈Θ

∣∣∂tMn

(
θ, x;hn(α)

)
− Eγ

[
∂tMn

(
θ, x;hn(α)

)]∣∣2] ≤ Ct <∞ .

Finally, (5.2.13) is given by the equivalence of norms on R3m−1, the triangular inequality
and maximizing over t.

Lemma 5.2.10. Let 0 < a ≤ b < ∞ and (hn(α))n∈N for α ∈ [a, b] be sequences of
bandwidth parameters so that

sup
α∈[a,b]

hn(α), sup
α∈[a,b]

logn
nhn(α)d → 0 .

Under Assumption (N1), for some kernel K fulfilling Assumptions (N2) and (Ñ3),
Condition (B8) holds for any compact cuboid J ⊂ int(I) containing an open subset,
i.e. the empirical contrast function Mn is uniformly consistent for the asymptotic contrast
M . To be specific, for any compact J ⊂ int(I), and for all ε > 0, we have

sup
α∈[a,b]

sup
γ∈Γ(a)

Pγ
(

sup
x∈J,θ∈Θ

∣∣Mn(θ, x;hn(α))−M(θ, x; γ)
∣∣ ≥ ε) = o(1) .

For the proof, one would typically want to decompose the estimation error into a stochas-
tic and a non-stochastic term. However, note that we cannot use Theorem 3.2.5 for the
stochastic error directly because (3.2.13) does not seem to be fulfilled. Luckily, (3.2.15)
is fulfilled so that we can work around that.

Proof of Lemma 5.2.10. Fix any θ̃ ∈ Θ throughout the whole proof and define the func-
tion Tn(θ, x;h; γ) = Mn(θ, x;h) −M(θ, x; γ). For any θ ∈ Θ, (B1), Lemma 5.2.6 and
Remark 3.1.5 (i) give an lθ ∈ N0 and θ̄1(θ), . . . , θ̄lθ (θ) ∈ Θ so that with θ = θ̄0(θ),
θ̃ = θ̄lθ+1(θ), we have

θ̄k+1(θ)− θ̄k(θ) = ckejk , k = 0, . . . , lΘ

for some unit vectors ejk and some coefficients ck ∈ R with

lθ∑
k=0
|ck| ≤ (4m− 1)‖θ − θ̃‖ ≤ (4m− 1) diam(Θ) .

Write

θ̄k(θ) =
(
ϑk,θ1 , . . . , ϑk,θ3m−1

)T
, k = 0, . . . , lθ + 1 .
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According to the fundamental theorem of calculus, using the notation t = (t1, . . . , t3m−1),
we may write for any n, α, γ,

sup
θ∈Θ,x∈J

∣∣Tn(θ, x;hn(α); γ
)∣∣

≤ sup
x∈J

∣∣Tn(θ̃, x;hn(α); γ
)∣∣

+ sup
θ∈Θ,x∈J

lθ∑
k=0

∣∣Tn(θ̄k+1(θ), x;hn(α); γ
)
− Tn

(
θ̄k(θ), x;hn(α); γ

)∣∣
= sup

x∈J

∣∣Tn(θ̃, x;hn(α); γ
)∣∣+ sup

θ∈Θ,x∈J

lθ∑
k=0

∣∣∣∣ ∫ ϑk+1,θ
jk

ϑk,θ
jk

∂tjTn
(
t, x;hn(α); γ

)
dtj
∣∣∣∣

≤ sup
x∈J

∣∣Tn(θ̃, x;hn(α); γ
)∣∣+ (4m− 1) diam(Θ) sup

θ∈Θ,x∈J,j=1,...,3m−1

∣∣∂ϑjTn(θ, x;hn(α); γ
)∣∣

= sup
x∈J

∣∣Mn

(
θ̃, x;hn(α)

)
−M(θ̃, x; γ)

∣∣ (5.2.14)

+ (4m− 1) diam(Θ) sup
θ∈Θ,x∈J

∥∥Sn(θ, x;hn(α)
)
− S(θ, x; γ)

∥∥
∞ . (5.2.15)

Make a bias variance decomposition for both (5.2.14) and (5.2.15). For the bias term
of (5.2.15), making use of the calculations proving (5.2.12) and Lemma 3.2.1 for the
function class H(a, L, U), we deduce

sup
α∈[a,b]

sup
γ∈Γ(a)

hn(α)−a sup
θ∈Θ,x∈J

∥∥Eγ[Sn(θ, x;hn(α)
)]
− S(θ, x; γ)

∥∥
∞ = O(1) ,

so that according to infα∈[a,b] hn(α)−a →∞, we have

sup
α∈[a,b]

sup
γ∈Γ(a)

sup
θ∈Θ,x∈J

∥∥Eγ[Sn(θ, x;hn(α)
)]
− S(θ, x; γ)

∥∥
∞ = o(1) .

The variance term of (5.2.15) is directly dealt with by (5.2.13) because according to
Markov’s inequality and Jensen’s inequality, we have for any ε > 0

sup
α∈[a,b]

sup
γ∈Γ(a)

(
logn

nhn(α)d

)− 1
2

Pγ
(

sup
x∈J,θ∈Θ

∥∥∥Sn(θ, x;hn(α)
)
− Eγ

[
Sn
(
θ, x;hn(α)

)]∥∥∥
1
≥ ε
)

≤ 1
ε

sup
α∈[a,b]

sup
γ∈Γ(a)

(
logn

nhn(α)d

)− 1
2

Eγ
[

sup
x∈J,θ∈Θ

∥∥∥Sn(θ, x;hn(α)
)
− Eγ

[
Sn
(
θ, x;hn(α)

)]∥∥∥
1

]
≤ 1
ε

sup
α∈[a,b]

sup
γ∈Γ(a)

(
logn

nhn(α)d

)− 1
2
{
Eγ
[

sup
x∈J,θ∈Θ

∥∥∥Sn(θ, x;hn(α)
)
− Eγ

[
Sn
(
θ, x;hn(α)

)]∥∥∥2

1

]} 1
2

=O(1)

so that infα∈[a,b]
( logn
nhn(α)d

)− 1
2 →∞ leads to the conclusion

sup
α∈[a,b]

sup
γ∈Γ(a)

Pγ
(

sup
x∈J,θ∈Θ

∥∥∥Sn(θ, x;hn(α)
)
− Eγ

[
Sn
(
θ, x;hn(α)

)]∥∥∥
1
≥ ε
)

= o(1) .
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Thus, it remains to show that (5.2.14) is oPγ (1) uniformly over all α ∈ [a, b], γ ∈ Γ(a).
Therefore, let us decompose

sup
x∈J

∣∣∣Mn

(
θ̃, x;hn(α)

)
−M(θ̃, x; γ)

∣∣∣
≤ sup

x∈J

∣∣∣Mn

(
θ̃, x;hn(α)

)
− Eγ

[
Mn

(
θ̃, x;hn(α)

)]∣∣∣+ sup
x∈J

∣∣∣Eγ[Mn

(
θ̃, x;hn(α)

)]
−M(θ̃, x; γ)

∣∣∣ .
(5.2.16)

For the second summand in (5.2.16), deduce that for any α, γ, x, we have∣∣∣Eγ[Mn

(
θ̃, x;hn(α)

)]
−M(θ̃, x; γ)

∣∣∣
=
∣∣∣∣ ∫ g(y; θ̃) ·

(
Khn(α) ∗ fmix

(
y; θ∗(·)

)
`
)

(x) dy −
∫
g(y; θ̃)fmix

(
y; θ∗(x)

)
`(x) dy

∣∣∣∣
≤
∫
|g(y; θ̃)| ·

∣∣∣∣(Khn(α) ∗ fmix
(
y; θ∗(·)

)
`
)

(x)−
(
Khn(α) ∗ `

)
(x)fmix

(
y; θ∗(x)

)∣∣∣∣dy
+
∫
fmix

(
y; θ∗(x)

)∣∣∣(Khn(α) ∗ `
)

(x)− `(x)
∣∣∣dy

so that we once again deduce from Lemma 3.2.1 for the function class H(a, L, U) and
Lemma 5.2.3 (i) that

sup
α∈[a,b]

sup
γ∈Γ(a)

hn(α)−a sup
x∈J

∣∣∣Eγ[Mn

(
θ̃, x;hn(α)

)]
−M(θ̃, x; γ)

∣∣∣ = O(1)

and by infα∈[a,b] hn(α)−a →∞, we derive

sup
α∈[a,b]

sup
γ∈Γ(a)

sup
x∈J

∣∣∣Eγ[Mn

(
θ̃, x;hn(α)

)]
−M(θ̃, x; γ)

∣∣∣ = o(1) .

Treat the first term in (5.2.16) by Theorem 3.2.5 with Θ = {θ̃}. (3.2.13) is naturally
fulfilled. Once we proved (3.2.15), Theorem 3.2.5 gives

sup
α∈[a,b]

sup
γ∈Γ(a)

(
logn

nhn(α)d

)− 1
2

Eγ
[

sup
x∈J

∣∣∣Mn

(
θ̃, x;hn(α)

)
− Eγ

[
Mn

(
θ̃, x;hn(α)

)]∣∣∣] = O(1) .

Since infα∈[a,b]
( logn
nhn(α)d

)− 1
2 →∞, Markov’s inequality gives for any ε > 0

sup
α∈[a,b]

sup
γ∈Γ(a)

Pγ
(

sup
x∈J

∣∣∣Mn

(
θ̃, x;hn(α)

)
− Eγ

[
Mn

(
θ̃, x;hn(α)

)]∣∣∣ ≥ ε)
≤ 1
ε

sup
α∈[a,b]

sup
γ∈Γ(a)

Eγ
[

sup
x∈J

∣∣∣Mn

(
θ̃, x;hn(α)

)
− Eγ

[
Mn

(
θ̃, x;hn(α)

)]∣∣∣]
= o(1) .
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In order to prove (3.2.15), we proceed similarly to the proof of Lemma 5.2.5 with

Zk,h := 1
n
g(Yk; θ̃)Kh(Xk − x) .

We need to show that there are constants C1, C2 depending only on Θ, J , K, [a, b] and
Γ(a) so that for all q ≥ 2

Eγ
[∣∣Zk,h − Eγ

[
Zk,h

]∣∣q] ≤ q!( C1

nhd

)q−2
C2

n2hd

because then Lemma 3.2.3 gives the existence of constants C1, C2 independent of n, α,
γ so that

Pγ
(∣∣Mn

(
θ, x;hn(α)

)
− Eγ

[
Mn

(
θ, x;hn(α)

)]∣∣ ≥ ω) ≤ 2 exp
(
− ω2nhn(α)d

C1 + C2ω

)
, ω > 0 .

By proceeding similarly, we see that

Eγ
[∣∣Zk,h − Eγ

[
Zk,h

]∣∣q] ≤ 2q Eγ
[∣∣Zk,h∣∣q]

≤ 2q

nq

∫∫ ∣∣∣∣g(y; θ̃)Kh(z − x)
∣∣∣∣qfθ∗(·)Y |X (y|z)`(z) dydz

≤ 2q

nq

(∫
|g(y; θ̃)|q sup

θ∈Ξ
fmix(y; θ) dy

)
·
(∫

|Kq
h(z − x)|`(z) dz

)
≤2q‖K‖q∞‖`‖∞ diam(J)

nqhd(q−1)

∫
|g(y; θ̃)|q sup

θ∈Ξ
fmix(y; θ) dy ,

where we can treat the integral by (5.2.19) and convexity of y 7→ |y|q, i.e. there is a
constant CΞ > 0 depending only on Ξ so that∫

|g(y; θ̃)|q sup
θ∈Ξ

fmix(y; θ) dy

≤ 3q−1CΞ

{∫ (
t− µ+

)2q sup
θ∈Ξ

fmix(y; θ) dy +
∫ (

t− µ−
)2q sup

θ∈Ξ
fmix(y; θ) dy

+
∫

sup
θ∈Ξ

fmix(y; θ) dy
}
. (5.2.17)

By repeating the subsequent considerations in the proof of Lemma 5.2.5 as well as
(5.2.30), we get

(5.2.17) ≤ 3q−1 2CΞ c∗

∫ ∣∣y∣∣2qc∗φ(y|0, s2
∗) dy

+ 3q−1CΞ

∫
sup
θ∈Ξ

fmix(y; θ) dy ≤ 3qCΞC∗s
2q
∗ c∗2qq!

for some constants 0 < c∗, s∗, C∗ <∞.
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5.2.3 Proofs for auxiliary results
Proof of Lemma 5.2.2. Note that (5.2.4) follows from (5.2.5) directly. So, let us only
show the latter.

Note that there are points y1 < y2 depending only on the compact parameter set Ξ so
that

1y<y1 sup
ϑ∈Ξ

fmix(y;ϑ) ≤1y<y1φ(y|µ−, σ2
+) , 1y>y2 sup

ϑ∈Ξ
fmix(y;ϑ) ≤ 1y>y2φ(y|µ+, σ

2
+) ,

1y∈[y1,y2] sup
ϑ∈Ξ

fmix(y;ϑ) ≤1y∈[y1,y2]
1√

2πσ−
.

so that in conclusion

sup
ϑ∈Ξ

fmix(y;ϑ) ≤1y<y1φ(y|µ−, σ2
+) + 1y>y2φ(y|µ+, σ

2
+) + 1y∈[y1,y2]

1√
2πσ−

=: f(y) .

(5.2.18)

First, consider τ = g. For any y ∈ R we have

sup
θ∈Ξ

∣∣g(y; θ)
∣∣ = sup

θ∈Ξ

∣∣∣∣ log
( m∑
c=1

πcφ(y|µc, σ2
c )
)∣∣∣∣

≤ sup
θ∈Ξ

max
{
− min
c=1,...,m

log
(
φ(y|µc, σ2

c )
)
, max
c=1,...,m

log
(
φ(y|µc, σ2

c )
)}

= sup
θ∈Ξ

max
{

max
c=1,...,m

(y − µc)2

2σ2
c

+ log(
√

2πσc), max
c=1,...,m

− (y − µc)2

2σ2
c

− log(
√

2πσc)
}
,

where we can treat the terms in the maximum by

max
c=1,...,m

(y − µc)2

2σ2
c

+ log(
√

2πσc)

≤ max
c=1,...,m

(y − µc)2

2σ2
−

+ log(
√

2πσ+)

≤ max
µ∈{µ−,µ+}

(y − µ)2

2σ2
−

+ log(
√

2πσ+)

≤ (y − µ+)2

2σ2
−

1y<µ− + (µ+ − µ−)2

2σ2
−

1y∈[µ−,µ+] + (y − µ−)2

2σ2
−

1y>µ+ + log(
√

2πσ+)

and

max
c=1,...,m

− (y − µc)2

2σ2
c

− log(
√

2πσc) ≤− log(
√

2πσ−)

Hence,

sup
θ∈Ξ

∣∣g(y; θ)
∣∣
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≤ (y − µ+)2

2σ2
−

1y<µ− + (µ+ − µ−)2

2σ2
−

1y∈[µ−,µ+] + (y − µ−)2

2σ2
−

1y>µ+ + log(
√

2πσ+)

+ | log(
√

2πσ−)| , (5.2.19)

which is integrable with respect to f(t) dt. As all moments of normal and uniform dis-
tributions exist, we deduce (5.2.5) for τ = g.

Similar arguments including that for any θ ∈ Ξ, y ∈ R∣∣∣∣ πcφ(y|µc, σ2
c )∑m

c=1 πcφ(y|µc, σ2
c )

∣∣∣∣ ≤1∣∣∣∣ φ(y|µc, σ2
c )∑m

c=1 πcφ(y|µc, σ2
c )

∣∣∣∣ ≤ 1
πc
≤ 1
π−

treat the other cases of τ .

(5.2.6) can be directly concluded from the considerations after (5.2.19).

Proof of Lemma 5.2.3. Show (i). By means of the triangular equality,∣∣∣fmix(y; θ)− fmix(y; θ̃)
∣∣∣

≤
m∑
c=1

∣∣∣∣πcφ(y|µc, σ2
c )− π̃cφ(y|µ̃c, σ̃2

c )
∣∣∣∣ ,

where each of the summands is treated by∣∣∣∣πcφ(y|µc, σ2
c )− π̃cφ(y|µ̃c, σ̃2

c )
∣∣∣∣

≤
∣∣πc − π̃c∣∣φ(y|µc, σ2

c ) (5.2.20)

+ π̃c√
2πσc

∣∣∣∣ exp
(
− (y − µc)2

2σ2
c

)
− exp

(
− (y − µ̃c)2

2σ2
c

)∣∣∣∣ (5.2.21)

+ π̃c

∣∣∣∣ 1√
2πσc

exp
(
− (y − µ̃c)2

2σ2
c

)
− 1√

2πσ̃c
exp

(
− (y − µ̃c)2

2σ̃2
c

)∣∣∣∣ , (5.2.22)

where |πm − π̃m| ≤
∑m−1
c=1 |πc − π̃c| and the function supθ∈Ξ φ(·|µc, σ2

c ) is integrable as
Ξ is compact so that (5.2.20) is dealt with.

As the inequality exp(t) ≥ 1+t, t ∈ R implies 1−exp(t) ≤ −t, we deduce for x, y ∈ [0,∞)∣∣ exp(−x)− exp(−y)
∣∣ = exp

(
−min{x, y}

)(
1− exp

(
min{x, y} −max{x, y}

))
≤ exp

(
−min{x, y}

)(
max{x, y} −min{x, y}

)
= max

{
exp(−x), exp(−y)

}∣∣x− y∣∣ . (5.2.23)
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Hence, (5.2.21) is dealt with by∣∣∣∣ exp
(
− (y − µc)2

2σ2
c

)
− exp

(
− (y − µ̃c)2

2σ2
c

)∣∣∣∣
≤max

{
exp

(
− (y − µc)2

2σ2
c

)
, exp

(
− (y − µ̃c)2

2σ2
c

)}∣∣∣∣ (y − µc)2

2σ2
c

− (y − µ̃c)2

2σ2
c

∣∣∣∣
≤max

{
exp

(
− (y − µc)2

2σ2
c

)
, exp

(
− (y − µ̃c)2

2σ2
c

)}
1

2σ2
c

∣∣µ2
c − µ̃2

c + 2y(µ̃c − µc)|

≤max
{

exp
(
− (y − µc)2

2σ2
c

)
, exp

(
− (y − µ̃c)2

2σ2
c

)}
1

2σ2
c

(
|µc + µ̃c|+ 2y

)
|µc − µ̃c| ,

where this first factor is uniformly integrable.

Similar arguments and ∣∣∣∣ 1
σ2
c

− 1
σ̃2
c

∣∣∣∣ ≤|σ2
c − σ̃2

c |
σ2
c σ̃

2
c

≤2σ+

σ4
−
|σc − σ̃c|

by compactness of Ξ yield the corresponding bound for (5.2.22). Similar arguments to
the ones used in the proof of Lemma 5.2.5 yield the constants c∗ and s∗.

(ii) By noting that for Hölder-α-smooth functions F , we have |F (x) − F (x′)| ≤ L‖x −
x′‖min{1,α} as they are continuously differentiable for α > 1, we deduce (ii) directly from
(i).

(iii) First note that for integrability with respect to supθ∈Ξ fmix(y; θ) it is enough to
show boundedness on compacta and integrability with respect to any normal distribution
outside of those compacta because according to (5.2.18), there are constants y1 < y2 so
that

sup
θ∈Ξ

fmix(y; θ) ≤1y<y1φ(y|µ−, σ2
+) + 1y>y2φ(y|µ+, σ

2
+) + 1y∈[y1,y2]

1√
2πσ−

.

Let us only prove this result for the partial derivative ∂µcg. The arguments for the other
functions work similarly.

Write

θ = (π1, . . . , πm−1, µ1, . . . , µm, σ1, . . . , σm), θ̃ = (π̃1, . . . , π̃m−1, µ̃1, . . . , µ̃m, σ̃1, . . . , σ̃m)

as well as for r = 0, . . . ,m− 2

θ̃r(θ) = (π1, . . . , πr, π̃r+1, . . . , π̃m−1, µ1, . . . , µr, µ̃r+1, . . . , µ̃m, σ1, . . . , σr, σ̃r+1, . . . , σ̃m) ,
θ̃m−1(θ) = (π1, . . . , πm−1, µ1, . . . , µm−1, µ̃m, σ1, . . . , σm−1, σ̃m) ,
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θ̃m(θ) = θ .

Observe ∣∣∣∂µjg(y; θ)− ∂µjg(y; θ̃)
∣∣∣ ≤ m−1∑

r=0

∣∣∣∂µjg(y; θ̃r(θ))− ∂µjg(y; θ̃r+1(θ))
∣∣∣ .

Without loss of generality let r = j − 1, otherwise the calculations simplify. The main
trick now is to insert terms of the shape min

{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
}

. Observe∣∣∣∂µjg(y; θ̃j−1(θ))− ∂µjg(y; θ̃j(θ))
∣∣∣

=
∣∣∣∣ π̃j(µ̃j − y)σ̃−2

j φ(y|µ̃j , σ̃2
j )

fmix(y; θ̃j−1(θ))
−
πj(µj − y)σ−2

j φ(y|µj , σ2
j )

fmix(y; θ̃j(θ))

∣∣∣∣
=
∣∣∣∣ π̃j(µ̃j − y)σ̃−2

j φ(y|µ̃j , σ̃2
j )fmix(y; θ̃j(θ))− πj(µj − y)σ−2

j φ(y|µj , σ2
j )fmix(y; θ̃j−1(θ))

fmix(y; θ̃j−1(θ))fmix(y; θ̃j(θ))

∣∣∣∣
≤
∣∣∣∣
(
φ(y|µ̃j , σ̃2

j )−min
{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
})
π̃j(µ̃j − y)σ̃−2

j fmix(y; θ̃j(θ))

fmix(y; θ̃j−1(θ))fmix(y; θ̃j(θ))

∣∣∣∣ (5.2.24)

+
∣∣∣∣
(
π̃j(µ̃j − y)σ̃−2

j − πj(µj − y)σ−2
j

)
min

{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
}
fmix(y; θ̃j(θ))

fmix(y; θ̃j−1(θ))fmix(y; θ̃j(θ))

∣∣∣∣
(5.2.25)

+
∣∣∣∣
(
fmix(y; θ̃j(θ))− fmix(y; θ̃j−1(θ))

)
min

{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
}
πj(µj − y)σ−2

j

fmix(y; θ̃j−1(θ))fmix(y; θ̃j(θ))

∣∣∣∣
(5.2.26)

+
∣∣∣∣
(

min
{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
}
− φ(y|µj , σ2

j )
)
πj(µj − y)σ−2

j fmix(y; θ̃j−1(θ))

fmix(y; θ̃j−1(θ))fmix(y; θ̃j(θ))
.

∣∣∣∣
(5.2.27)

Now, treat (5.2.24) by the fact that∣∣∣φ(y|µ̃j , σ̃2
j )−min

{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
}∣∣∣

≤

{
φ(y|µ̃j , σ̃2

j ) , if φ(y|µ̃j , σ̃2
j ) > φ(y|µj , σ2

j )
0, else

and the fact that
φ(y|µ̃j , σ̃2

j )
fmix(y; θ̃j−1(θ))

is uniformly bounded over all θ, θ̃, so that (5.2.24) is bounded on a compact set around
0 and bounded by a linear function on the compact set’s complement. As such, this
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function is integrable with respect to any normal density. The term (5.2.27) is treated
accordingly.

For (5.2.25), we particularly use that

min
{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
}

fmix(y; θ̃j−1(θ))
≤

φ(y|µ̃j , σ̃2
j )

fmix(y; θ̃j−1(θ))
.

For (5.2.26), we also make use of the fact that∣∣∣fmix
(
y; θ̃j(θ)

)
− fmix

(
y; θ̃j−1(θ)

)∣∣∣
=
∣∣π̃jφ(y|µ̃j , σ̃2

j )− πjφ(y|µj , σ2
j )
∣∣∣

≤
∣∣π̃j − πj∣∣φ(y|µ̃j , σ̃2

j ) + πj
∣∣φ(y|µ̃j , σ̃2

j )− φ(y|µj , σ2
j )
∣∣ ,

where ∣∣(φ(y|µ̃j , σ̃2
j )− φ(y|µj , σ2

j )
∣∣

≤
∣∣∣∣ 1√

2πσ̃j
− 1√

2πσj

∣∣∣∣ exp
(
− (y − µ̃j)2

2σ̃2
j

)
+ 1√

2πσj

∣∣∣∣ exp
(
− (y − µ̃j)2

2σ̃2
j

)
− exp

(
− (y − µj)2

2σ2
j

)∣∣∣∣
and by (5.2.23), we deduce∣∣∣∣ exp

(
− (y − µ̃j)2

2σ̃2
j

)
− exp

(
− (y − µj)2

2σ2
j

)∣∣∣∣
≤ max

{
exp

(
− (y − µ̃j)2

2σ̃2
j

)
, exp

(
− (y − µj)2

2σ2
j

)}
·
∣∣∣∣ (y − µj)2

2σ2
j

− (y − µ̃j)2

2σ̃2
j

∣∣∣∣
. max

{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
}(∣∣µj − µ̃j∣∣+

∣∣σj − σ̃j∣∣)
so that ∣∣∣∣∣

(
fmix

(
y; θ̃j(θ)

)
− fmix

(
y; θ̃j−1(θ)

))
min

{
φ(y|µ̃j , σ̃2

j ), φ(y|µj , σ2
j )
}

fmix
(
y; θ̃j−1(θ)

)
fmix

(
y; θ̃j(θ)

) ∣∣∣∣∣
.
(∣∣π̃j − πj∣∣+

∣∣µj − µ̃j∣∣+
∣∣σj − σ̃j∣∣) φ(y|µ̃j , σ̃2

j )φ(y|µj , σ2
j )

fmix
(
y; θ̃j−1(θ)

)
fmix

(
y; θ̃j(θ)

) ,
where the right-hand factor is uniformly bounded on a compact set around zero due to
the compactness of Ξ and uniformly integrable with respect to any normal density as
well.
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Proof of Lemma 5.2.4. Minding the integrability result (5.2.5) in Lemma 5.2.2, we get
that independently of α ∈ [a, b], γ ∈ Γ(a), for any τ ∈ {g, ∂πcg, ∂µcg, ∂σcg}, we have

sup
x∈J,θ∈Ξ

Varγ
(

1
n

n∑
k=1

τ(Yk; θ)Kh(Xk − x)
)

= sup
x∈J,θ∈Ξ

1
n

{∫
τ2(y, θ)

(
K2
h ∗ f

θ∗(·)
Y |X (y|·)`

)
(x) dy −

(∫
τ(y; θ)

(
Kh ∗ fθ∗(·)Y |X (y|·)`

)
(x) dy

)2}
≤ 1
n

sup
x∈J

(
K2
h ∗ `

)
(x)
∫

sup
θ∈Ξ

τ2(y; θ) sup
ϑ∈Ξ

fmix(y;ϑ) dy

+ 1
n

sup
x∈J

((
Kh ∗ `

)
(x)
)2
(∫

sup
θ∈Ξ
|τ(y; θ)| sup

ϑ∈Ξ
fmix(y;ϑ) dy

)2

=O(n−1h−d) +O(n−1) .

In order to prove Lemma 5.2.5, we first observe that the functions

(y, θ) 7→ ∂µjg(y; θ) =
πj(µj − y)σ−2

j φ(y|µj , σ2
j )∑m

c=1 πcφ(y|µc, σ2
c )

,

(y, θ) 7→ ∂σjg(y; θ) =
πj
(
(y − µj)2 − σ2

j

)
σ−3
j φ(y|µj , σ2

j )∑m
c=1 πcφ(y|µc, σ2

c )

are bounded, whenever θm+j = σj < max{σc : c = 1, . . . ,m} because then

φ(y|µj , σ2
j )∑m

c=1 πcφ(y|µc, σ2
c )

converges to zero exponentially fast, |y| → ∞ and because Ξ is compact. For those θ,
one could use Lemma 3.2.2.

However, if θm+j = σj > max
{
σc : c = 1, . . . ,m

}
\{σj}, then

φ(y|µj , σ2
j )∑m

c=1 πcφ(y|µc, σ2
c )
→ 1

πj
, |y| → ∞ ,

so that the derivatives with respect to µj or σj are not bounded. That means that for
those θ, one cannot use Lemma 3.2.2. Particularly, as the derivatives are continuous
in y, θ, the exponential bound one gets for θm+j = σj < max{σc : c = 1, . . . ,m} must
depend on θ in the term R, where then supθ R =∞, which does not suffice.

Hence, we need to use an alternative approach, that is, using Bennett’s inequality,
cf. Lemma 3.2.3.
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Proof of Lemma 5.2.5. Let us first treat the case when t = πc for some c. As for all
y ∈ R, θ ∈ Ξ, we have

|∂πjg(y; θ)| =
∣∣∣∣∂πjfmix(y; θ)
fmix(y; θ)

∣∣∣∣ =
∣∣∣∣φ(y|µj , σ2

j )− φ(y|µm, σ2
m)∑m

c=1 πcφ(y|µc, σ2
c )

∣∣∣∣ ≤ 2
π−

, (5.2.28)

and because K is a bounded kernel, Lemma 5.2.4, the monotonicity of ω 7→ exp(−1/ω)
and Lemma 3.2.2 give for all θ ∈ Ξ, x ∈ J , γ ∈ Γ(a), ω > 0,

Pγ
(∣∣∂tMn(θ, x;h)− Eγ [∂tMn(θ, x;h)

∣∣ ≥ ω)
≤ 2 exp

(
− ω2

2 supx∈J,θ∈Ξ Varγ
( 1
n

∑n
k=1 ∂tg(Yk; θ)Kh(Xk − x)

)
+ 3‖K‖∞ω

2π−nhd

)

≤ 2 exp
(
− ω2nhd

C1 + C2ω

)
when C1, C2 are chosen large enough.

Now, treat the case t = µc for some c. Write

Zk,h := 1
n

(
µj − Yk
σ2
j

)
πjφ(Yk|µj , σ2

j )∑m
c=1 πcφ(Yk|µc, σ2

c )
Kh(Xk − x) .

We need to show that there are constants C1, C2 depending only on Ξ, J , K, [a, b] and
Γ(a) so that for all q ≥ 2

Eγ
[∣∣Zk,h − Eγ

[
Zk,h

]∣∣q] ≤ q!( C1

nhd

)q−2
C2

n2hd
,

because then Lemma 3.2.3 gives

Pγ
(∣∣∂tMn(θ, x;h)− Eγ

[
∂tMn(θ, x;h)

]∣∣ ≥ ω) ≤ 2 exp
(
− 1

2
ω2nhd

C1 + C2ω

)
, ω > 0 .

As the function y 7→ |y|q is convex, we have that |y1 − y2|q ≤ 2q−1|y1|q + 2q−1|y2|q, so
that according to (5.2.28)

Eγ
[
|Zk,h − Eγ [Zk,h]|q

]
≤ 2q−1Eγ

[
|Zk,h|q

]
+ 2q−1(Eγ [Zk,h]

)q
≤ 2qEγ

[
|Zk,h|q

]
≤ 2q

nq

∫∫ ∣∣∣∣µj − yσ2
j

πjφ(y|µj , σ2
j )∑m

c=1 πcφ(y|µc, σ2
c )
Kh(z − x)

∣∣∣∣qfθ∗(·)Y |X (y|z)`(z) dydz

≤ 2q

nq

∫∫ ∣∣∣∣µj − yσ2
j

Kh(z − x)
∣∣∣∣qfθ∗(·)Y |X (y|z)`(z) dydz
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by Jensen’s inequality and (5.2.28). Now, the integral can be treated by the transforma-
tion y 7→ σ2

j y + µj , i.e.∫∫ ∣∣∣∣µj − yσ2
j

Kh(z − x)
∣∣∣∣qfθ∗(·)Y |X (y|z)`(z) dydz

=
∫∫ ∣∣y∣∣qσ2

j f
θ∗(·)
Y |X (σ2

j y + µj |z)
∣∣Kh(z − x)

∣∣q`(z) dydz

≤σ2
+

∫ ∣∣y∣∣qc∗φ(y|0, s2
∗) dy ·

(
1
hd

)q−1 ∫ 1
hd

∣∣∣∣K(z − xh
)∣∣∣∣q`(z) dz ,

where c∗ and s∗ will be specified later. Now, as absolute moments of centred normal
distributed variables N with variance s2

∗ are bounded by E[|N |q] ≤ (q − 1)!!sq∗, we get
that ∫ ∣∣y∣∣qc∗φ(y|0, s2

∗) dy ≤ sq∗c∗q! ,

furthermore, we have that

sup
x∈J

∣∣∣∣ ∫ 1
hd

∣∣∣∣K(z − xh
)∣∣∣∣q`(z) dz

∣∣∣∣ ≤‖K‖q∞‖`‖∞ diam(J)

so that finally for all q ≥ 2

Eγ
[∣∣Zk,h − Eγ

[
Zk,h

]∣∣q] ≤ q!( C1

nhd

)q−2
C2

n2hd

with C1, C2 chosen appropriately.

In order to find c∗, s2
∗, we observe that for any y ∈ R

f
θ∗(·)
Y |X

(
σ2
j y + µj |z

)
≤ sup

z∈J,µ
c′ ,σc′

c′=1,...,m

f
θ∗(·)
Y |X

(
σ2
c′y + µc′ |z

)

= sup
z∈J,µc,σc
c′=1,...,m

m∑
c=1

πc(z)φ
(
σ2
c′y + µc′ |µc(z), σ2

c (z)
)

≤ sup
µc,σc,µc′ ,σc′
c=1,...,m
c′=1,...,m

σ2
c′φ

(
y

∣∣∣∣µc − µc′σ2
c′

,
σ2
c

σ4
c′

)
. (5.2.29)

Define the compact sets

Σ1 :=
{
µc − µ̃c′
σ̃c′

: θ, θ̃ ∈ Ξ, c, c′ = 1, . . . ,m
}
,

Σ2 :=
{
σ2
c

σ̃4
c′

: θ, θ′ ∈ Ξ, c, c′ = 1, . . . ,m
}
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as well as σ̄+ = argmax{σ2 ∈ Σ2}, σ̄− = argmin{σ2 ∈ Σ2}, µ̄+ = max Σ1, µ̄− = min Σ1
that exist due to the compactness of Ξ. Then, by compactness of Σ1,Σ2 and (5.2.10)
there is a constant y1 > 0 so that for all y ∈ R

(5.2.29) ≤ σ2
+

(
φ(y|µ̄+, σ̄

2
+)1y>y1 + φ(y|µ̄−, σ̄2

+)1y<−y1 + 1√
2πσ̄−

1y∈[−y1,y1]

)
.

Furthermore, if s∗ > σ̄+, (5.2.10) gives

lim
|y|→∞

φ(y|0, s2
∗)

φ(y|µ̄+, σ̄2
+) = lim

|y|→∞

φ(y|0, s2
∗)

φ(y|µ̄−, σ̄2
+) =∞ ,

hence, there is a constant y2 > y1 > 0 so that for all y ≥ |y2|

φ(y|0, s2
∗) ≥ max{φ(y|µ̄+, σ̄

2
+), φ(y|µ̄−, σ̄2

+)} .

If we finally define

c∗ := max
{

1,
σ̄2

+√
2πσ̄−φ(c2|0, s2

∗)

}
,

we have that

f
θ∗(·)
Y |X

(
σ2
j y + µj |z

)
≤c∗φ(y|0, s2

∗) .

For the derivatives with respect to some σj , the proof works analogously, except that
one examines 2m-absolute moments of centred normal variables, i.e.∫ ∣∣y∣∣2qc∗φ(y|0, s2

∗) dy ≤ sq∗c∗(2q − 1)!! ≤ s2q
∗ c∗2qq! . (5.2.30)

Conclude by choosing C1, C2 < ∞ large enough and noting that they can be chosen
independently of θ, x, h, n, γ.

5.3 Proofs for Section 4.2
5.3.1 Proof for the identifiability result
The following simple lemma states that it is enough to prove µ = µ∗ in order to deduce
ϑ = ϑ∗ under the assumptions in Theorem 4.2.4.

Lemma 5.3.1. Let ϑ1, ϑ2 ∈ X, ϑi = (pi, σi, µi, fi)T , i = 1, 2. If p1 ∈ (0, 1), µ1 = µ2 6= 0,
and fmix(y;ϑ1) = fmix(y;ϑ2) for almost all y ∈ R, then (p1, σ1, µ1) = (p2, σ2, µ2) and
f1 = f2 almost surely.

The proof of this lemma is straightforward. Calculate the first three moments of the
mixture densities fmix(·;ϑi), i = 1, 2, which need to coincide. From this system of
equations, equality of the parameters follows directly. A complete proof can be found in
Werner (2015).
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Proof of Theorem 4.2.4. Since f̄ ∈ E3 has a finite second-order moment, we may assume
without loss of generality that it is normalized to one, i.e.∫

y2f̄(y) dy = 1.

Denote ϑ = (p, σ, µ, f)T . Taking the Fourier transform in (4.2.1), using that the Fourier
transforms of f̄ , f∗, f are real-valued because of their symmetry and considering real
and imaginary part separately gives for all t ∈ R that

(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt) + p∗ cos(µ∗t)ϕf∗(t) = p cos(µt)ϕf (t) ,
p∗ sin(µ∗t)ϕf∗(t) = p sin(µt)ϕf (t) .

(5.3.1)

Multiplying these equations by sin(µt) and cos(µt), respectively, and using the trigono-
metric addition formula

sin
(
µ∗t− µt

)
= sin(µ∗t) cos(µt)− cos(µ∗t) sin(µt)

yields[
(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt)

]
sin(µt) = p∗ϕf∗(t) sin

(
(µ∗−µ)t

)
, t ∈ R . (5.3.2)

As the first moments of fmix(·;ϑ) and fmix(·;ϑ∗) have to coincide, we have

pµ = p∗µ∗ , (5.3.3)

which gives p, µ 6= 0. Hence, t = π
µ is a zero of the left-hand side of (5.3.2), giving

sin
(
µ∗−µ
µ π

)
= 0 as p∗, ϕf∗ > 0, so that µ∗−µ

µ ∈ Z. The latter is true if and only if there
is a k ∈ Z so that µ∗ = kµ. By (5.3.3), we have kp∗ = p, particularly

1 ≤ k ≤ p−1
∗ < 2

because p∗ > 1/2 and p ∈ (0, 1]. Hence, k = 1 and we deduce µ = µ∗, concluding the
proof by Lemma 5.3.1.

5.3.2 Proofs for the estimation results
The proofs of Theorems 4.2.16 and 4.2.19 once again will be based on Theorems 3.1.6 and
3.1.13. Hence, it is enough to show that Assumption A.2.2 in the appendix is fulfilled.
Again, the complete proof is given by the assembly of the lemmata and proofs in this
section.

Fix some bounded and convex open Θ ⊂ Ξ ⊂ (1/2, 1)× (0,∞)× R\{0} so that

Ξ = [p−, p+]× [σ−, σ+]× [µ−, µ+] ⊂ (1/2, 1)× (0,∞)× R\{0}

for some
1/2 < p− < p+ < 1 , 0 < σ− < σ+ <∞ , µ− < µ+.
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Note that for fixed x, γ, h the contrast functions M(·, x; γ) and Mn(·, x;h) are defined on
[0, 1]×(0,∞)×R, which is a superset of Ξ. In particular, the model is identifiable over Ξ.

Throughout the proofs in this section, let us use the notation an . bn only if an ≤ Cbn
for n ≥ n0 and C depends only on I, Ξ, U , Up, Uσ, Uµ, U`, L, [a, b], f̄ the Hölder
constant function L(·) of (f∗x(·))x∈I or is universal. In particular, the constant C then is
independent of specific θ, x, h, α or γ.

Let us start by proving the contrast property of the function H.

Proof of Proposition 4.2.13. The fact that for all t ∈ R

Eϑ∗
[
H(Y, t, θ∗)

]
= 0

is clear as stated in (4.2.5). Now, let θ ∈ [0, 1]× (0,∞)× R so that for all t ∈ R

0 = Eϑ∗
[
H(Y, t, θ)

]
= Eϑ∗

[
sin
(
(Y − µ) t

)]
+ (1− p)ϕf̄ (σ t) sin(tµ) .

By using

Eϑ∗
[

sin
(
(Y − µ)t

)]
= =

(∫
eit(y−µ)fmix(y;ϑ∗) dy

)
= =

(
ϕfmix(·+µ;ϑ∗)(t)

)
and

=
(
ϕ 1
σ f̄
(
·+µ
σ

)(t)) = =
(∫

eit(σy−µ)f̄(y) dy
)

= ϕf̄ (σt) sin(−tµ) ,

we conclude that for all t ∈ R

0 = Eϑ∗
[
H(Y, t, θ)

]
= =

(
ϕ
fmix(·+µ;ϑ∗)− 1−p

σ f̄
(
·+µ
σ

)(t)) .

Hence, the function

τ(·; θ|ϑ∗) := fmix(·+ µ;ϑ∗)−
1− p
σ

f̄

(
·+ µ

σ

)
is symmetric about zero. Taking the Fourier transforms on both sides of

1− p
σ

f̄
( ·
σ

)
+ τ(· − µ; θ|ϑ∗) = fmix(·;ϑ∗)

once again yields equation (5.3.1), i.e.
(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt) + p∗ cos(µ∗t)ϕf∗(t) = p cos(µt)ϕτ(·;θ|ϑ∗)(t) ,

p∗ sin(µ∗t)ϕf∗(t) = p sin(µt)ϕτ(·;θ|ϑ∗)(t) .
Multiplying the first equation by sin(µt) and the second one by cos(µt) once again gives[

(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt)
]

sin(µt) = p∗ϕf∗(t) sin
(
(µ∗ − µ)t

)
.

As Assumption 4.2.3 is fulfilled we can repeat the proof of Theorem 4.2.4 starting after
(5.3.2). Note that we cannot use Theorem 4.2.4 to confirm the result because τ(·; θ|ϑ∗)
does not have to be a density.

The same procedure works under Assumption 4.2.9.
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Auxiliary results

Let us examine the contrast functions M and Mn on a basic level. For theoretical
purposes, we first deduce an alternative form of H by

Eγ
[

sin
(
(Y − µ)t

)∣∣∣X = x
]

=
∫
=
(

exp
(
i(y − µ)t

))(1− p∗(x)
σ∗(x) f̄

( y

σ∗(x)

)
+ p∗(x)f∗x

(
y − µ∗(x)

))
dy

=
(
1− p∗(x)

)
sin(−µt)ϕf̄

(
σ∗(x)t

)
+ p∗(x) sin

(
(µ∗(x)− µ)t

)
ϕf∗x (t) , (5.3.4)

so that

Eγ
[
H(Y, t, θ)

∣∣∣X = x
]

= sin(µt)
(

(1− p)ϕf̄ (σt)−
(
1− p∗(x)

)
ϕf̄
(
σ∗(x)t

))
+ p∗(x) sin

(
(µ∗(x)− µ∗)t

)
ϕf∗x (t)

(5.3.5)

yielding an alternative form of M by definition.

Let us use representation (5.3.5) in order to differentiate the function H, directly yielding
the derivatives of the contrast M by differentiating under the integral sign, i.e.

∂θM(θ, x; γ) =2
∫

Eγ
[
H(Y, t, θ)

∣∣∣X = x
]
· Eγ

[
∂θH(Y, t, θ)

∣∣∣X = x
]
q(t) dt · `2(x) ,

Vx(θ; γ) =2
∫ (

Eγ
[
∂θH(Y, t, θ)

∣∣∣X = x
]T

Eγ
[
∂θH(Y, t, θ)

∣∣∣X = x
]

+ Eγ
[
H(Y, t, θ)

∣∣∣X = x
]
· Eγ

[
∂2
θ2H(Y, t, θ)

∣∣∣X = x
])
q(t) dt · `2(x) ,

where Vx(θ; γ) denotes the Hessian matrix of M(·, x; γ) evaluated at θ.

The derivatives of the function H are easily computed and given by

∂pH(y, t, θ) =− ϕf̄ (σt) sin(µt) ,
∂σH(y, t, θ) = t(1− p)∂ϕf̄ (σt) sin(µt) ,
∂µH(y, t, θ) =− t cos

(
(y − µ)t

)
+ t(1− p)ϕf̄ (σt) cos(µt) ,

Eγ
[
∂pH(Y, t, θ)

∣∣∣X = x
]

=− ϕf̄ (σt) sin(µt) , (5.3.6)

Eγ
[
∂σH(Y, t, θ)

∣∣∣X = x
]

= t(1− p)∂ϕf̄ (σt) sin(µt) ,

Eγ
[
∂µH(Y, t, θ)

∣∣∣X = x
]

=− tEγ
[

cos
(
(Y − µ)t

)∣∣∣X = x
]

+ t(1− p)ϕf̄ (σt) cos(µt)

= t cos(µt)
(

(1− p)ϕf̄ (σt)−
(
1− p∗(x)

)
ϕf̄
(
σ∗(x)t

))
− p∗(x)tϕf∗x (t) cos

(
(µ∗(x)− µ)t

)
, (5.3.7)
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Eγ
[
∂2
p2H(Y, t, θ)

∣∣∣X = x
]

= 0 ,

Eγ
[
∂p∂σH(Y, t, θ)

∣∣∣X = x
]

=− t∂ϕf̄ (σt) sin(µt) ,

Eγ
[
∂p∂µH(Y, t, θ)

∣∣∣X = x
]

=− tϕf̄ (σt) cos(µt) ,

Eγ
[
∂2
σ2H(Y, t, θ)

∣∣∣X = x
]

= t2(1− p)∂2ϕf̄ (σt) sin(µt) ,

Eγ
[
∂σ∂µH(Y, t, θ)

∣∣∣X = x
]

= t2(1− p)∂ϕf̄ (σt) cos(µt) ,

Eγ
[
∂2
µ2H(Y, t, θ)

∣∣∣X = x
]

=− t2Eγ
[

sin
(
(Y − µ)t

)∣∣∣X = x
]
− t2(1− p)ϕf̄ (σt) sin(µt) .

The following lemma gives basic results on the function H.

Lemma 5.3.2. Under Assumptions (R1) and (R2), there is a constant C > 0 depending
only on Ξ and f̄ so that for all t ∈ R, θ, θ̃ ∈ Ξ we have

(i) supy,t∈R supθ∈Ξ |H(y, t, θ)| ≤ C,

(ii) supy∈R supθ∈Ξ
∥∥∂θH(y, t, θ)

∥∥ ≤ C(1 + |t|
)
,

(iii) supy∈R supθ∈Ξ
∥∥∂2

θ2H(y, t, θ)
∥∥ ≤ C(1 + t2

)
,

(iv) supy∈R
∣∣H(y, t, θ)−H(y, t, θ̃)

∣∣ ≤ C(1 + |t|
)
‖θ − θ̃‖,

(v) supy∈R
∥∥∂θH(y, t, θ)− ∂θ̃H(y, t, θ̃)

∥∥ ≤ C(1 + t2
)
‖θ − θ̃‖ ,

(vi) supy∈R
∥∥∂2

θ2H(y, t, θ)− ∂2
θ̃2H(y, t, θ̃)

∥∥ ≤ C(1 + |t|3
)
‖θ − θ̃‖.

Lemma 5.3.3. Let 0 < a ≤ b < ∞, K be a kernel fulfilling Assumptions (R3) and
(R̃4). Then, under Assumptions (R1), (R2), for any compact J ⊂ int(I), there is
some constant C > 0 so that

sup
∗

h−α sup
x∈J,θ∈Θ

∣∣∣Eγ[H(Y, t, θ)
∣∣X = x

]
−
(
Eγ
[
H(Y, t, θ)

∣∣X = ·
]
∗Kh

)
(x)
∣∣∣ ≤ C(1 + |t|

)
,

sup
∗

h−α sup
x∈J,θ∈Θ

∣∣∣Eγ[∂θH(Y, t, θ)
∣∣X = x

]
−
(
Eγ
[
∂θH(Y, t, θ)

∣∣X = ·
]
∗Kh

)
(x)
∣∣∣ ≤ C(1 + t2

)
,

where the suprema are taken over α ∈ [a, b], γ ∈ Γ(α), h ∈ (0,∞).

Main proofs

The proofs of Theorems 4.2.16 and 4.2.19 once again will be based on Theorems 3.1.6 and
3.1.13. Hence, it is enough to show that Assumption A.2.2 in the appendix is fulfilled.

Lemma 5.3.4. Let 0 < a ≤ b <∞. Under Assumptions (R1), (R2), (R5), Conditions
(i) (B̃3) and (ii) (B̃4) hold for any compact J ⊂ int(I). That is:

(i) For all x ∈ J , α ∈ [a, b], γ ∈ Γ(α), the matrix Vx(θ∗(x); γ) is positive definite.
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(ii) The Hessian matrices Vx are uniformly Lipschitz continuous in θ, i.e. for all θ, θ′ ∈
Ξ, we have

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J
‖Vx(θ; γ)− Vx(θ′; γ)‖ ≤ C‖θ − θ′‖1 ,

where C depends only on Ξ, I and q.

Proof of Lemma 5.3.4. (i) Let us start by showing that for all x ∈ J , the Hessian matrix
Vx(θ∗(x); γ) is positive definite.

Because Eγ
[
H(Y, t, θ∗(x))

∣∣X = x
]

= 0 for all t, the Hessian matrix Vx(θ∗(x); γ) reduces
to

Vx(θ∗(x); γ)

= 2
∫

Eγ
[
∂θH

(
Y, t, θ∗(x)

)∣∣∣X = x
]T

Eγ
[
∂θH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
q(t) dt · `2(x) .

When inserting the true parameter θ∗(x), the derivatives (5.3.6) - (5.3.7) reduce to

Eγ
[
∂pH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

= −ϕf̄
(
σ∗(x)t

)
sin
(
µ∗(x)t

)
,

Eγ
[
∂σH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

= t
(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
µ∗(x)t

)
,

Eγ
[
∂µH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

= −tp∗(x)ϕf∗x (t) .

Since M(·, x; γ) attains a minimum at θ∗(x), the Hessian matrix Vx(θ∗(x); γ) is positive
semidefinite. So assume there is a vT = (v1, v2, v3) ∈ R3 so that

0 = vTVx(θ∗(x); γ)v = 2
∫ (

Eγ
[
∂θH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
v
)2
q(t) dt`2(x) .

Since q, ` > 0 and the function t 7→ Eγ
[
∂θH(Y, t, θ∗(x))

∣∣∣X = x
]

is continuous, we
conclude

0 = v1Eγ
[
∂pH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

+ v2Eγ
[
∂σH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

+ v3Eγ
[
∂µH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

= − v1ϕf̄
(
σ∗(x)t

)
sin
(
µ∗(x)t

)
+ v2t

(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
µ∗(x)t

)
− v3tp∗(x)ϕf∗x (t)

=: g(t) (5.3.8)

for all t ∈ R. It remains to show that v = 0.

First note that the first and second summand in (5.3.8) are zero for t ∈ π
µ∗(x)Z. Hence,

we have v3 = 0 as ϕf∗x , p∗(x) > 0. Since g is zero on R, so is its first derivative, which
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exists as f̄ and f∗x have finite third moments. Now let us differentiate g at t = 0. The
derivative is determined by

∂t

(
− ϕf̄

(
σ∗(x)t

)
sin
(
µ∗(x)t

))∣∣∣
t=0

=− µ∗(x)ϕf̄ (0) cos(0) = −µ∗(x) ,

∂t

(
t
(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
µ∗(x)t

))∣∣∣
t=0

= 0 ,

∂t

(
− tp∗(x)ϕf∗x (t)

)∣∣∣
t=0

=− p∗(x) ,

giving

v1 = − p∗(x)
µ∗(x)v3 ,

because µ∗(x), p∗(x) 6= 0. Minding v3 = 0, we derive v1 = 0. And since the function

t 7→ t
(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
µ∗(x)t

)
is non-zero in a neighbourhood around 0 excluding 0, we get v2 = 0 by (5.3.8), so that
the matrix Vx(θ∗(x); γ) is indeed positive definite.

Note that under the identifiability Assumption 4.2.9, the arguments would work analo-
gously.

(ii) By using the identity

Vx(θ; γ) =2
∫ (

Eγ
[
∂θH(Y, t, θ)

∣∣∣X = x
]T

Eγ
[
∂θH(Y, t, θ)

∣∣∣X = x
]

+ Eγ
[
H(Y, t, θ)

∣∣∣X = x
]
· Eγ

[
∂2
θ2H(Y, t, θ)

∣∣∣X = x
])
q(t) dt · `2(x) ,

Lemma 5.3.2 and minding the fact, that q has finite moments of order up to 3, we deduce
the result.

The following lemma shows that the deterministic and stochastic estimation errors of
the empirical contrast are of the usual non-parametric order.

Lemma 5.3.5. Let 0 < a ≤ b < ∞. Under Assumptions (R1), (R2), (R5), for some
kernel K fulfilling Assumptions (R3) and (R̃4) and sequences of bandwidth parameters
hn(α), α ∈ [a, b] so that

sup
α∈[a,b]

hn(α), sup
α∈[a,b]

logn
nhn(α)d → 0 ,

Conditions (B̃5), (B̃6) and (B̃7) hold for any compact cuboid J ⊂ int(I) containing
an open subset. To be specific on (B̃5), we have for any compact cuboid J ⊂ int(I)
containing an open subset

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J,θ∈Θ

hn(α)−α
∥∥Eγ[Sn(θ, x;hn(α)

)]
− S(θ, x; γ)

∥∥ ≤ C∗ , (5.3.9)
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lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(a)

(
logn

nhn(α)d

)−1

Eγ
[

sup
x∈J,θ∈Θ

∥∥Sn(θ, x;hn(α)
)
− Eγ

[
Sn
(
θ, x;hn(α)

)]∥∥2
]

(5.3.10)
≤CSTOCH .

The constant C∗ > 0 depends only on a, b, the function classes Γ(α), Θ, I, q and K; the
constant CSTOCH > 0 depends only on ‖K‖∞, LK , U`, I, Θ but is free from a and b.

Particularly, when hn(α) =
( logn

n

) 1
2α+d , there is a constant C > 0 so that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

(
logn
n

)− 2α
2α+d

Eγ
[

sup
x∈J,θ∈Θ

∥∥Sn(θ, x;hn(α)
)
− S(θ, x; γ)

∥∥2
]
≤ C .

(5.3.11)

Proof of Lemma 5.3.5. First, let us prove (5.3.9). We will show that for all θ, x, α, γ,
h, we have∥∥Eγ[Sn(θ, x;h)

]
− S(θ, x; γ)

∥∥
≤ 2

∫ ∥∥∥∥((Eγ[H(Y, t, θ)
∣∣X = ·

]
`
)
∗Kh

)
(x) ·

((
Eγ
[
∂θH(Y, t, θ)

∣∣X = ·
]
`
)
∗Kh

)
(x)

− `2(x)Eγ
[
H(Y, t, θ)

∣∣X = x
]
· Eγ

[
∂θH(Y, t, θ)

∣∣X = x
]∥∥∥∥q(t) dt . (5.3.12)

.hα

Let us make a zero addition of the term

`(x)Eγ
[
H(Y, t, θ)

∣∣X = x
]
·
((

Eγ
[
∂θH(Y, t, θ)

∣∣X = ·
]
`
)
∗Kh

)
(x)

within the norm in (5.3.12). Since ` is bounded by supU` and the functions H and
∂θH(·, t, ·)/(1 + |t|) are uniformly bounded according to Lemma 5.3.2 (i) and (ii), it is
enough to examine occurring differences.

First deduce that∣∣∣∣((Eγ[H(Y, t, θ)
∣∣X = ·

]
`
)
∗Kh

)
(x)− `(x)Eγ

[
H(Y, t, θ)

∣∣X = x
]∣∣∣∣ (5.3.13)

≤
∣∣∣∣((Eγ[H(Y, t, θ)

∣∣X = ·
]
`
)
∗Kh

)
(x)− `(x)

((
Eγ
[
H(Y, t, θ)

∣∣X = ·
])
∗Kh

)
(x)
∣∣∣∣

+
∣∣∣∣`(x)

((
Eγ
[
H(Y, t, θ)

∣∣X = ·
])
∗Kh

)
(x)− `(x)Eγ

[
H(Y, t, θ)

∣∣X = x
]∣∣∣∣ ,

where the first summand is treated by Lemma 5.3.2 (i) and the fact that ` is Hölder-α-
smooth, in particular, ∣∣(` ∗Kh

)
(x)− `(x)

∣∣ . hα .
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The second summand is dealt with by Lemma 5.3.3 directly so that in conclusion

(5.3.13) . hα
(
1 + |t|

)
.

Analogously, we derive that∥∥∥∥((Eγ[∂θH(Y, t, θ)
∣∣X = ·

]
`
)
∗Kh

)
(x)− `(x)Eγ

[
∂θH(Y, t, θ)

∣∣X = x
]∥∥∥∥

≤
∥∥∥∥((Eγ[∂θH(Y, t, θ)

∣∣X = ·
]
`
)
∗Kh

)
(x)− `(x)

((
Eγ
[
∂θH(Y, t, θ)

∣∣X = ·
])
∗Kh

)
(x)
∥∥∥∥

+
∥∥∥∥`(x)

((
Eγ
[
∂θH(Y, t, θ)

∣∣X = ·
])
∗Kh

)
(x)− `(x)Eγ

[
∂θH(Y, t, θ)

∣∣X = x
]∥∥∥∥

.hα
(
1 + t2

)
(5.3.14)

and since q has finite third moments, conclude the bias examination.

In order to prove (5.3.10) and (B̃7), we only need to show that all assumptions of
Theorem 3.2.7 are fulfilled. The gradient of the empirical contrast Mn is given by

Sn(θ, x;h) = 2
n(n− 1)

n∑
j,k=1
j 6=k

∫
H(Yj , t, θ)∂θH(Yk, t, θ)q(t) dtKh(Xj − x)Kh(Xk − x) .

According to Lemma 5.3.2 (i), (ii), (iv) and (v), each of the coordinates of the function

θ 7→
∫
H(Yj , t, θ)∂θH(Yk, t, θ)q(t) dt

fulfils all of the assumptions postulated on the function τ in Theorem 3.2.7, so that
application of Theorem 3.2.7 concludes the proof of (B̃5).

(B̃7) is subsequently given directly by Lemma 3.2.10.

In order to prove (B̃6), make a bias variance decomposition for the contrast’s estimation
error supθ∈Θ,x∈J |Mn(θ, x;h)−M(θ, x; γ)| and repeat the arguments above. In particular,
by using Lemma 5.3.3 as well as Lemma 3.2.1, deduce that

sup
α∈[a,b]

sup
γ∈Γ(a)

hn(α)−a sup
θ∈Θ,x∈J

∣∣∣Eγ[Mn

(
θ, x;hn(α)

)]
−M(θ, x; γ)

∣∣∣ = O(1)

yielding

sup
α∈[a,b]

sup
γ∈Γ(a)

sup
θ∈Θ,x∈J

∣∣∣Eγ[Mn

(
θ, x;hn(α)

)]
−M(θ, x; γ)

∣∣∣ = o(1) .

Use Theorem 3.2.7 for the empirical contrast Mn in order to deduce

sup
α∈[a,b]

sup
γ∈Γ(a)

(
logn

nhn(α)d

)− 1
2

Eγ
[

sup
θ∈Θ,x∈J

∣∣∣Mn

(
θ, x;hn(α)

)
− Eγ

[
Mn

(
θ, x;hn(α)

)]∣∣∣] = O(1) ,
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5.3 Proofs for Section 4.2

which gives

sup
α∈[a,b]

sup
γ∈Γ(a)

Pγ
(

sup
θ∈Θ,x∈J

∣∣∣Mn

(
θ, x;hn(α)

)
− Eγ

[
Mn

(
θ, x;hn(α)

)]∣∣∣ ≥ ε) = o(1) , ε > 0

by Markov’s inequality.

5.3.3 Proofs for auxiliary results
Proof of Lemma 5.3.2. The proofs of (i)-(iii) are deduced from the fact that the func-
tions sin, cos, ϕf̄ , ∂ϕf̄ and ∂2ϕf̄ are bounded.

For (iv)-(vi), we additionally use the Lipschitz continuity of sin, cos, ϕf̄ , ∂ϕf̄ and ∂2ϕf̄ .
In particular, the Lipschitz continuity of t 7→ exp(it) with Lipschitz constant 1 yields∣∣∂kϕf̄ (σt)− ∂kϕf̄ (σ′t)

∣∣ ≤ ∫ ∣∣ exp(iσty)− exp(iσ′ty)
∣∣ · ∣∣ikykf̄(y)

∣∣dy
≤ |t| |σ − σ′|

∫
|y|k+1f̄(y) dy , k = 0, 1, 2 . (5.3.15)

Proof of Lemma 5.3.3. (i) Fix some α ∈ [a, b], γ ∈ Γ(α), h ∈ (0,∞), x ∈ J . Use the
alternative representation (5.3.4), the fact that characteristic functions are bounded by
1, boundedness and Lipschitz continuity of sin, cos, the compactness of Ξ and (5.3.15)
for k = 0 in order to deduce that there is some C̄ > 0 independent of α, γ, h, x, t so
that∣∣∣∣Eγ[H(Y, t, θ)

∣∣X = x
]
−
(
Eγ
[
H(Y, t, θ)

∣∣X = ·
]
∗Kh

)
(x)
∣∣∣∣

=
∣∣∣∣ ∫ (Eγ[H(Y, t, θ)

∣∣X = x
]
− Eγ

[
H(Y, t, θ)

∣∣X = z + x
])
Kh(z) dz

∣∣∣∣
=
∣∣∣∣ ∫ (Eγ[ sin

(
(Y − µ)t

)∣∣X = x
]
− Eγ

[
sin
(
(Y − µ)t

)∣∣X = z + x
])
Kh(z) dz

∣∣∣∣
=
∣∣∣∣ ∫ ( sin(−µt)

(
1− p∗(x)

)
ϕf̄
(
σ∗(x)t

)
− sin(−µt)

(
1− p∗(z + x)

)
ϕf̄
(
σ∗(z + x)t

)
+ sin

(
(µ∗(x)− µ)t

)
p∗(x)ϕf∗x (t)− sin

(
(µ∗(z + x)− µ)t

)
p∗(z + x)ϕf∗

z+x
(t)
)
Kh(z) dz

∣∣∣∣
≤ C̄

(
1 + |t|

) ∣∣∣∣ ∫ ((p∗(x)− p∗(z + x)
)

+
(
σ∗(x)− σ∗(z + x)

)
+
(
µ∗(x)− µ∗(z + x)

))
Kh(z) dz

∣∣∣∣
(5.3.16)

+ C̄

∣∣∣∣ ∫ (ϕf∗x (t)− ϕf∗
z+x

(t)
)
Kh(z) dz

∣∣∣∣ . (5.3.17)
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5 Proofs and auxiliary results

The term (5.3.16) is directly treated by Lemma 3.2.1. The term (5.3.17) is handled
by the fact that x 7→ f∗x(y) is Hölder-α-smooth with Hölder constant L(y) that is inte-
grable in y so that Hölder-α-smoothness extends to the family of characteristic functions
(ϕf∗x )x∈I . Note that the k-th partial derivatives of f∗· (y) are bounded by L(y), |k| ≤ bαc
so that Lemma 3.2.1 is applicable again.

(ii) Since

Eγ
[

cos
(
(Y − µ)t

)∣∣X = x
]

=
∫
<
(

exp(i(y − µ)t)
)(1− p∗(x)

σ∗(x) f̄
( y

σ∗(x)

)
+ p∗(x)f∗x(y − µ∗(x))

)
dy

=
(
1− p∗(x)

)
cos(−µt)ϕf̄

(
σ∗(x)t

)
+ p∗(x) cos

(
(µ∗(x)− µ)t

)
ϕf∗x (t) ,

we can proceed just like we did in (i).
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6 Simulations
In this section, we illustrate the asymptotic results of the estimator θ̂n(·;h), cf. (4.1.4),
for the mixture of normal regressions model, cf. Section 4.1. Let us conduct a simulation
series for two different models of this kind.

Regime 1: Consider the two-component mixture of regressions model with conditional
model densities

f1(·|x) = π(x)φ
(
·
∣∣µ1(x), σ2

1(x)
)

+
(
1− π(x)

)
φ
(
·
∣∣µ2(x), σ2

2(x)
)
,

where the parameter functions are given by

µ1(x) = 3 + 0.5 sin(0.2x) , µ2(x) = −0.5 sin(x) ,
σ1(x) = 0.9 + 0.2 sin(0.2x) , σ2(x) = 0.8 + 0.2 sin(0.3x) ,
π(x) = 0.3 + 0.03 sin(0.5x) .

Regime 2: Consider the three-component mixture of regressions model with conditional
model densities

f2(·|x) =
3∑
c=1

pc(x)φ
(
·
∣∣λc(x), δ2

c (x)
)
,

where the parameter functions are given by

λ1(x) = µ1(x) , λ2(x) = µ2(x) , λ3(x) = −5 + 0.25 exp(0.4x) ,
δ1(x) = σ1(x) , δ2(x) = σ2(x) , δ3(x) = 0.9 + 0.1 exp(0.1x) ,
p1(x) = π(x) , p2(x) = 0.25 + 0.02 cos(0.25x) , p3(x) = 1− p1(x)− p2(x) .

In both regimes, the univariate covariate values are drawn from a U(−4, 4) distribution.
For each regime, we generate 400 datasets with n = 1 000, n = 5 000, n = 10 000 obser-
vations to which the estimation method is applied.

For the estimation procedure, we assume that the number of components m is known
beforehand. Let us use the triangular kernel K : R → R, K(x) = (1 − |x|)1|x|≤1. We
propose bandwidth parameters to come from the set {0.1, 0.2, . . . , 1} in order to demon-
strate the influence of the bandwidth on performance of the method. The uniform
asymptotic results are illustrated by estimating all parameter functions on the grid
G = [−3, 3] ∩ (0.05 · Z).
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6 Simulations

In order to approximate the maxima of the local log-likelihood functions, we apply the
EM algorithm proposed by Huang et al. (2013) using perturbed true values as initial
values. The estimation results for both regimes are given in the Tables A.1-A.3 in which
mean and standard deviation of the estimators’ supremum errors are displayed. Figure
6.2 displays boxplots for the empirical distribution of the supremum errors of the es-
timators π̂(·), µ̂2(·), σ̂2(·) in Regime 1. The influence of the bandwidth parameter on
the estimation results can be seen quite clearly. Figure 6.1 displays typical estimated
parameter curves.

We conclude that the method works quite well for a variety of sample sizes and bandwidth
parameters. In particular, the means of the empirical L∞-errors approach zero with
increasing sample size, while the standard deviations also decrease. This affirms the
theoretical results stated in Section 4.1.3.
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Figure 6.1: Typical estimated parameter curves (blue circled lines) of parameter curves (red solid lines)
in Regime 1 with bandwidth parameter h = 1.
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Figure 6.2: Boxplots of the supremum error of estimators in Regime 1 for n = 1, 000, n = 5, 000,
n = 10, 000 observations. In each graph, the values on the horizontal axis correspond to
the bandwidth parameters h being used.
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Giné, E., R. Lata la, and J. Zinn, 2000. Exponential and moment inequalities for U-
statistics. In High Dimensional Probability II, volume 47, pages 13–38. Springer.

139



Bibliography

Goldfeld, S. M. and R. E. Quandt, 1973. A markov model for switching regressions.
Journal of econometrics, 1(1):3–15.

Helsen, K., K. Jedidi, and W. S. DeSarbo, 1993. A new approach to country segmentation
utilizing multinational diffusion patterns. The Journal of marketing, 57(4):60–71.

Hohmann, D. and H. Holzmann, 2013a. Semiparametric location mixtures with distinct
components. Statistics, 47(2):348–362.

Hohmann, D. and H. Holzmann, 2013b. Two-component mixtures with independent co-
ordinates as conditional mixtures: Nonparametric identification and estimation. Elec-
tronic Journal of Statistics, 7:859–880.

Huang, M., R. Li, and S. Wang, 2013. Nonparametric mixture of regression models.
Journal of the American Statistical Association, 108(503):929–941.

Huang, M. and W. Yao, 2012. Mixture of regression models with varying mixing pro-
portions: a semiparametric approach. Journal of the American Statistical Association,
107(498):711–724.

Huber, P. J. et al., 1967. The behavior of maximum likelihood estimates under non-
standard conditions. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 221–233. Berkeley, CA.

Hunter, D. R. and D. S. Young, 2012. Semiparametric mixtures of regressions. Journal
of Nonparametric Statistics, 24(1):19–38.

Hunter, D. R., S. Wang, and T. P. Hettmansperger, 2007. Inference for mixtures of
symmetric distributions. The Annals of Statistics, 35(1):224–251.

Hurn, M., A. Justel, and C. P. Robert, 2003. Estimating mixtures of regressions. Journal
of Computational and Graphical Statistics, 12(1):55–79.

Jordan, M. I. and L. Xu, 1995. Convergence results for the EM approach to mixtures of
experts architectures. Neural networks, 8(9):1409–1431.

Kasahara, H. and K. Shimotsu, 2009. Nonparametric identification of finite mixture
models of dynamic discrete choices. Econometrica, 77(1):135–175.

Lepskii, O., 1991. On a problem of adaptive estimation in Gaussian white noise. Theory
of Probability & Its Applications, 35(3):454–466.

Lepskii, O., 1992. Asymptotically minimax adaptive estimation. i: Upper bounds. opti-
mally adaptive estimates. Theory of Probability & Its Applications, 36(4):682–697.

Hall, P. and X.-H. Zhou, 2003. Nonparametric estimation of component distributions in
a multivariate mixture. The Annals of statistics, 31(1):201–224.

McLachlan, G. and D. Peel, 2004. Finite Mixture Models. Wiley series in probability
and statistics: Applied probability and statistics. Wiley.

140



Bibliography

Newcomb, S., 1886. A generalized theory of the combination of observations so as to
obtain the best result. American Journal of Mathematics, 8(4):343–366.

Parzen, E., 1962. On estimation of a probability density function and mode. The Annals
of mathematical statistics, 33(3):1065–1076.

Pearson, K., 1894. Contributions to the mathematical theory of evolution. Philosophical
Transactions of the Royal Society of London. A, 185:71–110.

Pollard, D., 2012. Convergence of stochastic processes. Springer Science & Business
Media.

Quandt, R. E., 1958. The estimation of the parameters of a linear regression system
obeying two separate regimes. Journal of the american statistical association, 53(284):
873–880.

Quandt, R. E., 1972. A new approach to estimating switching regressions. Journal of
the American statistical association, 67(338):306–310.

Quandt, R. E. and J. B. Ramsey, 1978. Estimating mixtures of normal distributions
and switching regressions. Journal of the American statistical Association, 73(364):
730–738.

Ramaswamy, V., W. S. DeSarbo, D. J. Reibstein, and W. T. Robinson, 1993. An
empirical pooling approach for estimating marketing mix elasticities with pims data.
Marketing Science, 12(1):103–124.

Rosenblatt, M., 1956. Remarks on some nonparametric estimates of a density function.
The Annals of Mathematical Statistics, 27(3):832–837.

Scott, D. W., 2015. Multivariate density estimation: theory, practice, and visualization.
John Wiley & Sons.

Silverman, B. W., 1978. Weak and strong uniform consistency of the kernel estimate of
a density and its derivatives. The Annals of Statistics, 6(1):177–184.

Silverman, B. W., 1981. Using kernel density estimates to investigate multimodality.
Journal of the Royal Statistical Society. Series B (Methodological), 43(1):97–99.

Silverman, B. W., 2018. Density estimation for statistics and data analysis. Routledge.

Teicher, H., 1963. Identifiability of finite mixtures. The Annals of Mathematical statistics,
34(4):1265–1269.

Titterington, D., A. Smith, and U. Makov, 1985. Statistical analysis of finite mixture dis-
tributions. Wiley series in probability and mathematical statistics: Applied probability
and statistics. Wiley.

Tsybakov, A., 2008. Introduction to Nonparametric Estimation. Springer Series in Statis-
tics. Springer New York.

141



Bibliography

van der Vaart, A. W., 2000. Asymptotic Statistics. Cambridge University Press.

van der Vaart, A. and J. A. Wellner, 1996. Weak convergence and empirical processes.
With applications to statistics. New York, NY: Springer.

Vandekerkhove, P., 2013. Estimation of a semiparametric mixture of regressions model.
Journal of Nonparametric Statistics, 25(1):181–208.

Viele, K. and B. Tong, 2002. Modeling with mixtures of linear regressions. Statistics
and Computing, 12(4):315–330.

Werner, H., 2015. Nonparametric identification and estimation in two-component mix-
tures and mixtures of regressions. Master’s thesis, Philipps-Universität Marburg.

Young, D. S. and D. R. Hunter, 2010. Mixtures of regressions with predictor-dependent
mixing proportions. Computational Statistics & Data Analysis, 54(10):2253–2266.

142



Appendix

A.1 Notation
Let us briefly discuss notation used throughout this thesis.

We will use the notation ‖ · ‖ for norms on any normed space. The context should make
clear on which space it lives. Sometimes, we will use specific norms, such as

‖θ‖1 =
m∑
j=1
|ϑj | , ‖θ‖∞ = max

j=1,...,m
|ϑj | , θ = (ϑ1, . . . , ϑm)T ∈ Rm .

Note that norms on Rm are equivalent in the sense that for any norms ‖ · ‖, ‖ · ‖∗ on Rm,
there are constants c1, c2 > 0 so that

c1‖θ‖ ≤ ‖θ‖∗ ≤ c2‖θ‖ , θ ∈ Rm .

When using a norm ‖ · ‖ for matrices A ∈ Rm×m, we assume that it is compatible with
the norm being used on Rm, i.e.

‖Aθ‖ ≤ ‖A‖ · ‖θ‖ , θ ∈ Rm .

For functions f : Ω→ Rm for some non-empty set Ω, we will use the notation

‖f‖∞ =
{

supω∈Ω |f(ω)| , m = 1 ,
supω∈Ω ‖f(ω)‖∞ , m > 1 ,

which is a norm on the set of bounded Rm-valued functions on Ω.

For a vector θ = (ϑ1, . . . , ϑm)T ∈ Rm and a permutation ζ on {1, . . . ,m}, write

ζ(θ) = (ϑζ(1), . . . , ϑζ(m))T .

For vectors θ, θ′ ∈ Rm denote the line segment between θ and θ′ by

[θ, θ′] =
{
λθ + (1− λ)θ′

∣∣λ ∈ [0, 1]
}

and for ε > 0, the ε-ball with respect to ‖ · ‖∞ around θ by

Bε(θ) =
{
θ′ ∈ Rm : ‖θ − θ′‖∞ ≤ ε

}
.
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Moreover, for sets A ⊂ Rm, define the ε-neighbourhood with respect to ‖ · ‖∞ around A
by

Bε(A) =
{
θ ∈ Rm : dist(θ,A) ≤ ε

}
,

where the metric that is induced by ‖ · ‖∞ is being used.

For complex numbers z = ai + b ∈ C denote the imaginary part of z by =(z) = a and
the real part of z by <(z) = b.

For a metric space (Ω, d) and sets A,B ⊂ Ω, we use the notation

dist(A,B) = inf
x∈A,y∈B

d(x, y) ,

dist(x,B) = inf
y∈B

d(x, y) , x ∈ Ω ,

diamB = diam(B) = sup
x,y∈B

d(x, y) .

Further denote B the closure, int(I) the interior and ∂I the boundary of B.

For a vector k = (k1, . . . , km) ∈ Nm0 with
∑m
j=1 kj = n denote |k| = n as well as

k! = k1! · . . . · km!. For a vector θ = (ϑ1, . . . , ϑm)T ∈ Rm write θk = ϑk1
1 · . . . · ϑkmm .

For partially differentiable functions f : U → R, U ⊂ Rm open, denote the partial
derivative of f with respect to ϑk at the point θ = (ϑ1, . . . , ϑm) by ∂ϑkf(θ). For a vector
z ∈ Rm, ‖z‖ = 1, the directional derivative along z is denoted by ∂zf if it exists. When
m = 1, write ∂f for the derivative of f . Now, let f be n-times partially differentiable
with continuous n-order partial derivatives. For a vector k = (k1, . . . , km) ∈ Nm0 with
|k| = n denote the k-th partial derivative of f by

∂kf(θ) = ∂k1
ϑ1
. . . ∂kmϑmf(θ) , θ ∈ U ,

where order of differentiation is arbitrary. Furthermore, if existent, denote the gradient
and Hessian matrix of f by

∂θf(·) =
(
∂ϑ1f(·), . . . , ∂ϑmf(·)

)T
,

∂2
θ2f(·) =

(
∂ϑi∂ϑjf(·)

)
i,j=1,...,m ∈ Rm×m .

For an integrable function f : R→ R denote its Fourier transform by

ϕf (t) =
∫

exp(itz)f(z) dz , t ∈ R .

Whenever f is a density, we shall also call ϕf the characteristic function of f .

For α ∈ (0,∞), we define

bαc = max{n ∈ N0 : n < α} , dαe = min{n ∈ N : n > α} .
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Note that our definition differs from the predominant one for bαc as we demand it to be
the largest natural number that is strictly smaller than α not smaller or equal to α.

For sets Ω, #Ω denotes the number of elements of Ω.

For sequences (an)n∈N, (bn)n∈N ⊂ (0,∞), we use the notation

an . bn or an = O(bn)

when there is an n0 ∈ N and a constant C > 0 so that for all n ≥ n0, we have an ≤ C bn.
We also use the notation an = o(bn) when an/bn → 0, n→∞. For sequences of random
variables (Xn)n∈N, use the notation Xn = OP(bn) when Xn/bn is tight and Xn = oP(bn)
when Xn/bn converges to 0 in probability.

For random variables X,Y, Z we write X ⊥⊥ Y |Z when X is conditionally independent
of Y given Z.

Denote the density of the univariate normal distribution N (µ, σ2) with mean µ ∈ R and
variance σ2 > 0 by φ(·|µ, σ2).
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A.2 Sets of alternative assumptions
The following assumptions are an alteration of Assumption 3.1.4 for deriving uniform
convergence rates when the model is identifiable.

Assumption A.2.1. Let Θ ⊂ Ξ ⊂ Rm, I ⊂ Rd, (Γ, ‖ · ‖) be a normed space, M :
Ξ × I × Γ → R be a deterministic function, Mn : Ξ × I → R be random functions,
(rn)n∈N ⊂ (0,∞) be sequences with rn →∞.

(Ã1) Assume that Θ is compact and convex with Θ = int(Θ), Ξ is open and convex,
I is compact and (Γ, ‖ · ‖) is a compact normed space. Furthermore, there is a
constant C̄ <∞ so that for all θ, θ′ ∈ Θ, there is an l ∈ N0 and θ̄1, . . . , θ̄l ∈ Θ so
that with θ = θ̄0, θ′ = θ̄l+1, we have

θ̄k+1 − θ̄k = ckejk , k = 0, . . . , l

for some unit vectors ejk and some coefficients ck ∈ R with
∑l
k=0 |ck| ≤ C̄‖θ−θ′‖.

(Ã2) The function M is continuous, i.e. the map

(θ, x; γ) 7→M(θ, x; γ)

is continuous. For every x ∈ I, γ ∈ Γ, the contrast M(·, x; γ) attains a unique
minimum at θ∗(x; γ), where (x; γ) 7→ θ∗(x; γ) is continuous.

(Ã3) For all x ∈ I, γ ∈ Γ, the function M(·, x; γ) is twice continuously differentiable in
its first argument and the Hessian matrix

Vx
(
θ∗(x; γ); γ

)
:= ∂2

θ2M
(
θ∗(x; γ), x; γ

)
is positive definite. Particularly, the eigenvalues λ1

x,γ ≥ · · · ≥ λmx,γ of Vx
(
θ∗(x; γ); γ

)
are positive. Furthermore, the map (x, γ) 7→ Vx

(
θ∗(x; γ); γ

)
is continuous.

(Ã4) The Hessian matrices Vx(·; γ) are uniformly Lipschitz continuous in θ, i.e. for all
θ, θ′ ∈ Ξ, we have

sup
γ∈Γ

sup
x∈I

∥∥Vx(θ; γ)− Vx(θ′; γ)
∥∥ ≤ LHess‖θ − θ′‖ ,

where LHess depends only on Ξ, I and Γ.

(Ã5) The empirical contrast is continuously differentiable in its first argument and for
the gradients

Sn(θ, x) := ∂θMn(θ, x) , S(θ, x; γ) := ∂θM(θ, x; γ)

it holds that

lim sup
n→∞

sup
γ∈Γ

rnEγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x; γ)− S(θ, x; γ)
∥∥] <∞ .
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(Ã6) The empirical contrast Mn is uniformly consistent for M , i.e.

lim
n→∞

sup
γ∈Γ

Pγ
(

sup
x∈I,θ∈Θ

∣∣Mn(θ, x)−M(θ, x; γ)
∣∣ ≥ ε) = 0 , ε > 0 .

The following list of assumptions is the simplified version of Assumption 3.1.11 for iden-
tified models.

Assumption A.2.2. Let 0 < a < b <∞, Θ ⊂ Ξ ⊂ Rm, I ⊂ Rd, (Γ(α), ‖·‖α) be normed
spaces, α ∈ [a, b], M : Ξ × I ×

⋃
α∈[a,b]

(
Γ(α) × {α}

)
→ R be a deterministic function,

Mn : Ξ× I × [a, b]→ R be random functions; βk, r(α), k̂ be defined as in (3.1.6), (3.1.7)
and (3.1.8), respectively; α̂n = βk̂. Continuity of functions taking γ as arguments is to
be understood with respect to the maximum of norms in the other arguments and ‖ · ‖a.

(B̃1) Assume that Θ is compact and convex with Θ = int(Θ), Ξ is open and convex, I
is compact, and (Γ(α), ‖ · ‖α) are compactly nested spaces, i.e. Γ(α) ⊂ Γ(α′) and
Γ(α) is compact with respect to ‖ · ‖α′ whenever α′ < α. Furthermore, Γ(α) is
closed with respect to ‖ · ‖a. Additionally, for any α, αn ↗ α, it holds that⋂

n∈N
Γ(αn) = Γ(α) .

Moreover, there is a constant C̄ < ∞ so that for all θ, θ′ ∈ Θ, there is an l ∈ N0
and θ̄1, . . . , θ̄l ∈ Θ so that with θ = θ̄0, θ′ = θ̄l+1, we have

θ̄k+1 − θ̄k = ckejk , k = 0, . . . , l

for some unit vectors ejk and some coefficients ck ∈ R with
∑l
k=0 |ck| ≤ C̄‖θ−θ′‖.

(B̃2) The function M is continuous, i.e. the map

(θ, x; γ;α) 7→M(θ, x; γ;α)

is continuous. For every x ∈ I, α ∈ [a, b], γ ∈ Γ(a), the contrast M(·, x; γ;α)
attains a unique minimum at θ∗(x; γ;α), where the map (x; γ;α) 7→ θ∗(x; γ;α) is
continuous.

(B̃3) For all x ∈ I, α ∈ [a, b], γ ∈ Γ(a), the function M(·, x; γ;α) is twice continuously
differentiable in its first argument and the Hessian matrix

Vx
(
θ∗(x; γ;α); γ;α

)
:= ∂2

θ2M
(
θ∗(x; γ;α), x; γ;α

)
is positive definite. Particularly, the eigenvalues λ1

x,γ;α ≥ · · · ≥ λmx,γ;α of the
matrices Vx

(
θ∗(x; γ;α); γ;α

)
are positive. Furthermore, the map

(x; γ;α) 7→ Vx(θ∗(x; γ;α); γ;α)

is continuous.
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(B̃4) The Hessian matrices Vx(·; γ;α) are uniformly Lipschitz continuous in θ, i.e. for
all θ, θ′ ∈ Ξ, we have

sup
α∈[a,b]

sup
γ∈Γ(a)

sup
x∈I

∥∥Vx(θ; γ;α)− Vx(θ′; γ;α)
∥∥ ≤ LHess‖θ − θ′‖ ,

where LHess depends only on Ξ, I, a, b and Γ(a).

(B̃5) The empirical contrast is continuously differentiable in its first argument and for
the gradients

Sn(θ, x;α) := ∂θMn(θ, x;α) , S(θ, x; γ;α) := ∂θM(θ, x; γ;α)

it holds that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−2Eγ
[

sup
x∈I,θ∈Θ

∥∥Sn(θ, x;α)− S(θ, x; γ;α)
∥∥2
]
≤ C∗∗ <∞.

(B̃6) The empirical contrast Mn is uniformly consistent for M , i.e.

lim
n→∞

sup
α∈[a,b]

sup
γ∈Γ(a)

Pγ
(

sup
x∈I,θ∈Θ

∣∣Mn(θ, x;α)−M(θ, x; γ; a)
∣∣ ≥ ε) = 0 , ε > 0 .

(B̃7) There is a constant C− > 0 and a monotone function u : [C−,∞) →
(
1,∞

)
with

u(t)→∞, t→∞ so that for every CLep ≥ C−,

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)plj <∞ ,

where plj is defined in (3.1.12) and 0 ≤ kn(α) ≤ N − 1 with N = dlogne is chosen
so that βkn(α) ≤ α ≤ βkn(α) + 1.
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A.3 Tables
In this section, we give tables from the simulation study in Chapter 6.

Table A.1: Means and standard deviations of the supremum error of proportion estimators
in both regimes. The first column gives the respective bandwidth parameter, the
second row gives the respective sample size.

supx∈G |π̂(x)− π(x)| supx∈G |p̂1(x)− p1(x)| supx∈G |p̂2(x)− p2(x)|
1 000 5 000 10 000 1 000 5 000 10 000 1 000 5 000 10 000

0.1 mean 0.329 0.149 0.106 0.306 0.142 0.101 0.315 0.142 0.100
sd 0.067 0.027 0.018 0.055 0.024 0.016 0.058 0.026 0.018

0.2 mean 0.220 0.099 0.070 0.205 0.093 0.066 0.210 0.094 0.066
sd 0.050 0.022 0.013 0.037 0.018 0.012 0.042 0.019 0.013

0.3 mean 0.168 0.076 0.053 0.162 0.072 0.051 0.165 0.071 0.051
sd 0.039 0.017 0.012 0.033 0.016 0.010 0.035 0.016 0.011

0.4 mean 0.139 0.062 0.044 0.136 0.060 0.043 0.138 0.059 0.042
sd 0.035 0.015 0.011 0.029 0.014 0.009 0.033 0.014 0.009

0.5 mean 0.120 0.053 0.039 0.117 0.052 0.037 0.118 0.051 0.036
sd 0.031 0.014 0.010 0.027 0.013 0.009 0.029 0.013 0.008

0.6 mean 0.106 0.048 0.035 0.103 0.046 0.033 0.104 0.045 0.032
sd 0.029 0.013 0.009 0.026 0.012 0.008 0.027 0.012 0.008

0.7 mean 0.096 0.043 0.032 0.093 0.042 0.030 0.093 0.041 0.029
sd 0.027 0.013 0.009 0.024 0.012 0.008 0.025 0.011 0.008

0.8 mean 0.088 0.040 0.030 0.084 0.038 0.028 0.084 0.037 0.027
sd 0.026 0.012 0.009 0.023 0.011 0.007 0.024 0.011 0.007

0.9 mean 0.081 0.038 0.029 0.078 0.036 0.026 0.077 0.035 0.025
sd 0.025 0.012 0.009 0.022 0.011 0.007 0.023 0.010 0.007

1 mean 0.076 0.036 0.028 0.072 0.033 0.024 0.072 0.033 0.023
sd 0.024 0.011 0.008 0.021 0.010 0.007 0.022 0.010 0.007
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Appendix

A.4 Proof of the alternative identifiability result
The proof for Theorem 4.2.10 is given in Werner (2015) and presented here with minor
changes for completion purposes.

Proof of Theorem 4.2.10. Denote ϑ = (p, σ, µ, f)T . We may repeat the proof of Theorem
4.2.4 up until (5.3.2), i.e.[

(1−p∗)ϕf̄ (σ∗t)− (1−p)ϕf̄ (σt)
]

sin(µt) = p∗ϕf∗(t) sin
(
(µ∗−µ)t

)
, t ∈ R . (A.4.1)

We further note the first moment equation

pµ = p∗µ∗ , (A.4.2)

which directly implies p, µ 6= 0.

First suppose that Condition 4.2.5 holds. Assume t to be so large that ϕf∗(t) 6= 0 holds.
Dividing (A.4.1) by ϕf∗(t) and taking limits in t gives

lim
t→∞

p∗ sin
(
(µ∗ − µ)t

)
= 0

according to Condition 4.2.5. As p∗ > 0 and sin is periodic, it follows µ∗ = µ and since
µ∗ 6= 0, we obtain ϑ∗ = ϑ by Lemma 5.3.1.

Since for µ∗ = µ 6= 0 identification follows directly by Lemma 5.3.1, we assume µ∗ 6= µ
and derive a contradiction to show identification under the other conditions.

Suppose that Condition 4.2.6 holds. We need to consider three cases.

Case 1: σ = σ∗. If we divide (A.4.1) by ϕf̄ (σ∗t) and let t → ∞, the right-hand side
tends to 0 and hence

lim
t→∞

(
(1− p∗)− (1− p)

)
sin(µt) = 0 .

As µ 6= 0, this is only possible if p = p∗, in which case (A.4.2) implies µ = µ∗, a contra-
diction.

Case 2: σ < σ∗. If we divide (A.4.1) by ϕf̄ (σt) and let t→∞, we obtain

lim
t→∞

(1− p) sin(µt) = 0 .

It follows that p = 1 because µ 6= 0, so that (A.4.1) reduces to

(1− p∗)ϕf̄ (σ∗t) sin(µt) = p∗ϕf∗(t) sin
(
(µ∗ − µ)t

)
, t ∈ R . (A.4.3)

Dividing by ϕf̄ (σ∗t) and letting t→∞ gives

lim
t→∞

(1− p∗) sin(µt) = 0 ,
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A.4 Proof of the alternative identifiability result

thus µ = 0 or p∗ = 1, a contradiction.

Case 3: σ > σ∗. If we divide (A.4.1) by ϕf̄ (σ∗t) and let t→∞, we get

lim
t→∞

(1− p∗) sin(µt) = 0 ,

a contradiction as above.

Now suppose that Condition 4.2.7 holds. If σ0 < σ, σ∗, the arguments used under Condi-
tion 4.2.5 apply, while if σ0 > σ, σ∗, so do those under Condition 4.2.6. So let us consider
the following cases.

Case 1: σ∗ < σ0 < σ. We divide (A.4.1) by ϕf̄ (σ∗t) and take limits to conclude

0 = lim
t→∞

(
1− p∗ − (1− p)

ϕf̄ (σt)
ϕf̄ (σ∗t)

)
sin(µt) ,

giving

0 = lim
t→∞

1− p∗ − (1− p)
ϕf̄ (σt)
ϕf̄ (σ∗t)

as µ 6= 0 and sin is periodic. According to (4.2.3) we conclude p∗ = 1, a contradiction.

Case 2: σ < σ0 < σ∗, we divide (A.4.1) by ϕf̄ (σt) to deduce p = 1 so that (A.4.1) reduces
to (A.4.3) again. Dividing by ϕf∗(t) and letting t→∞ gives µ = µ∗, a contradiction.

If c = 0 or c = ∞, the cases σ = σ0 or σ∗ = σ0 or both may be dealt with similarly.
Hence, suppose that c /∈ {0,∞}.

Case 3: σ∗ < σ = σ0. Divide (A.4.1) by ϕf̄ (σ∗t), giving p∗ = 1 like above, a contradic-
tion.

Case 4: σ < σ∗ = σ0 yields p = 1 by dividing by ϕf̄ (σt), which leads to a contradiction
like before.

Case 5: σ∗ > σ = σ0. Divide (A.4.1) by ϕf∗(t) to conclude that

lim
t→∞

(1− p)
ϕf̄ (σ0t)
ϕf∗(t)

sin(µt) + p∗ sin
(
(µ∗ − µ)t

)
= 0.

Letting g(t) = (1 − p)c sin(µt) + p∗ sin((µ∗ − µ)t), an almost periodic function, we also
have ∣∣∣∣(1− p)ϕf̄ (σ0t)

ϕf∗(t)
sin(µt) + p∗ sin

(
(µ∗ − µ)t

)
− g(t)

∣∣∣∣→ 0, t→∞,
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so that in particular g(t) → 0, which is only possible for an almost periodic function if
g(t) = 0 for all t ∈ R, so that

(1− p)c sin(µt) + p∗ sin
(
(µ∗ − µ)t

)
= 0 , t ∈ R .

If p = 1, we get µ = µ∗, yielding σ = σ∗ by Lemma 5.3.1, a contradiction. Thus assume
p < 1. Then the zeros of sin(µt) must coincide with those of sin((µ∗ − µ)t), so that
µ∗ = 2µ and we may cancel sin(µt) and find c(1− p) + p∗ = 0, so that c = −p∗/(1− p)
would be negative, contrary to our assumption.

Case 6: σ > σ∗ = σ0. This case works just like case 5.

Case 7: σ = σ∗ = σ0. Dividing (A.4.1) by ϕf∗(t) and arguing as above gives

c sin(µt)
(
(1− p)− (1− p∗)

)
+ p∗ sin((µ∗ − µ)t) = 0 , t ∈ R .

Thus, either p = p∗, and we conclude µ = µ∗ by (A.4.2), a contradiction, or p 6= p∗ and
the zeros of sin(µt) must coincide with those of sin

(
(µ∗ − µ)t

)
. This implies µ∗ = 2µ

so that 2p∗ = p by (A.4.2). Therefore, −cp∗ + p∗ = 0, so that c = 1, contrary to our
assumption.
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A.5 Component density considerations
Let us briefly discuss how one can approach modelling the function families (f∗x)x∈I by
a compact function class. We will restrict our considerations to the case that α ≤ 1
but conjecture that this can be extended to higher degrees of smoothness by arguments
similar to the ones in the proof of Driver (2003, Theorem 5.14).

Lemma A.5.1. Let I ⊂ Rd be a compact cuboid containing an open subset, g1, g2 : R×
I → (0,∞) be continuous bounded functions so that for all x ∈ I the map y 7→ gi(y, x) is
a density, that for all ε > 0, there are constants Cε > 0 so that sup‖(y,x)‖≥Cε gi(y, x) ≤ ε
and that for some c1, c2 > 0 and for all x, y, we have c2g2(y, x)− c1g1(y, x) > 0. Further
let g : R → (0, 1) be a function. Let U ⊂ [0,∞) be bounded, L(·) be a positive bounded
function of y and L∗ > 0 be a constant. Then, for any α ∈ (0, 1], the function class

F(α, f̄ , L(·), U, L∗, g1, g2, c1, c2)
=
{
f·(·) : I × R→ U

∣∣∀x ∈ I : fx(·) ∈ E3, fx(·) is Lipschitz continuous with constant L∗,
ϕfx ≥ g, ∀y ∈ R : f·(y) ∈ H(α,L(y), U),
∀x, y : c1g1(y, x) ≤ fx(y) ≤ c2g2(y, x)

}
,

is compact with respect to the supremum metric.

Note that every f·(·) ∈ F(α, f̄ , L(·), U, L∗, g1, g2, c1, c2) fulfils Assumption (I3). The
functions g1, g2 and g can be chosen in a way that F(α, f̄ , L(·), U, L∗, g1, g2, c1, c2) con-
tains a large variety of density families. Consider for example light-tailed densities like
double exponential densities for g1 and heavy tailed densities like Student-t densities
for g2. Furthermore note that this result also holds when tailoring the function class
F(α, f̄ , L(·), U, L∗, g1, g2, c1, c2) to Assumption 4.2.9. Minor adjustments need to be
made.

Proof of Lemma A.5.1. Write F(α, f̄ , L(·), U, L∗, g1, g2, c1, c2) = F . First we note that
the conditions that define the function class F are limit invariant, i.e. if every member
of a sequence of functions fn ∈ F fulfils those properties and if ‖fn− f‖∞ → 0 for some
continuous function f , then f fulfils those properties as well. Hence, F is closed with
respect to the supremum metric.

Furthermore, F is complete because it is a closed subset of the set of bounded continuous
functions on I × R, which is complete. It remains to show that F is totally bounded,
i.e. we need to show that for any ε > 0, there are open balls M1, . . . ,Mn of radius ε so
that F ⊂

⋃n
i=1Mi.

Fix ε > 0. Then for any ‖(y, x)‖ ≥ C ε
max{c1,c2}

, we have max{c1, c2}gi(y, x) ≤ ε so that

Aε =
{

(y, x) : |c2g2(y, x)− c1g1(y, x)| ≥ ε
}
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is bounded and further closed as (y, x) 7→ |c2g2(y, x) − c1g1(y, x)| is continuous. Thus,
Aε is compact. Since for any function f1, f2 ∈ F , we have

∥∥f1|A{
ε
− f2|A{

ε

∥∥
∞ ≤ ε it is

enough to show that
F
∣∣
Aε

=
{
f |Aε

∣∣f ∈ F}
can be covered by such open balls Mi because then the open balls of the corresponding
functions in F cover F . We will prove this by showing a stronger property, i.e. that
F
∣∣
Aε

is compact. Therefore, we use the well-known Arzelà-Ascoli theorem. The set
F
∣∣
Aε

is closed as are F and Aε. Furthermore, F
∣∣
Aε

is bounded, as is U . Finally, F
∣∣
Aε

is equicontinuous as for any f ∈ F
∣∣
Aε
, y1, y2, x1, x2, we have

|f(y1, x1)− f(y2, x2)| ≤ |f(y1, x1)− f(y1, x2)|+ |f(y1, x2)− f(y2, x2)|
≤ L(y1)‖x1 − x2‖α + L∗|y1 − y2|
≤ ‖L(·)‖∞‖x1 − x2‖α + L∗|y1 − y2| .
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A.6 Zusammenfassung auf Deutsch
Mischungsmodelle spielen in vielen statistischen Anwendungen eine wichtige Rolle, da
sie einen natürlichen Ansatz darstellen, Heterogenität zu modellieren. Insbesondere
in Zusammenhang mit Regressionsmodellen wurden Mischungsmodelle in den letzten
Jahrzehnten intensiv studiert.

In dieser Arbeit werden zunächst theoretische Mittel erarbeitet, die zur Untersuchung
von Schätzern in nichtparametrischen Regressionsmodellen auf gleichmäßige Konver-
genzraten und gleichmäßige Adaptivität bezüglich der Glattheit der Parameterfunktio-
nen dienen. Diese werden später auf nichtparametrische Regressionsmischungsmodelle
angewendet.

Dazu seien Γ, I beliebige Mengen und Θ ein normierter Parameterraum. Für jedes
γ ∈ Γ sei eine deterministische Kontrastfunktion M(·, ·; γ) : Θ× I → R definiert, welche
für jedes x ∈ I, γ ∈ Γ ausschließlich von Parametern aus einer endlichen Menge Sx;γ
minimiert wird. Um diese Parametermengen zu schätzen, seien zufällige Kontrastfunk-
tionen Mn(·, ·) : Θ × I → R gegeben, deren Minimierer im ersten Argument θ̂n(x) als
Schätzer dienen. Hierbei kann man I als Kovariablenwerte und Γ als Menge aller Mo-
dellparameter interpretieren. Typischerweise sind γ ∈ Γ Tupel aus Parameterfunktionen,
Kovariablendichten und möglicherweise weiteren Modellparametern. Das Einführen der
Menge Sx;γ erlaubt die Untersuchung von Schätzern auf asymptotische Eigenschaften
in Modellen, die nicht vollständig identifiziert sind. Dies ist ein häufiges Problem in Mi-
schungsmodellen, da typischerweise das Umlabeln der Komponenten keine Veränderung
der Verteilung zur Folge hat. In identifizierbaren Modellen sind die Mengen Sx;γ typi-
scherweise einelementig.

In Kapitel 3 verallgemeinern wir ein typisches Konsistenzresultat von M-Schätzern,
vgl. van der Vaart (2000, Theorem 5.7), siehe Theorem 3.1.2, sodass es Aussagen über
gleichmäßige Konsistenz über I, gleichmäßig über den Modellparametern Γ zulässt, auch
wenn das Modell nicht vollständig identifiziert ist. Des Weiteren verallgemeinern wir
ein klassisches Konvergenzratenresultat, vgl. van der Vaart und Wellner (1996, Theo-
rem 3.2.5), siehe Theorem 3.1.3. Die Voraussetzungen des zweiten Resultats beinhalten
gleichmäßige Konsistenz der zufälligen Kontrastfunktion, gleichmäßige Wegbeschränkt-
heit der deterministischen Kontrastfunktion vom Minimum außerhalb Umgebungen um
die Minimierer, und eine Lipschitzeigenschaft von erwarteten Schätzfehlerinkrementen

Mn(·, x)−M(·, x; γ) .

Insbesondere die letzten beiden Voraussetzungen sind mitunter schwer nachzuweisen.
Deshalb formulieren wir im Anschluss speziellere Annahmen an Modelle, welche die
Voraussetzungen von Theorem 3.1.3 implizieren, siehe Annahme 3.1.4. Diese Annah-
men beinhalten im Wesentlichen Glattheitsannahmen an die Kontrastfunktionen, deren
Ableitungen und der Parameterfunktionen, die positive Definitheit der Hesse Matrix
von M am wahren Parameter, die gleichmäßige L1 Konvergenz des Gradienten von Mn

gegen den Gradienten von M mit entsprechender Rate und die gleichmäßige Konsistenz

157



Appendix

der zufälligen Kontrastfunktion Mn.

Im Weiteren geben wir ein auf Lepskii (1992) basierendes Verfahren zur gleichmäßgen
adaptiven Schätzung der Parameterfunktionen an, für den Fall, dass ein unbekannter
Störparameter wie die Glattheit α von Hölder-α-glatten Funktionen vorliegt. Dieses
Verfahren schätzt adaptiv an den unbekannten Störparameter α. Genauer gesagt wird
angenommen, dass α ∈ [a, b], für beliebige Intervallgrenzen 0 < a < b < ∞. Auf
das Intervall [a, b] wird ein in der Anzahl der Beobachtungen logarithmisch wachsendes
äquidistantes Gitter gelegt, aus dem ein Punkt αk gewählt wird, welcher zu einer adap-
tiven Wahl des Störparameters führt. Zu beachten ist, dass die adaptive Wahl nicht
wie üblich basierend auf dem Verhalten der Schätzer für verschiedene Störparameter
gewählt wird, da für diese keine exponentielle Fehlerungleichung zur Verfügung steht.
Alternativ können die Gradienten der empirischen Kontrastfunktionen mit verschiedenen
Störparametern zu Vergleichszwecken herangezogen werden. Für diese stehen derartige
Ungleichungen zur Verfügung, siehe Lemmata 3.2.2, 3.2.3 und 3.2.4.

Im Anschluss erweitern wir Annahme 3.1.4, sodass diese gleichmäßige Adaptivität eines
Schätzers implizieren, siehe Annahme 3.1.11. Insbesondere muss für jeden Störparameter
der Gradient der zufälligen Kontrastfunktion den Gradienten der entsprechenden deter-
ministischen Kontrastfunktion mit korrekter Rate gleichmäßig in L2 schätzen. Außer-
dem müssen wir polynomielles Abklingen der Tail-Wahrscheinlichkeiten des gleichmäßgen
Bias des Gradienten von Mn unter verschiedenen Störparametern annehmen.

Des Weiteren geben wir theoretische Mittel, mit denen man für gewisse Typen von
zufälligen Kontrastfunktionen obere Schranken für den stochastischen gleichmäßigen Lp-
Fehler der Kontrastfunktionen bestimmen kann. Bei diesen Typen handelt es sich um
lineare und U-Statistik Schätzer, also

Mn(θ, x;h) = 1
n

n∑
k=1

τ(Yk, θ)Kh(Xk − x) , oder

Mn(θ, x;h) = 1
n(n− 1)

n∑
j,k=1
j 6=k

τ(Yj , Yk, θ)Kh(Xj − x)Kh(Xk − x) ,

wobei τ jeweils eine deterministische Funktion, K : Rd → R ein Kern und h ∈ (0,∞)
eine Bandbreite ist.

In Kapitel 4 stellen wir zwei Regressionsmischungsmodelle vor und wenden die vorher
erarbeiteten theoretischen Mittel an.

Bei dem ersten Modell, siehe Abschnitt 4.1, handelt es sich um eine Mischung von
Gauß’schen Regressionen. Das heißt, zwischen beobachteten Zufallsvariablen Y und

158



A.6 Zusammenfassung auf Deutsch

stetigen Regressoren X mit Träger I ⊂ Rd besteht der funktionale Zusammenhang

Y =
m∑
c=1

1Π=c
(
σc(X)εc + µc(X)

)
,

wobei Π eine latente Zufallsvariable mit Werten in {1, . . . ,m} ist, sodass P(Π = c|X =
x) = πc(x) für Mischungsfunktionen πc : I → (0, 1) mit

∑m
c=1 πc = 1; die Zufallsvari-

ablen εc bedingt auf X = x unabhängig von Π und standardnormalverteilt sind; und
µc : I → R, σc : I → (0,∞) Lokations- bzw. Skalenfunktionen sind. Anders ausgedrückt,
die bedingte Verteilung von Y auf X = x ist eine Mischung von Normalverteilun-
gen, wobei Mischungs-, Lokations- und Skalenparameter von den Kovariablen abhängen.
Dieses Modell wurde bereits von Huang et al. (2013) untersucht. Die Autoren konnten
nichtparametrische Identifizierbarkeit mit univariaten Regressoren unter Differenzier-
barkeitsannahme der Lokations- und Skalenfunktionen mit Transversalitätsargumenten
zeigen. Ferner waren sie in der Lage, mit der lokalen Log-Likelihood Methode punktweise
asymptotisch normale Schätzungen für zwei-mal differenzierbare Parameterfunktionen zu
etablieren.

In Abschnitt 4.1.1 werden verchiedene Identifizierbarkeitsresultate gegeben, von denen
eines die Grundlage für gleichmäßig konsistentes Schätzen in Abschnitt 4.1.2 bildet. Wir
untersuchen Schätzungen von Hölder-α-glatten Parameterfunktionen, vgl. Abschnitt 2.4,
mit der von Huang et al. (2013) vorgestellten Log-Likelihood Methode. Dabei können
wir die gleichmäßige Konsistenz des Schätzers über Kompakta J ⊂ int(I) mit Rate( logn

n

) α
2α+d und Adaptivität mit einer der Lepski-Methode entsprechenden Bandbreiten-

wahl etablieren, vgl. Abschnitte 4.1.3, 4.1.5.

Bei der Anwendung der in Kapitel 3 erarbeiteten Methoden ist zu beachten, dass dieses
Modell in der Tat nur bis auf Umlabeln der Komponenten identifizierbar ist. Entspre-
chend ergeben sich in der Praxis zunächst nur punktweise Schätzungen auf endlichen
Gittern im Kovariablenträger, deren Komponentenlabel nicht zwingend übereinstimmen.
Um eine sinnvolle Schätzung der Parameterfunktionen zu erhalten, muss man sicher-
stellen, dass die Label an verschiedenen Kovariablenstellen korrekt zugeordnet werden.
Dadurch, dass der Schätzer gleichmäßig konsistent ist, können wir eine Methode angeben,
mit der man mit gegen eins strebender Wahrscheinlichkeit die Label der Schätzer an be-
nachbarten Gitterpunkten korrekt zuordnet, vgl. Abschnitt 4.1.4.

Bei dem anderen Modell, siehe Abschnitt 4.2, handelt es sich um eine Mischung zweier
Regressionen. Zwischen beobachteten Zufallsvariablen Y und stetigen Regressoren X
mit Träger I ⊂ Rd besteht der funktionale Zusammenhang

Y = W
(
µ(X) + ε1

)
+
(
1−W

)
σ(X)ε2 ,

wobei W eine latente Zufallsvariable mit bedingter Verteilung W |X = x ∼ Ber(p(x)),
mit p : I → (0, 1) ist; die Zufallsvariablen ε1 und ε2 bedingt auf X = x unabhängig von
W sind und symmetrische bedingte Dichten haben, wobei ε1|X = x ∼ fx eine unbekann-
te Dichte und ε2|X = x ∼ f̄ eine bekannte Dichte ist; und µ : I → R, σ : I → (0,∞)
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eine Lokations- bzw. Skalenfunktion ist.

Ein ähnliches Modell wurde bereits von Butucea et al. (2017) untersucht. Die Autoren
konnten punktweise Konsistenz und asymptotische Normalität unter Undersmoothing
eines auf der Symmetrie der Komponenten basierenden Schätzers zeigen.

Da sich im Modell mit zwei Komponenten die beiden symmetrischen Komponenten-
dichten unterscheiden und eine Komponente skaliert und die andere translatiert wird,
ergibt sich in diesem Modell nicht das Problem des Umlabelns wie zum Beispiel im
Gauß’schen Mischungsmodell oder im Modell von Butucea et al. (2017). Entsprechend
erhalten wir stärkere Identifizierbarkeitsresultate. Ein Resultat basiert auf der Idee, die
charakteristischen Funktionen beider Komponentendichten in den Tails unterscheidbar
zu machen. Ein anderes Resultat basiert darauf, den Wertebereich der Mischungsfunk-
tion p auf (1/2, 1) einzuschränken.

In Abschnitt 4.2.2 konstruieren wir für das Mischungsmodell mit zwei Komponenten
basierend auf der Symmetrie der Komponentendichten einen asymptotischen Kontrast
M , vgl. (4.2.8), welcher nicht-negativ ist und ausschließlich am wahren Parameter null
wird. Dieser Kontrast wird empirisch durch eine Funktion Mn, vgl. (4.2.9) geschätzt,
deren Minimierer als Schätzer für die Hölder-α-glatten Modellparameterfunktionen dient.
Dieser Schätzer ist ebenfalls auf jedem Kompaktum J ⊂ int(I) gleichmäßig konsistent
und konvergiert gleichmäßig mit Rate

( logn
n

) α
2α+d , siehe Abschnitt 4.2.3. Außerdem

können wir auch hier die Lepski-Methode anwenden, um eine adaptive Bandbreitenwahl
zu erhalten, siehe Abschnitt 4.2.4.
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