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Abstract

In near-wall turbulence modeling it is necessary to resolve a thin bound-

ary layer containing high gradients of the solution. An accurate enough

resolution of such a layer can take most of the computational time. The sit-

uation becomes even worse for unsteady problems. To avoid time-consuming

computations, in the present paper a new approach is developed, which is

based on a non-overlapping domain decomposition. The boundary condition

of Robin type at the interface boundary between domains is constructed by

transferring the original boundary condition from the wall. For the first time,

recently developed unsteady interface boundary conditions of Robin type are

used for the unsteady Reynolds Averaged Navier-Stokes equations. The in-

terface boundary conditions contain a memory term which takes into account
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the nonlocal effect in time to be taken into account for essential unsteady

problems. In the case of stationary solutions the new approach automati-

cally reduces to the technique earlier developed for the steady problems. The

considered test cases demonstrate that the effect of the memory term can be

significant for the accuracy of the near-wall domain decomposition. The cri-

teria for importance of the memory term in the interface boundary condition

are formulated and confirmed for turbulent flows.

Keywords: domain decomposition; interface boundary condition; wall

functions; turbulence; low-Reynolds-number model; unsteady problems;

URANS; large eddy simulation.

1. Introduction

Modeling near-wall turbulent flows is traditionally one of the most com-

plicated problems in computational fluid mechanics. Numerical resolution

of a turbulent boundary layer requires significant computational resources

because of its complex structure. Nearby the wall there is a very thin lam-

inar sublayer due to the damping effect of the wall and zero velocity at the

wall. A sufficiently accurate resolution of the laminar sublayer is important

for the entire prediction of a near-wall turbulent flow. However, it is quite

limited because it requires up to 90% of computational time [1] even when

the Reynolds Averaged Navier-Stokes models (RANS) are used. The RANS

models which take into account the effect of the wall are often called the low-

Reynolds-number (LRN) models. Their use is still ad-hoc and prohibitively
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expensive for industrial applications where serial computations are required

for an optimal design. To resolve the problem, there are two principal ap-

proaches outlined further.

In the real-life industrial design the approach based on the high-Reynolds-

number (HRN) RANS models has been used for many years. Such models

are isotropic and do not take into account the effect of the wall. They explore

the thinness of the laminar sublayer and extended almost to the wall. The

effect of the wall is only counted via near-wall Dirichlet boundary conditions

called the wall functions usually set at the center of the first near-wall cell.

Such boundary conditions are semi-empirical and usually represent differ-

ent modifications of the analytical solution for a thin plate [2] based on a

logarithmic profile (so called the wall law). As noted by Durbin in [3], this

approach should be considered as a domain decomposition where the solution

in the inner near-wall region is presented by the wall functions. As can be

expected from the physics, this approach is very limited because of its nature

of construction. The solution may be very sensitive to the mesh especially to

the near-wall cell at the which the wall functions are applied. In particular,

the approach may fail if the first cell is situated within the laminar sublayer.

To resolve this shortcoming, the scalable [4] and adaptive [5] wall functions

were proposed. The principle of domain decomposition can be revealed in

the numerical and analytical wall functions [6] which are implemented in the

numerical approximation of the governing equations near the wall. To the

best of our knowledge, there are no wall functions specifically derived for
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essentially unsteady flows. However, as will be shown below steady inter-

face boundary conditions cannot be used for essentially unsteady problems

without significant loss of accuracy.

A different near-wall domain decomposition (NDD) approach based on

non-overlapping domain decomposition was proposed in [7], [8], [9], [10]. The

interface boundary conditions (IBC) are formulated in a differential form

there, in contrast to most wall-functions. As shown in [10], these bound-

ary conditions can be derived in quite a general formulation via the theory

of potentials [11]. The NDD approach was first implemented to the HRN

turbulence models. Then, it was extended to the LRN models in [12]. The

technique can be applied to unstructured grids straightforward since the IBC

are mesh independent. The only requirement is that the interface boundary

should be set approximately at an equal distance from the wall. This can be

achieved via selection of a prism-layer grid near the wall that is a common

practice in the boundary-layer simulation. The possible extensions of the

approach to taking into account nonlocal effects were demonstrated in [13].

In turn, as shown in [14], if the flow is essentially unsteady, then the IBC

should be nonlocal in time. The NDD approach was applied to a number of

practical problems in [15], [16], [17]. It was demonstrated that the solution is

only weakly sensitive to the distance of the interface boundary from the wall,

y∗. Effectively, y∗ was shown to control the trade-off between the accuracy

and computational time. In comparison to the LRN model, the NDD ap-

proach reduced the computational time as much as one order of magnitude
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whilst dropping the accuracy by about 1%.

Essentially unsteady turbulent flows cannot be simulated with the RANS

models in which any time dependence is lost. The use of large eddy simu-

lation (LES) becomes more and more affordable with the growth of modern

computing power. However, this technique is still very expensive for most

real-life industrial applications. For some problems the unsteady RANS equa-

tions (URANS) proved to be efficient. The NDD approach is based on the

transfer of the boundary conditions from the wall to the interface boundary.

In the case of URANS, the IBC should be nonlocal in time. As shown in

[14, 18] for a model equation, the unsteady IBC (UIBC) should contain a

memory term which take into account flow history explicitly. The effect of

the memory term was recently studied in detail for the test case of a pulsating

laminar channel flow in [19]. In this paper, the exact analytical solution was

obtained for both the original problem and the case when NDD is used with

steady and unsteady interface boundary conditions. It was shown that the

unsteady term in the interface boundary conditions can play a crucial role

for highly oscillatory flows. This effect can also be important for URANS/

LES decomposition.

The present paper is organized as follows. In section 2 the derivation of

UIBC for model equation is described. In section 3 the governing equations

based on URANS are presented. Then, we briefly describe the numerical

method used for test problems in section 4. In section 5 details of imple-

mentation of the UIBC for URANS equations in the 3D unstructured-mesh
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solver are explained. In section 6 three test problems are considered: pul-

sating channel flow, pulsating flow around half cylinder and flow with vortex

shedding around cylinder.

2. Interface boundary conditions for URANS equations

To formulate the IBC for URANS, consider the following equation:

φt = Lyφ+Rh, (1)

where φ is the appropriate leading variable of the equation, Ly := ∂
∂y
µ ∂
∂y

(µ

is the viscosity coefficient). This form is common for any URANS equation

except the continuity equation under assumption of a thin boundary layer.

As noted above, the UIBC can be obtained by a transfer of the boundary

conditions from the wall to an interface boundary via the use of thin boundary

layer equations (TBLE).

For the sake of simplicity, we assume that the boundary condition for φ

at the wall is homogeneous. As shown in [19], the boundary condition can be

transferred from the wall to the interface boundary y∗. For that we introduce

a number of auxiliary boundary value problems (BVP).
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BVP 1:

LyV0 +Rh = 0,

V0(0) = 0,

V0(y
∗) = 0,

(2)

and BVP 2:

LyV = 0,

V (0) = 0,

V (y∗) = 1.

(3)

In addition, we further introduce two auxiliary initial BVPs (IBVPs).

IBVP 1:

W0|t = LyW0, (4)

W0(0, t) = 0,

W0(y
∗, t) = 0,

W0(y, 0) = w0(y),

where w0(y) = φ(y, 0)− V0(y)− V (y)φ(y∗, 0),
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and IBVP 2:

Wt = LyW −
dφy∗

dt
V − dV0

dt
, (5)

W (0, t) = 0,

W (y∗, t) = 0,

W (0, y) = 0.

Then, the solution in the inner region is provided by

φ = V0 + V φy∗ +W +W0,

where φy∗ = φ(y∗, t).

It is clear that operator Ly is negative definite in the case of homogeneous

boundary conditions. Then, in the inner region there exists the full system

of its eigenfunctions Ψp:

LyΨp = −λpΨp, p = 1, 2, ...,

which is also orthogonal: (Ψm,Ψn) ≡
∫ y∗
0

ΨmΨndy = δmn, where m,n =

1, ... ; δmn is the Kronecker symbol equal to 1 if m = n and 0, otherwise; λp,

a p-th eigenvalue that is real and positive.
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Then, the solution to IBVP (4) is given by

W0 =
∞∑
1

Bk(t)Ψk.

Here, see e.g. [20]:

Bp = ap exp(−λkt), p = 1, 2, ...

and

ap = (W0,Ψp) ≡
∫ y∗

0

W0Ψpdy, p = 1, 2, ...

Next, the solution to IBVP (5) reads as

W =
∞∑
1

ĈpΨp,

where

Ĉp = −(V,Ψp)

∫ t

0

exp(−λp(t− τ))
dφy∗

dτ
(τ)dτ =

− (V,Ψp)[φy∗(t)− φy∗(0) exp(−λpt)− λp exp(−λpt)
∫ t

0

exp(λpτ)φy∗(τ)dτ ] ≈

− (V,Ψp)[φy∗(t)− λp exp(−λpt)
∫ t

0

exp(λpτ)φy∗(τ)dτ ] +Dp,

and

Dp = −bp(t) + bp(0) exp(−λpt) + λp exp(−λpt)
∫ t

0

exp(λpτ)bp(τ)dτ,
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bp = (V0,Ψp), p = 1, 2, ...

Thus,

W = −φy∗W +
∞∑
1

(Φp +Dp)Ψp,

where

W =
∞∑
1

CkΨk,

Φp = (V,Ψp)λp exp(−λpt)
∫ t

0

exp(λpτ)φy∗(τ)dτ, p = 1, 2, ...

and

Cp = (V,Ψp).

Finally, the entire solution in the inner domain is provided by

φ = V0 + φy∗V − φy∗
∞∑
1

CkΨk +
∞∑
1

(Φk +Dk +Bk)Ψk

or

φ = V0 + V φy∗ +
∞∑
1

(Φk +Dk +Bk)Ψk, (6)

where

V = V −
∞∑
1

CkΨk.

It is clear that the inner solution cannot be obtained until φy∗ is known.

However, the UIBC can be found without the solution in the outer region.
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For that we differentiate equation (6) with respect to y at y = y∗:

φ′ = V
′
φ+ V ′0 +

∞∑
1

(Φk +Dk +Bk)Ψ
′
k. (7)

Here and further, the prime denotes differentiation.

In the UIBC (7) the unsteady terms corresponding to eigenfunctions

Ψk (k = 1, 2, ...) represent the memory terms which are nonlocal in time

and explicitly contain some history of the flow.

It is worth noting that without the memory terms, the UIBC (7) fully

coincides with the steady IBC [7]:

φ′ = V ′φ+ V ′0 . (8)

Thus, we can first solve the IBVP in the outer region with the IBC set

at y = y∗. Then, we can explicitly obtain the solution in the inner region

represented by equation (6).

Next, we consider the effect of unsteady terms in the IBC (7) for a number

of test cases.

3. Governing equations

For numerical experiments we use URANS equations closed with “nonft2”

modification of the Spalart-Almaras (SA) model for the turbulent viscos-

ity [21]. The system of equations can be written in the conservation law
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form:

Ut +
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
= S(U), (9)

where U is the vector of conservative variables; Fk, flux vectors; Fk = F c
k −

F v
k , where F c

k ,F
v
k are the convective and viscous fluxes:

U =



ρ

ρu1

ρu2

ρu3

E

ρν̃


,Fk =



ρuk

ρu1uk + δ1kp

ρu2uk + δ2kp

ρu3uk + δ3kp

(E + p)uk

ρν̃uk


,F v

k =



0

τ1k

τ2k

τ3k

uαταk − qk

σ−1ρ(νl + ν̃) ∂ν̃
∂xk


(10)

Here, τij, qk are the components of the viscous stress tensor and heat

flux vector correspondingly; νl, laminar kinetic viscosity; E, total energy:

E = ρ(e+
∑

k u
2
k/2) with e = RT/(γ − 1) for a perfect gas; σ = 2/3.

The components of vector S are equal to zero except for the last com-

ponent: S(6) = Ssa. The source term of the SA model is defined by the

following expressions:

Ssa = cb1ρS̃ν̃ + cw1fwρ

(
ν̃

d

)2

+ cb2
ρ

σ

∂ν̃

∂xk

∂ν̃

∂xk
, (11)
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where

S̃ = S + ν̃
κ2d2

fv2, S =
√

2WijWij,Wij = 1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
,

fv1 = χ3

χ3+c3v1
, χ = ν̃

νmol
, fv2 = 1− χ

1+χfv1
, fw = g

[
1+c6w3

g6+c6w3

]1/6
,

g = r + cw2(r
6 − r), r = min

(
ν̃

S̃κ2d2
, 10
) (12)

The dynamic viscosity and thermal conductivity are given by µ = µl+µt,

λ = λl + λt. In turn, the turbulent viscosity is defined by

µt = ρν̃fv1 (13)

The turbulent thermal conductivity is calculated as λt = cpµt/Prt, where the

turbulent Prandtl number is constant: Prt = 0.85.

The turbulent variable ν̃ is set to zero at the wall. For the free stream

boundary condition ν̃ = 3νl.

4. Numerical method

The near wall domain decomposition has been incorporated into the in-

house “FlowModellium” software package [22]. In this code an implicit finite-

volume method on an arbitrary unstructured mesh is implemented. In the

present work only unstructured hexahedral mesh is used. The governing

equations of form (9) are integrated over each cell producing semi-discrete
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system:

d

dt
Ui = Ri, Ri = − 1

|Vi|
∑
l

(Φc
li −Φv

li) + Si

Here, Ui is the integral average over the cell i, Φc
li is the convective (inviscid)

numerical flux through the face l , Φv
li is the viscous numerical flux through

the face l.

The convective fluxes are calculated via solution of Riemann problem

on each face of the mesh for two values at both sides of the face. These

values are produced by reconstruction procedure. We use a 2nd order local

one-dimensional TVD reconstruction with minmod limiter [23] and HLLC

Riemann solver [24, 25].

Gradients at face centers needed for viscous flux are calculated using

vertex values which are weighted sums of Uj values in all neighboring cells.

It is to be noted that at the boundary faces values of unknowns are set at

the face center, and gradients are calculated using special formulas. This is

very suitable for IBC implementation.

For time marching, a second order implicit scheme is used. The nonlinear

system is solved iteratively using pseudo-time stepping and our modification

[26], [27] of the original LU-SGS method [28, 29].
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5. Implementation of IBC

A more general form of the model linear equation can be considered:

(k0φ)t = k1(k2φy)y + k3(k4φ)y + k5φ+ k6 = Lyφ+Rh (14)

in interval [0, y∗] with the following boundary conditions:

lyφ(0) = l0,

φ(y∗) = l1.

(15)

Here, kj = kj(y, t), Rh(y, t) = k6(y, t) and Lyφ denotes all the rest terms.

For such model equation it may be more convenient to derive IBC from

discretized form of the differential problem for one time step.

Let us consider a 2nd order finite difference discretization in y of (14) on

a uniform mesh yj = jh, j = 0, . . . ,m, h = y∗/m. For the sake of brevity

without loss of generality we consider a particular implicit 1st order method

for time stepping, a Dirichlet boundary condition at y = 0, and k0 = 1. Then

discrete equations take the following form:
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φn+1 − φn

∆t
= Dyφ+ ln+1

0



cL

0

...

0


︸ ︷︷ ︸

ZL

+ln+1
y∗



0

...

0

cR


︸ ︷︷ ︸

ZR

+Rn+1, (16)

where superscripts n, n + 1 denote current and next time layer correspond-

ingly. Vectors φn,φn+1 are of length m − 1 and contain values of the un-

knowns at the inner grid points:

φn = [φ(y1, t
n), . . . , φ(ym−1, t

n)]T ,

Rn+1 = [Rh(y1, t
n+1, . . . , Rh(ym−1, t

n+1)],

(17)

Dy is a matrix of size (m − 1) × (m − 1) containing coefficients from finite

difference approximation of (14) in all inner nodes, and cl and cR are these

coefficients for values at boundary nodes.

By the virtue of linearity, solution can be expressed as a linear combina-
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tion of two auxiliary solutions:

φn+1 =
(
I −∆tDy

)−1 (
φn +Rn+1 + ln+1

0 ZL + ly∗ZR

)
=

=
(
I −∆tDy

)−1 (
φn +Rn+1 + ln+1

0 ZL + 0 ·ZR

)
+

+ ln+1
y∗

(
I −∆tDy

)−1
(0 ·ZL + 1 ·ZR) =

= W n+1
1 + ln+1

y∗ W n+1
2

(18)

From this form it is clear that W1 is the numerical solution by the same

scheme of the problem with uniform boundary conditions at the right end:

(W1)t = LyW1 +Rh,

W1(y, t
n) = φn(y),

W1(0, t
n+1) = ln+1

0 ,

W1(y
∗, tn+1) = 0.

(19)

and W2 is solution of the problem with zero initial condition and uniform

boundary conditions at the left end:

(W2)t = LyW2,

W2(y, t
n) = 0,

W1(0, t
n+1) = 0,

W1(y
∗, tn+1) = 1.

Then, differentiating (18) with respect to y, we obtain Robin type IBC
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(a discrete analogue of (7)):

φ′(y∗, tn+1) = (W1)
′|y∗ + φ(y∗)(W2)

′|y∗ (20)

here (W1)
′|y∗ and (W2)

′|y∗ are some finite difference approximations to deriva-

tive, for example, (W1)
′|y∗ = (W1,m −W1,m−1)/h.

Once the coefficients of the UIBC (20) are found, φ∗ at the current it-

eration can be calculated using current value φout in the center of the first

neighboring cell in the outer domain (see Figure 1). The derivative in the

Robin type boundary condition is replaced with a finite difference:

φout − φ∗

h1
= (W1)

′|y∗ + φ(y∗)(W2)
′|y∗ ⇒ φ∗ =

φout − h1(W1)
′|y∗

1 + h1(W2)′|y∗
(21)

here h1 is the distance between cell center and boundary face center.

Figure 1 shows schematically a near-wall region. The red line corresponds

to the intermediate boundary, green line shows virtual 1D grid for numerical

solution of the model equation, marker corresponds to the center of cell

adjacent to the intermediate boundary.

Value φ∗ from (21) is eventually used for computation of viscous and

inviscid fluxes at boundary face center. The inviscid flux is calculated via

solution of the Riemann problem with φ∗ at one side (for each component

of U) and value reconstructed from outer domain at the other side. The

viscous flux is calculated directly using gradients obtained with account for

φ∗. Besides, near-wall profile φ(y) is also calculated from (18) or (6).

18



Figure 1: Sketch of the ANDD

The discrete UIBC described above are alternative to the analytical UIBC

which are presented in section 2 and based on the local Fourier expansion.

Both approaches provide close results provided that a sufficient number of

eigenfunctions are taken into account. Numerical experiments show that

for quasi-steady flows it is sufficient to take one eigenfunction, while for

essentially unsteady flows no more than three eigenfunctions are needed.

The described UIBC are applied for most unknown variables: tangential

velocity u, temperature T and turbulent variable ν̃. However, boundary

conditions for the normal velocity v is determined in another way. In the

following subsections we briefly describe the IBCs for each unknown variable.
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5.1. Simplified equation for u

The following simplified momentum equation is used for tangential com-

ponent of velocity:

(ρu)t = (µuy)y −
dp

dx
(t) (22)

Term dp/dx is assumed to be constant along the normal to the wall and

calculated in the cell adjacent to the interface boundary.

5.2. Simplified equation for T , ρ profile

A Robin type boundary condition for the temperature is derived from the

simplified energy equation:

Tt =
γ − 1

ρR
(λTy)y +

γ − 1

ρR
(uµuy)y. (23)

Here, u(y) profile is substituted from the previous iteration; R, gas constant;

γ, specific heat ratio.

Using boundary layer assumption dp/dy = 0, the density is recalculated

via temperature profile from the equation of state:

ρ(y, t) =
p(t)

RT (y, t)
. (24)

Here, p is taken from the cell adjacent to the boundary. It is to be noted that

in contrast to the wall functions, the proposed approach allows us to take
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compressibility into account and obtain temperature and density profiles in

the near-wall region.

5.3. Computation of ν̃ and turbulent viscosity

There are many approximate expressions for the turbulent viscosity which

can be used for direct computations of µt(y) and ν̃(y) in the near wall domain.

We use the approximation from [30]:

µt(ξ) = µκξ∗
[
α + ξ∗(1− α)3/2

]β (
1− exp

(
−ξ∗

1 + Aα∗

))2

,

κ = 0.41, A = 17, β = 0.78, α = u2τ/u
2
τp, ξ

∗ = yuτp/µ,

uτp =
√
u2τ + u2p, uτ =

√
|τw|/ρ, up =

∣∣∣∣µρ dpdx
∣∣∣∣1/3

(25)

This approximation takes into account the pressure gradient and gives satis-

factory accuracy for flows with boundary layer separation.

However, for strongly unsteady flows, approximation (25) is not accurate

enough. In such cases IBC for turbulent variable ν̃ can be obtained from a

simplified equation of SA model:

(ρν̃)t =
(ρ
σ

(ν + ν̃)ν̃y

)
y

+ Ssa(ν̃,∇ν̃) (26)

Nonlinear term Ssa is linearized with respect to profiles from the previous

iteration that leads to form (14).
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5.4. Boundary condition for normal velocity v

In order to derive a boundary condition for normal component of velocity,

let us consider the Taylor expansion for v:

v = a
y2

2
+ b

y3

6
(27)

From the momentum equation a = py/µ|y=0. Then

vy = ay + b
y2

2
(28)

Excluding b from these two equations, we obtain a Robin-type boundary

condition at y∗:

v =
y∗

3
vy +

y∗2

6

py
µ

∣∣
y=0

(29)

Here, py can be taken at y∗ or set to zero in correspondence to the boundary

layer approximation.

6. Test cases

6.1. Pulsating channel flow

In order to verify accuracy of the developed boundary conditions, we

consider a pulsating turbulent channel flow. Despite its relative simplicity,

this flow is a good test since it contains essentially unsteady effects such as

the Stokes boundary layer, reverse flow, phase shift between wall shear stress
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and inlet velocity [31, 32]. Another important issue is that steady approaches

for wall modeling such as wall functions fail to capture these phenomena [33].

The URANS equations completed by the SA model are solved in 3D

rectangular domain with length L = 26 m and height H = 0.5 m. Since

the problem is actually 2D, the three-dimensional hexahedral mesh contains

only three cells in the silent z direction. A symmetry boundary condition is

imposed on the top boundary and side boundaries. In turn, the boundary

conditions of no-slip velocity and constant temperature are specified on the

bottom wall boundary. At the inlet, we set the pulsating Reichardt profile

[34]:

u(y) = ur(y)(1 + a sin(ωt)), (30)

where

ur(y) = u∗
1

κ
ln(1 + κy+) + 7.8

[
1− exp

(
−y+

11

)
− y+

11
exp

(
−y+

3

)]
,

y+ is the dimensionless wall distance, u∗ is the friction velocity, which is set

at the inlet.

An IBC for laminar channel flow was considered in [19]. The analytical

solution shows that the effect of the unsteadiness in the IBC depends on

ratio y∗2/l2s , where Stokes length ls is defined by ls =
√

2ν/ω. For quasi-

steady regime y∗2/l2s � 1 and intermediate regime y∗2/l2s ≈ 1 SIBC are still

applicable. But for high frequencies y∗2/l2s � 1 only UIBC allows to reach a
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sufficiently accurate solution. These criteria are tested in the current paper

in application to a pulsating turbulent channel flow.

The same pattern is observed for RANS equations though the viscosity

is not constant. In Figure 2, friction dependence on time is depicted for

two regimes: intermediate y∗2

l2s
= 1 and strongly unsteady y∗2

l2s
= 6.25 (in

the quasi-steady case both IBC give the same solution). In both computa-

tions the intermediate boundary is at y∗ = 5.4× 10−3, which corresponds to

y∗+ ≈ 100 for the maximal friction. The vertical lines show 1/4th and 3/4ths

of pulsation period: in the quasi-steady case both maxima and minima of

friction are situated at these positions. For presented regimes a phase shift

can be seen.

It is to be noted that unlike the standard wall function approach, even

SIBC captures reverse flow and negative friction. This is provided by dp/dx

term in the steady model equation, which partially transfers unsteady infor-

mation from the outer domain.

We found that the use of turbulent viscosity approximations such as [30]

for a Dirichlet boundary condition for ν̃ at the interface boundary y∗ leads

to a very large error in the strongly unsteady case although it works well

for steady-state computations. This is why a Robin type IBC is set for ν̃

parameter.

Figure 3 shows the velocity profiles at x = 20 at different time moments

during one period for a strongly unsteady regime. It can be seen that UIBC

allows the reverse flow to be reproduced with high accuracy. Nevertheless, a
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Figure 2: Pulsating channel flow. Dependence of scaled friction on time in one-block
and two-block computations for different regimes: top – intermediate regime, bottom –
essentially unsteady regime
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small discrepancy in the velocity profiles still remains at the interface bound-

ary.

Figure 3: Velocity profiles in pulsating channel flow at different times

6.2. Pulsating flow past half-cylinder

The next test case is related to a 2D pulsating flow past a half-cylinder.

The computational domain along with mesh are presented in Figure 4. Sim-

ilar to the previous test, a 3D mesh was used with three cells along z axis.

The symmetry boundary condition is set on the bottom boundary, while the

no-slip boundary condition for the velocity and constant temperature are set

at the wall. Finally, on the left half of the outer boundary a pulsating flow
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is specified:

u(t) = u0(1 + a sin(ωt)) (31)

with a = 0.8, f = ω/2π = 30, u0 = 50m/s. On the rest part of outer

boundary, we use an outflow boundary condition. In this test case, the free-

stream Mach number is 0.15, and Re computed using the cylinder radius

equals 6.1× 106.

x

y

-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20

Figure 4: Domain and mesh for half-cylinder test case

Calculations with IBC were carried out for y∗ = 5×10−4 that corresponds

to the maximum value of y∗+ ≈ 300.

Contours of x velocity components for one-block and two-block (outer

domain) computations at one time moment are shown at Figure 5. A minor

discrepancy occurs in the outer domain. It appears that the approach is quite

promising because even if a local 1D solution in the inner domain turns out

to be not sufficiently accurate, then an exact decomposition can be applied
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[35] taking the initial approximation from the approximate decomposition.

(a) One-block solution

(b) Two-block solution with unsteady IBC

Figure 5: Instantaneous contours of x component of velocity in pulsating flow around half
cylinder

Figure 6 shows dependence of the viscous skin friction at the point with

x = −0.17, where it reaches its maximum. It can be seen, that SIBC leads

to a slight phase shift compared with one-block solution. The UIBC demon-

strates a good agreement with the reference solution.

Figure 7 shows dependence of the wall friction on the angle measured
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Figure 6: Dependence of surface viscous friction for x = −0.17

Figure 7: Distribution of the wall friction along cylinder surface for two different times.

from the stagnation point at two different times. Both steady and unsteady

IBCs manage to capture the recirculation zone, which is characterized by the

negative friction values. A large discrepancy on the front part of the surface

is explained by the fact that simplified equations of turbulent boundary layer

are no longer valid near the stagnation point. In this area the derivatives,

which contain the tangential coordinate and normal velocity, are not small
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anymore.

In the problem in question, y∗/ls ≈ 1.6, therefore, in correspondence

with the results from section 6.1, in this regime SIBC are still quite accurate

though produce a noticeable phase shift with respect to one-block solution

as can be seen in Figures 6 and 7.

6.3. Supercritical flow around a circular cylinder at Re = 107

Next, we consider simulation of subsonic flow around a cylinder with

M = 0.15 and Re = 107. Here, the Reynolds number is calculated via the

inlet velocity and cylinder diameter.

A periodic vortex street arises behind the cylinder. The complexity of

this test problem is that an unsteady flow separation occurs, which should

be captured in order to predict the main quantities: mean drag coefficient

and shedding frequency.

It is well known that numerical simulations with different URANS models

and LES approach often produce very different results [36]. In this work we

focus only on comparison between one-block and two-block solutions.

The problem is solved in a circular domain with radius 25D where D is

the diameter of the cylinder.

For one-block computation an unstructured 3D mesh with 250 cells along

radial direction, 320 along azimuthal direction and three cells along z axis is

used. The normal size of the first near wall cell equals 2.5 × 10−4D which

corresponds to maximum y+ ≈ 1. For time marching approximately 300
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steps for one period is used.

In Figure 8 comparison of streamlines and velocity magnitude for both

solutions is shown. The two-block computation with y∗+ ≈ 100 gives a solu-

tion close to the benchmark one-block solution with a slightly different form

of separation zones. It is interesting that for this test both IBC and UIBC

produce very close results. This test can be classified as the intermediate

regime in terms of y∗+/ls ratio.

Figure 8: Comparison of one-block and two-block solutions at the moment of maximal lift

Mean drag coefficient CD, Strouhal number St = fD/u∞ (f - shedding

frequency) and root mean square of the lift coefficient Crms
L are presented

31



in table 1. Two-block solution accurately reproduces shedding frequency,

however there is a discrepancy in mean drag like in the previous test case.

St CD Crms
L

One-block 0.278 0.42 0.31

Two-block 0.280 0.37 0.10

Table 1: Main quantities for the vortex shedding test

7. Conclusion

In this paper unsteady interface boundary conditions for URANS equa-

tions have been presented. The boundary conditions are derived by transfer-

ring the wall boundary condition to an interface boundary using a domain

decomposition approach. The UIBC contains a memory term to be taken

into account for essentially unsteady problems. The UIBCs have been imple-

mented in a 3D unstructured-mesh solver for compressible URANS equations

and applied for numerical solution of unsteady problems. Numerical experi-

ments show that the UIBCs allow unsteady phenomena to be captured and

yield satisfactory prediction of the skin friction for the location of the in-

terface boundary up to y∗+ = 300. It has been shown that the unsteady

memory terms in the IBCs should be taken into account in essentially un-

steady problems. The criteria for essential unsteadiness in the IBCs, earlier

obtained for the laminar case, have been confirmed for turbulent flows. The

obtained results can be used for URANS-LES hybrid models in the future.
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