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Abstract

The majority of biological processes are mediated via protein–protein interactions. Determination of residues participating in
such interactions improves our understanding of molecular mechanisms and facilitates the development of therapeutics.
Experimental approaches to identifying interacting residues, such as mutagenesis, are costly and time-consuming and thus,
computational methods for this purpose could streamline conventional pipelines. Here we review the field of computational
protein interface prediction. We make a distinction between methods which address proteins in general and those targeted at
antibodies, owing to the radically different binding mechanism of antibodies. We organize the multitude of currently available
methods hierarchically based on required input and prediction principles to provide an overview of the field.
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Protein interfaces

Proteins interact with other proteins, DNA, RNA and small mol-
ecules to perform their cellular tasks. Knowledge of protein
interfaces and the residues involved is vital to fully understand
molecular mechanisms and to identify potential drug targets
[1]. The most reliable methods to determine protein complexes
and therefore protein interfaces are X-ray crystallography and
mutagenesis. Unfortunately these techniques are expensive in
time and resources. Therefore, over the past 25 years, there has
been a rapid development of computational methods aiming to
elucidate protein complexes, such as protein interaction predic-
tion, protein–protein docking and protein interface prediction.

These three types of methods all aim at slightly different prob-
lems, protein interaction prediction attempts to give a binary
answer as to whether two proteins interact, docking aims to re-
create the pairwise residue contacts between the two binding
partners. The subject of this review is the middle ground be-
tween these two problems, protein interface prediction, where
one wishes to identify a subset of residues on a protein, which
might interact with the presumed binding partner.

Residues involved in these interfaces are normally defined
by an intermolecular distance threshold (usually between 4.5
and 8Å [2] with the most common value being 5Å [3]) or a reduc-
tion of accessible surface area in a complex compared with the
monomer [4] (Supplementary Figure S1 displays an example).

Reyhaneh Esmaielbeiki is a postdoctoral researcher in Computational Structural Biology at University of Oxford. She has been working on protein inter-
face prediction and modelling of membrane proteins.
Konrad Krawczyk is a research fellow in Structural Biology at the Department of Statistics and the Department of Computer Science, Oxford University.
Bernhard Knapp is a postdoctoral research fellow in Computational Structural Biology at the University of Oxford. His research interest is in the modelling
of immune system-related protein structures and their dynamics.
Jean-Christophe Nebel is an associate professor in Computing Science and Bioinformatics in the Faculty of Science, Engineering and Computing at
Kingston University, London. His research interests include protein interaction and structure prediction.
Charlotte M. Deane is a professor in the Department of Statistics, University of Oxford. Her research interests include the areas of protein structure predic-
tion, evolution and interaction.
Submitted: 29 January 2015; Received (in revised form): 18 March 2015

VC The Author 2015. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1

Briefings in Bioinformatics, 2015, 1–15

doi: 10.1093/bib/bbv027
Paper

 Briefings in Bioinformatics Advance Access published May 13, 2015
 at K

ingston U
niversity L

ibrary on M
ay 19, 2015

http://bib.oxfordjournals.org/
D

ow
nloaded from

 
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kingston University Research Repository

https://core.ac.uk/display/29471540?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
 in order
very 
-
-
to
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv027/-/DC1
http://www.oxfordjournals.org/
http://bib.oxfordjournals.org/


Experiments have shown that the choice of interface definition
has only a minor impact on a predictors’ performance [5]; the
threshold values however are critical for selecting specific fea-
tures of interfaces [6].

An interface residue predictor receives as input a protein or
a pair of proteins. It then predicts a subset of residues on the
proteins surface that are involved in intermolecular inter-
actions. When comparing the true interacting residues with the
prediction, it is standard to calculate the number of true posi-
tives (TP), false positives (FP), true negatives (TN) and false
negatives (FN) (Supplementary Figure S2). These four values
give rise to a variety of performance metrics (Table 1), which
can be used to assess the quality of the predictor.

The field of protein–protein interface prediction has diversi-
fied into many different approaches (Figure 1) [7]. Methods
might use intrinsic features of the sequence or the structure,
evolutionary relationships or use an existing complex as a refer-
ence template. Predictors make use of many distinct quality
measures, different training and testing data sets, thus a fair
comparison between them is hard [5]. In this review we attempt
to provide a classification for the majority of existing methods
in order to get a clear overview of the field. Based on this, we
offer suggestions as to how the field could progress, focusing on
improved predictions and unified evaluation metrics.

Protein interface predictors

Computational methods for identifying interface residues can
be broadly divided into two non-exclusive categories based on
their use of protein information: (1) intrinsic-based approaches
based on specific features of protein sequences and/or struc-
tures and (2) template-based approaches that exploit the con-
servation found between structurally similar proteins. A
simplified overview of all methods is given in Figure 1, and de-
tailed descriptions are provided in the subsequent sections
along with a summary in Table 2.

Intrinsic-based predictors
Sequence-based interface predictors

Sequence-based interface predictors use only the sequence fea-
tures of the query proteins to detect interfaces and thus, can be

applied to almost any protein. Early work exploited sequence
features such as hydrophobicity distribution [8], composition/
propensity to be an interface residue [9] and physico-chemical
properties [4]. Predictors have also combined such features,
using machine learning strategies such as support vector ma-
chine (SVM) [4, 10], neural-network [11] or random-forest [12].
Such approaches suffer from low specificity [4] and therefore
later predictors proposed integration of evolutionary informa-
tion to further improve prediction accuracy [4, 9].

Sequence feature-based predictors
The success of evolutionary information in predicting func-
tional sites [13, 14] inspired many interface predictors to
combine evolutionary information with other sequence fea-
tures [15, 16]. Interface residues are more conserved than
the rest of the protein surface [17, 18] and these conserved pos-
itions are identified from multiple sequence alignments (MSAs)
[5, 18, 19] often with phylogenetic trees assisting the procedure
[19–21] (Figure 1A).

The first predictor [16] that combined evolutionary informa-
tion along with residue composition achieved an accuracy of
64%. This was a 6% increase over the previous sequence-based
study [9]. Since then, several methods [12, 15] have experi-
mented with a wide range of sequence-derived features com-
bined with evolutionary information. However, the most recent
method in this category [10] showed that using hydrophobicity
alone combined with evolutionary information can achieve
results similar to methods that use a far larger number of fea-
tures [12].

In addition to evolutionary information, some sequence-
based methods [22, 23] take advantage of predicted structural
information (i.e. surface accessibility and secondary structure).
Use of predicted structural information in ISIS [22] and PSIVER
[23] increased the sensitivity of their predictions, for example,
ISIS increased its sensitivity to 20% from a baseline of 0.5% [9].
These results demonstrate that inclusion of predicted structural
information can increase the accuracy of interface prediction.

It appears that current sequence-based methods have
reached their limit because further combination of available
features does not improve accuracy. Therefore, alternative
approaches and sources of information should be investigated.

Table 1. Commonly used metrics to assess the quality of interface residue predictions

Metric Formula

Specificity
TN

TNþ FP

Sensitivity (also known as recall)
TP

TPþ FN

Precision
TP

TPþ FP

F1 (harmonic mean of precision and recall)
2� precision� recall

precisionþ recall

Accuracy
TPþ TN

TPþ TNþ FPþ FN

Matthews correlation coefficient (MCC)
ðTP� TNÞ � ðFP� FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTPþ FPÞ � ðTNþ FPÞ � ðTNþ FNÞ

p

A single interface prediction consists of a set of residues believed to constitute the binding site and those that do not. Out of those

believed to be the binding site, if they are truly binding residues they are called TP, otherwise they are FP. Out of the residues identified

as non-binding, if they do not constitute the interface, they are called TN and FN otherwise (see Figure S2). These four numbers are

used to calculate a range of performance metrics presented in this table.
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Figure 1. Classification of existing protein interface prediction methods. In the leftmost column we present the input required by a method. In the middle column, a simpli-

fied pipeline for the protocol is presented. In the rightmost, prediction column, the resulting binding site is shown in red. Most methods output a ranked list of possible bind-

ing sites. Here for simplicity, we show a single result for each method. (A) Sequence-feature-based predictors: These methods receive a protein sequence. Sequential

features of the input are compared with features thought to contribute to a residue being part of an interface, such as conservation scores and physico-chemical properties.

(B) 3D mapping-based predictors: These methods receive a protein structure and its sequence as input. Evolutionary conservation is coupled with 3D surface and sequence

information. Conserved residues can be grouped according to their surface proximity to form contiguous interface patches. (C) 3D-classifier-based predictors: The input for

these methods is a protein structure and its sequence. Distinct sets of attributes (physico-chemical, evolution, 3D structural features, etc.) are used as an input to a learning

method such as a SVM or Random Forest. (D) Template-based predictors: These methods receive a protein structure (and thus its sequence) as input. Complex templates

are then identified, which can be homologues or structural neighbours (these are shown in white, whereas their binding partners are in green, cyan and yellow). Templates

of the input protein are aligned to the query protein. The most commonly aligned contact sites are returned as a prediction. (E) Partner-specific interface predictors: These

methods receive the structures/sequences of two proteins that are assumed to interact. The three groups of methods are shown for this category. Partner-specific descrip-

tors can be calculated to predict interfaces. In some cases docking is used to sample possible orientations to identify a consensus binding site. Partner-specific descriptors

and docking poses are used as input for parametric functions and classifiers to obtain the final result. In the co-evolution-based strategy, a MSA of interacting homologues

is created and sites that appear to mutate in concert (co-evolve) are assumed to constitute the binding site.
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In particular, use of structural data has been shown to improve
the performance of sequence-based interface predictors.

Structure-based predictors

Structural features are important discriminative attributes for
protein interface prediction. These features are associated with
the atomic coordinate of the proteins, such as secondary struc-
ture [24, 25], solvent-accessible surface area [26, 27], geometric
shape of the protein surface [26] and crystallographic B-factor
[24]. Historically, methods using structural information were
limited by the paucity of available 3D structures. However, in re-
cent years the number of solved structures has been gradually
increasing, enabling the development of 3D-based interface pre-
dictors. In these predictors, the query 3D structure is either
used to identify interface residues in close proximity to each
other (see the ‘3D mapping-based predictors’ section) and/or as
structural features for detection of interface residues (see the
‘3D-classifier predictors’ section).

3D mapping-based predictors
Conserved residues are an important source of information for
interface predictors [28]. If the structure of the query protein is
available, one can map the predicted/conserved residues dir-
ectly onto the structure, identifying clusters of neighbouring
residues [13, 28, 29]. This naı̈ve use of structural information im-
proves on sequence-only methods. In addition, including other
physico-chemical attributes at the mapping stage can further
increase prediction performance [30] (Figure 1B).

3D-classifier predictors
Instead of considering structural information only at the map-
ping stage, 3D-classifier predictors use 3D structural features (or
their combination with sequence features) directly to detect
interfaces (Figure 1C). They exploit the fact that the binding
interface has different structural properties when compared
with the rest of the protein. For instance, Chothia and Janin
(1975) [31] discovered that hydrophobicity is a key element to
stabilizing protein–protein interactions, which inspired many of
the early predictors in this category [24, 32, 33].

To investigate the importance of 3D information for detect-
ing interface residues, predictions based on sequence informa-
tion alone were compared with predictions including structural
data [26, 34]. Results found that using structural information
significantly improves prediction accuracy. This is probably
mainly owing to the elimination of non-surface residues,
greatly reducing the search space [35].

Not one single structural property completely discriminates
interface residues from others. Therefore predictors have based
their predictions on combining multiple input properties of resi-
dues. Methods in this category differ from one another by fea-
tures employed and the methodology used to combine them.
They are broadly divided in two groups [36] (i) score-based and
(ii) probabilistic-based predictors. Predictors in both groups are
trained using a training set to predict interfaces [36].

Score-based predictors. Score-based predictors calculate an inter-
action likelihood score for each residue. All residues with a
score above a certain cut-off are classified as contacts [36].
Scores can be calculated from a linear [37, 38] or non-linear
combination of sequence and structure contributions [36].
Features used include accessible surface area [39], Position
Specific Scoring Matrix (PSSM), interface propensity and surface
conservation [40], side chain energy scores [41, 42] or

desolvation energy [43, 44]. The drawback of constructing such
empirical functions is that they rely on specific knowledge of
the physical system, which is often error-prone and not suitable
for amendments and extensions [36]. This issue is tackled by
non-linear combinations of features using machine learning
techniques such as SVM [45–48], ensemble methodology [49,
50], Neural Networks [51–54] or Random Forests (RF) [55–59]. As
the number of positive samples (interacting residues) is smaller
than the negative samples, the training set for machine learn-
ing classifiers of interface and non-interface are imbalanced
[59]. To deal with this problem, predictors have proposed strat-
egies for splitting the training data into balanced subsets [10]
and detecting outliers [60].

Probabilistic-based predictors. An alternative approach to using
linear or non-linear combinations is to find the conditional
probability pðs j x1; . . . ; xkÞ of s being interface or non-interface,
where x1 to xk are the properties of the residue under study.
Conditional probability can be generated from the training sets
using Bayesian methods [61–63], Hidden Markov Model [64, 65]
or Conditional Random Fields [66–68]. It has been argued that
such probabilistic classifiers might offer an increased perform-
ance over the machine learning methods described above
[62, 67].

Descriptors used by predictors. Machine learning techniques used
by score-based and probabilistic-based predictors [59] provide a
framework for evaluating the contributions of attributes to the
predictive power. Previous studies have investigated which
properties play an important role in the discrimination of inter-
face and non-interface residues. The PSSM generated from PSI-
BLAST [69] has been argued to be an important factor [47, 70] as
well as solvent-accessible surface area, hydrophobicity, conser-
vation and propensity [71]. It was also demonstrated that rela-
tive solvent accessibility has more predictive power than other
features [50]. Recently it has been demonstrated that only
four features, solvent-accessible surface area, hydrophobicity,
conservation and propensity of the surface amino acids are suf-
ficient to perform as well as the current state-of-the-art pre-
dictors [71]. To the best of our knowledge, the most recent
benchmark of the predictive power of attributes was performed
by RAD-T [59]. This study named relative solvent-excluded
surface area and solvation energy as attributes with the most
discriminative power. In the same study, it was established that
among the different machine learning methods a random
forest-based classifier performed the best. This best combin-
ation of attributes and the classifier currently forms the core of
RAD-T.

Even though RAD-T performed a rigorous benchmark of the
available methods and features to be employed, this predictor
relies on one classifier, namely a variant of RF. It was argued
that if predictors express a degree of orthogonality, they may be
combined in a consensus-based classifier. Therefore, some
methods have integrated individual interface predictors into
one meta framework [72, 73]. For instance, meta-PPISP [74] com-
bines the prediction scores of PINUP, Cons-PPISP and ProMate
using linear regression analysis. One review study [36] con-
firmed the superiority of meta-PPISP over its constituent PINUP
[41], Cons-PPISP [53] and ProMate [61] with accuracies of 50%,
48%, 38% and 36%, respectively.

While meta-predictors are an elegant way to improve the ac-
curacy of individual constituents, significantly better perform-
ance is achieved only if the combination of features does not
introduce redundancy [59, 75]. It appears that intrinsic-based
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Table 2. Protein interface predictors and their performance
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A [60] x x x x [10] 45.55 86.98 97.41 83.12 0.55 59.79 –
[181] x x x x 57.9 – 65 62.5 0.22 52 –
[35] x x x x [45] 83 – 78 – 0.76 – –
[23] x x þ x x 47 22.2 69 66.4 0.13 25.6
[10] x x x x 42.84 81.96 – – – 56.25 –
[12] x x x x 70 37.7 – – – 49 – [10]
[22] x x þ x x [23] 36.6 18.9 76.1 71.9 0.09 23.2 – [23]
[15] x x x x [64] 69 – 65 – 0.28 67 – [66]
[16] x x x x 58.8 26.3 – – – 36.3 [10]
[4] x x x x [182] 39 – 58 72 – – –
[9] x x x x 50 62 – – – 10 – [10]

B [30] x x x x [13] 39.8 – 86.9 72.6 – – –
[13] [183] x x x x [13] 34.2 – 85.1 68.5 – – – [30]

C [68] x x x x [71] 63.6 – 84.3 – 0.37 – –
[65] x x x x [64] 72.7 – 61 75.2 0.47 66.3 0.82
[71] x x x x [184] – – – – 0.17 – 0.69
[54] x x x x 99.08 99.91 – 80.32 1.29 99.48 –
[57] x x x x [45] 45.8 69.6 – 79.8 – – –
[58] x x x x 78.99 65.3 54.66 67.29 0.34 – –
[66] x x x x x [64] 68 – 73 71 0.43 71 –
[55] x x x x [50] 74.7 63.4 – – 0.58 – 0.9
[39] x x x x [185] – – – 70 – – –
[49] x x x x [64] 77 – 63 – 0.35 69 – [66]
[26] x x x x [58] 78.27 63.44 51.28 65.3 0.30 – – [58]
[64] x x x x 59 – 54 69 0.33 56 – [66]
[48] x x x x 60.7 – 41.9 – 0.20 – –
[63] x x x x [45] – – – – – – –
[38] x x x x CAPRI 41.7 40.3 – – – – –
[47] x x x x [186] 46.2 42.2 – 83.2 0.30 44.1 –
[67] x x x x 37.7 57.8 – 75.1 0.31 45.7 –
[41] x x x x CAPRI 30.1 30.4 – 76.9 0.16 30.2 0.60 [101]
[70] x x x x [64] 36 – 93 – 0.33 52 – [66]
[50] x x x x 60.3 63.7 – 74.2 0.42 – –
[62] x x x x – – – – – – – –
[45] x x x x – – – – – – – –
[46] x x x x [187] 67 22 – 67 – – –
[188] x x x x CAPRI 34.5 37.4 – 79.5 0.23 35.9 0.71 [101]
[34] x x x x 42.8 57.8 – 73.3 – – –
[61] x x x x CAPRI 27.3 28.7 – 76.6 0.14 28 0.62 [101]
[189] x x x x [52] – – – 76 0.5 – –
[52] x x x x – – – 72 0.43 – – [189]
[51] x x x x [48] 27.7 – 44.2 – 0.15 – – [48]

D [72] [186] – 25 – 45 – – –
[74] [186] – 50.5 – 49.5 – – –

CAPRI 24 38.9 – 81.1 0.20 29.7 0.71 [101]
E [90] x x x x [184] 56.1 52.6 – 85.4 0.45 52.5 –

[88] x x x x [190] 43 72.7 – – – – –
[27] x x x x 67.3 50 – – – – –

F [101] x x x x CAPRI-bound 46.1 45.4 – 80.9 0.34 45.7 0.77
CAPRI-unbound 43.7 44 – 81.2 0.32 43.8 0.75

(continued)
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predictors have reached saturation since further combination of
existing features and classifiers has little impact on predic-
tion performance [76]. Therefore, a complementary ap-
proach needs to be found in the form of new sources
of experimental data or novel classifying methodology. This
issue and an increasing number of structures in the
Protein Data Bank (PDB) [77] have led to an emergence of an al-
ternative trend in predictors, using existing complexes as tem-
plates for interface prediction.

Template-based predictors

The growing number of available structural complexes assists ac-
curate identification of interface templates. Studies have shown
that interfaces are conserved among homologous complexes
[78–81], inspiring the first category of template-based methods,
which relies on homologous complexes. However such homolo-
gous structures are not always available. Therefore the second
category of template-based predictors uses structurally, but not
necessarily evolutionarily, similar complex templates.

Homologous template-based predictors

These methods use known complexes where one of the inter-
acting partners is homologous to the query protein. The inter-
face via which the homologous protein interacts is assumed to
be an indicator where the corresponding interface might be
found on the query protein. This approach to interface predic-
tion is possible, as it was demonstrated that homologous pro-
teins tend to interact with their partners with a similar
orientation [80] and the binding site localization within each
family is often conserved regardless of the similarity of binding
partner [78, 79, 81]. Physico-chemical properties of the interface
residues have higher similarity in homologous proteins than
non-homologous ones [82–86]. These observations suggest that
integration of homologous structural information into interface
predictors should improve performance. The current predictors
in this category are HomPPI [35], IBIS [87–89] and T-PIP [90, 91].

HomPPI [35] builds an MSA of the query protein and its hom-
ologous complexes. Instead of looking at conservation at a resi-
due level, HomPPI checks if the majority of the homologous
residues at that position in the MSA are interface or

Table 2. (continued)
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[99] x x x x [190] 57.5 50.3 – 72.6 0.34 0.53 0.73
CAPRI-bound 53 43 – 72.1 0.29 0.47 0.71
CAPRI-unbound 53.6 43.3 – 73.2 0.30 0.48 0.72

[100] x x x x [190] 45.7 43.60 – – – – –
CAPRI-bound 42.2 41.50 – – – – –
CAPRI-unbound 44.6 39.8 – – – – –

[97] x x x x x x [98] 34 32 – – – 34 –
[98] x x x x x x 35.3 31.5 – – – 33.3 –

G [111] x x x x [184] – – – – – – 0.47
[104] x x x x [184] – – – – – – 0.87
[110] x x x x [184] 62.2 40.4 – – – – –
[102] x x x x [190] – – – – – – 0.72
[109] x x x x 72.7 39.3 – – – 51 –
[115] x x þ x – – – – – – –
[118] x x x [118] test 20 59 – – – – – [118]
[122] x x x [118] fitting 20 23 – – – – – [118]
[119] x x x [118] fitting 20 23 – – – – – [118]
[121] x x x [118] fitting 20 23 – – – – – [118]
[18] x x x [118] fitting 20 25 – – – – – [118]
[120] x x x [118] fitting 20 20 – – – – – [118]

The predictors are grouped by their corresponding category from this manuscript, based on the input and methodology used. The numbers in the ‘Method’ column cor-

respond to the heading numbering in the text (except from meta predictors). Performance measures, where available, were collected from the original publications.

Where possible, the performance measures were taken from studies benchmarking several studies at once. Empty cells in columns with * correspond to the same

study where its reference number is available in the predictor column in the same row. Cells with þ refer to ‘predicted structural feature’. In the data set column,

CAPRI refers to the targets used in the CAPRI challenge, which can be in the bound or unbound form. The 3D classifier group contains some methods, which are based

on scoring function. Columns marked with x correspond to the features the predictor is using. Where data is not available - sign is used. In the Method column for ‘A’

see section ‘Sequence Feature-based Predictors’, for ‘B’ see section ‘3D mapping-based Predictors’, for ‘C’ see section ‘3D-Classifier Predictors’, for ‘D’ see meta methods

in section ‘Descriptors used by predictors’, for ‘E’ see section ‘Homologous Template-based Predictors’, for ‘F’ see section ‘Structural Neighbour-based Predictors’ and

for ‘G’ see section ‘Partner-specific interface predictors’.
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non-interface. HomPPI implicitly takes advantage of binding
site conservation of the homologous complexes. It performs
better than 3D classifier methods such as ProMate [61], PIER
[38], meta-PPISP [74], cons-PPISP [53] and PSIVER [23].

A combination of sequence and structure conservation
scores was introduced in IBIS [87–89]. Initially, homologous
complexes with at least 30% sequence similarity to the query
protein are extracted. Then, these structures are superposed on
to the query protein. Using this alignment, a structure-based-
MSA is created, which allows the conserved interface residues
to be identified. Comparison with HomPPI (62.8% precision and
50.4% recall) demonstrates the importance of using structure-
based MSA (69.7% precision and 72.0% recall).

Recently, T-PIP [90, 91], which outperforms IBIS, was intro-
duced (T-PIP with 52.6% precision and 56.1% recall and IBIS with
42.6% precision and 37.4% recall). Similar to IBIS it builds a struc-
ture-based MSA of homologues. The main novelty of T-PIP is that
not only is the homology between the query protein and its
homologues considered but also the diversity between the inter-
acting partners of the homologues at each specific binding site.

In this category, the main attributes that appear to be contri-
buting to the quality of predictions are the structure-based MSAs
and the binding partner information. Although homologous tem-
plate-based predictors improve the predictions over intrinsic-
based methods, they are limited to those proteins where homolo-
gous complex structures exist. For instance, HomPPI has lower
coverage than the 3D classifier methods and IBIS’s coverage is
even lower. Although this issue has been partially addressed in
T-PIP by lowering the threshold for selecting homologues, these
predictors fail in cases where homologous complexes of the
query protein are not available. This issue can be dealt with by
using structural neighbours; complexes not necessarily evolu-
tionarily related but with similar folds to the query protein.

Structural neighbour-based predictors

Proteins sharing a similar fold with the query protein, even if
not evolutionarily related, can offer similar predictive informa-
tion to that of homologues. This was established by a study
which found that functional relationship can be detected using
remote structural neighbours [92]. Furthermore, proteins with
similar folds but low sequence identity tend to interact with
their partners using the same location [93, 94]. Such structural
neighbours are exploited as templates for interface prediction
to help overcome the low template coverage that can afflict
homology-based methods (Figure 1D) [95–98].

Currently there are two main methods in this category,
PredUS [99, 100] and PrISE [101]. PredUS is an earlier method,
which identifies structural neighbours by finding structures with
a globally similar fold to the query protein. PrISE, on the other
hand, uses only the interface structure for template identifica-
tion, which increases its prediction coverage. PrISE performance
is similar to PredUS, as both methods achieve accuracy in the
region of 81%. According to [101], PrISE performed better than
methods that do not use template information.

In general, template-based methods show better recall
scores, while intrinsic-based methods have better precision
[90, 100, 101]. This suggests that intrinsic-based methods pre-
dict a smaller set of correct interface residues with higher confi-
dence, which is especially important for mutagenesis studies.
Also, T-PIP, a homology-based template method, has been
shown to perform better (precision 52.6% and recall 56.1%) than
the structural neighbour methods of PredUs (precision 47.3%
and recall 58.2%) and PrISE (precision 38.5% and recall 48.9%).

This improvement may be the positive impact of the consider-
ation of interacting partners of the structural neighbours.

Partner-specific interface predictors

The methods described above predict interfaces for one query
protein, but proteins may display different interface patterns
depending on their binding partner (e.g. antibodies [102]).
Therefore, partner-specific predictors identify interacting resi-
due pairs between two query proteins that are assumed to
interact. One of the main challenges for these predictors is
when unbound query protein structures are used. Therefore,
performance of these methods decreases with the increase of
conformational changes of the protein pairs on binding [102].

Partner-specific methods can be broadly divided into three
groups, intrinsic-based methods, docking-based methods and co-
evolution-based predictors. Intrinsic-based methods are similar
in nature to the 3D classifier methods. The core difference is that
the set of features that is being computed for training and testing
is complemented by partner-specific features such as propen-
sities and electrostatic complementarity [35, 102, 103]. The most
recent method in this category is PAIRpred [104]. Application of
these methods is seen in re-ranking docked decoys based on
similarity to the predicted interface [90, 102, 105, 106].

Another type of approach uses protein–protein docking
(Figure 1E) to generate potential interfaces (for a review on dock-
ing see [107, 108]). These methods generate docked poses of the
two query proteins and detect interfaces based on contact en-
ergy and frequency scores [109]. The two main methods in this
category are DoBi and RCF [110, 111]. DoBi (F-scores� 0.55) out-
performed the 3D classifiers such as MetaPPI, meta-PPISP, PPI-
Pred, PINUP and ProMate (F-scores of 0.35, 0.43, 0.32, 0.43 and
0.21, respectively) [109]. While direct comparison between RCF
and DoBi is not available, these results demonstrate the advan-
tage of including partner information into the interface
prediction. The main drawback is the requirement of the two
protein structures. In addition, docking-based methods are
slower, as generating docked poses is computationally
expensive.

Co-evolution strategies have also been used to detect inter-
faces [18, 112]. The co-evolution principle suggests that muta-
tions on one protein in a complex are often compensated for by
correlated mutations within the same chain or on a binding
partner. Such correlated mutations are assumed to maintain
the stability of the protein or protein–protein complex [112]. By
creating MSAs of the input proteins, one identifies the columns
that appear to change in concert indicating spatial proximity.
This paradigm has been used in protein structure prediction
[113–116], scoring of docking decoys [117] as well as in protein–
protein interface prediction [115, 118] (Figure 1E).

Early applications of co-evolution to protein interface predic-
tion include OMES [119], MI [120] SCA [121], McBASC [18], ELSC
[122] and the more recent i-Patch [118] and EVComplex [115].
The earlier methods generally suffer from low precision
(20–25% precision at 20% recall) [118]. The more recent method,
i-Patch, achieves higher precision (59%) for the same recall val-
ues, owing to the incorporation of structural information. The
most recent method, EVComplex is capable of providing predic-
tions from sequence alone, as it uses a structural model of the
input. Its applicability was demonstrated by delivering interface
predictions in accord with experimental data from a de novo
model of ATP synthase complex. Co-evolution methods have
over the past few years improved dramatically and this new ap-
proach has only just been tested on protein interface prediction.

Progress and challenges in predicting protein interfaces | 7
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Since protein interaction data and sequence information is
increasing exponentially, it is likely that this will further im-
prove the quality and the applicability of co-evolution pre-
dictors in the future.

Predictors taking the binding partner into consideration [90]
have shown promising avenues to better detection of bind-
ing sites. Therefore, predictors specialized to a specific type of
protein such as antibodies may well yield better predictive
power.

Antibody–antigen complex modelling

Antibodies are currently the most important class of bio-
pharmaceuticals [123]. The success of antibodies as thera-
peutics depends on their intrinsic binding mechanism, which
allows them to be adjusted toward almost any antigen target by
mutations in a well-defined binding region (see Figure 2). The
antibody–antigen binding mechanism is radically different to
that of general proteins [124] and thus methods attempting

Figure 2. Antibody structure and binding. The most common form of an antibody is the IgG (upper left). IgG is composed of two pairs of heavy and light chains. The tip

of an antibody that carries the binding site (symmetrical in an IgG) is the variable region (upper right). The variable region harbours the six CDR loops, which form the

majority of the antigen recognition site, the paratope (lower). The CDR regions are distinct between different antibodies whereas the rest of the antibody remains

largely unchanged. The paratope recognizes a specific epitope, the corresponding binding site on the antigen (lower).
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antibody–antigen interaction prediction have developed into a
separate domain [124–127]. Antibody–antigen interface pre-
dictors can be broadly classified into methods that predict the
binding residues on either the antibody (paratope prediction)
[128] or the antigen side (epitope prediction) [129].

Paratope prediction

The antibody binding site is chiefly composed of six loops known
as complementarity determining regions (CDRs). These CDRs
have been described using a variety of definitions [127, 130–133],
which suggest they contain between 40 and 50 residues.
Examinations of antibody complexes show that there are on
average 10–15 paratope residues, the majority of which are
within the CDRs.

It was recently demonstrated that the residues contained
within the boundaries of these CDRs contain only about 80% of
the paratope [127]. On the basis of this finding a more robust
definition of the antibody binding region was introduced and
implemented—PARATOME [127]. Given a sequence or structure
of an antibody, PARATOME aligns sequentially similar antibod-
ies with solved complexes. The contacts from the aligned se-
quences are used in a consensus score to define the binding
region for the query. This methodology maximizes the recall
(�94%) at the cost of precision (�30%) because, just as the CDR
definitions, it generates an annotation for the entire binding re-
gion neighbourhood rather than singling out possible contact
residues.

In contrast to region-wide annotations given by CDR defin-
itions and PARATOME, over the past 2 years there has been an
increasing interest in developing methodologies that predict
specific paratope residues. There are currently three methods
which address this problem: proABC [128], Antibody i-Patch
[124] and ISMBLab-PPI [134]. ProABC is a RF-based machine
learning protocol, which requires only the sequence of the anti-
body on input. Antibody i-Patch is a statistical method, which
relies on the structure of the antibody; however, it was demon-
strated that it is robust to the use of homology models. The
most recent method, ISMBLab-PPI, is a neural-network protocol.
In contrast to proABC and Antibody i-Patch, its training set is
not restrained to antibody–antigen complexes only. This might
explain why it underperforms against proABC (comparison with
Antibody i-Patch was not performed).

The field of paratope residue contact annotation appears to
be greatly underdeveloped, mostly as a result of the assumption
that knowing the CDRs is sufficient for antibody engineering
through mutagenesis. The antibody binding region however
contains on average 40–50 residues and thus complete muta-
genesis of this entire region is currently not tractable while only
around 18–19 residues are in contact with antigen [135]. For this
reason, knowledge of particular paratope residues that might be
important for binding would greatly reduce the search.

Epitope prediction

Identifying regions on the antigen that are capable of binding an
antibody is an important problem from the point of view of vac-
cine development and immunogenicity [136–138]. This is particu-
larly difficult because epitope patches appear to be barely
distinguishable from general protein surfaces [126, 134, 139].
There exist several experimental methods to identify epitope
residues but all of them are costly in time and resources. For this
reason, the field of computational B-cell epitope prediction has

been developed intending to provide information on potentially
immunogenic structures and sequences.

Computational epitope predictors can be divided into linear
and conformational predictors. Linear epitope predictors aim to
identify contiguous stretches in the antigen sequence, which
constitute the epitope, while conformational ones focus on
identifying patches of sequence on the antigen, which, when
folded, constitute the linearly discontinuous epitope. Around
90% of all known epitopes are conformational [139].
Nevertheless, most of the methods developed over the past
20 years addressed the easier problem of linear epitope identifi-
cation [129, 140]. Here we focus exclusively on conformational
epitopes.

Classes of conformational epitope prediction

Conformational B-cell epitope predictions can be classified into
two types, those using antibody information and those that do
not. The vast majority of them do not use any antibody infor-
mation (e.g. CEP [141], DiscoTope [142, 143], ElliPro [144, 145],
PEPITO [146], PEPOP [147], SEPPA [148, 149], EPITOPIA [150] and
others [151, 152]). Consensus-based methods such as EPCES
[153] or the meta-server EPSVR/EpMETA [154] are currently
among the best-performing algorithms in this area [152].

Data resources for epitope prediction

The main aim of methods that use no antibody information is
to identify epitope-like sites on proteins as a means to improve
vaccine design. Their mode of operation is similar in nature to
that of general protein–protein interface prediction introduced
in the earlier sections. In contrast to general protein predictors,
epitope predictors use antibody-antigen-specific data from the
PDB, AntigenDB [155], the Conformational Epitope Database
[156], DIGIT [157], Immune Epitope Database [158–160], IMGT
[161], Structural Antibody Database [162] and others [163]. The
main issue is that virtually any part of a protein can be an epi-
tope for some kind of a monoclonal antibody; thus including
antibody information may be crucial [125, 164].

Antibody-specific epitope prediction

The field of antibody-specific conformational B-cell epitope pre-
dictors is relatively underdeveloped—only six methods exist to
address this problem [125, 164–168]. The earliest used only 26
antibody–antigen complexes (those available in 2007) to pro-
duce its predictions [165]. They combined the program FADE
[169] for paratope–epitope complementarity with FastContact
[170] for physicochemical descriptor calculations. On their small
test set they achieved 18% sensitivity and 87% specificity.

Another method that attempted to obtain antibody-specific
predictions relied on the coupling of ASEP and DiscoTope [166].
The ASEP potential was computed by counting residue–residue
interface preferences from a non-redundant set of antibody–-
antigen complexes from the PDB. This potential was then used
to constrain general epitope predictions made by DiscoTope,
with respect to a single antibody.

Following their study of antibody–antigen complexes
[167, 171], Zhang et al. developed a method that treats antibody–
antigen interactions as a Hidden Markov Model. They used 80
antibody–antigen complexes to train their method, achieving
43% sensitivity and 71% specificity. The testing procedure was
performed using leave-one-out validation, which, as the au-
thors admit, given the redundancy of their data set might have
led to over-fitting [167].

Progress and challenges in predicting protein interfaces | 9
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Recently a mixed computational-experimental method was
proposed to predict antibody-specific epitopes [164]. An RF-
based computational method assesses the propensity of pos-
sible antibody–antigen residue matches to be in contact. Their
first protocol, ‘per-residue’, requiring sequence of the antibody
and structure of an antigen outperforms EPSVR, which relies on
the antigen structure. Their second protocol, ‘patch-per Ab’,
requiring the structure of an antigen, performed even better.
They demonstrated its application in combination with block-
ing experiments in making good predictions for the antibody
D8 for VACV. Such combination of computational and experi-
mental techniques holds a particular promise in being able to
identify epitopes with a much higher throughput than
crystallization.

The most recent general antibody-specific epitope predictor
is EpiPred [125]. Its protocol requires the structure of an anti-
body (which can be a homology model) and the structure of the
antigen. Antigenic epitopes are identified by performing simpli-
fied surface matching complemented by antibody-antigen-spe-
cific statistical scoring. This method (44% recall at 14%
precision) outperforms the antibody-ignoring Discotope (23% re-
call at 14% precision), demonstrating the value of introducing
antibody information into predictions.

There has not yet been a comprehensive study benchmark-
ing the antibody-specific methods. Because antibody informa-
tion improves the quality of predictions, we expect the field to
investigate further antibody-specific predictions. One of the
main challenges remains the lack of understanding of antibody
specificity. A comprehensive study contrasting different epi-
topes on a single antigen (e.g. lysozyme) with respect to their
binding antibodies could improve our understanding of the spe-
cificity of antibodies, providing ground for better epitope
predictions.

Conclusion

In this review we have discussed the myriad features and tech-
niques used by protein interface predictors (summarized in
Table 2). Although considerable effort has been expended to de-
velop the field thus far, no method yet yields excellent results
and objective comparison between approaches is difficult.

However, usage of 3D structural and evolutionary properties
tends to improve results over predictions based on sequence
alone. It appears that feature-based methods have reached sat-
uration, and the inclusion of more properties does not improve
predictive performance. A possible solution to this problem
would be to diversify the predictions into specific protein types,
such as antibodies, kinases and GPCRs. Such predictions would
exploit the intrinsic features of these particular protein com-
plexes, a property that is lost if all the proteins are considered
together [172].

With the increasing availability of structural templates
[173, 174], a new trend in protein interface prediction method-
ology uses structural homologues or structural neighbours for
template-based predictions. Although, in many cases, the bind-
ing partner of the template is disregarded, taking it into ac-
count could contribute to better predictive power in a similar
way as knowledge of the antibody contributes to epitope
prediction.

Furthermore the increasing amount of complex structural
data available has made it possible to perform large-scale pro-
tein–protein interaction predictions [175–178]. As such prote-
ome-scale approaches are one novel way to address the protein
interface prediction problem.

Benchmarking of protein interface prediction methods has
so far not been systematic. Because predictors are assessed on
different data sets by distinct metrics, it is currently difficult to
fairly evaluate the multitude of methods and identify clear
areas for improvement. This would be facilitated if protein
interface predictors consistently formed a subcategory in the
Critical Assessment of Prediction of Interactions (CAPRI) chal-
lenge [3, 179, 180, 191] or developed their own assessment
scheme. Thus, introducing unified training and test data sets as
well as blind benchmarking is essential for the further develop-
ment of the field.

Key Points

• There is a plethora of available protein interface pre-
dictors and the field in its current state appears to be
saturated. This calls for new methodologies or sources
of information to be exploited. Recent methods use
existing complexes as templates or use co-evolution to
inform predictions.

• One avenue of recent interest is the specialization of
methods with respect to a single protein type, e.g.
antibodies, which could improve predictions and make
benchmarking more transparent.

• There is an urgent need to benchmark the available
methods in a consistent manner. Available protocols
rarely perform comprehensive comparisons. Therefore
it is impossible to precisely identify areas where im-
provement is necessary. Consistent participation of
available predictors in the CAPRI challenge or develop-
ment of a protein interface predictor-specific assess-
ment scheme would address this issue.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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