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Coronal Plane Spine Twisting Composes Shape To Adjust the Energy
Landscape for Grounded Reorientation

J. Diego Caporale†, Benjamin W. McInroe?, Chenze Ning†, Thomas Libby∗,
Robert J. Full§, Daniel E. Koditschek‡

Abstract—Despite substantial evidence for the crucial role
played by an active backbone or spine in animal locomotion,
its adoption in legged robots remains limited because the added
mechanical complexity and resulting dynamical challenges pose
daunting obstacles to characterizing even a partial range of
potential performance benefits. This paper takes a next step
toward such a characterization by exploring the quasistatic
terrestrial self-righting mechanics of a model system with
coronal plane spine twisting (CPST). Reduction from a full
3D kinematic model of CPST to a two parameter, two de-
gree of freedom coronal plane representation of body shape
affordance predicts a substantial benefit to ground righting by
lowering the barrier between stable potential energy basins.
The reduced model predicts the most advantageous twist angle
for several cross-sectional geometries, reducing the required
righting torque by up to an order of magnitude depending on
constituent shapes. Experiments with a three actuated degree
of freedom physical mechanism corroborate the kinematic
model predictions using two different quasistatic reorientation
maneuvers for both elliptical and rectangular shaped bodies
with a range of eccentricities or aspect ratios. More speculative
experiments make intuitive use of the kinematic model in a
highly dynamic maneuver to suggest still greater benefits of
CPST achievable by coordinating kinetic as well as potential
energy, for example as in a future multi-appendage system
interacting with a contact-rich 3D environment.

I. INTRODUCTION

Biological backbones or spines provide numerous locomo-
tor benefits to vertebrates. They enable dynamic gaits such
as galloping and bounding [1], [2], reorientation maneuvers
such as zero net angular momentum righting [3], [4], and
can serve to increase the workspaces of the limbs for interac-
tion. Analogously, dynamic, multi-degree of freedom robotic
spines are poised to enable a myriad of new capabilities for
legged robots [5], [6], [7], [8]. However, the adoption of
spines in existing dynamic legged robots remains limited,
in part because they introduce complicated dynamics that
must be controlled, and their full range of potential locomotor
benefits has not yet been characterized. Towards a thorough
analysis of the dynamics of spined systems in contact rich
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Fig. 1: (a) (left) A lizard demonstrating CPST while performing a self-
righting maneuver. φ is the roll angle of the hips, and α is the relative angle
between shoulders and hips in the roll axis. (right) α and φ traces during the
righting maneuver. (b) (left) TPM performing a self-righting maneuver using
CPST. (right) Quasistatic prediction of potential energy barrier reduction by
CPST as explained in Eq. 12.

environments, we take the first step by exploring the qua-
sistatic terrestrial self-righting mechanics of a model spine
system with coronal plane spine twisting (CPST), a degree of
freedom that remains relatively uncommon in existing robot
spine morphologies.

A locomotor’s ability to recover or reorient itself follow-
ing inevitable slips and falls in unpredictable or inimical
environments depends critically on its morphology, inertial
parameters, and actuator characteristics in a manner that
can be captured using the concept of energy landscapes [9],
[10], [11]. This understanding calls particular attention to the
importance of overcoming energy barriers in both animals
and machines [12], [13]. Algorithms exploiting single degree
of freedom shape change such as zero net angular momentum
reorientation for aerial righting have drawn inspiration from
falling cats [14], [15] and lizards [16], [17], employing
robotic spines and tails respectively. Strategies for ground
righting have included the use of contact [9], inertial [18]
and gravitational moments [9], but most have been embod-
ied in robot morphologies via specific appendages such as
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Fig. 2: (a) The TPM is made up of CKBot modules[23], a tail, and MDF
plates. (b) TPM’s kinematic model. This system can offset the angle of the
"shoulder" with respect to the "hips" to affect the potential energy of the
system. The two lamina are identical convex shapes that are not necessarily
elliptical. In this study, the sagittal bending, ψ in (c), is used to reset α
between trials and is not yet used to assist the reorientation. (c) The different
modes of tail powered reorientation. (d) A description of the relevant shape
parameters.

tails [19], wings [12], and limbs [20]. In hyper-redundant
serpenoid and modular robots, active shape control has been
employed to affect stability for rolling maneuvers [21], [22],
[23].

A. Contributions and Organization

This paper explores the hypothesis that coronal plane spine
twisting (CPST), a degree of freedom observed in ground
righting lizards (Fig 1.a) [24], can be used to reduce the
effort of grounded reorientation in robots. In Sec. II, we
derive the kinematics of a 3D spatial model for a body with
a twisted torso in rolling contact with the ground, showing
that the changes of internal body shape and contact config-
uration resulting from varying the torso twist affect the 3D
rolling kinematics of the CoM. A succession of simplifying
approximations allows kinematic reduction of the 6 DoF
spatial model to a simple 2 DoF planar model described by
a shape parameter and the spinal "twist" parameter, α. We
use this model to show that CPST can substantially reduce
the quasistatic potential energy barrier for rolling.

In Sec. III, we challenge the utility of this highly simplified
analysis for real physical mechanisms by introducing the
torso physical model, TPM, a bioinspired 3 actuated DoF
tailed and spined system with an adjustable pair of laminar
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Fig. 3: A kinematic model in 3-space (a) and the reduced order model in
the coronal plane (b). Note that a small pitch would be induced by the phase
offset, α, but, as shown in Section II-B.2, it can be ignored by assuming
β ≈ 0. For any given shapes, zα(φ) is equal to the average COM height of
both shapes and z′α(φ) gives an approximation of δ, the effective contact
point offset (also shown in Section II-B.2). This model allows us to predict
the effect of Coronal Plane Spine Twisting (CPST) on energetic and torque
requirements.

shapes1 to model the cross-sectional profile of a legged
robot. We perform experiments measuring the minimum
torque necessary to right using two distinct tail righting
actuation strategies, contact and shape change righting, for
model bodies with elliptic and rectangular cross sections
of a range of eccentricities and aspect ratios. Our results
demonstrate a torque reduction factor between 1.5 and 8.7
for the optimal choice of body twist angle, α = α∗, dependent
on body cross-sectional shape. We further show that the
reduced coronal plane model accurately predicts α∗ for all
body shapes and twist angles tested using the fully 3D TPM.
We then present preliminary empirical results demonstrating
the benefits of CPST for a dynamic inertial appendage driven
righting maneuver.

In Sec. IV, we summarize our theoretical and empirical
findings on the general benefits of CPST for ground righting,
and discuss plans for future work employing actuated spines
for dynamic terrestrial reorientation maneuvers.

II. Quasistatic Modeling of CPST

Aiming eventually (beyond the scope of this paper) for
a low degree of freedom CPST dynamical template [25]
that might be effectively anchored in both animal data (Fig.
1.a) and robot controllers (e.g. as suggested in Fig. 2c),
this section presents a reduction from a notional pair of
twisting, tilted, shaped spatial plates to a two parameter, 2
DoF kinematic model as follows. After a brief review of
rudimentary “roulette theory” [26], [27] in Sec. II-A, the
lamina (Fig. 3a) are projected onto their conjoined coronal
planes (Fig. 3b) in Sec. II-B and the composition of their
effective shape reveals the potential benefit of a coronal plane
twist as determined by laminar shape in Sec. II-C. Fig. 4
summarizes the influence on the resulting 2 DoF effective
rolling planar shape of the two composition parameters, twist,
α, and shape — captured by either the eccentricity, ε , of an
ellipse or the aspect ratio, γ, of a rectangle — as depicted
in Fig. 2d.

1Laminar shape here refers to a planar body whose contour is described
by a contour C.
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Fig. 4: Investigating the effective shape and potential energy functions of two two-lamina systems: elliptical plates (top) and rectangular plates (bottom).
The effect of CPST (parameterized by α) on (a) the COM height and (b) the derivative of the COM height for a given ellipse (ε2 = .8) and rectangle
(γ = π/6 , the angle of the diagonal to horizontal). CPST has a large effect on both the potential energy barrier and the torque (proportional to the
derivative) necessary to reorient, even when accounting for the discontinuity of the rectangle. (c) The difference between the minimum and maximum
potential energy for several different eccentricities (top) and aspect ratios (bottom) as a function of α, (see Eq.12). (d) The largest magnitude derivatives
for several eccentricities as a function of α, (see Eq. 13). In the elliptical example the most beneficial CPST angle α is constant regardless of eccentricity
at π/2. Unlike the elliptical example, the most beneficial α is not constant with respect to γ in either the quasistatic or dynamic sense, with the optimal
α’s moving continuously from π/2 to π/4 for γ’s from 0 to π/4. Note: γ = π/4 is a square and therefore every rectangle is described by γ ∈ [0, π/4].

Two key approximations in Sec. II-B.2 underlie these
reductions. First, we assume that the two lamina lie in parallel
vertical planes. Second, we presume an "elongated body"
(rendered formally by asserting l >> dα(φ) in Eq. 6) to
simplify the expression of the moment arm of the mass center
on the coronal plane center of rotation. While the second
surely applies to some bodies, the first is in tension with
the very effect of interest — the discrepancy in the laminar
shapes’ mass center heights when one is rotated relative to
another. The experiments presented in Sec. III relieve the
worry that the appealing simplicity of this composed model
is achieved at too great an expense of accuracy.

A. Kinematics of Planar Rolling Bodies

We describe the kinematics and dynamics of a planar body,
parameterized as a closed curve C, rolling in the yz-plane
(referring throughout this discussion to the spatial world
frame depicted in Fig. 3a) without slip on the horizontal
(y-axis) using the trajectory of the shape’s center of mass
(COM) and the COM’s relation to the point of contact with
the ground.

Specifically, the trajectory of the COM is a roulette (a
curve created by following a point fixed to rolling shape) and
can be parameterized as xCOM (θ) = [χ(θ), σ(θ)]

T , where
θ describes the angle of rotation of the shape with respect
to the horizontal [26], [27].2 In this work, we focus on a
quasistatic analysis of shapes with mass rolling in the plane
due to external torques; horizontal translation (χ(θ)) has no
effect on the net forces and moments (since the system is
only affected by gravitational potential energy) and so can be
ignored and we will describe the COM purely by its height,
(σ(θ)).

2 By the roulette lemma [26] [27], σ(θ) = χ′(θ).

Although the absolute horizontal position does not figure
in this analysis, horizontal offset from the COM of the
contact point is needed to calculate gravitational torque, and
this can be obtained as follows from a nice result about
ellipses[28]. Namely, an ellipse (Fig. 2d) with eccentricity
ε, semi-major axis a, and fixed frame at its center has a
contact point parameterized as CP = [ −σ′(θ) −σ(θ) ]T where

σ(θ) = σe(θ) = a
√

1 − ε2 cos θ. (1)

A similar derivation of ellipse kinematics is seen in [21].
Furthermore, a frame of reference directly below the ellipse’s
center on the y-axis is chosen, such that the contact point and
the COM are

xCP =
[
−σ′(θ)

0
]

xCOM =
[ 0
σ(θ)

]
. (2)

The same relationship between the COM and contact point
would hold for any convex polygons (or the convex hull of
any polygon), though σp(θ) is only piecewise differentiable
because of the flat sides and σ′p(θ) would be discontinuous3.
For example, a rectangle with semi diagonal length a and
diagonal angle from the horizontal γ (Fig. 2d) can be
described with

σr (θ) = a sin
(
(−1)

⌊
2φ
π

⌋
γ + (φ mod π)

)
(3)

σ′r (θ) = a cos
(
(−1)

⌊
2φ
π

⌋
γ + (φ mod π)

)
. (4)

3 Polygons act as elliptical shapes of eccentricity ε = 1, i.e. setting the
semi-minor axis b = 0, like a set of rotating bars switching at defined angles
akin to the rimless wheel. Using this elliptical analogy allows us to take
advantage of the derivative relationship from [28] albeit carefully avoiding
dividing by zero.



B. Two Lamina Torso Model
Starting with the rolling bodies described in the previous

section, we create a system with two lamina4 fixed to one
other by a revolute joint. We seek to further understand this
spatial model’s kinematics (Section II-B.1) as well as reduce
it to a planar model (Section II-B.2).

1) Spatial: As depicted in Fig. 3(a), the model consists
of two identical shapes (ellipses in the figure) attached at the
centers by a perpendicular bar of length l. Between them we
attach a revolute joint to act as a spine and allow for CPST
of angle α. We define one of the ellipses as the "hips" of our
system and measure the body angle, φ, with respect to the
horizontal. This system is non-holonomic, and rolling over
from external force/torque or changing α induces pitching
and yawing due to the no-slip constraints. Since this analysis
is static, the coordinate system can be placed at the projection
of the center of the "hips" on the ground, with z-axis vertical
and x-axis the projection of the connecting bar, similarly to
the single planar body analysis. Essentially, we can ignore the
yaw and travel in the plane of the system, therefore ignoring
the non-holonomic effects.

The system CoM position is then

xCOM =


l
2 cos β

0
1
2 cos β (σ(φ) + σ(φ + α))

 (5)

In an effort to be analogous to the analysis of Section II-
A and to facilitate model reduction, we define an effective
system contact point as the distance, δ, from the COM
projected on the floor to the contact line defined by the hip
and shoulder contact points, which can be written

δ =
ls′α(φ) cos(β) + 2 sin(β) gα(φ)

2
√
(l cos(β) − dα(φ) sin(β))2 + d ′α(φ)2

. (6)

with

dα(φ) = (σ(φ) − σ(φ + α))

sα(φ) = (σ(φ) + σ(φ + α))

gα(φ) = (σ(α + φ) σ
′(φ) − σ(φ) σ′(α + φ) )

βα(φ) = arctan 2(dα(φ), l)

Removing β with trig identities we obtain

δ =
l2s′α(φ) + 2dα(φ) (σ′(φ) σ(α + φ) − σ′(α + φ) σ(φ))

2
√(

l2 − dα(φ)2
)2
+ (l2 + dα(φ)2) d ′α(φ)2

.

(7)
We will now derive an approximate planar reduction to
simplify analysis and serve as a starting point for a future
dynamical template.

2) Coronal Plane Reduction: We now analyze the system
on the coronal plane. Assuming β ≈ 0, which is the case
when l >> dα(φ), we reduce xCOM to

zα(φ) =
(σ(φ) + σ(φ + α))

2
. (8)

4See footnote 1.

Following the results from [28] for a single shape, we would
be tempted to set the contact point to z′α(φ), and use this
relationship to describe an effective shape, instead we attempt
to understand its relationship to δ. Furthermore, we reduce
δ using Eq. 6 and small β such that,

δ | β=0 =
ls′α(φ)

2
√

l2 + d ′α(φ)2
.

We must make one more approximation in δ that l >> d ′α(φ),
which again for many shapes follows from the first assump-
tion. Note also that when d ′α(φ) is large (in magnitude) s′α(φ)
is small and vice versa. And so, we assume

β ≈ 0,
l√

l2 + d ′α(φ)2
≈ 1

=⇒ δ ≈
s′α(φ)

2
= z′α(φ).

C. Potential Energy Benefits of CPST
Having shown that the COM and the contact point of the

rolling composite shape can be approximated as averaged
functions of its two constituents5, we call attention to the
following observation. First, notice that C is a closed curve
hence the functions σ(φ) and σ′(φ) are bounded. Next,
notice that given any bounded periodic function f : S1 → R
with bl ≤ f (θ) ≤ bu , a weighted average of phase shifted
instances

f̄ (θ; c1, c2, ..., cn) ≡
∑n

i=1 αi f (θ + ci)∑n
i=1 αi

(9)

preserves those bounds, i.e. bl ≤ f̄ (θ; c1, ..., cn) ≤ bu .
It follows that

zα(φ) ≤ σ(φ) (10)
z′α(φ) ≤ σ

′(φ) (11)

for all α. Since the system (before adding actuated torques)
only has gravity acting on it, we can take the COM height,
zα(φ), as an analog (scaled) to potential energy and similarly,
its derivative, z′α(φ) as an analog for the torque produced by
gravity (the lever arm associated with gravity). Thus, by Eqs.
10 and 11, a twist in the body via CPST can only benefit the
reorientation task (a roll from φ = 0→ π).

Further we define,

∆z(α) ≡ sup
φ
{zα(φ)} − inf

φ
{zα(φ)} (12)

Ωz(α) ≡ sup
φ

{��z′α(φ)��} (13)

as a useful heuristic for potential boundary and a direct ana-
log to minimum required torque to reorient quasistatically,
respectively. Figs. 4 (a) and (b) show the effect on potential
energy and torque, respectively, for an ellipse and a rectangle,
noting that when α = 0 this model is equivalent to the single
shape in the plane. Furthermore, in (c) and (d), we show that
we can choose α to give the best benefits either energetically

5This would still be true if it was instead a weighted averages with
different massed shapes, but the benefit would be smaller.
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Fig. 5: Contact righting experimental data using the TPM and employing
CPST. The expected torque (solid lines), τα , described in Section III-
B, matches the measured torque input, τc , (points) across all runs. (a)
Investigating CPST for the ellipses with eccentricities ε. (b) Similarly, two
rectangles with aspect angles γ were tested. The robot has rounded corners
(radius 1 cm) and the required torque for this model (dashed) is better. Each
plot manifests a visually apparent α∗ at which the torque is minimized,
matching with the pure analysis shown in Fig. 4.

or quasistatically, by comparing the difference of the potential
energy bounds, ∆z(α) and maximum magnitude of the torque
necessary to flip Ωz(α).
We could do this for any shape, though the structure

presented by an ellipse and a rectangle make it easier to
present the benefits. Note that for an ellipse the eccentricity
plays no role in choosing the optimal α at π/2, but for a
rectangle the optimal α ranges from π/2 for a thin bar to
π/4 for a square.

III. Experiments
A. Robot Design

The TPM, seen in Fig. 2a, is a simple robot meant to act as
a physical model for CPST assisted reorientation. The system
consists of three CKBots [23] in the configuration shown
in Fig. 2 along with four MDF, laser cut plates, a tail, and
counterweights (to keep the COM centered after the addition
of a massive tail). The two inner plates are used to support
the robot during sagittal spine bending. Sagittal bending is
only used to facilitate twisting before reorienting– and is
always locked during experiments reported here – but could
be used in the future to support more complex maneuvers.
Recall, the CPST angle, α, remains constant during the
righting maneuver only changing before the maneuver and
after the hips reach the goal state (φ = π). The CKBots are
built around Dynamixel EX-106+ motors, which (at 15V)
have a holding torque of 8.2 N-m and a no load speed of
54.9 RPM. For the TPM, the torque on these motors is never
the limiting factor for reorientation (given their high gearing)

TABLE I: Experimental results for contact righting with CPST. Using data
from Fig. 5, we find the best α for reorientation, designated α∗. By directly
comparing best and worst case torques, τ |α=α∗ and τ |α=0 resp., we see
there is a significant benefit to using CPST, especially to the elliptical bodies
where we reduce the necessary torque by a factor of between 3 and 9 while
the rectangles benefit by a factor of between 1.5 and 2.

Ellipses, ε2 Rectangles, γ
0.2 0.4 0.6 0.8 0.49 π/4

Optimal CPST, α∗ π/2 π/2 π/2 π/2 π/3 π/4
τ |α=0 [N-m] 0.63 1.07 1.43 2.38 3.22 2.72
τ |α=α∗ [N-m] 0.08 0.15 0.16 0.66 2.16 1.45
Torque Reduction 87% 86% 89% 72% 33% 47%
Meas. Redu. Factor 7.7 7.3 8.7 3.6 1.5 1.9

but we will discover limitations created by their speed and
the physical parameters of the different self righting strategies
(Fig. 2c).6

TABLE II: Nominal Robot Parameters

Mass w.o. Tail 2.5 kg
Tail Mass (varies by experiment) ≈ 0.4 kg
Body Length (unbent), l 0.3 m
Tail Length 0.3 m
Max Shape Radius, a 0.15 m

B. Realizing Tail Contact
Because contact righting (Fig. 2c) allows us to take

(almost) full advantage of the system’s torque capabilities,
this method is best suited for testing the model and the cases
where the assumptions may fail. Because this method works
quasistatically, we look to apply the minimum torque which
allows the body to right for a variety of values of α and
body shapes, similarly to the methods of [21]. Eq. 13 details
our expected minimum torque up to a constant, in particular
τα ≡ mgΩz(α), where m is the total mass of the robot (2.8
kg) and g is gravitational acceleration (9.81 m/s).
We used a variety of elliptical and rectangular girdle

pieces and performed a manual search for a decision surface
between success (φ → π) and failure. In Fig. 5, we see
that the measured decision surface matches the predicted
surface well, and therefore that the reduced model captures
the necessary minimum torque to right, allowing us to predict
optimal values of α for the tested shapes.

We note two practical considerations from these experi-
ments. The reported torques have the intrinsic motor friction
torque subtracted, which was measured by finding the mini-
mum torque for which the tail rotated without load. For the
rectangle with γ = 0.486, we increased the tail length to 0.6
m, as the 0.3 m tail induced a large vertical contact force that
caused the hip segment to break contact with the ground, an
effect that we do not explore but consider for future work.

It should be noted that the robot fails to meet the long
length and small eccentricity assumptions we laid out in our
analysis, but the approximations are sufficiently robust that

6 To control the joints, we send torque commands to the tail and shoulder
continuously rotating joints and position commands to the bending joint. The
torque commands are sent as percentages of the max torque.



TABLE III: Gravitational Shape Change Tests. As expected, the capabilities
of the tail are limited by its max torque available, τpred , defined in
Section III-C. Asterisks indicate configurations that could not be flipped
quasistatically with just shape change righting. Namely, we succeed across
all these configurations with α = π/2, and we expect that we can use the
CPST to reduce tail mass and/or length at design time. To verify our results,
τmax is the measured max torque over which the tail begins free rotating
and should be about equal to τpred . The torques required to right using
shape change, τsc , are close to the torques required to right using contact,
τc (as in Fig. 5). All torques in N-m.

CPST Shape Change Contact
α Torque Results, τsc Torque, τc
0 * * * 1.59 1.07
15 * 1.05 * 1.53 1.03
30 * 0.93 * 1.34 0.94
45 * 0.86 * 1.15 0.84
60 1.05 0.64 0.55 0.84 0.62
75 0.74 0.40 0.39 0.66 0.41
90 0.42 0.21 0.23 0.33 0.15
ε2 0.6 0.4 0.4† 0.6 0.4

τpred 1.28 1.28 0.94 - -
τmax 1.08 1.08 0.70 - -
† Trial uses same eccentricity but different tail.

we see agreement between the predictions and empirical data
for even the highest aspect ratio rectangle (γ = 0.486) and
ellipse (ε2 = .78) with a pitch of about 15 degrees in both
cases. As such, we strongly suspect that the torque reduction
benefits of CPST for ground righting and the predictive
power of our model generalize to many robot body shapes.

C. Shape Change
Unlike the contact righting strategy which is limited by

actuator torque, shape change righting is inherently limited
by the body morphology. Given a tail with mass mt and
distance dt between the center of mass of the tail and its
center of rotation, the maximum torque expected due to
gravity is τpred = mtgdt . Any further torque supplied to
the tail will lift the tail past the horizontal and cause it to
continuously rotate, a failure case in these tests.

Test were run by slowly ramping up the torque input until
the robot either reoriented (success, at which point the torque,
τsc is recorded) or the tail began to rotate freely (failure,
at which point the max torque was measured, τmeas). The
torque required to self-right should be approximately equal to
the previous contact righting test with discrepancies caused
by the added tail weight. In Table III, we show three different
robot configurations, with two different eccentricities and two
different tails. The tails are characterized by their τpred .7
We observe the same trends in Table III seen in Fig. 5.
These results suggest a further benefit of our model as being
agnostic to torque input type or strategy.

CPST’s torque benefit allows a user hoping to achieve a
shape change righting behavior to significantly reduce the
mass and/or length of a tail (or other weighted appendage)
at design time.

7It should be noted that tails still need to have masses much smaller than
the body of the robot or the COM will shift toward the back of the robot,
requiring a mass-weighted average for our approximation of zα(φ)
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Fig. 6: Inertial Reorientation Righting Experiment. For a modest eccentricity
with a modest tail inertia, CPST allows the system to flip where it would
otherwise fail. In this test, the tail actuator was given max torque command
for every trial. The speed limitations of the CKBots enforce a maximum
energy input of 0.28 J (calculated from the tail inertia (≈ .014 kg m2 )
and rotation rate from vicon (≈ 1 rev/s ) ). Our analysis suggest the energy
barrier for reorientation is 0.04 J at α = π/2 (vs 2.8 J at α = 0), which
matches with the findings in (b), where φmax is the nearest to the goal
state the robot made it before oscillating.

D. Towards Inertial Reorientation
Our analysis so far has been purely kinematic and qua-

sistatic, but we empirically explored an inertial reorienta-
tion method as well. Using a symmetric tail to minimize
configuration-dependent gravitational torques set to maxi-
mum torque input, we hang the tail over the edge of our
working surface to allow free rotation without tail contact.
As mentioned in Section III-A, the CKBots are severely
speed limited and so our max angular impulse is similarly
limited (discounting the uninteresting recourse to heavier
tails, which, in any case, require more counter weight and
make the robot harder to right). Nevertheless, we found that
the elliptical robot could successfully reorient in a small
neighborhood of α = π/2 (Fig. 6b), having struggled to
right with other CPST angles (again, rejecting aggressively
increased tail weight and inertia). This suggests that there is
also an energetic benefit to the CPST maneuver, as is implied
by our analysis in Fig. 4a and Eq. 12, encouraging us to move
toward a dynamic analysis of this system, directly tuning the
potential landscape.

IV. CONCLUSIONS
Our findings demonstrate the utility of CPST for qua-

sistatic ground righting behaviors by reducing the torque
necessary for reorientation. Measurements of the minimum
torque necessary to right for the quasi-static maneuvers (de-
picted in first two sketches of Fig. 2c) using both tail ground
contact (Fig. 5) and tail shape change primitives (Table III)
show close agreement with the theoretical torque reduction
predictions of Sec. II (Table I). We further explore a more
speculative third strategy, inertial self righting (rightmost
sketch of Fig 2c), not yet addressed by our quasistatic
analysis, but which nonetheless suggests promising results.

Future work will explore the integration of CPST with dy-
namic appendage actuation, and the role of relative phasing
between spine and tail actuation during righting. The reduced
planar model of CPST derived in Sec. II-B.2 provides a first
step towards a dynamical template for ground righting with
an actuated spine.
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