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Abstract 1 

The significant role played by mycobacteria in modulating immune responses through 2 

enhancing the crosstalk between innate and adaptive immunity has been highlighted in several 3 

studies. Owing to their unique antigenic profile, heat killed (HK) preparations of rapid-growing 4 

mycobacteria, currently undergoing clinical development, have been assessed as adjuvant 5 

therapy in various diseases. The purpose of this study is to investigate the regulation of 6 

leukocyte surface receptors, in whole blood from healthy donors, following in vitro stimulation 7 

with HK Mycobacterium vaccae (M. vaccae) or M. obuense. We have demonstrated the ability 8 

of both mycobacterial preparations to target monocytes and neutrophils and to regulate the 9 

surface expression of selected adhesion receptors, antigen-presenting and costimulatory 10 

receptors, pattern recognition receptors, complement and Fc receptors, as well as 11 

cytokine/chemokine receptors. Toll-like receptors (TLRs) 1 and 2 were also shown to be 12 

involved in mediating the M. obuense-induced upregulation of selected surface receptors on 13 

monocytes. Whole blood stimulation with M. vaccae or M. obuense resulted in a significant 14 

increase in the secretion of a specific set of cytokines and chemokines. Both mycobacterial 15 

preparations induced strong antigen-specific proliferative responses in peripheral blood 16 

mononuclear cells. Collectively, our data shows that M. vaccae and M. obuense have the 17 

potential to act as potent immunomodulators. Future research based on these findings may 18 

reveal novel immune pathways induced by these preparations with potential implication for their 19 

use in diverse immunotherapeutic approaches. 20 

Keywords: Mycobacteria; immunomodulation; human leukocytes; CD antigens 21 

Abbreviations: APC: antigen presenting cell, BCG: bacillus calmette-guerin, CCR: CC 22 

chemokine receptor, cpm: counts per minute, CR: complement receptor; CXCL: chemokine C-23 

X-C motif ligand, CXCR: chemokine C-X-C motif receptor, DC: dendritic cell, ECMR: 24 

extracellular matrix receptor, FSC: forward scatter, GM-CSFR: granulocyte–macrophage 25 

colony-stimulating factor receptor, GP: glycoprotein, HK: heat killed, ICAM: intercellular 26 

adhesion molecule, LCA: leukocyte common antigen, LFA: lymphocyte function associated 27 

antigen, LPSR: lipopolysaccharide receptor, MFI: mean fluorescence intensity, MHC: major 28 

histocompatibility complex, MIP: macrophage inflammatory protein, MMR: macrophage 29 

mannose receptor, PBMCs: peripheral blood mononuclear cells, PECAM: platelet endothelial 30 

cell adhesion molecule, RANTES: regulated upon activation normal T cell expressed and 31 

secreted, SSC: side scatter, SI: stimulation index, TB: tuberculosis, TLR: toll-like receptor, 32 

TNFRSF: tumor necrosis factor receptor superfamily member. 33 
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Introduction 1 

Mycobacteria, due to their diverse and complex cell wall structures, play a significant role in 2 

modulating immune responses (Rook, et al. 2004; Stanford, et al. 2009)  For several years, 3 

Bacillus Calmette-Guerin (BCG), a live attenuated derivative of the slow-growing species 4 

Mycobacterium bovis (M. bovis), has been used as a prophylactic vaccine against tuberculosis 5 

(TB); though, with variable efficacy  (Romano and Huygen 2012). Moreover, BCG has proven to 6 

be successful in the treatment of early non-invasive bladder cancer (Kawai, et al. 2013). The 7 

investigation of inactivated rapid-growing mycobacteria to be employed as immunomodulators 8 

has led to the selection of M. vaccae which was later evaluated as an immunomodulating 9 

therapeutic agent in various diseases including TB (Dlugovitzky, et al. 2006; Johnson, et al. 10 

2000; Yang, et al. 2011),  leprosy (Abbot, et al. 2002; Truoc, et al. 2001), psoriasis (Lehrer, et 11 

al. 1998), dermatitis (Arkwright and David 2001), asthma (Camporota, et al. 2003) and a range 12 

of cancers (Cananzi, et al. 2013; Eaton, et al. 2002; O'Brien, et al. 2004; Patel, et al. 2008; 13 

Stanford, et al. 2008). M. vaccae was also found to be an effective vaccine that could confer a 14 

significant level of protection against TB among HIV-infected individuals who had received BCG 15 

vaccination during childhood (von Reyn, et al. 2010). In all these studies, M. vaccae was used in 16 

the form of a heat-killed (HK) preparation that retained its antigenic properties. In spite of the 17 

growing interest in the therapeutic implications of HK mycobacterial preparations, the nature of 18 

the host immune receptors regulated by these mycobacterial preparations has not been fully 19 

defined. Moreover, the exact mechanism by which HK mycobacterial preparations exert their 20 

immunomodulatory effects in humans is not fully understood. Nevertheless, in experimental 21 

models, immunization with HK M. vaccae was reported to generate CD8+ T cells against M. 22 

tuberculosis-infected macrophages (Skinner, et al. 1997) and to downregulate T helper type 2 23 

(Th2) responses in murine models of allergic pulmonary inflammation via the induction of 24 

regulatory T cells (Zuany-Amorim, et al. 2002) and the priming of dendritic cells (DCs) 25 

consistent with a regulatory profile (Adams, et al. 2004). In vitro studies with human monocyte 26 

derived DCs have confirmed the ability of M. vaccae to dampen Th2 responses, via a 27 

mechanism dependent on DCs (Le Bert, et al. 2011). Furthermore, M. vaccae and M. obuense 28 

have been shown to promote the anti-tumor activity of human γδT-cells via cytokine release 29 

from type-1 myeloid DCs (Fowler, et al. 2012). M. obuense has gained attention over the past 30 

few years as a potential immunotherapeutic agent against cancer and, in a phase 1 study in 31 

melanoma patients, it was shown to be safe and well tolerated (Stebbing, et al. 2012). More 32 

recently, in a phase 2 study, the use of M. obuense (NCTC13365) as adjunctive immunotherapy 33 
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for advanced pancreatic cancer resulted in clinically meaningful increases in overall survival as 1 

well as in progression-free survival of patients (Dalgleish, A.G. and The IMAGE I Trial 2 

Investigators 2015). Currently, M. obuense (NCTC13365) is being investigated in a phase 2 3 

study involving patients with melanoma (NCT01559818). The interactions between different 4 

immune cells and between immune cells and soluble factors are mediated by a number of cell 5 

surface receptors involved in cellular adhesion, antigen presentation and co-stimulation, 6 

cytokine-mediated signaling, and cellular activation (Barclay, et al. 1997). Therefore, variations 7 

in the expression of these receptors would affect the immune cell function thus leading to the 8 

modulation of immune responses. Immune responses from healthy volunteers, assessed by the 9 

profile of released cytokines, have been extensively analyzed using short-term incubation of 10 

human whole blood with a large spectrum of microbial immunostimulants, immunomodulators, 11 

or specific antigens (Darcissac, et al. 1996a; Darcissac, et al. 1996b; Duffy, et al. 2014; Kassa, 12 

et al. 2012; Reichenbach, et al. 2006). The immunomodulatory properties of HK M. vaccae or 13 

M. obuense in the human whole blood model have not been previously evaluated. In this study, 14 

both HK mycobacterial preparations were assessed for their ability to modulate in vitro the 15 

expression of immunologically relevant leukocyte surface receptors and to alter cytokine and 16 

chemokine secretion in human whole blood. We have also addressed the role of toll-like 17 

receptors (TLRs) in mediating the immunomodulatory effects of M. obuense, and evaluated the 18 

ability of M. vaccae and M. obuense to induce lymphoproliferative responses in human 19 

peripheral blood mononuclear cells (PBMCs) from healthy volunteers.  20 

Materials and Methods   21 

Antibodies 22 

Mouse monoclonal anti-human antibodies purchased from BD Biosciences (San Jose, 23 

CA, USA) included: FITC-conjugated CD2 (clone RPA-2.10), CD11a (clone HI111), CD35 24 

(clone E11), CD40 (clone 5C3), CD44 (clone L178), CD45 (clone 2D1), CD50 (clone TU41), 25 

CD64 (clone 10.1), CD80 (clone L307.4), CD95 (clone DX2), CD195 (clone 2D7/CCR5), HLA-26 

DP,DQ,DR (clone Tu39); PEconjugated CD11b (clone ICRF44), (clone WM59), CD36 (clone 27 

CB38), CD58 (clone 1C3), CD89 (clone A59), CD102 (clone CBR- 1C2/2), CD114 (clone 28 

LMM741), CD116 (clone hGMCSFR-M1), CD119 (clone GIR-208), CD122 (clone TU27), 29 

CD127 (clone HIL- 7R-M21), CD132 (clone AG184), CD137L (clone C65-485), CD206 (clone 30 

19.2), PerCP-conjugated CD14 (clone M5E2), HLA-DR (clone G46-6); PE-Cy7-conjugated 31 

CD16 (clone 3G8); APC-conjugated CD5 (clone UCHT2), CD11c (clone B-ly6), CD18 (clone 32 

6.7), CD21 (clone B-ly4), CD25 (clone M-A251), CD32 (clone FLI8.26), CD54 (clone HA58), 33 
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CD62L (clone DREG-56), CD86 (clone 2331), CD184 (clone 12G5), HLA-A,B,C (clone G46-1 

2.6); Alexa Fluor 647- conjugated CD197 (clone 3D12) and isotype control antibodies: FITC-2 

conjugated mouse IgG1 (clone MOPC-21), IgG2a (clone G155- 178), IgG2b (clone MPC-11); 3 

PE-conjugated mouse IgG1 (clone MOPC-21), IgG2a (clone G155-178), IgM (clone G155-228); 4 

PerCPconjugated mouse IgG2a (clone X39); PE-Cy7-conjugated mouse IgG1 (clone MOPC-5 

21); APC-conjugated mouse IgG1 (clone MOPC- 21), IgG2a (clone G155-178), IgG2b (clone 6 

27-35); Alexa Fluor 647 rat IgG2a (clone R35-95). PE-conjugated mouse monoclonal antibodies 7 

against human CD282 (clone TL2.1) and CD284 (clone HTA125) and isotype control antibody 8 

PE-conjugated mouse IgG2a (clone eBM2a) were obtained from eBioscience (San Diego, CA, 9 

USA). Anti-human monoclonal blocking antibodies against TLR-1 (clone H2G2), TLR-2 (clone 10 

B4H2), TLR-4 (clone W7C11), TLR-5 (clone Q2G4), TLR-6 (clone C5C8) and isotype control 11 

human IgA2 (clone T9C6) and mouse IgG1 (clone T8E5) were purchased from Invivogen 12 

(Toulouse, France). 13 

HK mycobacterial preparations 14 

Sterile vials of HK M. vaccae (NCTC11659, rough strains) and M. obuense 15 

(NCTC13365, rough strains) preparations were manufactured, respectively, by Eden Biodesign 16 

(Liverpool, UK) and Bio Elpida (Lyon, France), whereby each 1 mg wet-weight of bacilli is 17 

equivalent to 109 HK organisms. Briefly, both preparations were suspended in borate-buffered 18 

saline (BBS; pH 8.0) at 50 mg/ml and autoclaved for 15 min at 121 °C. 19 

Blood collection 20 

Human peripheral blood was obtained by venipuncture from 36 Caucasian healthy 21 

volunteers and was collected into K2 ethylene diamine tetraacetic acid (K2-EDTA) vacutainer 22 

tubes (BD Biosciences). The study population had a mean age of 28 ± 8.5 years and included 23 

14 females and 22 males. A written informed consent was obtained from each donor and the 24 

study protocol was approved by the Faculty Research Ethics Committees at Kingston University 25 

and University of Balamand.  26 

Stimulation of whole blood cultures 27 

 Preliminary experiments using 3 and 6 h time points to stimulate whole blood with 28 

different concentrations (30, 100 or 300 μg/ml) of HK M. vaccae or M. obuense preparations 29 

have revealed that the optimal regulation of surface receptors expression by either 30 

mycobacterial preparation was observable at 300 μg/ml (Supplementary Figure 1A) and after 3 31 

h of stimulation (Supplementary Figure 1B). Therefore, these optimized stimulation conditions 32 
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were employed in all investigations on the expression of surface receptors in which whole blood 1 

cultures (total culture volume = 3 ml)  were either left unstimulated or were stimulated at 37 °C 2 

in a 5% CO2 humidified atmosphere. A similar protocol was adopted for the analysis of 3 

cytokines and chemokines levels, except that the stimulation period was extended to 24 h. 4 

Whole blood incubated with equivalent amounts of BBS (vehicle) served as unstimulated 5 

control. 6 

Immunophenotyping of leukocytes 7 

After 3 h stimulation, blood leukocyte populations were immunophenotyped for a set of 8 

cell surface receptors. A volume of 100 μl of whole blood was incubated for 30 min at room 9 

temperature (RT) in the dark with optimized concentrations of the previously mentioned 10 

antibodies or isotype control antibodies. Erythrocytes were then lysed by incubation with FACS 11 

lysing solution (BD Biosciences) for 10-15 min at RT in the dark. Leukocytes were collected by 12 

centrifugation at 350 x g, for 5 min at RT and washed once with Cell Wash solution (BD 13 

Biosciences), then re-collected by centrifugation at 350 x g, for 5 min at RT, and finally 14 

resuspended in Cell Fix solution (BD Biosciences). Fixed samples were run on a FACSCalibur 15 

flow cytometer (BD Biosciences) equipped with an argon ion laser (488nm) and a red diode 16 

laser (635nm) and the obtained data was analyzed by means of CellQuestPro software (BD 17 

Biosciences). A minimum of 20,000 cells were acquired per sample. The signals were obtained 18 

in a linear mode for forward scatter (FSC) and side scatter (SSC) channels and in a logarithmic 19 

mode for fluorescence channels. The intensity and color compensation were set by using 20 

Calibrite beads (BD Biosciences) in combination with FACSComp software (BD Biosciences), 21 

and by running single-color stained blood cells. Lymphocytes and neutrophils were identified by 22 

their FSC and SSC properties. Monocytes were identified by their CD14+/ SSC profile, whereas 23 

in TLR blocking experiments, monocytes were gated according to their FSC and SSC profile. 24 

Bivariate dot plots were generated to determine the percentage of cells positive for the particular 25 

surface receptor within a gated cell population. Histogram plots were used to indicate the 26 

density of cell surface receptors which were expressed as geometric mean fluorescence 27 

intensity (MFI) on receptor-positive cell population. 28 

Lymphocyte proliferation assay 29 

Peripheral blood was diluted with an equal volume of RPMI 1640 medium (Lonza, 30 

Slough, UK) supplemented with standard concentrations of L-glutamine (Lonza), penicillin and 31 

streptomycin (Lonza). Blood was then layered over Ficoll-Paque plus (GE Healthcare, Little 32 
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Chalfont, UK) and centrifuged at 400 x g for 35 min at 19 °C. Peripheral blood mononuclear 1 

cells (PBMCs) were then collected from the interface and were washed twice. Finally, PBMCs 2 

were resuspended in RPMI medium supplemented with 10% heat-inactivated pooled human AB 3 

serum (Lonza). PBMCs were checked for viability (>95%), using the trypan blue exclusion 4 

method, were seeded, in triplicates, in 96-well flat-bottom plates (Corning, Tewksbury, USA) at 5 

a density of 2x105 cells/well, and were stimulated in the presence or absence of increasing 6 

concentrations of HK M. vaccae or M. obuense (1, 3, 10, 30, 100 and 300 μg/ml) or 10 μg/ml of 7 

Candida albicans (C. albicans) soluble antigen (Greer Laboratories, Lenoir, NC, USA). Cultures 8 

were maintained for a period of 7 days at 37 °C in a 5% CO2 humidified incubator. On day 6, 9 

PBMC cultures were pulsed with 1μCi/well tritiated thymidine (Perkin Elmer, San Jose, CA, 10 

USA) for 16 h. Cells were then harvested onto glass fiber filter disks (Connectorate AG, 11 

Dietikon, Switzerland) using a cell harvester (Inotech Biotechnologies, Basel, Switzerland) and 12 

radioactivity was measured in a liquid scintillation counter (Perkin Elmer). Unstimulated cultures 13 

lacking the antigen and containing equivalent amounts of BBS (vehicle) served as negative 14 

controls. The radioactivity of incorporated thymidine was obtained as counts per minute (cpm). 15 

Results are presented as stimulation index (SI), which is defined as follows: mean cpm of 16 

antigen-stimulated cultures divided by the mean cpm of unstimulated cultures. A donor is 17 

considered as a responder to a given antigen if the SI is ≥ 3.  18 

Determination of cytokines, chemokines and sCD62L levels 19 

The release of soluble mediators, chemokine C-X-C motif ligand 8 (CXCL8)/ IL-8, IFN-α, 20 

IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p70), IL-13, IL-23 (p19/p40), macrophage inflammatory 21 

protein 1 (MIP1)-α, regulated on activation normal T cell expressed and secreted (RANTES), 22 

soluble (s) CD62L and TNF-α, was measured in supernatants from whole blood cultures using 23 

ELISA (R&D Systems, Abingdon, UK) in accordance with the manufacturer's instructions. 24 

Samples were tested in duplicates and the optical densities were read using Multiskan Ascent 25 

micro plate reader (Thermo, Waltham, MA, USA). In a restricted set of experiments, sCD62L 26 

levels were also assayed in supernatants of purified PBMCs that were cultured in RPMI medium 27 

supplemented with 10% heat-inactivated fetal bovine serum (FBS; Lonza) and were left either 28 

unstimulated or stimulated with 300 μg/ml of HK M. vaccae or M. obuense for 3 and 6 h. 29 

TLR blocking 30 

Whole blood was incubated with 10g/ml of cell culture grade, azide-free blocking 31 

monoclonal antibodies against TLR1, TLR2, TLR4, TLR5, TLR6 or isotype control antibodies 32 
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(listed above) for 1 h prior to stimulating whole blood with HK M. obuesne for 3 h. As control 1 

experiments for testing the efficiency of TLR blocking, specific TLR ligands (Invivogen) were 2 

used. TLR agonists consisted of: Pam3CSk4 (300 ng/ml), HK Listeria monocytogenes (108 3 

cells/ml), lipopolysaccharide (LPS; purified from Escherichia coli K12; 100 ng/ml), flagellin 4 

(purified from Bacillus subtilis; 10 µg/ml) and FSL-1 (100 ng/ml) which signal through TLR2/1, 5 

TLR2, TLR4, TLR5 and TLR2/6 respectively. 6 

Statistical analysis 7 

All statistical analyses were conducted by means of GraphPad Prism software (version 8 

6; GraphPad Software, San Diego, CA, USA) by applying paired t-test, Wilcoxon signed rank 9 

test or Friedman test followed by Dunn's multiple comparison post hoc test. Data are expressed 10 

as mean values ± standard error of the mean (SEM) and differences were considered to be 11 

statistically significant at p values < 0.05.  12 

Results 13 

M. vaccae and M. obuense modulate, in vitro, the expression of surface receptors on 14 

monocytes and neutrophils in whole blood 15 

The expression levels of a panel of surface receptors on monocytes (Fig. 1, Table 1, 16 

Supplementary Table 1), neutrophils (Table 2, Supplementary Table 2) and lymphocytes in 17 

whole blood obtained from 15 donors and stimulated in vitro with HK M. vaccae or M. obuense 18 

were evaluated. Monocytes and neutrophils exhibited substantial variations in the expression 19 

level of different categories of cell surface receptors following whole blood stimulation with M. 20 

vaccae or M. obuense. Among the adhesion receptors analyzed, a significant 6.5- and 5-fold 21 

remarkable reduction (p < 0.05) in the percentage of monocytes expressing CD62L was 22 

detected following stimulation with M. vaccae and M. obuense, respectively. This reduction in 23 

CD62L expression was also accompanied by a significant 4-fold decrease (p < 0.05) in the MFI 24 

of CD62L (Fig. 1A, Table 1). Conversely, a 2.75-fold elevation (p < 0.05) in the percentage of 25 

monocytes expressing CD2 was observed following mycobacterial stimulation. Moreover, the 26 

intensity of receptor expression, measured as MFI, of CD18 (Fig. 1B), CD11a, CD44, CD54 and 27 

CD58 was significantly upregulated (p < 0.05) on monocytes post stimulation with either 28 

mycobacterial preparation (Table 1). On the other hand, both mycobacteria affected the 29 

expression of a restricted number of adhesion receptors on neutrophils. While the expression of 30 

CD62L was significantly reduced, a significant increase (p < 0.05) in the expression of only 31 

CD18 and CD54 could be detected (Table 2).   32 



9 

 

Significant variations in the expression of antigen presentation and co-stimulatory 1 

receptors on monocytes and neutrophils subsequent to stimulation with mycobacterial 2 

preparations were also detected. In unstimulated blood cultures, monocytes lacked the 3 

expression of CD80, but stimulation with either mycobacterial preparation induced monocytes to 4 

express CD80 (Table 1). A significant upregulation (p < 0.05) in the expression of CD86 5 

(Fig.1A), HLA-DPDQDR (Fig. 1B) and CD45 was observed on monocytes (Table 1). We have 6 

also noted, using a smaller sample size (n = 9), a significant increase (p < 0.05) in the 7 

percentage of CD137L+ monocytes following stimulation with M. vaccae or M. obuense from 8 

10±1.5 % to 38±5 % and 51±4.1 %, respectively. Stimulation with either mycobacterial 9 

preparation caused an increase in the MFI of CD45 on neutrophils; however, this increase was 10 

only statistically significant (p < 0.05) with M. vaccae. On the contrary, stimulation with M. 11 

vaccae, but not with M. obuense, significantly decreased (p < 0.05) the MFI of HLA-ABC on 12 

neutrophils (Table 2). Members of the pattern recognition receptors (PRRs), CD14, CD36, and 13 

CD206, displayed an upregulated expression (p < 0.05) on monocytes after stimulation with 14 

either mycobacterial preparation (Table 1). In a set of preliminary experiments conducted on 5 15 

donors, both M. vaccae and M. obuense were able to highly up-regulate TLR expression on 16 

monocytes with approximately a 2-fold increase in the MFI of CD282 (TLR-2) (unstimulated: 17 

77±8.4; M. vaccae: 155±9.0; M. obuense: 173±10; p < 0.05 vs. unstimulated) and approximately 18 

a 7-fold increase in the percentage of CD284+ (TLR-4+) monocytes (unstimulated: 8±1 %; M. 19 

vaccae: 53±6 %; M. obuense: 59±6 % ; p < 0.05 vs. unstimulated). The expression of 20 

complement and Fc receptors was significantly modified on monocytes and neutrophils in 21 

response to stimulation with either mycobacterial preparation. A substantial increase (p < 0.05) 22 

in the expression of CD11c (Fig. 1B), CD11b and CD35 on monocytes was shown after 23 

stimulation with M. vaccae or M. obuense (Table 1). On the other hand, both mycobacterial 24 

preparations induced a modest but significant enhancement (p < 0.05) in the expression of 25 

CD64 and CD89 on monocytes (Table 1). On neutrophils, a significant elevation (p < 0.05) in 26 

the expression of CD11c, CD16, CD35 and CD64 was observed following stimulation with either 27 

mycobacterial preparation, whereas a significant elevation (p < 0.05) in the expression of 28 

CD11b and CD89 was only noted following stimulation with M. vaccae (Table 2).  29 

Significant variations in the expression of cytokine and chemokine receptors, on 30 

monocytes and neutrophils, were detected following stimulation with either of the HK 31 

mycobacteria. Both preparations were equipotent at significantly upregulating (p < 0.05), on 32 

monocytes, the expression of CD116, CD127 and CD132, as well as at significantly 33 
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downregulating (p < 0.05) the expression of CD184 (Fig. 1A) and CD119 (Table 1) In 1 

neutrophils, stimulation with either M. vaccae or M. obuense significantly reduced (p < 0.05) the 2 

percentage of cells expressing CD184 and significantly downregulated (p < 0.05) the MFI of 3 

CD119 (Table 2). In addition, when tested on a smaller sample of 9 donors, the MFI of CD114 4 

was found to be downregulated following mycobacterial stimulation (unstimulated: 97±4; M. 5 

vaccae: 41±1; M. obuense: 55±4). However, this effect only attained statistical significance (p < 6 

0.05) with M. vaccae. In this short-term in vitro assay, neither M. vaccae nor M. obuense 7 

induced statistically significant variations in the expression level of any of the screened surface 8 

receptors on lymphocytes (data not shown). 9 

TLR-1 and TLR-2 contribute to the M. obuense-induced upregulation of CD11c and HLA-10 

DR expression on monocytes  11 

TLR-2 has been previously shown to play a role in mediating the main transcriptional 12 

responses occurring after DC stimulation with HK M. vaccae (Le Bert, et al. 2011). In order to 13 

examine whether TLR-2 and other TLRs (TLR-1, 4, 5 and 6) are involved in mediating the M. 14 

obuense-induced upregulation of surface receptors on monocytes in whole blood, TLR blocking 15 

experiments (n = 6) with specific antibodies against TLR-1, TLR-2, TLR-4, TLR-5 and TLR-6 16 

were performed on the expression of one adhesion receptor (CD11c) and another receptor 17 

involved in antigen presentation (HLA-DR), both of which displayed significant variations on 18 

monocytes upon mycobacterial stimulation. The blocking capacity of these antibodies was 19 

initially confirmed in control experiments using stimulation with specific TLR ligands, as 20 

described in materials and methods (Fig. 2A).  21 

Blocking either TLR-1 or TLR-2 significantly abrogated (p < 0.05) the M. obuense-induced 22 

upregulation of the two tested receptors (Fig. 2B). Analysis of combined blocking with anti-TLR1 23 

and anti-TLR2, versus the blocking induced by either antibody separately, resulted in an 24 

improved blocking effect which reached statistical significance (p < 0.05) versus either antibody 25 

in the case of CD11c, but only against anti-TLR2 in the case of HLA-DR. However, 26 

simultaneous blocking of TLR-2 and TLR-6 was comparable to the effect observed with blocking 27 

TLR-2 alone in reversing the M. obuense-induced expression of CD11c and HLA-DR (Fig. 2B). 28 

Blocking of TLR-4, 5 and 6 did not cause any significant reduction in the M. obuense-induced 29 

upregulation of CD11c and HLA-DR (Fig. 2B). Taken together, these results indicated a major 30 

contribution for both TLR-1 and TLR-2 in mediating the M. obuense-induced regulation of 31 

CD11c and HLA-DR expression on monocytes. 32 
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Whole blood stimulation with M. vaccae or M. obuense induces the secretion of a 1 

specific set of cytokines and chemokines 2 

A panel of 12 cytokines and 3 chemokines was analyzed in supernatants of whole blood 3 

cultures from 15 different donors that were stimulated with M. vaccae or M. obuense for a period 4 

of 24 h. Among the 12 screened cytokines, IL-6 and TNF-α levels were markedly increased (p < 5 

0.05) in response to stimulation with M. vaccae or M. obuense, whereas IL-10 levels were 6 

significantly elevated (p < 0.05) only after stimulation with M. vaccae (Fig. 3). The secreted 7 

levels of the 3 studied chemokines also showed a significant increase following mycobacterial 8 

stimulation. A 45- and 42-fold increase (p < 0.05) in CXCL8/IL-8 levels was detected after 9 

stimulation with M. vaccae and M. obuense, respectively (Fig. 3). Moreover, blood stimulation 10 

with M. vaccae or M. obuense significantly induced (p < 0.05) MIP-1α production (Fig. 3). 11 

Likewise, RANTES levels were increased in response to stimulation with M. vaccae or M. 12 

obuense; however, this increase attained statistical significance (p < 0.05) only for the latter 13 

(Fig. 3). No significant difference in IL-18 levels was observed between unstimulated (612±71 14 

pg/ml) and M. vaccae- (638±65 pg/ml) or M. obuense- (641±70 pg/ml) stimulated blood cultures. 15 

Moreover, IFN-α, IFN-γ, IL-2, IL-4, IL-5, IL-12 (p70), IL-13 and IL-23 (p19/p40) levels in 16 

unstimulated and mycobacteria-stimulated blood cultures were below the detection limit of the 17 

employed assays. 18 

In order to determine whether the observed M. vaccae- and M. obuense-induced decrease in 19 

CD62L surface expression was associated with an increase in the release of sCD62L, 20 

supernatants from unstimulated and mycobacteria-stimulated whole blood cultures were 21 

collected. There was no significant difference (p > 0.05) in sCD62L levels in culture 22 

supernatants after 3, 6 or 24 h of mycobacterial stimulation when compared with their respective 23 

unstimulated controls (Supplementary Figure 2). Moreover, using purified PBMC cultures from 6 24 

different donors, we could not detect sCD62L levels in the supernatants of unstimulated or 25 

mycobacteria-stimulated PBMCs tested after 3 and 6 h culture periods. 26 

M. vaccae and M. obuense induce proliferative responses of PBMCs 27 

In order to determine the optimal concentrations of HK M. vaccae and M. obuense that 28 

are capable of inducing strong proliferative responses in PBMCs from healthy donors, different 29 

concentrations (1, 3, 10, 30, 100 and 300 μg/ml) of either mycobacterial preparation were tested 30 

on 4 separate donors (Fig. 4A). At the lowest and highest concentrations, only weak or no 31 

responses could be detected to either preparation (Fig. 4A). To further verify our data, PBMCs 32 

from 8 additional donors were tested at concentrations ranging from 3-100 μg/ml. Results of 33 
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proliferative responses from the 12 different donors tested revealed that the highest proliferative 1 

responses to M. obuense were induced at 3 μg/ml (Fig. 4B), which attained a statistically 2 

significant difference (p < 0.05) versus 30 or 100 μg/ml. In contrast, maximal responses to M. 3 

vaccae, noted at 10 μg/ml, were nearly equivalent to those induced by 30 μg/ml and were 4 

significantly higher (p < 0.05) than those induced by 100 μg/ml. At the 3 μg/ml concentration, the 5 

M. obuense-induced proliferative responses were significantly higher (p < 0.05) than the 6 

responses induced by M. vaccae, whereas the reverse was true at the 30 μg/ml concentration 7 

(Fig. 4B). Soluble recall antigen of C. albicans (10 µg/ml) was included in the proliferation 8 

assays as a positive control on account of its known potency to induce strong PBMC 9 

proliferative responses. PBMCs from all tested donors showed high proliferative responses to C. 10 

albicans (Mean SI = 134±39) and these responses were significantly higher (p < 0.05) than 11 

those induced by M. vaccae or M. obuense. 12 

Discussion 13 

Identifying the outcome of interaction of HK mycobacteria with immune cells is a crucial 14 

step in the process of assessing their immunomodulatory properties for potential 15 

immunotherapeutic applications. Our study is the first to utilize the established human whole 16 

blood model (Darcissac, et al. 1996a) to investigate the capacity of HK M. vaccae and M. 17 

obuense preparations to modulate the expression of an array of different categories of cell 18 

surface receptors expressed on human monocytes, neutrophils and lymphocytes. The reason 19 

behind employing the whole blood model in our study is that it closely resembles the status of 20 

circulating cells in vivo and it involves physiological concentrations of factors that affect 21 

leukocytes function. Our immunophenotyping results demonstrated that under the experimental 22 

conditions used, the target peripheral blood immune cells for HK M. vaccae and M. obuense 23 

appear to be the phagocytic cells; namely, neutrophils and monocytes. Whole blood stimulation 24 

with either mycobacterial preparation upregulated the expression of the adhesion receptors, 25 

CD2, CD11a, CD44 and CD58 on monocytes and of CD18 and CD54 on monocytes and 26 

neutrophils. These findings are similar to those previously reported following whole blood 27 

stimulation with the mycobacterial cell wall component muramyl dipeptide (MDP) or with 28 

endotoxin (Darcissac, et al. 1996a). The increased expression of CD2, and more importantly of 29 

its ligand CD58 on monocytes, may indicate an increased ability of monocyte-macrophage cells 30 

to adhere to T lymphocytes which constitutively express the CD2 receptor (Lopez, et al. 2001). 31 

Accordingly, the immunomodulating activity of mycobacterial preparations may depend on their 32 

ability to regulate CD58 expression on antigen presenting cells (APCs), thereby enhancing 33 
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antigen presentation and induction of adaptive immunity (Wingren, et al. 1995). Similarly, 1 

increased expression of CD54 on APCs may contribute to antigen-specific T cell activation by 2 

enhancing the adhesion of T cells to APCs (Gaglia, et al. 2000). The most intriguing observation 3 

was the dramatic reduction in the expression of L-selectin (CD62L) on monocytes, and to a 4 

lesser extent on neutrophils, following mycobacterial stimulation. This observation is in line with 5 

previous reports which demonstrated that in response to activation signals, L-selectin is shed 6 

from the surface of neutrophils and monocytes within minutes (Janke, et al. 2009; Nijhuis, et al. 7 

2007). Upon the ectodomain shedding of CD62L, its soluble form, sCD62L, is released into the 8 

extracellular environment (Ivetic 2013; Smalley and Ley 2005). Following whole blood 9 

stimulation with either mycobacterial preparation, we could not detect any significant increase in 10 

sCD62L levels. Nevertheless, the constitutive levels of sCD62L detected in all supernatants 11 

were quite high and exceeded 1000 ng/ml. Thus it is quite likely that such high constitutive 12 

levels of sCD62L could mask the detection of low levels of sCD62L shedding induced by 13 

mycobacterial stimulation (Schleiffenbaum, et al. 1992). In addition, our inability to detect 14 

sCD62L in unstimulated and mycobacteria-stimulated PBMC culture supernatants, despite the 15 

significant downregulation of CD62L expression on monocytes, might be attributed to low 16 

amounts of shed CD62L which are below the detection limit of our assay (0.3 ng/mL). 17 

On the other hand, whole blood stimulation with M. vaccae or M. obuense has resulted 18 

in increased monocyte expression of key receptors involved in antigen presentation and 19 

costimulation including MHC-class II, CD80, CD86 and CD137L receptors. The observed 20 

upregulated expression of antigen presentation and costimulatory receptors strongly suggests a 21 

better antigen presentation function of mycobacteria-stimulated APC leading to improved T cell 22 

activation and survival (Gramaglia, et al. 2000). In fact, one of the mechanisms by which tumor 23 

cells escape immune detection is by down-regulating antigen presentation and costimulatory 24 

receptors which would generate anergic T cells incapable of initiating an effective antitumor 25 

immune response (Driessens, et al. 2009; Thibodeau, et al. 2012). Consequently, augmenting 26 

the expression of costimulatory receptors might contribute toward enhanced antitumor immunity 27 

(Capece, et al. 2012).  28 

We have also shown that mycobacterial stimulation was associated with a significant 29 

upregulation of different PRRs, including TLR-2, TLR-4, CD14, CD36 and CD206, on 30 

monocytes. This is the first description of an induced expression of CD206 on monocytes in a 31 

whole blood model and after a short period of mycobacterial stimulation. Previous studies have 32 

demonstrated extremely low or no CD206 expression on resting monocytes, with the CD206 33 
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expression being restricted to immature DCs and macrophages (Kato, et al. 2000; Noorman, et 1 

al. 1997; Wollenberg, et al. 2002). Therefore, it is likely that mycobacterial stimulation could 2 

initiate the expression of markers on monocytes associated with a subsequent potential 3 

differentiation of these cells into macrophages. The elevated CD14 and CD282 (TLR-2) gene 4 

expression in mycobacteria-stimulated monocytes has been previously reported in M. vaccae-5 

stimulated THP-1 human monocytic cell line (Martinelli, et al. 2004). Such an effect could well 6 

contribute towards boosting the recognition of pathogen-associated molecular patterns. On the 7 

contrary, some studies have reported a significant downregulation of CD14 expression on 8 

purified monocytes that were stimulated with live M. tuberculosis or HK M. avium-M. 9 

intracellulare complex for 16 or 48 h, respectively (Santucci, et al. 2000; Tsuyuguchi, et al. 10 

1990). The apparent contradiction in CD14 expression between our study and other studies 11 

previously reported might be attributed to differences in the culture systems, in the nature of 12 

stimulus, and/or in the stimulation periods utilized. 13 

 Moreover, both mycobacterial preparations demonstrated an evident potential to 14 

upregulate the expression of complement and Fc-receptors on monocytes and neutrophils, an 15 

effect that is tightly linked to improved phagocytosis and immune complex clearance 16 

(Nimmerjahn and Ravetch 2008; Zipfel and Skerka 2009). For instance, in monoclonal antibody-17 

mediated therapy targeting tumor-associated antigens, upregulating the expression of 18 

complement and Fc receptors might enhance the process of tumor cell killing through antibody-19 

dependent cell-mediated cytotoxicity or complement-dependent cytotoxicity, respectively 20 

(Hogarth and Pietersz 2012; van Egmond and Bakema 2013). 21 

Although both mycobacterial preparations altered the expression of various surface 22 

receptors on neutrophils and monocytes, no significant effect could be observed on 23 

lymphocytes. The lack of a modulatory effect by both mycobacterial preparations on 24 

lymphocytes might be attributed to the short 3 h stimulation period adopted in our whole blood 25 

culture system. Using purified PBMCs and longer stimulation periods of 24 and 48 h, a previous 26 

study has shown that, in vitro, both HK M. vaccae and M. obuense upregulated the surface 27 

expression of various activation receptors on the γδ T lymphocyte subpopulation (Fowler, et al. 28 

2012). Moreover, in vivo treatment with these HK mycobacterial preparations has been reported 29 

to induce, few weeks later, a measurable activation of cytotoxic T lymphocytes (Elia, et al. 30 

2013). Another potential explanation is that blood lymphocytes fail to recognize both 31 

mycobacterial preparations due to the absence, or barely detectable surface expression of TLR-32 

2 which is a crucial receptor for the recognition of mycobacteria (Flo, et al. 2001). This 33 
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explanation is further substantiated by the inability to detect the surface expression of TLR-2 on 1 

lymphocytes in our system (data not shown).  2 

Mycobacteria are known to trigger host immune responses following initial interaction 3 

with innate immune cells through selected PRRs (Killick, et al. 2013; Kleinnijenhuis, et al. 2011). 4 

A HK preparation of M. vaccae has been previously reported to induce in vitro DC activation via 5 

TLR2 (Le Bert, et al. 2011). To determine whether the interaction between HK M. obuense and 6 

TLRs was responsible for the increased surface expression of receptors on monocytes, blocking 7 

experiments with antibodies against TLR-1, 2, 4, 5 and 6 were carried out. These experiments 8 

clearly indicated that in human whole blood, blocking of TLR-1 and/or TLR-2 significantly 9 

inhibited the M. obuense-induced upregulation of CD11c and HLA-DR surface expression on 10 

monocytes. Despite the blocking of TLR-1 and/or TLR-2, the expression levels of CD11c and 11 

HLA-DR remained higher than those of unstimulated monocytes (p < 0.05) and therefore a 12 

possible participation of other receptors, such as nucleotide oligomerisation domain 2 (Nod-2) 13 

receptor, in mediating the biological effects of M. obuense cannot be excluded (Behr and 14 

Divangahi 2015). Differences in the average MFI values of MHC class II between TLR-blocking 15 

experiments (Fig. 2B) and immunophenotyping experiments (Table 1) can be explained by the 16 

fact that in TLR-blocking experiments, we used an antibody specific for only HLA-DR whereas in 17 

the immunophenotyping experiments an antibody recognizing the three MHC class II antigens, 18 

namely HLA-DPDQDR, was employed. 19 

In the current work, we have measured a battery of cytokines and chemokines in 20 

supernatants of whole-blood cultures following 24 h of whole blood stimulation with M. vaccae 21 

or M. obuense. Among the cytokines tested, IL-6, IL-10, and TNF-α were significantly elevated 22 

following mycobacterial stimulation. This is in line with previous reports indicating the release of 23 

considerable amounts of IL-6, IL-10, and TNF-α upon activation of monocytes (Damsgaard, et 24 

al. 2009), the ability of M. vaccae to induce IL-10 and TNF-α production in cultures of isolated 25 

monocytes (Baran, et al. 2004), and increased secretion of IL-10 and TNF-α in PBMC cultures 26 

stimulated with HK M. bovis (Moreira, et al. 2012). Moreover, mycobacterial stimulation 27 

enhanced the production of the three tested chemokines: CXCL8/IL-8 and MIP-1α. In contrast, 28 

whole blood stimulation with HK mycobacteria did not induce the release of any of the signature 29 

T cell cytokines, IFN-γ, IL-2 or IL-4. Thus, the profile of HK mycobacteria-induced cytokines and 30 

chemokines in the in vitro system used is most likely monocyte-derived and triggered by 31 

structures common to the two organisms. Among such structures are cell wall components 32 

containing muramyl peptides as well as heat shock proteins (HSPs) which have been reported 33 
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to induce a range of proinflammatory cytokines and chemokines either in vitro or in vivo (Asea, 1 

et al. 2000; Bahr, et al. 2003; Darcissac, et al. 1996b; Stanford, et al. 2009; Wang, et al. 2002). 2 

This profile of cytokine release, dominated by IL-10 and proinflammatory cytokines, was also 3 

reported following whole blood stimulation with HK Lactobacillus rhamnosus, Helicobacter 4 

pylori, Burkholderia pseudomallei, MDP, and LPS (Darcissac, et al. 1996b; Duffy, et al. 2014; 5 

Myers, et al. 2014). On the other hand, the release of cytokines that play a direct role in the 6 

adaptive immune system has been reported to occur in whole blood cultures from healthy 7 

donors after stimulation with certain gram-negative and gram-positive HK bacteria, with fungi, 8 

with live BCG or with live M. intracelluare, but not with HK M. tuberculosis (Duffy, et al. 2014; 9 

Kartalija, et al. 2013; Popa, et al. 2009; Reichenbach, et al. 2006). It is noteworthy to mention 10 

that the cytokine responses to mycobacterial stimulation observed in the whole blood assay 11 

might differ from those detected in other culture systems. While the levels of some cytokines 12 

such as IL-2, IL-5, IL-6, IL-7, IL-13, TNF-α, MCP-1, MIP-1β (Silva, et al. 2013) and IFN-γ (Antas, 13 

et al. 2004); Deenadayalan, et al. 2013; Silva, et al. 2013) were comparable between whole 14 

blood and PBMC cultures stimulated with specific M. tuberculosis antigens, levels of other 15 

cytokines like IL-1β, IL-4, IL-10, IL-12 (p70), IL-17, G-CSF and GM-CSF were significantly 16 

different between the two culture models (Silva, et al. 2013).  17 

We have also examined the lymphoproliferative responses to HK M. vaccae and M. 18 

obuense through stimulation of PBMCs from healthy individuals. Distinct from cell proliferation 19 

occurring in cancers and other pathological processes, this in vitro assay is routinely used to 20 

assess the presence of mycobacteria-sensitized lymphocytes in peripheral blood and their 21 

ability to proliferate in response to mycobacterial antigens. Taking into consideration that M. 22 

vaccae and M. obuense are phylogenetically related, lack group iii antigens, possess their own 23 

species-specific group iv antigens, and are rich in group i common mycobacterial antigens 24 

(Stanford, et al. 2009), it can be assumed that the observed M. vaccae and M. obuense induced 25 

PBMC proliferative responses might be directed, mainly, against the common mycobacterial 26 

antigens. Previous studies, conducted to analyze the sensitization to environmental 27 

mycobacteria in north Lebanon, southeast England, and northern Malawi by skin testing and/or 28 

whole blood IFN- release assay, revealed a very low level of exposure to some environmental 29 

mycobacteria including M. vaccae (Bahr, et al. 1986; Black, et al. 2001; Weir, et al. 2003).  30 

Moreover, the healthy donors tested were not previously vaccinated with BCG in line 31 

with the policy adopted by the local health authorities. However, several studies have indicated 32 

that different mycobacterial species possess cross-reacting T-cell epitopes which could induce 33 
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the proliferation of sensitized T-cell clones (Oftung, et al. 1998; Sieling, et al. 2005). Therefore, 1 

M. vaccae- and M. obuense- specific T cells are likely to exhibit a broad spectrum of cross-2 

reactivity with an as yet to be identified environmental mycobacterial species that could be 3 

abundant in the Lebanese environment and could elicit the observed lymphoproliferative 4 

responses.  5 

As a limitation of the current study, our preliminary kinetics experiments were based on 6 

determining the optimal regulation of two surface receptors, and only at two time points, in 7 

response to mycobacterial stimulation. However, other receptors analyzed in this study might 8 

display optimal regulation at different stimulation periods. An additional limitation of our study 9 

was the analysis of cytokine levels at a single time point following mycobacterial stimulation of 10 

whole blood. Previous studies have emphasized the importance of identifying optimal 11 

stimulation time points correlating with peak levels of cytokines since these time points are 12 

cytokine- and stimulus-dependent (Hermann, et al. 2003; Lagrelius, et al. 2006). For instance, 13 

we could not detect IFN-γ levels in 24 h mycobacteria-stimulated whole blood cultures. 14 

However, other studies employing longer stimulation periods of 5 and 6 days were capable of 15 

detecting IFN-γ in whole blood cultures stimulated with specific M. tuberculosis antigens (Antas, 16 

et al. 2004; Deenadayalan, et al. 2013; Silva, et al. 2013). Thus, future kinetic studies employing 17 

additional and extended time points might be useful in addressing the effect of mycobacterial 18 

stimulation on the expression of other surface receptors and on the release of cytokines. 19 

In conclusion, our study revealed a potent ability of HK cell preparations of M. vaccae 20 

and M. obuense to regulate the expression of several receptors on phagocytic cells, and to 21 

induce the release of a specific set of cytokines and chemokines in this whole blood in vitro 22 

system. The data provided could serve as a baseline to explain the outcome of interaction 23 

between HK mycobacterial preparations and immune cells which in additional future studies 24 

might be correlated with the previously known in vivo activities of HK mycobacterial preparations 25 

such as the adjuvant, the anti-infectious, and the anti-tumor effects 26 
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Figures Captions  10 

Fig. 1. Whole blood stimulation with M. vaccae or M. obuense modulates surface expression of 11 

various receptors on monocytes. (A) Representative flow  cytometry dot plots demonstrating the 12 

expression of CD62L, CD86 and CD184 on gated monocytes in whole blood that was left 13 

unstimulated or stimulated with 300 g/ml of M. vaccae or M. obuense for 3 h. Number within 14 

lower right quadrant indicates the percentage of receptor-positive monocytes out of the total 15 

monocyte population. (B) Representative flow cytometry histogram overlay plots showing the 16 

expression of CD11c, CD18 and HLA-DP,DQ,DR on gated monocytes in whole blood that was 17 

either left unstimulated or stimulated with 300 g/ml of M. vaccae  or M. obuense for 3 h. 18 

Numbers in the plots correspond to the geometric mean fluorescence intensity (MFI) of 19 

receptor-positive monocytes in each condition (filled gray histogram: isotype control; black line 20 

histogram: unstimulated; red line histogram: M. vaccae; green line histogram: M. obuense). 21 

 22 

Fig. 2. Toll-like receptor (TLR)-1 and/or TLR-2 blocking inhibit M. obuense-induced upregulation 23 

of CD11c and HLA-DR expression on monocytes in whole blood. Whole blood was 24 

preincubated with anti (α)-TLR-1, α-TLR-2, α-TLR-1/2, α-TLR6, α-TLR-2/6, α-TLR-4, α-TLR-5, 25 

isotype-matched control antibody IgA (for α-TLR-2 and 5) or IgG (for α-TLR-1, 4 and 6) for 1 h 26 

and then stimulated with (A) specific TLR2/1, TLR2, TLR4, TLR5, TLR2/6 ligands or (B) 300 27 

μg/ml of M. obuense (Mo) for 3 h. The surface expression of CD11c and HLA-DR was analyzed 28 

on monocytes. Columns indicate the geometric mean fluorescence intensity (MFI) of CD11c or 29 

HLA-DR on monocytes. Data obtained are (A) representative of 1 out of 2 independent donors 30 

and (B) mean ± SEM from 6 donors. Statistically significant differences were determined by 31 

paired t-test. (*p < 0.05 versus M. obuense).  32 

 33 

 34 



25 

 

 1 

Fig. 3. Cytokine and chemokine levels in supernatants of whole blood cultures following 2 

stimulation with M. vaccae or M. obuense. Scatter plots showing IL-6, IL-10, TNF-α, CXCL8/IL-3 

8, MIP-1α, and RANTES levels in supernatants of whole blood cultures that were left 4 

unstimulated or stimulated with 300 μg/ml of M. vaccae or M. obuense for 24 h. Horizontal bars 5 

indicate group mean values of cytokine or chemokine concentration of 15 donors. Statistically 6 

significant differences were determined by Friedman test followed by Dunn's multiple 7 

comparison post hoc test (*p < 0.05 versus unstimulated). 8 

 9 

Fig. 4. Induction of peripheral blood mononuclear cells (PBMCs) proliferative responses to M. 10 

vaccae and M. obuense. PBMCs were stimulated with different concentrations (1, 3, 10, 30, 100 11 

and 300 μg/ml) of M. vaccae or M. obuense for 7 days. Data are reported as (A) symbols with 12 

error bars showings mean of stimulation index ± SEM from 4 donors or as (B) columns with 13 

error bars indicating mean of stimulation index ± SEM from 12 donors. Statistically significant 14 

differences were determined either by Friedman test followed by Dunn's multiple comparison 15 

post hoc test (*p < 0.05 versus 10 or 30 g/ml of M. vaccae; σp < 0.05 versus 3 g/ml of M. 16 

obuense) or by Wilcoxon signed rank test (+p < 0.05 versus M. vaccae at the same 17 

concentration).   18 

 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 



26 

 

Fig. 1 1 
 2 

 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 



27 
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Table 1.  1 

Expression levels of surface receptors on monocytes in whole blood. 2 

 Surface Receptor Expression on Monocytes 

 % of Receptor-Positive Cells MFI of Receptor-Positive Cells 

Receptor Category Uns Mv Mob Uns Mv Mob 

Adhesion       
CD2 (LFA-2) 4±1 11±2* 11±1* 28±3 19±2 19±1 
CD11a (LFA-1) 100±0 100±0 100±0 124±6 197±8* 193±8* 
CD18 (β2 integrin) 100±0 100±0 100±0 207±15 602±44* 514±44* 
CD44 (ECMRIII) 100±0 100±0 100±0 62±4 88±8* 97±10* 
CD54 (ICAM-1) 99±0 100±0 100±0 93±6 328±23* 272±24* 
CD58 (LFA-3) 99±0 100±0 100±0 99±7 138±9* 145±12* 
CD62L (L-selectin) 86±2 13±5* 17±5* 64±8 16±3* 17±3* 
Antigen Presentation/ 

Costimulation/Signaling 

      

CD45 (LCA) 100±0 100±0 100±0 291±11 647±26* 601±28* 
CD80 (B7-1) 0±0 4±1* 5±1* 0±0 12±2* 13±2* 

CD86 (B7-2) 61±6 97±1* 97±2* 19±2 67±9* 66±9* 
HLA-DPDQDR (MHC II) 99±1 100±0 100±0 147±14 558±47* 524±49* 
Pattern Recognition       

CD14 (LPSR) 100±0 100±0 100±0 295±9 570±14* 541±16* 
CD36 (GPIIIb) 64±5 85±3* 86±3* 74±17 98±17* 113±22* 
CD206 (MMR) 0±0 4±1* 5±1* 0±0 37±2* 33±1* 
Complement/FcR       

CD11b (CR3) 100±0 100±0 100±0 345±28 1212±65* 1033±66* 
CD11c (CR4) 93±3 100±0* 99±1* 52±6 253±33* 200±30* 
CD35 (CR1) 97±1 99±0 99±0 46±3 129±11* 114±9*+ 
CD64 (FcγRI) 100±0 100±0 100±0 86±3 97±4* 96±4* 

CD89 (FcαR) 98±0 99±0 99±0 205±12 330±21* 300±20* 
Cytokine/Chemokine       

CD116 (GM-CSFRα) 100±0 100±0 100±0 186±5 291±9* 284±9* 
CD119 (IFN-γRα) 100±0 100±0 100±0 219±5 150±5* 161±6* 
CD127 (IL-7Rα) 65±6 86±3* 90±2* 25±1 36±2* 38±2* 
CD132 (IL-2Rγ) 63±3 94±1* 93±1* 34±1 71±3* 64±4* 
CD184 (CXCR4) 62±5 21±5* 23±3* 26±4 18±2 21±2 

The table comprises all the CD antigens that showed statistically significant variations of 3 

expression on monocytes in whole blood that was left unstimulated (Uns) or stimulated 4 

with 300 μg/ml of M. vaccae (Mv) or M. obuense (Mob) for 3 h. Data represent mean ± 5 

SEM of the percentage (%) and geometric mean fluorescence intensity (MFI) of receptor-6 

positive monocytes of 15 donors. Statistically significant differences were determined by 7 

Friedman test followed by Dunn's multiple comparison post hoc test (*p < 0.05 versus Uns; 8 

+p < 0.05 versus Mv. 9 
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Table 2.  1 

Expression levels of surface receptors on neutrophils in whole blood. 2 

 Surface Receptor Expression on Neutrophils 

% of Receptor-Positive Cells MFI of Receptor-Positive Cells 

Receptor Category Uns Mv Mob Uns Mv Mob 

Adhesion       
CD18 (β2 integrin) 100±0 100±0 100±0 144±7 383±25* 251±16*+ 
CD54 (ICAM-1) 81±3 98±1* 92±3+ 27±3 46±3 36±2 
CD62L (L-selectin) 100±0 80±3* 94±1* 141±13 53±5* 105±9*+ 

Antigen Presentation/ 
Costimulation/Signaling 

      

CD45 (LCA) 100±0 100±0 100±0 87±4 246±14* 144±8+ 
HLA-A,B,C (MHC I) 100±0 99±0 100±0 104±14 78±11* 100±14+ 
Complement/Fc       

CD11b (CR3) 100±0 100±0 100±0 237±15 1074±76* 563±46+ 

CD11c (CR4) 89±3 99±1* 95±3* 30±2 78±7* 51±5*+ 

CD16 (FCγRIII) 100±0 99±0 99±0 1731±96 2368±137* 2008±148*+ 

CD35 (CR1) 95±1 100±0* 99±1 27±2 114±9* 54±5*+ 

CD64 (FcγRI) 16±4 24±5* 21±5* 17±2 17±2 18±2 
CD89 (FcαR) 100±0 100±0 100±0 182±16 332±30* 215±17+ 
Cytokine/Chemokine       

CD119 (IFN-γRα) 100±0 100±0 100±0 80±3 61±2* 69±3*+ 

CD184 (CXCR4) 82±2 57±3* 71±3*+ 30±2 27±2 29±1 

The table comprises all the CD antigens that showed statistically significant variations of 3 

expression on neutrophils in whole blood that was left unstimulated (Uns) or stimulated with 4 

300 μg/ml of M. vaccae (Mv) or M. obuense (Mob) for 3 h. Data represent mean ± SEM of the 5 

percentage (%) and geometric mean fluorescence intensity (MFI) of receptor-positive 6 

neutrophils of 15 donors. Statistically significant differences were determined by Friedman test 7 

followed by Dunn's multiple comparison post hoc test (*p < 0.05 versus Uns; +p < 0.05 versus 8 

Mv). 9 
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Supplementary data 1 
 2 

 3 
 4 
 5 
Supplementary Figure 1. Optimization of whole blood stimulation conditions with M. vaccae 6 
or M. obuense. (A) Dose-response evaluation for the effect of whole blood stimulation with 7 
different concentrations of M. vaccae or M. obuense (30, 100 and 300 g/ml) for 3 h on the 8 
expression levels of CD14 and CD62L presented as geometric mean fluorescence intensity 9 
(MFI) and percentage of positive monocytes, respectively. Symbols and error bars indicate 10 
mean values and SEM (n=5). (B) Time-response evaluation for the effect of whole blood 11 
stimulation with 300 g/ml of M. vaccae or M. obuense for 3 or 6 h on the expression levels of 12 
CD14 and CD62L presented as geometric MFI and percentage of positive monocytes, 13 
respectively. Columns and error bars indicate mean values and SEM (n=3).  14 
*p < 0.05 versus unstimulated. 15 
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 1 
Supplementary Figure 2. Soluble (s) CD62L levels in supernatants of whole blood cultures. 2 
sCD62L levels in supernatants of whole blood cultures that were left unstimulated or stimulated 3 
with 300 μg/ml of M. vaccae or M. obuense for 3, 6, or 24 h. Columns indicate the mean 4 
sCD62L levels of 4 donors. Error bars represent SEM. 5 
 6 
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Supplementary Table 1.  1 

Surface receptors with unchanged expression levels on monocytes in whole blood. 2 

 Surface Receptor Expression on Monocytes 

 % of Receptor-Positive Cells MFI of Receptor-Positive Cells 

Receptor Category Uns Mv Mob Uns Mv Mob 

Adhesion/Activation       
CD31 (PECAM-1) 100±0 100±0 100±0 895±10 972±10 1041±40 
CD50 (ICAM-3) 100±0 100±0 100±0 245±10 250±10 244±10 
CD102 (ICAM-2) 99±0 99±0 99±0 144±5 148±6 157±8 

Antigen Presentation/ 
Costimulation/Signaling 

      

CD5 (T1/Leu-1) 0±0 0±0 0±0 0±0 0±0 0±0 
HLA-ABC (MHC I) 100±0 100±0 100±0 655±101 606±113 691±118 

Complement/FcR       
CD21 (CR2) 0±0 0±0 0±0 0±0 0±0 0±0 
CD32 (FcγRII) 82±3 79±5 76±5 24±3 27±5 24±4 

Cytokine/Chemokine       
CD25 (IL-2Rα) 0±0 0±0 0±0 0±0 0±0   0±0 
CD40 (TNFRS5) 11±4 10±3 15±4 18±2 21±2 20±2 
CD95 (TNFRSF6) 97±1 98±1 98±1 21±1 23±1 23±1 

αCD114 (G-CSFR) 100±0 100±0 100±0 62±3 57±4 63±4 
CD122 (IL-2Rβ) 0±0 0±0 0±0 0±0 0±0 0±0 
CD195 (CCR5) 17±1 20±2 23±2 21±1 20±1 21±1 
CD197  (CCR7) 0±0 0±0 0±0 0±0 0±0 0±0 

The table comprises all the receptors which did not show any significant variation of expression 3 
on monocytes in whole blood that was left unstimulated (Uns) or stimulated with 300 μg/ml of M. 4 
vaccae (Mv) or M. obuense (Mob) for 3 h. Data represent mean ± SEM of the percentage (%) 5 
and geometric mean fluorescence intensity (MFI) of receptor-positive monocytes of 15 donors.  6 
αExperiments conducted on 9 donors. 7 
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Supplementary Table 2.  

Surface receptors with unchanged expression levels on neutrophils in whole blood. 

 Surface Receptor Expression on Neutrophils 

 % of Receptor-Positive Cells MFI of Receptor-Positive Cells 

Receptor Category Uns Mv Mob Uns Mv Mob 

Adhesion/Activation        

CD2 (LFA-2) 0±0 0±0 0±0 0±0 0±0 0±0 

CD11a (LFA-1) 100±0 100±0 100±0 
 

100±0 100±0 100±0 
 

100±0 100±0 100±0 
 

38±2 43±2 44±2 

CD31 (PECAM-1) 100±0 100±0 100±0 384±26 401±21 423±21 
CD44 (ECMRIII) 64±6 62±6 66±6 16±1 16±1 17±2 

CD50 (ICAM-3) 100±0 100±0 100±0 
 

100±0 100±0 100±0 
 

100±0 100±0 100±0 
 

384±26 331±11 423±21 
 

384±26 245±11 423±21 
 

384±26 306±11 423±21 
 

CD58 (LFA-3) 100±0 100±0 100±0 72±4 72±4 76±7 

CD102 (ICAM-2) 0±0 0±0 0±0 0±0 0±0  0±0 

Antigen Presentation/ 
Costimulation/Signaling 

      

CD5 (T1/Leu-1) 0±0 0±0 0±0 0±0 0±0 0±0 
CD80 (B7-1) 0±0 0±0 0±0 0±0 0±0 0±0 
CD86 (B7-2) 0±0 0±0 0±0 0±0 0±0 0±0 

α
CD137L (4-1BBL) 0±0 0±0 0±0 0±0 0±0 0±0 
HLA-DPDQDR (MHC II) 0±0 0±0 0±0 0±0 0±0 0±0 
Pattern Recognition       
CD36 (GPIIIb) 0±0 0±0 0±0 0±0 0±0 0±0 
CD206 (MMR) 0±0 0±0 0±0 0±0 0±0 0±0 
Complement/FcR       
CD21 (CR2) 0±0 0±0 0±0 0±0 0±0 0±0 
CD32 (FcγRII) 100±0 100±0 100±0 50±3 46±4 52±4 
Cytokine/Chemokine       
CD25 (IL-2Rα) 0±0 0±0 0±0 0±0 0±0 0±0 
CD40 (TNFRS5) 0±0 0±0 0±0 0±0 0±0 0±0 
CD95 (TNFRSF6) 95±2 94±2 95±1 20±1 19±1 20±1 
CD116 (GM-CSFRα) 98±1 92±2 97±1 32±1 34±1 36±1 
CD122 (IL-2Rβ) 0±0 0±0 0±0 0±0 0±0 0±0 
CD127 (IL-7Rα) 0±0 0±0 0±0 0±0 0±0 0±0 
CD132 (IL-2Rγ) 58±4 51±5 60±4 18±1 20±1 21±1 
CD195 (CCR5)  0±0 0±0 0±0 0±0 0±0 0±0 
CD197  (CCR7) 0±0 0±0 0±0 0±0 0±0 0±0 

The table comprises all the receptors which did not show any significant variation of expression 
on neutrophils in whole blood that was left unstimulated (Uns) or stimulated with 300 μg/ml of M. 
vaccae (Mv) or M. obuense (Mob) for 3 h. Data represent mean ± SEM of the percentage (%) 
and geometric mean fluorescence intensity (MFI) of receptor-positive neutrophils of 15 donors.  
αExperiments conducted on 9 donors. 


