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ABSTRACT Understanding the resilience of a community facing a crisis event is critical to improving
 
its adaptive capacity. Community resilience has been conceptualized as a function of the resilience of
 
components of a community such as ecological, infrastructure, economic, and social systems, etc. In this
 
paper, we introduce the concept of a ‘‘resilience fingerprint’’ and propose a multi-dimensional method for
 
analyzing components of community resilience by leveraging existing definitions of community resilience
 
with data from the social network Twitter. Twitter data from 14 events are analyzed and their resulting
 
resilience fingerprints computed. We compare the fingerprints between events and show that major disasters
 
such as hurricanes and earthquakes have a unique resilience fingerprint which is consistent between different
 
events of the same type. Specifically, hurricanes have a distinct fingerprint which differentiates them from
 
other major events. We analyze the components underlying the similarity among hurricanes and find that
 
ecological, infrastructure and economic components of community resilience are the primary drivers of the
 
difference between the community resilience of hurricanes and other major events.
 

INDEX TERMS Data analysis, human computer interaction, resilience, Twitter. 

I. INTRODUCTION 
There is a temporal trend toward more frequent and more 
unexpectedly intense natural disasters [1], [2]. To prepare 
for uncertain future disasters, it is fundamental to question 
what constitutes a resilient community so as to build a body 
of knowledge useful in enhancing communities’ adaptive 
capacity in the face of the next generation of unforeseen 
disasters. Resilience is a concept with multiple definitions, 
all of which stem from understanding how elements of a 
community protect against, respond to, and recover from a 
disruption [3]–[10]. At their core, these definitions establish 
how an exogenous disruption bears on the dynamic inter-
actions and responses inside a community whether through 
ecological, infrastructure, social, or economic mechanisms. 
However, previous analyses do not directly incorporate the 
experience of individuals during disasters when measuring 
the totality of a community’s resilience. Instead, (community) 
resilience analyses examine the impact of a disaster or disrup-
tion on individuals as manifested through an existing social, 
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physical, economic, or ecological systems [4], [7], [11], [12]. 
Recent work has hypothesized that online social networks 
(OSNs) can fill this gap in the study of resilience by incorpo­
rating the direct measurement of individuals in a community 
throughout the response to a major disruption [13], [14]. 
In this work, we formulate measurements of the resilience 

of a community by augmenting existing conceptualizations of 
community resilience with data from online social networks, 
namely the microblogging platform Twitter. In 2017, 80% 
of the US population is estimated to have a social media 
account; of those Twitter is among the most popular with 
62 million monthly active users in the US in 2018 [15], [16]. 
Twitter is a platform for disseminating and consuming con-
tent at an unprecedented scale, providing a direct conduit 
into the response of individuals to major events. Interactions 
on Twitter are based on short messages of 280 characters. 
These messages (called tweets) are broadcast to a user’s 
followers. Particularly during major events, the follower– 
followee relationships leads to emergent social properties 
at a macro-scale which are driven by a bottom-up self-
organization of information [17], thus providing unique 
access to information deemed important by the community. 

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 
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Consequently when the resilience of a community is tested 
by a major event, the self-organization of Twitter discourse 
indicates that topics which are relevant to the resilience 
of a community are detectable. In this paper, we leverage 
this bottom-up information to develop a multi-dimensional 
social resilience fingerprint which analytically captures the 
interactions within pillars of community resilience during a 
disruption. 
We introduce the resilience fingerprint as a multi­

dimensional concept for understanding community resilience. 
A resilience fingerprint is the unique combination of com­
ponents of community resilience in response to a major 
event or disruption. We use the analogy of a fingerprint 
to emphasize the identifiability of components critical to 
community resilience. In this way, we move away from 
evaluating resilience in one dimension and instead propose 
a relative-mapping of the interrelated aspects of resilience to 
one another. Rather than asking how resilient is a community 
we ask what constitutes a resilient community. We subse­
quently describe methods for measuring the resilience fin­
gerprint of communities impacted by major events through 
analysis of the social media discourse surrounding the event 
thus establishing a social resilience fingerprint. 
A social resilience fingerprint is an analytical method for 

understanding the interactions between components of com­
munity resilience as observed through social media. This is 
calculated first by defining community resilience as a set 
of resilience components suitable for measurement by social 
media, then categorizing the macro-scale Twitter response 
of a community before, during, and after a major event 
by its impact on the individual components. The relative 
measurements of each resilience component –along with the 
interaction between components– form the basis of the social 
resilience fingerprint. 
The remainder of this paper is as follows: Section II pro­

vides background on community resilience and describes 
our categorization of community resilience in the context of 
online social network analysis; Section III describe the data 
used in this analysis, as well as the methods used to turn large 
corpora of tweets into a social resilience fingerprint. Finally, 
Section IV applies the techniques presented to 14 events 
with a significant Twitter response, the results of which are 
presented in Section V. 

II. BACKGROUND 
Externally, communities are the ‘‘totality of social system 
interactions within a defined geographic space such as a 
neighborhood, census tract, city, or county’’ [5], and can be 
characterized by internal dynamics which comprise combi­
nations of individuals and groups with multiple –potentially 
competing– interests and associations [18], [19]. The broad 
scope of communities leads to a vast number of approaches 
and methods for the study of their resilience. In this section 
we discuss how conceptualizing resilience as a multidimen­
sional fingerprint fits within context of existing studies of 
resilience and online social networks. 

A. COMMUNITY RESILIENCE 

In order to understand how multiple dimensions of disaster 
resilience can be studied through social media, we establish 
a definition of community resilience based on previous con­
structions and in alignment with evaluation through online 
social networks. Community resilience has been formalized 
as a comparative assessment of the resilience of commu­
nity components or categories [5], [6], [20]. Category-based 
definitions of community resilience share substantial over­
lap. One such definition is given by the Multidisciplinary 
Center for Earthquake Engineering Research, which cate­
gorize community resilience with the acronym PEOPLES: 
Populations, Environment and ecosystem, Organized gov­
ernment, Physical infrastructure, Lifesyle and commu­
nity, Economic development, and Social-cultural capital [6]. 
A similar definition proposes a framework which distin­
guishes categories of resilience by how they are measured [5]. 
They include ecological resilience, social resilience, eco­
nomic resilience, institutional resilience, infrastructure 
resilience, and community competence [5]. We leverage a 
multi-dimensional categorization of community resilience, 
defined as a set of components which are derived from 
previous definitions of community resilience so as to theo­
retically ground our analysis [5]. We define the categories of 
community resilience in an OSN context as the Ecological, 
Economic, Institutional, Social, Infrastructure, and Quality 
of life categories. These categorizations are not mutually 
exclusive, but are collectively exhaustive. Table 1 lists high 
level descriptions of the components of a social resilience 
fingerprint and the topics they encompass through Twitter. 

TABLE 1. Resilience components, their description, and community 
elements from that category. 

B. TWITTER 

Since its inception in 2006, Twitter has been a common 
source of academic inquiry particularly relating to its use 
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TABLE 2. Size, date, and type of twitter events analyzed. Ordered by starting date of event. 

during disasters and major events. Since Twitter is a platform 
for sharing and consuming media, early work in the evalua­
tion of tweet content established relationships between public 
Twitter posts and internal sentiment, situational awareness 
during disaster, and psychological trauma [17], [21]. 
Twitter has also been studied as a form of sensing net­

work which can augment more traditional analyses per­
formed during a disaster such as the study of vulnerability 
or resilience [13], [14]. Understanding how online social net­
works can be used to derive meaningful insight has been 
defined as social media analytics [13], [22]. Work in this area 
is typically broken down into multiple dimensions based on 
how social media is used for analysis (e.g., tweet location, 
tweet content etc.) [22]. What follows is a review of literature 
relating to understanding disasters and communities through 
social media. 
Social media analytics has been previously used in many 

disaster-related contexts to gather information about the spa­
tial distribution of disasters in an attempt to correlate measur­
able elements of a disaster with measurable elements of social 
media. Tweets related to a topic of a disaster were shown 
to be more likely to occur near disaster-related areas during 
a flood of the Elbe river [23], [24]. There is also significant 
evidence to suggest GIS and remote-sensing applications can 
be significantly improved by augmentation with social media 
data [25]. The primary benefit of this augmentation is that 
social media provides a ground-up network of sensors which 
can allow for hyper-local and rapid updating of geographic 
systems [26]. 
Temporal associations between tweets and disasters have 

also been investigated. A study of Hurricane Sandy found the 
time for an individual to learn about a disaster through social 
media was proportional to an individual’s distance from the 
impact [27]. In a different context, the role of individuals 

in a disaster is found to be temporally-dependent [28]. Dur­
ing times of disasters, individuals are observed to transition 
toward an information-sharing role on Twitter, broadcasting 
and exchanging information [29]. 
Another thrust of social media analytics is an analysis of 

tweet content, in which a semantic understanding of a tweet is 
used to make assessments of the tweet author [22]. Related to 
disasters, the ‘mood’ of tweets was tracked through multiple 
disasters affecting North America as a proxy for how individ­
uals recover psychologically from disasters [30]. Other anal­
yses use the content of social media networks to understand 
the patterns of information diffusion in disaster [31]. 

III. DATA AND METHODS 
The accessibility of tweets issued prior to 7 days in the past as 
well as Twitter’s terms of service make acquiring corpora of 
tweets a non-trivial task. In this section we first briefly discuss 
the process of tweet acquisition, and follow with the methods 
used to analyze the Twitter corpora. 

A. TWEET ACQUISITION 

Our tweet datasets were retrieved from various archival 
sources [32]–[42]. High-level descriptions of the corpora 
are listed in Table 2, with more details presented in 
Appendix Table 4. Over 14 million tweets were analyzed 
spanning 14 major events. The major events include 5 hur­
ricanes, 2 events of public violence, 2 political referendums, 
2 earthquakes, 1 public health crisis, 1 death of a celebrity, 
and 1 solar eclipse. Events were chosen based on the scale 
of the social-media response to the event, but little other 
restriction was placed on inclusion in our study. This results 
in a corpus of tweets which spans multiple years, sizes, event 
types, and archival methods. 
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As of early 2019, Twitter limits access to the entire body 
of published tweets via a paid subscription service. Addi­
tionally, Twitter’s Terms of Service prohibit the reproduction 
or distribution of datasets of whole tweets and instead only 
allow for the distribution of lists of numerical serial numbers 
corresponding to each tweet, called tweet IDs [43]. Hence, 
the medium of tweet compilation and sharing is the tweet 
ID, which can be used to re-construct the original tweets. 
IDs are simply serial numbers corresponding to each tweet 
and provide no actionable information, therefore, the process 
of hydrating tweets must be carried out to convert tweet 
IDs into a full tweet as it would be seen on the platform. 
Hydrating repeatedly calls the Twitter API with a specified 
tweet ID and returns the associated tweet content as well as 
additional meta-data such as the author, the date of publi­
cation, whether it is a retweet of someone else, etc. As this 
is a process of retroactively accessing data, there may be a 
loss of data. Tweets may not be available due to deletion of 
the previous tweet, tweet-author’s user account, or change in 
privacy settings of a user account. Recent work has shown 
that despite this data loss, remaining samples of tweets are 
still representative of the data published in real time [43]. 
Based on previous findings which indicate that Twitter mes­
sages sent during consequential events are more focused 
on information-broadcasting and information sharing [28], 
we additionally remove retweets (ie a user re-broadcasting 
the tweet originally authored by someone else) from our data 
to focus on originally produced content. 

B. DATA PROCESSING 

After hydrating and removal of retweets, the text data of 
each tweet are processed to remove abnormalities. First, 
URLs, and non-ASCII characters are removed using cus­
tomized regular expressions [44] 1. English and Spanish stop 
words are then removed. Stop words are non-informative, 
frequently-used words which do not contribute to a seman­
tic understanding of text [45]. In this case stop words are 
defined using the popular stopwords R package [46]–[48]. 
Each event’s tweets are then processed to remove words 
occurring less than 10 times through all tweets related to 
an event. Additionally -if the dataset was complied based 
on keyword filtering- the words used for filtering were 
removed from the corpora, as they would otherwise be 
included in all tweets by construction. Finally, the remain­
ing words are stemmed to remove word endings using the 
Porter stemming algorithm, implemented in R [49]–[51]. 
Stemming removes word endings to avoid differentiating 
between words of similar meaning used in different tenses, 
conjugations etc. For example ecological and ecology would 
both stem to the same root: ecolog. Word stemming has 
been previously shown to greatly improve text processing and 
analysis [45]. 

1This is increasingly important in recent datsets as the use of emojis 
becomes more prevalent 

C. SOCIAL RESILIENCE FINGERPRING 

At the core of the methodology proposed in this paper 
is understanding how individual components of commu­
nity resilience can be measured and understood through 
the lens of social media. Formally we have a set of all 
events E comprised of n individual events E such that 
E1, E2, . . . , En ∈ E. For a given event E∗, we have a set 
of tweets, tE

∗ 
, tE

∗ 
, . . . , tE

∗

∈ E∗, where m is the total 1 2 m 
number of tweets compiled for each event after hydration and 
processing. Each tweet is subsequently comprised of a series 
of features, f , which are the individual words in each tweet 
such that for a given tweet t ∗ , f t 

∗ 
, f t 

∗ 
, . . . , f t 

∗

∈ t ∗. As each 1 2 l 
tweet can contain multiple copies of the same word, we also 
have a set of all features FE for a given event E . 
Additionally, we manually coded a set of words for each 

category in order to map the set of features to our pre-defined 
resilience categories. Thus, each category of resilience con­
tains a set of words which indicate associated discourse. 
For example, Cinfrastructure = { power, water, cell, outage, 
road, . . . }. The words were manually selected by two groups 
individually, then consensus was established between the two 
sets. As such, the sets of words used in each category are not 
mutually exclusive. The full listing of words coded for each 
category is listed in Appendix Table 6. 
To parse the features for a given event into categories 

we construct a category co-association matrix, A for each 
event. A is a symmetric 6 by 6 matrix with each row 
and column corresponding to a resilience category. Aij 
is then the co-association of category i with category j. 
The co-association of a given category is based on the 
co-occurrence of words from categories. As such, for 
resilience categories i and j,    

Aij = occ(r, s) (1) 
r∈Ci t r∈t 
s∈Cj

where  
occ(r, s) =

1 

0 

if word r occurs with s 
otherwise 

(2) 

After fixing a word r from one category, and word s from 
another, the occ function is an indicator function taking 
a value of 1 each time word r occurs with word s in a 
given tweet. This is summed over all occurrences of r in a 
given tweet (innermost summation of (1)), then subsequently 
summed over every tweet. This is done for all combinations 
of words in category i and category j. Thus Aij is the total 
times a word from category i occurs in the same tweet as 
category j. The matrix of values A –one for each event– 
form the social resilience fingerprint. Off diagonal values of 
A represent the frequency of resilience categories appearing 
together in Twitter discourse. The diagonals of A are less intu­
itive, representing the relative frequency of words from the 
same category appearing in a tweet. This is a modified version 
of a co-occurrence matrix, used for term clustering in natural 
language processing [52]–[54]. This extension uses apriori 
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FIGURE 1. Visualizing social resilience fingerprints. Each heatmap represents the association between one category with another. The color red 
indicates the most association, and the color blue represents the least association. Diagonal values in the heatmap are indicative of how 
self-associative a category is. Bar-graphs show the relative occurrence of each category. Note the color scheme in this plot is based on 
log-normalization of A, as opposed to Sinkhorn-Knopp, to aid in visualization. 

categorizations –grounded in the theoretical definitions of 
community resilience– to find associations within topics to 
determine the relative association of categories of resilience. 
In the following section, we apply this fingerprinting method­
ology to multiple major events and discuss the feasibility of 
extracting category-based insights using this method. For the 
14 events listed in Table 2, the categorical binning described 
in (1) and (2) are used to establish the social resilience finger­
print. As the total number of tweets gathered for each event 
vary substantially, the A matrices are scaled. This allows for 
a more balanced comparison between events as it removes 

information regarding the total number of tweets from the fin­
gerprint so that any comparison made between events is based 
solely on the pattern of interactions among the components 
of the resilience fingerprint. Sinkhorn-Knopp matrix regular­
ization is used on A matrices [55]; this preserves the structure 
of the fingerprint while allowing the relations between cate­
gories to be compared across events. 

IV. RESULTS 
Visual representations of the social resilience fingerprints are 
shown in Figure 1. Each heatmap and associated bargraph 
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show the relative association of each category and the 
frequency of each category respectively. The respective 
heatmaps are visual examples of the matrices A, representing 
the co-association of discourse related to components of com­
munity resilience. Because of the self-organization of tweets 
in response to major events, we hypothesize that stronger tex­
tual association of categories indicate a stronger underlying 
relationship between the categories in the community and 
by extension in the resilience of the community. This is in 
line with previous findings which found that event-related 
keywords were indicative of a major event’s impact on an 
individual [27]. 

A. EVENT SIMILARITY 

From the wide range of the events studied, we hypothesize 
that the Twitter discourse in reaction to similar events will 
itself be similar, as measurable through the resilience fin­
gerprint. To evaluate this, we measure the component-wise 
Spearman distance between scaled A matrices for all events. 
The result is a numerical measure of similarity among the 
structure of the resilience fingerprints in which a smaller dis­
tance represents a more-similar pattern of Twitter discourse 
between two events. In Figure 2, the resulting pair-wise dis­
tances are visualized in a heatmap after hierarchical cluster­
ing is performed on the rows and columns –a technique called 
VAT or a Visual assessment of Cluster Tendency [56]–[58]. 
Each element in Figure 2 represents the distance between the 
row and column event. 
The VAT methodology is formulated to allow for visual 

identification of trends in data [56]. A VAT cluster appears 
visually as a square block along the lower-left to upper-right 
diagonal of the heatmap. In Figure 2, there are clear clusters 
corresponding to Hurricanes Florence, Irma, Sandy, Harvey, 
Maria as well as the 2018 Eclipse. Additionally, a case could 
be made for the clustering of the Nepalese earthquake and the 
California earthquake. Finally, the upper right of Figure 2 pro­
vides evidence of clustering of the Las Vegas shootings, Char­
lottesville riots, Ireland’s 8th constitutional amendment, and 
the death of Aretha Franklin. As we calculated the distance 
between the events by summing component-wise distances 
between two fingerprints –each scaled from their original 
counts– these clusters are representative of similarity in the 
pattern of associations between components of resilience. 
From this, we see a similarity in the social resilience finger­
prints of alike events, providing evidence that our proposed 
methodology has discriminating power. 
Based on this distance measure, we subsequently ana­

lyzed each event’s closest match using an alternative distance 
measure, namely, the Pearsons’s correlation coefficient. This 
is also computed between each pair of fingerprints. The 
closest-correlated event to each event are listed in Table 3, 
along with the associated correlation. The results paint a 
similar picture to the VAT comparison. Natural disasters, 
such as hurricanes and earthquakes, pair closely with one 
another, as do acts of violence like the Las Vegas shooting 
and Charlottesville riots. 

FIGURE 2. VAT assessment. Each element represents the distance 
between the event in the row and the event in the column, red indicating 
closer, blue farther away. 

TABLE 3. Closest events. The pearson correlation is calculated between 
all pairs of events, with the closest match listed. The correlations above 
80% have been highlighted in bold. 

We perform another similarity measurement by comparing 
the clusters generated via the k-means clustering algorithm. 
We select 3 clusters as the marginal within-cluster error 
does not improve greatly with additional number of clus­
ters. Figure 3 shows the three clusters plotted on the axes of 
the first two principle components of the data. The cluster 
containing the hurricanes and eclipse differs most greatly 
in the direction of the first principle component, while the 
remaining two clusters differ based on the second compo­
nent. The first principle component is driven by differences 
in ecological categories of resilience while the second is a 
difference in social, economic, and institutional resilience. 
From the results of these clustering methods, we hypoth­

esize that the similarity between the fingerprints of similar 
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FIGURE 3. PCA loading plot. The top 10 most contributing elements of 
each fingerprint are projected onto the first two principle components. 
Components and events along the negative x axis are shown in the 
bottom left inset for clarity. k-means clusters (k = 3) are additionally 
overlain on the PCA plot, with clusters denoted by shaded areas and the 
shape of the icon. 

FIGURE 4. Category-based difference between the average hurricane 
fingerprint and all average non-hurricane fingerprint. Each element 
represents the difference between the hurricane and non-hurricane 
association of categories. Blue indicates stronger association in 
non-hurricane events, while red indicates stronger association in 
hurricane events. Coloration based on log-normalization of A matrices 
rather than Sinkhorn-Knopp for visual clarity. 

events indicates that much of the emergent properties of the 
resilience of a community is driven by the specific disaster. 
Through this hypothesis, we propose that the elements of 
community resilience common to each type of event are dis­
tinct enough to affect the Twitter discourse of the individual 
communities to an extent that it is measurable at a macro 
scale. 

B. CRITICAL COMPONENTS OF COMMUNITY RESILIENCE 

To further understand the importance of the categories of 
community resilience, we now ask which elements of com­
munity resilience drive the similarity among events by look­
ing at the loading of each variable –corresponding to an i, j 
element of the fingerprint across all events– as projected onto 
the first two principle components. The variable loading for 
the 10 most contributing variables are plotted in Figure 3 
along with the events. Figure 3 additionally includes the 
k-means clusters described in Section IV-A. 
From the variable loadings, we can see that –as expected– 

the vectors with similar directionality have overlapping cate­
gories. Along the x-axis of Figure 3 are the associations of 
the ecological category with all others, indicating they are 
strong contributors to the similarity of the hurricane-events. 
Likewise, institutional and economic category dominate the 
first quadrant. Finally, social components tend in the direction 
of the cluster associated with the Charlottesville riots and 
Las Vegas shootings. In Figure 3, a small angle between 
vector loading indicate high correlation between variables. 
From this we can generally infer a positive correlation within 

the ecological and social categories as well as between the 
institution and economy categories. 
From Figure 3 we can also interpret that the first principle 

component is driven by changes in the ecological categories 
indicating this may be primary drivers behind the clustering 
of the hurricanes, and consequently a significant component 
of community resilience. 

C. POSTERIOR ANALYSIS 

To further investigate the components most influential in the 
social resilience fingerprint, we look at the explicit difference 
between events of different types. The most apparent cluster 
of events are Hurricanes Florence, Irma, Sandy, Harvey, and 
Maria. As such, we compute the element-wise mean finger­
print of the hurricane-events and non-hurricane-events. The 
element-wise difference –calculated as the hurricane mean 
minus the non-hurricane mean– is visualized in a heatmap 
in Figure 4. For each pair of categories, the color of the 
cell value indicates whether those categories have a stronger 
association among the hurricane fingerprints (colored red), 
or the non-hurricane fingerprints (colored blue). 
Figure 4 confirms the results of the PCA analysis and indi­

cates the ecological and infrastructure categories of resilience 
are much stronger in the hurricane fingerprints than in the 
non-hurricane fingerprints. The interaction of infrastructure 
and ecological categories are the strongest for the hurricane 
category among the non-diagonal elements. At the same time, 
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TABLE 4. Tweet corpora summary. Description of events used along with the quantity of tweets and their acquisition methods and respective sources. 

the economic-institutional relationship is most strong among 
the non-hurricane events. 

V. DISCUSSION 
After clustering the social resilience fingerprints for all events 
and analyzing what drives their similarity, we identify two 
major trends: first is the strong distinction between hurri­
cane and non-hurricane events with respect to fingerprint 
similarity, and second is the importance of ecological and 
infrastructure resilience in making that distinction. 
We see a strong association, not just of one hurricane with 

another, but among all hurricanes for which we could collect 
data. The hurricane-related tweet corpora were collected in 
a variety of ways and span distinct spatial and temporal 
scales. Despite these differences, the similarity in the finger­
prints indicate generalizable patterns in community resilience 
in the face of hurricane impacts. Moreover, it provides a 

strong evidence supporting the fingerprinting methodology. 
It also suggests that Twitter is a persistent source of data 
about individual responses to a disaster within a community, 
establishing Twitter as a valuable tool for measuring disaster 
resilience across communities. 
Additionally, general similarity among specific non-

hurricane events indicates emergent themes in the Twitter 
responses manifesting as similar social resilience finger­
prints of related events, and thus similarities in the under­
lying resilience. The relative similarity of the California 
and Nepalese earthquakes, as well as the public violence 
in Charlottesville and Las Vegas, both indicate that other 
types of major events may also have fundamental, emergent 
themes decodable through Twitter discourse. We conjecture 
that similarity in the social resilience fingerprints of related 
events is indicative of fundamental similarity in the resilience 
of the communities facing such events. That is, there are 
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TABLE 5. Tweet acquisition. Keywords, keyword phrases, and hashtags used to create the tweet datasets. 

emergent similarities between the way different communities 
respond to the same event across all types of events. However, 
we recognize the limitation of drawing conclusions from the 
similarity of only two events studied in this paper and intend 
to expand upon this analysis to test our conjecture. 
The second major trend in the analysis of the social 

resilience fingerprints is the influence of individual compo­
nents of resilience in the separation of one event from another. 
Ecology, infrastructure, and economic categories drive much 
of the separation between the emergent clusters in the data. 
Economic resilience is intuitively intertwined with all other 
categories in our definition [3], [6], [7], and is seen in the 
Principle Component Analysis to contribute greatly to the 
distinction between clusters of non-hurrican events. 
The significance of infrastructure resilience in differenti­

ating between hurricane and non-hurricane events –as seen 
in Figure 4– is likely due to the significance of infrastructure 
damage in communities affected by hurricanes. Ecological 
resilience and its close ties to sustainability, have been previ­
ously shown to be strong drivers of community resilience at 
all levels [3], [5]. We see the distinction in Figure 3, manifest­
ing as the ecological loadings in the direction of the first prin­
ciple component –indicating that ecology explains the largest 
degree of variance among the fingerprints. This reveals that 
the resilience fingerprint method is not limited by what has 
hampered the previous attempts in quantifying community 

resilience –namely the difficulty in acquiring data related to 
specific ecosystems. Due to the difficulties in finding relevant 
measurement indicators, ecological resilience has previously 
been excluded from resilience assessments [60]. 
The resilience fingerprints of three events were not 

revealed as expected: The Irish constitutional amendment, 
Brexit, and the Ebola outbreak. The authors hypothesized 
that the Irish constitutional amendment and Brexit would be 
similar events due to their close physical proximity and the 
general political nature of the event; a trend which did not 
emerge from our analysis. One explanation for the difference 
are in the specificity of search terms used for the generation 
of the Irish amendment tweet dataset. The Irish amendment 
tweet dataset used 52 terms to filter by, the most most filter 
terms used by almost a factor of 2 (See Appendix Table 5 
for terms); the Brexit dataset was built on only one search 
term: brexit. The terms used to filter the Irish referendum 
dataset are also more specific than the others, leading to a 
corpus of tweet text which may be overly specific to the Irish 
political system and the issues of the referendum, lacking 
substantive information about the community’s response in 
favor of the individuals. Tweets related to the Ebola virus 
additionally showed little relation with other events. In this 
case, we hypothesize that the location of the event relative 
to major Twitter-adoptive societies may affect the ability of 
fingerprinting to detect a signal. International Twitter use is 
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TABLE 6. Categories of resilience and associated keywords. Keywords are manually coded based on conceptual definitions of resilience categories. 

lower than that of the US [16]. As such we hypothesize that 
someone tweeting about Hurricane Florence was more likely 
witnessing community impacts due the storm than someone 
tweeting about the ebola outbreak. 

VI. CONCLUSION AND FUTURE RESEARCH 
In this paper, we present the resilience fingerprint as a con­
cept for understanding community resilience as the relation­
ship of individual components. We then calculate a social 
resilience fingerprint by leveraging social media analytics 
guided by the community resilience theory. We find evidence 
that resilience fingerprinting can highlight the different com­
munity responses to a variety of major events and identify the 
components of community resilience which most contribute 
to the overall response. We leverage a category-based def­
inition of community resilience to classify the macro-scale 
response on Twitter to a disaster into elements of community 
resilience. 

In summary, the resilience fingerprint provides a concept 
for the multi-dimensional analysis of the emergent responses 
of communities to major events. The rapid spread of informa­
tion via social media makes social resilience fingerprinting a 
vital complement to existing resilience analyses, capable of 
categorizing the community response to a disaster. 
In this work, the categories were manually coded, as guided 

by the literature in community resilience. However, an ongo­
ing extension of this work is to use automated topic detection 
to both determine what individual words best comprise a 
resilience category, and to determine the emergent resilience 
categories in an unsupervised way. Additionally, we aim to 
extend the classification of tweets beyond word-association 
based on recent developments in the classification of tweets 
related to disasters [59], [61]. 
This work does not include retweets in the data analyzed 

with the resilience fingerprint. A sensitivity analysis is ongo­
ing as to assess the impact of retweets on event similarity. 
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Finally, we are expanding the fingerprinting methods to allow 
for the creation of a resilience fingerprint in real time. This 
will provide a dynamic look at the interactions among com­
munities as they respond to major disasters and events. 

APPENDIX 
See Tables 4–6. 
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