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Abstract 

Radix spp. are intermediate host snails for digenean parasites of medical and veterinary 

importance.  Within this genus, species differentiation using shell and internal organ 

morphology can result in erroneous species identification, causing problems when trying to 

understand the population biology of Radix.  In the present study, DNA barcoding, using cox1 

and ITS2 sequences, identified populations of Radix auricularia and R. balthica from 

specimens originally morphologically identified as R. peregra from the UK. Assessment of 

cox1 and ITS2 as species identification markers showed that, although both markers 

differentiated species, cox1 possessed greater molecular diversity and higher phylogenetic 

resolution. Cox1 also proved useful for gaining insights into the evolutionary relationships of 

Radix species populations. Phylogenetic analysis and haplotype networks of cox1 indicated 

that Radix auricularia appeared to have invaded the UK several times; some haplotypes 

forming a distinct UK specific clade, whilst others are more akin to those found on mainland 

Europe. This was in contrast to relationships between R. balthica populations, which had low 

molecular diversity and no distinct UK specific haplotypes, suggesting recent and multiple 

invasions from mainland Europe. Molecular techniques therefore appear to be crucial for 

distinguishing Radix spp., particularly using cox1. This barcoding marker also enables the 

population biology of Radix spp. to be explored, and is invaluable for monitoring the 

epidemiology of fluke diseases especially in the light of emerging diseases and food security.    

 

Key words:  Radix auricularia, Radix balthica, cox1, DNA barcoding, epidemiology, 

intermediate hosts, molecular diversity, phylogenetics 

 

Abbreviations 

π: nucleotide diversity; cox1: cytochrome oxidase 1; G: Gamma distribution; h: haplotype 

number; Hd: haplotype diversity; HKY: Hasegawa-Kishino-Yano nucleotide substitution 

model; I: invariable sites; ITS2: ribosomal internal transcribed spacer region 2; K: number of 

observed pairwise differences; ML: maximum likelihood; MP: maximum parsimony; NJ: 

neighbour joining; PCR: polymerase chain reactions; P-value: probability value; p-distance: 

pairwise distance; S: segregating sites; T93: Tamura Nei nucleotide substitution model; TS: 

transitions; TV: transversion 
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1. Introduction 

 

Freshwater snails of the genus Radix are of considerable medical and veterinary importance as 

vectors of digenean parasites. Radix spp. are known to be intermediate hosts for 

schistosomatid blood flukes including avian parasites from the genus Trichobilharzia 

(Huňova et al., 2012) and the cattle parasite Schistosoma turkestanicum, which are agents of 

human cercarial dermatitis in Eastern Europe and Asia (Majoros et al., 2010).  Radix also 

transmits the cosmopolitan re-emerging zoonotic disease echinostomiasis caused by 

echinostomatid flukes in South East Asia, significantly contributing to the global burden of 

intestinal trematodiasis (Georgieva et al., 2013; Saijuntha et al., 2011). However, perhaps the 

most important role for Radix in Europe and the UK is as intermediate hosts of Fasciola 

hepatica and Fasciola gigantica, agents of fascioliasis, causing reduced meat and milk 

production in cows, as well as morbidity in humans with more than 20 million human cases 

worldwide (Correa et al., 2011; Mas-Coma et al., 2009).  

 

Accurate identification of such intermediate snail hosts is a prerequisite for understanding 

disease epidemiology and aids in focusing control, especially if resources are limited and 

parasites have a wide host range (Kane et al., 2008; Rollinson et al., 2009). Historically, 

species of Radix have been identified using shell morphology, reproductive system anatomy 

and colouration and these parameters continue to be used to describe new species (Glöer and 

Pešic, 2008). However, the utility of these morphological characters has been questioned due 

to the plasticity of shell morphology in response to environmental pressures and ontogeny 

(Huňova et al., 2012; Pfenninger et al., 2006). Recently, molecular taxonomic and 

phylogenetic approaches have been employed to resolve the relationships between Radix 

species and provide accurate identification (Bargues et al., 2001; Correa et al., 2011; Huňova 

et al., 2012; Pfenninger et al., 2006; Schniebs et al., 2011). Molecular-based taxonomy of 

disease vectors often contradicts traditional views and can result in extensive taxonomic 

revisions. For example several medically important snail species within the genus Bulinus 

were originally named and identified based on morphological characteristics, such as shell 

structure and internal anatomy, but have since been separated into distinct species based on 

molecular evidence (Kane et al., 2008). In fact, molecular approaches have aided in the 

elucidation of cryptic species and species complexes that appear morphologically identical 

(Pfenninger et al., 2006).  Bargues et al. (2001) highlighted that eight species of Radix of 

medical/veterinary concern were thought to occur in central and northern Europe including R. 
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auricularia, R. ampla, R. balthica, R. lagotis, R. labiata, R. ovata, and R. peregra. However, 

molecular analysis of ribosomal DNA sequences indicated that R. peregra, R. ovata and R. 

balthica were the same species (Bargues et al., 2001). This reclassification is still debated in 

the literature with some researchers continuing to use the three separate names (Huňova et al., 

2012; Pfenninger et al., 2006).  

 

In an attempt to resolve taxonomic issues and to improve the accuracy of identification of 

Radix and other lymnaeids, several molecular markers have been used primarily based on the 

their ease to amplify and sequence, as well as the number of comparable published sequences 

available in public databases (Casiraghi et al., 2010). Such markers have included the nuclear 

ribosomal gene 18s, and the internal transcribed spacer regions ITS1 and ITS2 (Bargues et al., 

2001) as well as the international barcoding gene cytochrome oxidase 1 (cox1) and ribosomal 

16s (Correa et al., 2010; Pfenninger et al., 2011). Historically, both ITS regions have been 

used to differentiate between species of aquatic snail intermediate hosts of schistosomes that 

cause human urinary and hepatointestinal African schistosomiasis; including Bulinus and 

Biomphalaria, respectively (Dejong et al., 2003; Kane et al., 2008; Raahauge and Kristensen, 

2000).  However, Kane et al. (2008) and Dejong et al. (2003) argued that mitochondrial genes 

such as cox1 and 16s were more effective at differentiating species than nuclear genes, and 

could provide a biogeographical perspective because of their higher rate of evolution. Cox1 

has been used to differentiate between species and populations of snails including 

Indoplanorbis exustus (Liu et al., 2010), Theba pisana pisana (Däumer et al., 2012) and 

species of Pomacea (Hayes et al., 2008; Lv et al., 2013). However, only a few studies have 

attempted to disentangle the relationship within and between species of Radix using 

mitochondrial markers. Pfenninger et al. (2006) defined operational taxonomic units using 

cox1, and later investigated the phylogeography and population structure of R. balthica in 

Northern Europe (Pfenninger et al., 2011).  

 

With the exception of R. balthica (Pfenninger et al., 2011), there are no recent studies on the 

population biology, taxonomy and origins of Radix species in the UK, nor are there 

standardised techniques to identify and distinguish between morphologically similar species. 

This study aimed t employ DNA barcoding approaches to accurately identify morphologically 

plastic species of Radix and to compare and contrast the utility of cox1 and ITS2 sequences as 

markers for species identification. Additionally, cox1 sequences were used to provide insights 
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into the evolutionary relationships between populations of Radix species from the UK and 

Eurasia in order to test the utility of cox1 in providing phylogeographical inferences.  

 

2. Materials and Methods 

 

2.1 Collection and digenean screening of snails from UK waters  

 

Freshwater snails were collected between June–September from Tundry Pond, Hampshire in 

2011 and 2012 (n = 391), Pensthorpe Park, Norfolk in 2011 (n = 200), lochs in Wester Ross, 

Scotland in 2011 (n = 12), Ham Dip Pond (n =6), and Pen Ponds in Richmond Park , Surrey 

(n = 53) in 2012 during digenean parasite surveys. Snails were collected using scoop nets or 

by hand and were identified in the field as being either Lymnaea stagnalis or Radix peregra 

based on shell morphology. They were then taken to the laboratory and screened for cercarial 

infection as described in Lawton et al. (2014). Those individuals positive for digenean 

infection were killed by freezing at -20°C and preserved in 70–100% ethanol. Those snails 

not emitting parasites were screened every day for two weeks to check for latent infection. 

 

2.2 DNA extraction, PCR amplification and assembly of cox1 and ITS2 fragments 

 

A total of 21 snails, preliminarily identified as R. peregra, were infected with digeneans; 

small tissue snips were taken from the head-foot of these snails for DNA extraction. Snail 

tissue was homogenised in ATL buffer (Qiagen Inc.) and DNA was subsequently extracted 

using the DNeasy tissue kit (Qiagen Inc.) following the manufacturer’s recommendations 

with an extended initial digest of 24 h. For each specimen, a partial fragment of the 

mitochondrial cox1 gene was amplified with PCR using primers LCO1490 (5’-

GGTCAACAAATCATAAAGATATTGG-3’) and HCO2198 (5’-

TAAACTTCAGGGTGACCAAAAAATCA) and protocols described by Folmer et al. (1994) 

and the ITS2 region was amplified using primers NEWS (5’-

TGTGTCGATGAAGAACGCAG-3’) and RIXO (5’-TTCTATGCTTAAATTCAGGGG-3’) 

and protocols of Almeyda-Artigas et al. (2000). PCR reactions were performed with each 

primer set independently using 2 µl 10µM of each primer, 12.5 µl of DreamTaqTM PCR 

master mix (2X DreamTaq buffer, 0.4 mM of each dNTP, 4mM MgCl2) and 1-2 ng/µl DNA, 

with final reactions made up to 25 µl with PCR grade water. Reactions were performed using 

a Veriti 96 well thermal cycler (Applied Biosystems
TM

). Each amplicon was visualized on a 
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1% agarose gel stained with GelRed (Bioline) using 5 µl of PCR product. The remaining 20 

µl PCR products were sequenced at the Natural History Museum, London, using fluorescent 

dye terminator sequencing kits (Applied BiosystemsTM), then run on an Applied Biosystems 

3730XL automated sequencer.  

 

2.3 Molecular identification of species and phylogenetic reconstruction  

 

DNA sequences of cox1 (Accession: XXXX – XXXX) and ITS2 (Accession: XXXX – 

XXXX) were assembled and edited using Bioedit (Hall, 1999) and BLAST searches 

performed at NCBI (http://www.ncbi.nlm.nih.gov/) against the GenBank sequence database 

for initial identification of snails and to ensure no contamination from other organisms and 

initial BLAST searches identified sequences generated in this study to be most similar to R. 

auricularia, R. balthica or R. peregra. For detailed phylogenetic identification of species 

generated sequences were aligned with taxonomic representatives of published sequences of 

all available Radix definitive species using MUSCLE 

(http://www.ebi.ac.uk/Tools/msa/muscle/). Where possible an equal number of reference 

DNA sequences of cox1 and ITS2 for Radix ampla, Radix auricularia, Radix balthica, Radix 

labiata, Radix natalensis and Radix rubignosa were used. This ranged from a single sequence 

to 14 representative sequences depending on availability and it is important to note that it was 

not always possible to obtain both cox1 and ITS2 sequences from the same individual from 

the same locality for most species as this information was not available in the GenBank 

database. Although an exhaustive search of Radix sequences was performed, due to the 

disproportionate number of sequences available for these snail species, with only 2 cox1 

sequences were available for R. peregra and R. natalensis compared to over 800 for R. 

balthica for example.  A maximum limit of 14 reference sequences was used as this was in 

excess of reference sequences used in other molecular identification studies of Radix species 

(Bolotov et al., 2014; Dung et al., 2013; Jouet et al., 2008, 2010; Schniebs et al., 2011, 2013) 

and other snails of medical and veterinary importance (Correa et al., 2011; Kane et al., 2008; 

Kulsantiwong et al., 2013). This number of reference sequences would be sufficient for 

distinct species specific clades to emerge during phylogenetic analysis and definitively 

identify sequences generated in this current study.  Each of these reference sequences was 

considered as putative throughout the analysis and were chosen because they were generated 

for studies focused primarily on the molecular identification and the evolutionary 

relationships of Radix species particularly from the following works: Albrecht et al., 2009; 
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Bargues et al., 2001; Bolotov et al., Christiansen et al., 2014; Cipriani et al., 2011; Correa et 

al., 2011; Dung et al., 2013; 2014; Ferreira et al., 2014; Ferté et al., 2005; Huňova et al., 2012; 

Jouet et al., 2008, 2010; Kaset et al., 2009; Liu et al., 2010; Patel et al., 2015; Pfenninger et 

al., 2011; Novobilsky et al., 2014; Schniebs et al., 2011, 2013; Vinarski et al., 2015; von 

Oheimb et al., 2011;  

 

Therefore the sequences used for inter-species comparisons were considered to be 

representative of taxa alone and were not used to make biogeographical inferences. 

Phylogenetic analysis was performed in MEGA 5 (Tamura et al., 2011) and Lymnaea 

stagnalis was used as an outgroup. Character based phylogenetic analysis was performed 

including both maximum parsimony (MP) and maximum likelihood (ML) methods. For both 

markers MP phylogenies were constructed from a consensus tree inferred from 10000 most 

parsimonious trees obtained using the close–neighbour-interchange algorithm with a search 

level of 3 in which initial trees were obtained with random addition of sequences over 3000 

replicates. For ML analysis, evolutionary substitution models were identified for each marker 

in MEGA 5 with cox1 evolving under the conditions of the HKY+G model and ITS2 

evolving under the conditions of the T93+I model. These models had the lowest Bayesian 

information criterion relative to other models and were then used to reconstruct ML 

phylogenies. In all phylogenetic analyses described, bootstraps were calculated from 1000 

replicates during tree construction to provide nodal support values.   

 

2.4 Assessment of marker suitability and inter- and intra-species molecular diversity 

 

To compare the molecular characteristics of cox1 and ITS2 between species and assess their 

utility as markers for species identification, substitutional changes and molecular diversity 

were measured. Molecular diversity between species was determined using DnaSP 5 (Librado 

and Rozas, 2009). General measures of nucleotide diversity were calculated including number 

of segregating sites (S), nucleotide diversity (π), and average pair wise comparisons (K). The 

uncorrected p-distance was calculated between each species and sequence using MEGA 5 and 

the frequency of transition (TS) and transversion (TV) mutation within each comparison 

determined. Sequence substitution saturation was also calculated using the entropy-based 

index implemented in the program DAMBE (Xia et al., 2003) enabling TS and TV values to 

be plotted against p-distance for each marker. Occurrence/identification of evolutionary 
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“noise” could then be identified in the form of substitutional saturation, which could have 

affected phylogenetic reconstruction and accurate identification of species.  

 

To provide insights into the evolutionary relationships between populations of Radix spp. 

collected in this study and other geographical isolates from Eurasia, the cox1 sequences were 

compared to previously published sequences of the same species from different localities. The 

majority of available phylogeographical data for snails are based on cox1 sequences; several 

authors have indicated the excellent ability of the marker to differentiate geographical 

lineages in other species (Hayes et al., 2008; Kane et al., 2008; Lv et al., 2013).  Cox1 

sequences were aligned using the same method as above with published sequences 

representing different geographical regions within and between countries where possible 

Molecular diversity within the alignment was calculated as above and the number of 

haplotypes (h) and haplotype diversity (Hd) were considered. Phylogenetic analysis was 

initially performed using the MP approach as previously described using MEGA alongside 

the generation of parsimonious haplotype network gene genealogies in TC1.21 (Clement et 

al., 2008), as reported in Schniebs et al. (2011; 2013), to assess the evolutionary relationships 

between snails from different geographical locations.   

 

3. Results 

 

3.1 Phylogenetic species identification based on cox1 and ITS 

 

The cox1 sequences produced an alignment of ~570 bp without gaps. In contrast, the ITS2 

sequences produced an alignment of 439 bp after editing as a result of length variation within 

and between species.  Despite these differences, maximum likelihood phylogenetic analysis 

of cox1 and ITS2 (Fig. 1 and 2) provided the same overall inter-species relationships with two 

major groups occurring. The “R. balthica” group contained a mixed clade of R. balthica and 

R. peregra, with a sister clade made up of all reference sequences of R. ampla. Radix labiata 

also fell into the “R. balthica” group appearing as a distinct sister taxa to the R. balthica/R. 

peregra + R. ampla subclade. The “R. auricularia” group contained R. auricularia, R. 

natalensis and R. rubiginosa.  Within the “R. auricularia” group the cox1 analysis showed 

that R. natalensis forms a distinct sister group to a R. rubiginosa + R. auricularia subclade 

which is contrasted in the ITS2 analysis with R. natalensis and R. rubiginosa forming a 

subclade which appears as a sister group to R. auricularia (Fig. 1 and 2). In the maximum 



  

9 

 

parsimony analysis the ITS2 alignment provided an overall tree topology which was identical 

to the ML phylogeny, but with greater nodal support of bootstrap >50. This was not the case 

for the cox1 marker.  Despite high nodal support, the MP phylogenies indicated that R. 

natalensis and R. rubiginosa were more closely associated with the R. balthica group. The 

general topological patterns in the trees did agree with other published phylogenies (e.g. 

Correa et al., 2010; Remigio, 2002; Schniebs et al., 2011, 2013). Also, the cox1 phylogenies 

showed greater nodal support with 20 nodes in the ML analysis and 18 nodes in the MP 

analysis being supported with bootstraps of >50 compared to 14 nodes in the ML and  16 MP 

phylogenetic analyses of ITS2.  The cox1 tree shows a greater level of topological structuring 

with well supported sub-clades of R. balthica/R.peregra and R. auricularia forming which are 

absent in the ITS2 phylogeny (Fig. 1 and 2). However, regardless of these suitable differences 

in tree topologies, both the cox1 and ITS2 sequences generated from snails in this study 

clearly separate between the two species and can be identified as R. balthica and R. 

auricularia with SnUK1 – 6 and SnUK 15 – 16 clustering with all reference sequences of R. 

auricularia and SnUK 7 – 14 and SnUK 17 – 21 with all reference sequences of R. 

balthica/R. peregra.   

 

The current phylogenetic analysis has not differentiated R. balthica and R. peregra as distinct 

species (Fig. 1 and 2). A lack of genetic differentiation was also illustrated between the p-

distances of unique cox1 and ITS2 haplotypes within the R. balthica clade (Table 1) with an 

average divergence between R. balthica and R. peregra cox1 sequences of 1.21 % and 0.2 % 

for ITS2 sequences (Table 1). Detailed cox1 analysis revealed 19 unique haplotypes within 

the R. balthica/R.peregra clade which were represented by a single cox1 sequence of R. 

peregra (JN614401), 18 R. balthica sequences, of which 12 were from published works and 6 

were generated in this study (SnUK 11, 17 – 21). When the only R. peregra specific 

haplotype was compared to all other R. balthica haplotypes within the clade, again only a low 

level of divergence was recorded ranging from 0.5 – 2%. Of the 34 ITS2 sequences which 

make up the majority of the R. balthica/R.peregra clade, only six unique haplotypes were 

identified represented by 2 R. balthica haplotypes (HE573086, HQ003232),  2 R. peregra 

haplotypes (AJ319634, KF887039) and 2 novel sequences generated in this study (samples 

SnUK 9 and SnUK 18) (Table 3). Across the unique ITS haplotypes the divergence was 

substantially lower than that seen in the cox1 ranging from 0.5 – 0.9% (Table 3). Therefore, 

all sequences within the R. balthica/R. peregra group will be considered as R. balthica based 

on the current cox1 and ITS2 analysis   
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3.2 Molecular diversity and characteristics of cox1 and ITS2 alignments 

 

When cox1 and ITS2 were compared, nucleotide diversity and divergence were consistently 

higher in cox1 with marked differences seen in the number of segregating sites, nucleotide 

diversity, pairwise divergence and specific substitutions (Table 4a). There appeared to be no 

substitutional saturation detected in the cox1 alignment (Iss: 0.318< Iss.c: 0.740, P = 0.000), 

nor the ITS2 alignment (Iss: 0.0725 < Iss.c: 0. 71225, P = 0.000) (Table 4b). When TV and 

TS values were plotted against p-distance, again there was no major indication of saturation 

of a particular substitutional type for cox1 or ITS2 (Fig. 3).  Importantly, cox1 alignment 

consistently showed a greater number of substitutions than ITS2 as p-distance increased (Fig. 

3). Overall, the lack of saturation, and/or differences in the number of substitutions, indicate 

that all substitutional types had phylogenetic value and that both markers are not only suitable 

for species identification, but also for accurate phylogenetic reconstruction (Table 4b).  

 

 

3.3 Evolutionary relationships between geographical isolates of Radix auricularia and Radix 

balthica  

 

The cox1 alignments consistently displayed greater nucleotide diversity and divergence across 

eight R. auricularia from Hampshire and Surrey (Pen Ponds) and thirteen R. balthica from 

Scotland, Norfolk and Surrey (Ham Dip Pond). Although more R. balthica were analysed, R. 

auricularia displayed greater diversity for both markers (Table 5). Due to the high level of 

variation in the cox1 and a lack of corresponding ITS2 and Cox1 sequences from previous 

studies, cox1 sequences were used for geographical comparisons of haplotype diversity.   

Thirty three cox1 sequences of R. auricularia were compared between ten countries ranging 

across Eurasia.  The eight UK sequences were represented only by data in this study as no 

previously published sequences were found. Twenty three individual haplotypes were 

identified and a high level of molecular diversity (S = 88; π = 0.03289) and divergence (K = 

14.07765) were apparent (Table 5). Fifty five sequences of R. balthica were compared 

between five countries; the majority of the sequences (21 sequences + 13 sequences from this 

study) were from the UK. Thirty four novel haplotypes were identified and relatively low 

levels of molecular diversity (S = 105; π = 0.01487) and divergence (K= 7.51044) were seen 

(Table 5).  
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In order to identify relationships between different geographical isolates, phylogenetic 

analysis was performed using the cox1 sequences of R. auricularia and R. balthica, due to the 

considerably higher diversity of cox1 than ITS2. The R. auricularia phylogeny separated into 

three major clades with clade 1 containing all sequences from mainland Europe and the UK 

(Fig. 4). A second major clade (clade 2) consisted of individuals from Russia and Tajikistan 

and a final third clade (clade 3) was composed of a single individual sequence from Armenia 

(JN794353). Within clade 1 the UK snails separated into two subclades (SC), a European 

clade (SC1) made up of haplotypes from Croatia, Montenegro, Albania, Russia, Greece, 

France, Spain, Armenia and SnUK 1 - 2 from Hampshire, UK. A second UK specific 

subclade (SC2) contained all the other UK haplotypes (Fig. 4a). The same interrelationships 

between R. auricularia haplotypes were also seen in haplotype network analysis and again the 

UK haplotypes fell into the two distinct clades with a UK specific grouping and a single 

haplotype falling into a European group (Fig 4b).  However, the haplotype network analysis 

showed the Russian and Tajikistan sequences to form a distinct group from the European 

sequences with the exception of Russian haplotype JN794508 which showed to be more 

closely akin to haplotypes from Albania (EU818819) and Greece (EU818811) in both the 

phylogenetic and network analysis (Fig. 4a and b). Interestingly, JN794353 from Armenia, 

which formed a unique clade in the MP phylogeny, appeared to cluster with the other 

European haplotypes in the network analysis but did form a unique discrete lineage.   

 

Unlike R. auricularia no discrete geographical specific clades were observed in the MP 

phylogeny of the R. balthica haplotypes (Fig. 5a). Only a single haplotype was seen from 

Norfolk which was also location specific; the two haplotypes from Wester Ross were also 

geographically specific. However, one of the haplotypes, H11a, from Surrey was shared 

between snails from Buxton in the North West of England and also from Sweden (Fig. 5a). 

With the exception of HQ244929 which formed a distinct lineage, the lack of divergence and 

distinct clades in both the phylogenetic and haplotype network analysis illustrates the close 

relationship between sequences from mainland Europe and the UK (Fig. 4a and 4b).  

 

4. Discussion 

 

4.1 Molecular phylogenetics for identifying Radix species  
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The molecular characterisation of Radix species contradicted the original identifications based 

on shell morphology.  Phylogenetic analysis of both cox1 and ITS2 sequences identified 

snails as R. balthica and R. auricularia which differentiated into two distinct clades, the 

R.balthica group a major clade containing only species from Europe, and the R. auricularia 

group containing African and Eurasian species. This provides further evidence to suggest that 

R. balthica is a Palaearctic species distributed throughout Europe from Iceland to 

Mediterranean countries (Schniebs et al., 2011). The clustering of R. auricularia with the 

African R. natalensis and the Asian R. rubigonosa was interesting indicating a potential Old 

World origin. Although it is not possible to speculate an Asian or European origin of R. 

auricularia, the snail does show a greater distribution than R. balthica being found throughout 

Eurasia and is common in Europe and the near East, parts of South East Asia including 

Thailand and the Indian subcontinent (von Oheimb et al., 2011). Only extensive phylogenetic 

analysis with multiple nuclear and mitochondrial markers will elucidate true species inter-

relationships within the genus and resolve many of the remaining taxonomic issues (Bargues 

et al., 2001; Correa et al., 2011; Pfenninger et al., 2006).      

 

Interestingly, R. labiata formed a distinct well supported clade within the R. balthic group 

separating it from R. balthica and R. peregra. Schniebs et al. (2013) had highlighted that R. 

labiata had been synonymised with R. peregra and also had close taxonomic affinity with R. 

balthica. Radix labiata does share an over-lapping distribution throughout Europe with R. 

balthica and R. peregra and the synonomysing of R. labiata and R. peregra was initially on 

based on overlapping morphological characters of shell and internal anatomy (Schniebs et al., 

2013). However, the phylogenetic separation between R. labiata and R. peregra indicate that 

they are separate species. This is also supported by high levels of divergence in the cox1 with 

R. labiata and R. peregra at 12.12% and also between R. labiata and R. balthica 10.33%. This 

is considerably higher than the typical 5% divergence in mitochondrial genes between 

mollusc species as illustrated in studies on Eobania species (Desouky and Busais, 2012), 

Goniobasis species (Dillon and Frankis, 2004), Helixena species (Van Riel et al., 2005), 

Iberus species (Elejalde et al., 2008), and Rhagada species (Johnson et al., 2013)       

However, reference sequences of R. balthica and R. peregra clustered together in both cox1 

and ITS2 phylogenies showing no differentiation between species, which was also confirmed 

with a low cox1 divergence of 1.21%, far below the typical 5% divergence between species. 

This is consistent with other studies where R. balthica, R. peregra and R. ovata could not be 

differentiated based on molecular data (Bargues et al., 2001; Huňova et al., 2012). 
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Wullschleger and Jokela (2002) suggested that R. peregra and R. ovata were different from R. 

balthica due to their different growth rates and reproductive schedules in similar 

environments and avoidance of crossing with apparent ‘other’ species from sympatric 

populations. However, partitioning of snail populations is well known for some species 

showing high morphological and reproductive heterogeneity with several phenotypes being 

sympatric, but indistinguishable as species at the molecular level including the land snail 

Cepea nemoralis (Cook, 1998; Ochman et al., 1983) and the fresh water snails within the 

Bulinus genus (Kane et al., 2008; Rollinson et al., 2009).  Radix balthica shows adaptive 

responses in morphological and life history traits as a direct response to environmental factors 

(Pfenninger et al., 2006; Rundle et al., 2011; Schniebs et al., 2011) showing great divergence 

within species, but also considerable phenotypic overlap between others. This was 

particularly true for R. balthica and R. auricularia, illustrating that even within sympatric 

populations of distantly related species, phenotype convergence would occur as a result of 

similar selective pressures confounding characters used for taxonomic identification using 

traditional methods (Schniebs et al., 2011). This issue has also been highlighted in other 

freshwater snails including the Bulinus forskalii group whereby sympatric species are 

morphologically indistinguishable and can only be identified through molecular methods 

(Jones et al., 1997, 2001). Consequently, molecular barcoding is now standard practice for 

Bulinus species identification (Kane et al., 2008; Rollinson et al., 2009). Based on the results 

in this current study, R. labiata is a distinct species from R. peregra, and R. balthica and R. 

peregra are the same species. This also illustrates that reference sequences of R. peregra that 

are available on GenBank have clearly been produced for snails which have been mis- 

identified based on shell and/or internal anatomy.   

 

4.2 Molecular markers for species identification and a role of DNA barcoding 

 

Although several authors now agree that molecular taxonomy is essential for delineation and 

identification of Radix species (Correa et al., 2011; Huňova et al., 2012; Schniebs et al., 

2011), there is a lack of consensus on the correct marker to employ. Major studies have 

employed ITS2, but have provided few alternatives. Bargues et al. (2001) illustrated that 

phylogenetic topological changes can occur when comparing several genera of lymnaeids, 

and although genera specific clades tend to occur, the interrelatedness of these clades could be 

confounded by the kind of phylogenetic analysis employed. The difficulty with using ITS2 

sequences for phylogenetic analysis is primarily caused by sequence length variation between 
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species and low levels of variation between closely related species. Low differentiation 

between R. balthica, R. lagotis, R. labiata and R. ampla has been recorded (Schniebs et al., 

2011) and confirmed in this study.  In the current study, ITS2 differentiated between species 

and produced well-supported phylogenies. The cox1 tree, however, had greater nodal support 

producing phylogenies with longer branch lengths and each clade possessed several sub-

clades within the R. auricularia and R. balthica data. Cox1 also showed greater molecular 

diversity and divergence than ITS2 in cross-species analysis and results tended to be 

concurrent with other studies that have used different mitochondrial markers for Radix 

identification and phylogenetics such as cyt-b (Schniebs et al., 2011, 2013) and 16s (Correa et 

al., 2010; Remigio, 2002). Cox1, therefore, appears to have a higher phylogenetic signal and 

can differentiate between closely related species more effectively than ITS2 (Pfenninger et al., 

2006; Schniebs et al., 2011). This characteristic of mitochondrial markers has been seen 

consistently across the Planorboidea (Albrecht et al., 2007; Kane et al., 2008) with authors 

indicating a preference for cox1 and other mitochondrial markers. However, the higher rate of 

evolution of mitochondrial genes can cause problems when identifying taxa to species level. 

This is because of the risk of substitutional saturation affecting phylogenetic signal that can 

produce erroneous relationships and incongruence between DNA loci (Jørgensen et al., 2007). 

Here, no such saturation was identified in cox1 or ITS2 sequence data demonstrating that both 

markers are useful for phylogenetic reconstruction and species identification. Although both 

cox1 and ITS2 markers are as easy to amplify as each other from snail material based on the 

differences in nodal support and uncorrected p-distance estimates of divergence, cox1 should 

preferentially be used over ITS2.    

 

4.3 Evolutionary inter-relationships between UK Radix auricularia and R. balthica and 

populations from mainland Europe    

 

Although fewer R. auricularia were identified in the present study, higher molecular diversity 

existed within cox1 and ITS2 sequences relative to those of R. balthica. When R. auricularia 

sequences were compared with those from other localities, three distinct clades were formed 

with a European clade (clade 1) an Asiatic clade (clade 2) with snails from Russia and 

Tajikistan and a third clade (clade 3) containing only single sequence from Armenia 

(JN794353). These groups were also well supported in the haplotype network with each of the 

major clades reappearing along with same subclades. It is clear that there is a definite 

Eurasian distribution of Radix auricularia and the separation between clades 1 and 2 is likely 
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to be due to the effect of geographical divergence as the Russian sequences in SC4 of clade 2 

were generated from populations on the far Eastern coast of Russia, in Kamchatka (Bolotov et 

al., 2014) and those in SC5 of clade 2 are from the Russia boarders of Kazakhstan (von 

Oheimb et al., 2011). Interestingly, JN794508 from Russia clusters into clade 1 more akin 

with haplotypes from Albania and Greece. The position of JN794508 further illustrates the 

importance of geographical separation on genetic differentiation in R. auricularia as this 

particular sample was taken from the Krasnodar, where Russia boarders the Black Sea (von 

Oheimb et al., 2011).       

 

Both the phylogenetic analysis and haplotype network of R. auricularia indicate two distinct 

groups of the snails in the UK which could be indicative of multiple historical invasion events 

of R. auricularia into the UK. The presence of a UK specific subclade SC2 may have 

occurred as a result of long term isolation of populations from mainland Europe as a 

consequence of the separation of the UK from the European landmass at the end of the last ice 

age. Freshwater gastropod populations diverge at high evolutionary rates, not only because of 

rapid generation times, but also as a result of self-fertilisation causing excessive genetic drift 

as seen with the planorbids Bulinus truncatus (Djuikwo-Teukeng et al., 2011) and Physa 

acuta (Bousset et al., 2004).  However, as stated previously, there is a UK haplotype more 

akin to those from mainland Europe. This haplotype, from Hampshire, may have invaded and 

established relatively recently. The Hampshire locality is a feeding site for migratory birds, 

particularly those from mainland Europe. Considerable evidence exists that birds traffic snail 

eggs and juveniles on feathers and feet (Figuerola et al., 2005); snails might also survive 

passage through bird digestive systems (Wada et al., 2012). Such translocation could account 

for some of the relations between UK specific populations of R. auricularia and also those of 

other populations within the European clade. This may explain disparities in relationships 

between haplotypes and geographical locations.  

 

The molecular diversity of R. balthica was considerably lower than that of R. auricularia, 

most likely because the comparative data available was generated from a few populations 

across Europe and there was over-representation of R. balthica from the UK in the analysis. 

However, unlike R. auricularia, R. balthica appears to be restricted to Europe and populations 

are likely to be recovering from bottle-neck events caused during the last ice age (Pfenninger 

et al., 2006; 2011). Haplotypes and lineages appeared to be shared between the UK and 

European countries with few country specific clades emerging. There did not appear to be any 
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geographically distinct lineages when R. balthica cox1 sequences were compared with others 

suggesting recent rapid divergence between the mainland European and UK populations and 

between populations in the UK. Similar relationships between populations of R. balthica have 

also been described by Pfenninger et al. (2011) possibly as a result of passive dispersal by 

water birds. Such dispersal events would have resulted in multiple invasions from mainland 

Europe and continual movement of snails around the UK diluting effects of genetic drift and 

other population processes by the continual input of novel genotypes into previously 

colonised habitats (Pfenninger et al., 2011). Thus, UK R. balthica populations may have 

multiple origins and sufficient isolation/time has not yet to allow subpopulation structuring 

with reduced diversity, a result of most populations establishing recently, primarily through 

self-fertilisation. 

 

The cox1 marker has provided excellent inter-population resolution and can deliver 

substantial phylogeographical signal to measure differentiation between geographical isolates. 

Although cox1 indicates that there could be have been several potential origins for both Radix 

species in the UK, based on the findings from this study, it could be suggested that R. 

auricularia populations are probably far older and more established than R. balthica 

populations due to increased phylogenetic resolution and structuring.  

 

4.4 Conclusion and final remarks 

 

Molecular identification is the only reliable method to identify Radix species as shell and 

other anatomical features are morphologically plastic and most Radix species share 

morphological characters as a result of convergent adaptations to shared environments. 

Therefore, without extensive expertise in malacology, accurately distinguishing relationships 

between species is impossible. However, if molecular approaches are to be embraced, a 

detailed understanding of the taxonomic and phylogenetic power of molecular markers and 

agreement on which specific markers should be used is needed. As with other freshwater 

snails, cox1 and ITS2 markers were excellent for differentiating species of Radix, but cox1 

appears to be superior for phylogenetic species delineation. The cox1 marker is also useful for 

providing evolutionary insights into the population biology of Radix species allowing the 

measurement of genetic differentiation between snail populations and historical movements 

and colonisations. Molecular approaches to elucidate the taxonomy and population biology of 

medically and veterinary important snails is becoming a fundamental prerequisite to 
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understand the epidemiology of disease and is now enabling the focusing of limited control 

resources (Kane et al., 2008; Rollinson et al., 2009). Currently there is a considerable lack of 

knowledge of diversity of snail vectors of disease in the UK and, only through further focused 

studies of snail species and their populations, will a true understanding of the epidemiology 

and risk of fluke infection be achieved. This is of particular importance in the light of the 

increase in the prevalence of food borne zoonosis in the UK such as Fasciola (Gordon et al., 

2013; Howell et al., 2015), those with potential impact on food security such as Diplostomum 

species which cause major problems for fish farms in Northern Europe (Hakalahti et al., 

2006), and the emergence of unknown infections such as agents of swimmers itch in UK 

recreational waterways (Lawton et al., 2014). All of which could have long term economic 

impacts.  
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Figure legends: 

 

Figure 1: Phylogenetic reconstruction of the genus Radix and identification of Radix 

species in the UK based on cox1. Species of Radix were determined based upon the 

phylogenetic clustering of DNA sequences. Phylogenetic reconstruction of species based on 

cox1 sequences shows the identification of UK Radix species separating into defined Radix 

auricularia and R. balthica. Phylogenetic trees presented are constructed a) using maximum 

likelihood (ML) character based methods constructed under the conditions of the HKY+G 



  

26 

 

model and b) MP phylogenies constructed from a consensus tree inferred from 10000 most 

parsimonious trees obtained using the close–neighbour-interchange algorithm with a search 

level of 3 in which initial trees were obtained with random addition of sequences over 3000 

replicates. The nodal support values shown are the boot strap values from each analysis based 

on 1000 replicates with a 50% cut off. 

 

Figure 2: Phylogenetic reconstruction of the genus Radix and identification of Radix 

species in the UK based on ITS2. Species of Radix were determined based upon the 

phylogenetic clustering of DNA sequences. Phylogenetic reconstruction of species based 

ITS2 sequences shows the identification of UK Radix species separating into defined Radix 

auricularia and R. balthica. Phylogenetic trees presented are constructed using maximum 

likelihood constructed under the conditions of the T93+I model and b) MP phylogenies 

constructed from a consensus tree inferred from 10000 most parsimonious trees obtained 

using the close–neighbour-interchange algorithm with a search level of 3 in which initial trees 

were obtained with random addition of sequences over 3000 replicates. The nodal support 

values shown are the boot strap values from each analysis based on 1000 replicates with a 

50% cut off. 

 

 

Figure 3: Nucleotide substitutional plots of transitions (TS) and transversions (TV) for 

Radix species and outgroup Lymnaea stagnalis relative to genetic distance (p-distance). 

TS/TV plot of a) cox1 and b) ITS2. There is an overlap of TS and TV in both cox1 and ITS2 

indicating no substantial substitutional saturation within the markers when compared across 

species.  

 

Figure 4: Phylogenetic comparisons of cox1 haplotypes from several geographical 

isolates of Radix auricularia. a) Maximum parsimony (MP) reconstruction of cox1 

haplotypes of Radix auricularia. b) Most parsimonious haplotype network of cox1 haplotypes 

of R. auricularia where the size of a shaded circle represents the numbers of sequences within 

a specific haplotype.  

 

Figure 5: Phylogenetic comparisons of cox1 haplotypes from several geographical 

isolates of Radix balthica. a) Maximum parsimony (MP) reconstruction of cox1 haplotypes 

of Radix balthica. b) Most parsimonious haplotype network of cox1 haplotypes of R. balthica 
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where the size of shaded circle represents the numbers of sequences within a specific 

haplotype. Both analyses illustrate the lack of defined genetic differentiation between 

localities in the UK and mainland Europe.  
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Tables:  

 

Table 1: Average uncorrected p-distance of cox1 in the bottom left corner and ITS2 in the top right corner between Radix species used in 

the phylogenetic analysis 

 

 

 

 

 

 

Lymnaea 

stagnalis R. auricularia R. rubiginosa R. natalensis R. labiata R. ampla R. balthica R. peregra 

Lymnaea 

stagnalis  

0.29632 

(SD±0.00717) 

0.30120  

(SD±na) 

0.29915  

(SD±na) 

0.27500 

(SD±0.001113) 

0.27105 

(SD±0.001855) 

0.29628 

(SD±0.001441) 

0.28541 

(SD±0.001101) 

R. auricularia 

0.17153 

(SD±0.003225)  

0.064 

(SD±0.010193) 

0.063 

(SD±0.011787) 

0.109 

(SD±0.018418) 

0.117 

(SD±0.020671) 

0.125 

(SD±0.01605) 

0.122 

(SD±0.016978) 

R. rubiginosa 

0.16637 

(SD±na) 

0.13305 

(SD±0.00508)  

0.028       

(SD±na) 

0.110 

(SD±0.004945) 

0.127 

(SD±0.003638) 

0.124 

(SD±0.0043) 

0.121 

(SD±0.002721) 

R. natalensis 

0.16913 

(SD±0.00124) 

0.14236 

(SD±0.01892) 

0.138205 

(SD±0.001105)  

0.118 

(SD±0.00628) 

0.127   

(SD±0.00310) 

0.133 

(SD±0.005624) 

0.132 

(SD±0.003985) 

R. labiata 

0.15221 

(SD±0.00289) 

0.13684 

(SD±0.04712) 

0.15548 

(SD±0.004407) 

0.13399 

(SD±0.004622)  

0.075 (SD± 

0.005217) 

0.074 

(SD±0.017246) 

0.076 

(SD±0.010072) 

R. ampla 

0.13230 

(SD±0.0011) 

0.12782 

(SD±0.03940) 

0.14922 

(SD±0.001474) 

0.13480 

(SD±0.00622) 

0.09593 

(SD±0.032076)  

0.045 

(SD±0.00951) 

0.047 

(SD±0.005008) 

R. balthica 

0.16247 

(SD±0.003075) 

0.13821 

(SD±0.019317) 

0.14695 

(SD±0.002355) 

0.13320 

(SD±0.006245) 

0.10330 

(SD±0.0326) 

0.08535 

(SD±0.018989)  

0.002 

(SD±0.002555) 

R. peregra 

0.10625 

(SD±0.09201) 

0.14861 

(SD±0.0042) 

0.1521    

(SD±na) 

0.13996 

(SD±0.007115) 

0.12120 

(SD±0.005628) 

0.09283 

(SD±0.0014) 

0.01210 

(SD±0.004054)  
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Table 2: Uncorrected p – distances between sequences of unique cox1 haplotypes between R. balthica and R. peregra represented as p – 

distance in the bottom left and numbers of nucleotide substitutions between sequences in the top right 
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JN614401 

R. peregra 

 4 3 5 7 6 6 3 7 11 6 7 5 9 9 8 7 7 6 

KP242666 
R.  balthica 

0.007  3 6 5 4 5 3 5 9 4 5 5 7 7 6 5 5 4 

KP242465 
R.  balthica 

0.005 0.005  6 6 5 5 4 6 10 5 6 3 8 8 7 6 6 5 

KP242850 

R. balthica 

0.009 0.01 0.01  5 4 3 5 5 9 4 5 4 7 7 6 5 5 4 

KP242782 
R. balthica 

0.012 0.009 0.01 0.009  3 4 6 4 8 3 4 4 6 6 5 4 4 3 

KP242756 
R. balthica 

0.01 0.007 0.009 0.007 0.005  3 5 3 7 2 3 3 5 5 4 3 3 2 

KP242646 
R. balthica 

0.01 0.009 0.009 0.005 0.007 0.005  6 4 8 3 4 3 6 4 5 4 4 3 

KP242320 
R. balthica 

0.005 0.005 0.007 0.009 0.01 0.009 0.01  6 10 5 6 6 8 5 7 6 6 5 

HQ244855 

R. balthica 
0.013 0.009 0.011 0.009 0.007 0.006 0.007 0.011  6 3 2 4 3 7 2 1 4 3 

HQ244977 
R. balthica 

0.02 0.017 0.019 0.017 0.015 0.013 0.015 0.019 0.011  7 6 7 7 2 6 5 8 7 

HQ244915 
R. balthica 

0.011 0.007 0.009 0.007 0.006 0.004 0.006 0.009 0.006 0.013  3 3 4 6 3 2 3 2 

HQ244935 
R. balthica 

0.013 0.009 0.011 0.009 0.007 0.006 0.007 0.011 0.004 0.011 0.006  4 3 3 2 1 4 3 

HQ244783 

R. balthica 

0.01 0.01 0.006 0.008 0.008 0.006 0.006 0.012 0.008 0.013 0.006 0.008  5 5 4 3 4 3 

SnUK 11 

 

0.016 0.012 0.014 0.012 0.01 0.009 0.01 0.014 0.006 0.013 0.007 0.006 0.01  4 3 2 6 5 

SnUK 17 

 

0.016 0.012 0.014 0.012 0.01 0.009 0.01 0.014 0.006 0.013 0.007 0.006 0.01 0.007  3 2 6 5 

SnUK 18 

 

0.014 0.01 0.012 0.01 0.009 0.007 0.009 0.012 0.004 0.011 0.006 0.004 0.008 0.005 0.005  1 5 4 

SnUK 19 

 

0.012 0.009 0.01 0.009 0.007 0.005 0.007 0.01 0.002 0.009 0.004 0.002 0.006 0.003 0.003 0.002  4 3 

SnUK 20 

 

0.012 0.009 0.01 0.009 0.007 0.005 0.007 0.01 0.007 0.015 0.006 0.007 0.008 0.01 0.01 0.009 0.007  1 

SnUK 21 

 

0.01 0.007 0.009 0.007 0.005 0.003 0.005 0.009 0.006 0.013 0.004 0.006 0.006 0.009 0.009 0.007 0.005 0.002  
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Table 3: Uncorrected p – distances between sequences of unique ITS2 haplotypes between R. balthica and R. peregra represented as p – 

distance in the bottom left and numbers of nucleotide substitutions between sequences in the top right 

 

HQ003232          

R. balthica 

HE573086            

R  balthica 

AJ319634           

R. peregra 

KF887039           

R. peregra SnUK 9 SnUK 18 

HQ003232  

R. balthica 2 3 2 2 2 

HE573086 

R. balthica 0.006 3 2 2 2 

AJ319634  

R. peregra 0.009 0.008 2 3 3 

KF887039  

R. peregra 0.006 0.005 0.005 2 2 

 

SnUK 9 0.006 0.005 0.008 0.005 2 

 

SnUK 18 0.006 0.005 0.008 0.005 0.005 

 

 

 

 

 

 

 

 

 

Table 4: Genetic diversity and estimates of nucleotide substitution saturation between Radix species using Cox1 and ITS2. A) Genetic 

diversity where S = number of segregating sites; π = nucleotide diversity; K = number of observed pairwise differences; Tv = mean 
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transversions; Ts = mean transitions; p-distance = uncorrected pairwise distance. B) Nucleotide substitution saturation as described by Xia et al. 

(2003) where significant Iss < Iss.c = little saturation; non-significant Iss < Iss.c = little saturation; significant Iss > Iss.c = useless sequences; 

non-significant Iss > Iss.c = poor for phylogenetic analysis 

 

 

 

Table 5: Genetic diversity of Radix auricularia and R. balthica sampled in this study and cox1 comparisons with population data from 

other studies. S = segregating sites; h = number of haplotypes; Hd = haplotype diversity; π = nucleotide diversity; K = number of observed pair 

wise differences. 

 

 No. seq S h Hd π K 

Radix auricularia sampled in this 

study       
Cox1 8 9 5 0.857  0.00687  3.92857 

A) Genetic Diversity 
Molecular 

marker No. sites S π k Tv Ts p-distance 

Cox1 572 175 

0.10204 

 (SD±0.00497) 49.18512 

22.99734 

(SD±15.4752) 

28.02131 

(SD±14.94986) 

0.09806  

(SD±0.05683) 

ITS2 483 67 

0.03890 

(SD±0.00681) 6.84577 

12.313 

 (SD±10.56) 

13.935  

(SD±10.95) 

0.076 

(SD±0.061819) 

 

B) Substitution saturation output 
Molecular 

marker 

Proportion of  

Invariant Site Iss Iss.c DF P-value 

 

Cox 1 0.55413 0.318 0.740 214 0.000 
 

ITS2 0.08648 0.0725 0.71225 160 0.000 
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(SD±0.108) (SD±0.00191) 

ITS2 8 1 2 

0.571 

(SD±0.094) 

0.00142 

(SD±0.00023) 0.57143 

Radix balthica sampled in this study       

Cox1 13 8 6 

0.641  

(SD±0.150) 

0.00410  

(SD±0.00102) 2.20513 

ITS2 13 2 3 
0.5 

(SD±0.136) 
0.00137 

 (SD±0.00043) 0.53846 

Cox1 comparisons with data from 
populations generated by other studies       

R. auricularia 33 88 23 
0.960  

(SD±0.022) 
0.03289  

(SD±0.00761) 14.07765 

R. balthica 55 105 34 
0.969  

(SD±0.013) 
0.01487 

 (SD±0.00447) 7.51044 
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Highlights 

• Shows that Radix peregra is not responsible for the transmission of infection in the UK thanks to molecular techniques accurately identifying  “R. 

peregra” to be either Radix auricularia or Radix balthica  

• Provides a detailed comparison of the use of cox1 and ITS2 for the identification of snails of medical and veterinary and provides recommendations 

for their use 

• Provides the first evolutionary insights into the relationship between UK and European populations of Radix species in relation to disease 

transmission   

 




