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Abstract

Background: Since experimental techniques are time and cost consuming, in silico protein structure prediction is
essential to produce conformations of protein targets. When homologous structures are not available, fragment-based
protein structure prediction has become the approach of choice. However, it still has many issues including poor
performance when targets’ lengths are above 100 residues, excessive running times and sub-optimal energy functions.
Taking advantage of the reliable performance of structural class prediction software, we propose to address some of the
limitations of fragment-based methods by integrating structural constraints in their fragment selection process.

Results: Using Rosetta, a state-of-the-art fragment-based protein structure prediction package, we evaluated our
proposed pipeline on 70 former CASP targets containing up to 150 amino acids. Using either CATH or SCOP-based
structural class annotations, enhancement of structure prediction performance is highly significant in terms of both
GDT_TS (at least +2.6, p-values < 0.0005) and RMSD (−0.4, p-values < 0.005). Although CATH and SCOP classifications are
different, they perform similarly. Moreover, proteins from all structural classes benefit from the proposed methodology.
Further analysis also shows that methods relying on class-based fragments produce conformations which are more
relevant to user and converge quicker towards the best model as estimated by GDT_TS (up to 10% in average). This
substantiates our hypothesis that usage of structurally relevant templates conducts to not only reducing the size of the
conformation space to be explored, but also focusing on a more relevant area.

Conclusions: Since our methodology produces models the quality of which is up to 7% higher in average than those
generated by a standard fragment-based predictor, we believe it should be considered before conducting any
fragment-based protein structure prediction. Despite such progress, ab initio prediction remains a challenging
task, especially for proteins of average and large sizes. Apart from improving search strategies and energy functions,
integration of additional constraints seems a promising route, especially if they can be accurately predicted from
sequence alone.
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Background
Although the first protein structure was determined
56 years ago [1], experimental techniques are still time and
cost consuming. Consequently, computational techniques
are essential to produce conformations of protein targets.
While excellent results can be produced in silico when
homologous structures are available, despite advancements
in the field of Bioinformatics, structure predictions remain
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far from being accurate and reliable when attempting to
identify a protein’s native conformation from its sequence
alone [2].
Ab initio methods (also known as de novo, template-free,

or physics-based modelling) mimic Anfinsen’s thermo-
dynamic principle by seeking the lowest possible energy
conformation that a sequence can adopt [3]. Initially,
physics-based methods were proposed, sampling the con-
formation space until reaching that minimal energy. Al-
though successful predictions have been achieved using
Monte Carlo methods and molecular dynamics simulations
[4-6], their extensive computational requirements have
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limited their application to small proteins. Usage of approx-
imations and heuristics has been a strategy to reduced
computational costs; however this has led to the production
of less accurate models. As a result, application of those
approaches has been mainly limited to the study of the
folding pathway of small proteins rather than prediction
of final conformations [7]. To deal with those limitations,
fragment-based methods with fast search techniques such
as Monte Carlo simulations have been introduced to pro-
vide ‘coarse-grained’ ab initio predictions [8]. Evaluation in
community-wide competitions has shown that fragment-
based predictions perform well when dealing with short
proteins [9]. As a consequence they have become the
methods of choice when ab initio prediction is required.
However, current approaches still have many limitations.
We propose to address some of them by integrating struc-
tural constraints in their fragment selection process.
After a review of fragment-based protein structure pre-

diction approaches and protein structure classifications, we
propose the usage of structural classes to constrain stand-
ard fragment-based methods in order to reduce the size of
conformation space they need to explore.

Fragment-based protein structure prediction
Motivated by the fact there is a strong correlation between
sequence and structure at the local level [10], fragment-
based protein structure prediction methods were first pro-
posed in 1994 by Bowie and Eisenberg [11]. They rely on
the concatenation of short rigid fragments excised from ac-
tual protein structures to construct putative protein models.
Since conformation space is explored at a fragment level,
the entropy of the conformational search is reduced dra-
matically compared to standard ab-initio approaches. Still,
unlike homology and threading modelling, fragment-based
predictors are able to handle template-free modelling (FM)
targets.
In order to eliminate the ‘discrete’ nature of the process

of associating the best sub-structures to given sub-
sequences, first, continuous overlapping fragments along
the sequence are used, second, weighted knowledge-based
energy functions are applied to measure the fitness of frag-
ments using non-local interactions, and third, all-atom re-
finement is conducted [12]. Such procedure aims at
emulating the actual protein folding mechanism which is
believed to follow a ‘local-to-global/divide-and-conquer’
process which would explain the high speed of the folding
process observed in nature [2,13,14]. Regarding the choice
of fragment length, several studies concluded that their op-
timal size should be around 10 amino acids [15,16]. More-
over, it was shown that at least a set of 100 fragments
should be explored for each position to produce native-like
conformations [16].
According to performance [17] evaluated by the Crit-

ical Assessment of protein Structure Prediction (CASP)
[18] - the community-wide biennial event which aims
at objective evaluation of protein structure predictors -,
FRAGFOLD can be considered as the first successful
attempt in long fragment assembly protein structure
prediction [19]. Moreover, since its initial participation
in 1996, it has been continuously updated and remains
an important CASP contributor [9]. FRAGFOLD’s main
contribution has been the usage of two types of fragments:
supersecondary structural motifs (variable length of 9 to 31
residues) which have been shown to be parts of the poly-
peptides that form early but remain stable during the
folding process [20,21], and miscellaneous fragments
extracted from high-resolution proteins (fixed length of
9-mers) [22-24].
Studies highlighting local sequence-structure relation-

ships [25] suggested that methods built on Bowie and
Eisenberg’s principles should only consider short frag-
ments. As a result, Rosetta, a fully ab initio protein struc-
ture prediction suite, offered to generate conformations
from assemblies of short fragments (3-mers and 9-mers)
excised from high resolution protein structures [26]. Using
the target’s sequence, for each position, the best 9-mers
and 3-mers are selected. This is performed not only using
the sequence profile, but also by considering secondary
structure (SS) prediction information generated from sev-
eral sources as well as Ramachandran map probabilities.
Then, the process of building conformations is conducted
using two levels of search and refinement: coarse and fine-
grained associated with their respective energy functions.
In the first level, low-resolution conformations are gener-
ated by representing the chain by heavy atoms of the back-
bone besides a single centroid for the side chains, whereas
in the second one, all atoms are modelled. In addition to
keeping the fragments rigid during the simulation as most
methods do, Rosetta maintains bond angles and length at
some ideal values to reduce the search space. Accordingly,
the sole degrees of freedom in the coarse-grained search
are the backbone torsion angles, whereas, side chains’ are
only taken into account in the fine-grained stage [12]. A
noteworthy observation concerning the force fields type
used in both scoring functions is the usage of both physics
and knowledge-based terms [27]. Since conformations
produced by Rosetta only rely on short fragments, it has
high flexibility in inferring new folds as clearly demon-
strated by its state-of-the-art performance on FM targets
in the latest CASP events [9,28-33].
Departing from Bowie and Eisenberg’s principles, but

still considered as belonging to the fragment-assembly
category, I-TASSER (Iterative Threading ASSEmbly Re-
finement) combines ab initio modelling and threading [7].
Since the length of the fragments chosen from threading
has no upper limit (greater than or equal to 5), this method
is suitable for both FM and template-based modelling
(TBM) targets. As Rosetta, I-TASSER initially generates low
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resolution conformations, which are then refined. More
specifically, structure prediction relies on three main stages
[34]. First, sequence profile and predicted SS are used for
threading through a representative set of the PDB. The
highly-ranked template hits are selected for the next step.
Second, structural assemblies are built using a coarse repre-
sentation involving only C-alphas and centres of mass of
the side chains. While fragments are extracted from the
best aligned regions of the selected templates, pure ab initio
modelling is used to create sections without templates.
Fragment assemblies are performed by a modified version
of the replica-exchange Monte Carlo simulation technique
(REMC) [35] constrained by a knowledge-based force field
including PDB-derived and threading constraints, and
contact predictions. Generated conformations are then
structurally clustered to produce a set of representa-
tives, i.e. cluster centroids. Third, those structures are
refined during another simulation stage to produce all-
atom models. This mixed strategy has proved extremely
successful since “Zhang-Server” [36], which is a com-
bined pipeline of I-TASSER and QUARK (see next para-
graph), has been ranked as the best server for protein
structure prediction in the latest four CASP experiments
(CASP7-10) [24,25], when all target categories are consid-
ered. However, when only FM targets associated with ab
initio approaches are taken into account, Rosetta tends to
provide more accurate models than I-TASSER [9,29,30,32].
Xu and Yang identified force fields and search strat-

egies as the main limitations to accurate structure pre-
diction [37]. They proposed a new approach, QUARK,
which attempts to address them, while taking advantage
of I-TASSER and Rosetta’s strengths. In addition to se-
quence profile and SS, QUARK also uses predicted solv-
ent accessibility and torsion angles to select, like Rosetta
and unlike I-TASSER, small fragments (size up to 20 res-
idues) using a threading method for each sequence frag-
ment. Then, using a semi-reduced model, i.e. the full
backbone atoms and the side-chain centre of mass, and
a variety of predicted structural features, an I-TASSER
like pipeline is followed: assembly generation using
REMC, conformation clustering and production of a
few all-atom models. In this phase, not only does QUARK
allow more conformational movements than I-TASSER,
but also utilises a more advanced force field comprised of
11 terms including hydrogen bonding, SA and fragment-
based distance profile, see [37] for details. When QUARK
started contributing to CASP in its 9th experiment, it was
outperformed by Rosetta; however, positions were inverted
in CASP10 [9,32].
All previously described fragment-based protein structure

prediction methods are sequence-dependent since frag-
ments are extracted from templates selected using se-
quence based information [16]. However, it has also been
proposed to create databases of fragment models, which
are chosen independently from their amino acid composi-
tions to constitute conformation assemblies [38,39].
Fragments are only defined by their ‘shape’ and substituted
in the query sequence at positions where amino acids can
conform to those shapes. Although such techniques have
not been competitive against sequence-dependent pre-
dictors, they have shown interesting results in model-
ling loops [38].
Although fragment assembly methods have been ranked

as the most successful ones for free-modelling predictions,
yet, many issues remain and need to be addressed [2]. First,
successful attempts to produce accurate conformations
have been mainly restricted to targets whose lengths are
less than 100 residues [37] due to the enormous search
space even though fragments are used instead of individual
amino acids. Second, even for small proteins, processing
time is prohibitive for the typical user; Rosetta, for instance,
needs on average 150 CPU days per target [40]. Third, des-
pite effective use of Monte Carlo simulations along with
fragment replacements, a structure’s global minimum is
likely to be missed. In addition, the design of the most ap-
propriate force field is still a research question as current
ones often fail to recognise native structure [8,37]. Finally,
the large number of decoys produced by most of those
methods constitutes an additional barrier to identification
of native-like conformations since there is no straightfor-
ward correspondence between free energy values and simi-
larity to a native structure. As a consequence, design of
model quality assessment programs has become an active
research area on its own [41,42].
As discussed, in twenty years, the field of fragment-

based protein structure prediction has made very good
progress, but there is still a lot of scope for improve-
ment. A promising approach has been the integration
within standard fragment-based systems of spatial con-
straints. So far, this has been performed using predicted
contact maps [43,44]. Recently [45], integration of those
constraints as a term into Rosetta’s energy function has
led to significant improved model quality in terms of
TM-score [46]. However, since accurate prediction of a
contact map currently relies on the availability of a rela-
tively large protein family (ideally more than 1000 homolo-
gous protein sequences) [47], their usage is not suitable for
any protein target. Moreover, low quality contact maps lead
invariably to poor models, since wrong constraints prevent
exploration of the native structure conformation space. As
a conclusion, there is a need for the design of alternative
constraints to fragment-based protein structure prediction.

Structural classification
Categorising protein structural classes was first introduced
by Levitt and Chothia in 1976 [48] when proteins were
found to belong to one of four classes: (1) all-alpha pro-
teins; (2) all-beta proteins; (3) alpha + beta protein where
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beta strands tend to be segregated and likely to form anti-
parallel beta sheets; (4) alpha / beta proteins where alpha
helices and beta strands are rather mixed and therefore
polypeptide chains are expected to contain parallel beta
sheets. Two decades later, Chothia et al. established a
manually curated online database the Structural Classifica-
tion Of Proteins (SCOP) [49]. The first level of its hierarchy
was initially divided into five classes: the original four and a
‘multi-domain’ class. Later on two further classes were
added, i.e. ‘Membrane and cell surface proteins and pep-
tides’ and ‘Small proteins’ [50]. Despite this increase in class
numbers, the original four classes still represent over 90%
of all SCOP entries.
Two years after SCOP initial release, an alternative data-

base, CATH – named after the first four levels of its hier-
archy: Class, Architecture, Topology and Homology - was
established [51]. Since they showed that there was no clear
separation between alpha + beta and alpha/beta proteins
[52,53], CATH has been based on only 4 classes: (1) mostly
alpha; (2) mostly beta; (3) alpha beta and (4) Few secondary
structures. Despite differences between SCOP and CATH,
a comparative study [54] has shown the top level of both
hierarchies, i.e. ‘Class’, is relatively consistent in comparison
to the remaining levels since it is defined according to high
level structural features.
Assigning a protein structure to a specific class is not

trivial. Whereas CATH uses an automated way [53], SCOP
relies on manual inspection. Except for discrimination be-
tween ‘alpha/beta’ and ‘alpha + beta’, the critical criterion is
the percentage of helix and strand contents. Many studies
have been conducted to establish the best thresholds for
Figure 1 Scatter plot of helix and strand content (X-axis and Y-axis respective
Shen S, Ruan J: Secondary structure-based assignment of the protein structura
classification, which led to a variety of values [55-62]. Even-
tually, a thorough comparative study, established that the
15% helix and 10% strand thresholds are optimal – those
are used by CATH -, see Figure 1, even if overlapping re-
gions exist between adjacent classes, especially ‘alpha/+beta’
and ‘mainly beta’ [55].
Since knowledge of a protein’s structural class from its se-

quence may reveal crucial information concerning folding
types and functions [63,64] and can be considered as a first
step towards solving structure prediction problem, se-
quence based class prediction has become an active re-
search area [65]. Proposed approaches take advantage of
either 1) machines learning techniques such as Support
Vector Machines (SVM) [66-68], Artificial Neural Net-
works [69], rough sets [70], bagging [71], ensembles [72-75]
and Meta-Classifiers [76,77] or 2) features that reveal class-
related information like physiochemical-based information
[73,78], pseudo amino acid composition [79,80], amino acid
sequence reverse encoding [81,82], Position Specific Scor-
ing Matrix (PPSM) profile [83] and structural based infor-
mation including secondary structure prediction [55,84-86].
Detailed reviews can be found in [87,88]. Although state-
of-the-art tools, including SCPRED [89], MODAS [81],
RKS-PPSC [72], PSSS-PSSM [90], AADP-PSSM [91], SCEC
[74], AATP [92], AAC-PSSM-AC [93] and PSSP-RFE [94]
report overall accuracy that up to 90%, challenges remain
in particular with proteins with low sequence similarity and
discrimination between alpha/beta versus alpha + beta clas-
ses [90]. It is worth noting that most tools only deal with
the four original SCOP classes which comprise around 90%
of annotated domains [88].
ly) for a large set of proteins. Taken from: Kurgan LA, Zhang T, Zhang H,
l classes. Amino Acids 2008, 35:551–564. (With permission).
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Overview
As highlighted in the review of fragment-based protein
structure prediction approaches, their main limitation,
as with all ab-initio methods, is their ability to sample
efficiently the enormous protein configuration space
which increases exponentially with protein sequence
length. However, production of accurate predictions is
eased if, for each given position, there is high proportion
of fragments fitting closely the native one [95]: the
higher the quality of the fragment libraries, the more
focus the conformation search is on the sub-space con-
taining the native structure. We propose to exploit this
property by customising further fragment libraries ac-
cording to the nature of the protein target. More specif-
ically, we suggest tailoring the set of template proteins
which are the source of those libraries so that their qual-
ity is increased. We formulate the hypothesis that pro-
tein structures that share structural information with a
protein target are more likely to provide better fitting
fragments than structurally unrelated proteins. Since se-
quence based structural class prediction has become
relatively mature, we have decided to use such informa-
tion to select the relevant template structures.
From those principles, we have designed this new

fragment-based protein structure prediction method-
ology, see Figure 2. First, structural class is predicted
from the sequence of the protein target. Second, a tar-
get specific list of template structures is generated by
extracting high resolution templates sharing the same
structural class from the default template protein set
(a PDB subset) associated to the fragment-based
method. Finally, the target sequence and its associated tem-
plate list are submitted to a fragment-based protein struc-
ture prediction, which produces customised fragment
Figure 2 Proposed fragment-based protein structure prediction methodol
libraries and generates a set of putative structures of the
protein target.
In this paper, we conduct an exhaustive evaluation of our

methodology on a set of recent CASP targets. First, we
compare the quality of models with and without class an-
notations, including the case when structural classes are
predicted from sequence. Second, we analyse the influence
of the class type on structure prediction performance.
Third, we study the impact of class annotations in terms of
convergence towards the best conformation. Fourth, we
discuss the validity of the proposed methodology and its
potential application. Finally, we provide a detailed presen-
tation of the proposed fragment-based protein structure
prediction methodology.

Results
Dataset, databases and software tools
The target dataset comprises 70 proteins selected from
the latest CASP contests. First, only proteins containing
fewer than 150 amino acids were considered since larger
targets would show a complexity which is generally be-
lieved to be beyond the capabilities of state-of-the-art ab
initio methods [7]. Second, the selection process aimed
at producing a set of FM targets showing diversity in
terms of structural class. However, in order to be able to
produce statistically significant results, the initial set was
extended using TBM targets. In any case, the experi-
mental protocol was designed so that predictions would
be made independently of the presence of homologous
structures in the template set.
In terms of structural class prediction, the two main clas-

sifications, i.e. CATH [96] and SCOP [97], were considered.
Class annotations used in experiments were collected from
two sources: annotations based on actual protein structures
ogy.
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– which are treated as the gold standard - and sequence
based predictions performed by MODAS [79]. Finally,
structure prediction was performed using the fragment
based de novo protein structure prediction software offered
by the Rosetta suite [98], where the number of selected
fragments for each position was left to its default value,
i.e. 200. In order to cover a reasonably high number of
permutations amongst the total number of fragments,
Rosetta’s team recommends generating between 20,000
and 30,000 models [12]. Therefore, we decided to generate
20,000 conformations for each experiment to conduct a
thorough study. Their evaluation was performed using both
the GDT_TS (GDT in the text) and RMSD metrics of the
10 highest and lowest models respectively.
General performance
First, quality of the models generated by the standard Ro-
setta framework, i.e. without using any structural class an-
notation, is compared to those produced using the gold
standard, i.e. structure based, class annotations. As Table 1
shows, average performance for the 70 targets (target spe-
cific results are shown in Additional file 1: Table S1) in
terms of both RMSD and GDT demonstrates that class
annotation allows better structure prediction (~6% im-
provement). Those differences are statistically highly signifi-
cant since p-values < 0.0005 and < 0.005, respectively. On
the other hand, there is no significant difference between
the SCOP and CATH based approaches in terms of both
GDTand RMSD (p-values > 0.05).
In addition, Table 1 reveals that predictions based on

MODAS automatic annotations are only marginally worse
than those based on structure based class annotations espe-
cially for SCOP. This can be explained, first, by the very
good accuracy of MODAS predictions and, second, by the
fact that misclassifications only appear between classes with
blurred borders [53]. Comparison between structure and
sequence-based annotations shows that 78.5% and 81.4% of
classes have been correctly predicted by MODAS for SCOP
and CATH respectively. As expected, there is higher accur-
acy for CATH since there is no differentiation between
alpha/beta and alpha + beta classes. Indeed, the confusion
matrix shown in Table 2 highlights that confusion only oc-
curs between alpha and alpha_beta, or beta and alpha_beta,
or FSS and alpha_beta classes (differences in the latter case
Table 1 Average performance (and standard deviation) in ter

No class
annotation

CATH class annotation

Structure based Sequence base
predictions)

GDT 46.04 (13.89) 48.62 (14.22) p = 0.00007 47.64 (14.10)

RMSD 6.4 (2.3) 6.0 (2.2) p = 0.0005 6.1 (2.2)

Sequence based annotations are the one taken from MODAS predictions. GDT and
turn, are the average of the highest and lowest 10 scores respectively.
happen since targets lie on the border between those clas-
ses, see Additional file 1: Table S1), but never between
alpha and beta classes. Those results demonstrate that
usage of a structural class predictor makes our pipeline
practical and allows the generation of better models than
those produced by the standard Rosetta framework. Since
structural class prediction is an active research area, there
is no doubt that performance obtained with predicted clas-
ses will get even closer to those attained with actual classes
in the near future. Given that the aim of this paper is to
demonstrate and analyse the value of fragment libraries
generated from class specific templates, the remaining ana-
lysis concentrates on results generated from structure-
based class annotations.
As Figures 2 and 3 show, predictions based on struc-

tural class annotations outperform standard ones for a
majority of targets. Actually, higher GDT is obtained for
70.0% and 78.6% of the targets using CATH and SCOP
respectively (Figure 3), whereas better RMSD is shown
for 61.4% and 67.1% of the targets (Figure 4). More de-
tailed information is shown in Table 3, whereas target
specific data are provided in Additional file 1: Table S1.
Performance according to structural class
Since SCOP and CATH-based produces similar results,
we can conclude that those classifications are equally in-
formative in terms of protein template selection; how-
ever, that may not be case for all classes. Hence, we have
conducted a more in depth analysis by focusing on per-
formance enhancement according to the structural class
of the target (see Table 4). First, whatever the classifica-
tion, targets from all main classes benefit significantly
from template selection: the number of targets with
models displaying a better GDT is between 61.1% and
100.0%. Interestingly, targets combining Alpha and Beta
structures seem to gain more from the proposed meth-
odology. One may suggest that, since structural discon-
tinuities between secondary structure elements are key
to a protein conformation, using libraries with a higher
content of alpha to/from beta transition fragments leads
to better conformation predictions.
Second, as expected, association to less common clas-

ses that are not specific in terms of structural content,
i.e. Few Secondary Structures (FSS) and Small Proteins
ms of GDT and RMSD, and associated p-values

SCOP class annotation

d (MODAS Structure based Sequence based (MODAS
predictions)

48.92 (14.97) p = 0.0002 48.31 (15.14)

6.0 (2.3) p = 0.004 6.1 (2.3)

RMSD are the average of the GDT_TS and RMSD of the 70 targets, which in



Table 2 Confusion matrix showing CATH classes versus
MODAS predicted ones

Predicted gold standard A A_B B FSS

A 15 1 0 0

A_B 2 25 3 3

B 0 4 14 0

FSS 0 0 0 3
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(SP), seem to be less beneficial with (SP) or even detri-
mental (FSS) to structure prediction. Although one
should be cautious when discussing results for such a
small number of targets, the fact that the number of
templates associated with those classes is a degree of
magnitude lower than the main classes’ may also lead to
the generation of fragment libraries which do not cover
sufficiently the conformation space. Third, except for the
‘Alpha’ class, where CATH class annotations contribute
to slightly better results, SCOP’s lead to a marginally
higher number of targets with improved models (see
Table 3 for details). One can also note that, except in the
case of SP and FSS classes where it is very low, the num-
ber of templates does not seem to impact on structure
prediction.

Convergence towards native-like conformations
Although we have shown that methods relying on struc-
tural class-based libraries generally generate better con-
formations than the standard Rosetta framework, it is
important to know if this leads to a notable change in
terms of model significance. To address this question,
Figure 3 GDT of standard predictions versus CATH and SCOP-based predic
we performed classification of the average of the best 10
model for each target according to thresholds adopted
in the literature. Production of models the GDT of
which are above 40 is particularly important since their
conformation is believed to have the same ‘shape’ as the
target, which may reveal crucial information about po-
tential proteins’ functions [99,100]. Models whose GDT
value is greater than or equal to 85 are judged conveni-
ent to solve the phase problem in crystallography [101].
Conformations with GDT higher than 59 are believed to
be’good‘enough [102], whilst structures with GDT lower
than 40 are considered of poor quality or even random
[103,104]. Consequently, we will adopt the following
thresholds and associated classes: “Poor” for GDT < 40,
“Moderate” for GDT between 40 and 59, “Good” be-
tween 60 and 84, and “High Quality” for GDT > 84. As
Figure 5 shows, whereas the standard Rosetta framework
is able to produce informative models for 61.4% of the
targets, both SCOP and CATH-based schemes deliver a
much larger proportion of them, 74.8% for both.
Since part of the rational of the proposed methodology is

a reduction of the size of the conformation space, we calcu-
lated for each target the number of conformations which
were generated in order to produce the structure with high-
est GDT or/and lowest RMSD out of the 20,000. SCOP
and CATH-based experiments produce both their best
GDTand RMSD structures after generating a smaller num-
ber of conformations than the standard Rosetta framework,
converging towards those conformations, respectively, 2.8%
and 6.9% faster (see Table 5). In addition, since correlation
between GDT and RMSD increases when conformations
tions for the 70 targets.



Figure 4 RMSD of standard predictions versus CATH and SCOP-based predictions for the 70 targets.
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are getting closer to the native one, the generation of
models which display both the Highest GDT and the Low-
est RMSD indicate that a predictor tends to produce more
native-like conformations. Out of the 70 targets, 9, 10 and
16 protein conformations share best GDT and RMSD in
experiments conducted using the standard Rosetta frame-
work, SCOP and CATH classes, respectively. Although
both SCOP and CATH classes allow generation of more of
those models, this is particularly significant for CATH out-
puts since there is an increase of 78% compared to the
standard Rosetta framework.

Discussion
Following an exhaustive evaluation of our methodology,
we have demonstrated that usage of class annotations
leads to highly significant enhanced structure prediction
performance (p-values < 0.005), even if they have been
predicted from sequence alone. Although experiments
were conducted using two different types of structural
classifications, i.e. CATH and SCOP, there is no convin-
cing evidence suggesting that one is more appropriate
than the other. Performance analysis according to struc-
tural type class shows that targets from all main and well
defined classes benefit from the proposed methodology.
Table 3 Performance comparison for the 70 targets

Metric Percentage of improved targets
(average change)

Percen
target

CATH GDT 70.00% (+4.77, i.e. +11.19%) 0.00%

RMSD 61.43% (+0.81, i.e. +12.86%) 11.42%

SCOP GDT 78.57% (+4.77, i.e. +10.98%) 0.00%

RMSD 67.15% (+0.73, i.e. +12.45%) 4.28%

Numbers are extracted and analysed from the Additional file 1: Table S1 for the wh
Moreover, quality of structure prediction does not appear
to be influenced by the number of selected template, if it
is above a few 1000s. All these results support our hypoth-
esis that template quality in terms of structural relevance
is more important than quantity and diversity. In addition,
experiments conducted using structural class prediction
demonstrates the proposed methodology is practical.
Further results analysis also shows that methods relying

on class-based libraries produce conformations which are
more relevant to user, i.e. more ‘good’ and ‘accurate’
models. In addition, since structure predictors converge
quicker towards the best model, this substantiates our
claim that usage of structurally relevant templates conduct
to reducing the size of the conformation space to be
explored.

Conclusions
In this paper, we have proposed usage of structural class
constraints for ab initio fragment-based protein structure
prediction to decrease the size of the conformation search
space. Then, using Rosetta, a comprehensive evaluation of
our methodology has been conducted on a set of recent
CASP targets. We have demonstrated that exploitation of
class annotations leads to enhanced structure prediction
tage of unaffected
s

Percentage of worsened targets (average
change)

30.00% (−2.53, i.e. -4.83%)

27.15% (−0.49, i.e. -10.09%)

21.43% (−4.01, i.e. -8.07%)

28.57% (−0.61, i.e. -12.34%)

ole dataset.



Table 4 Performance comparison according to structural class

CATH-based predictions SCOP-based predictions

Targets Class (Total #
of templates)

Targets with
better GDT

Targets with both
better GDT & RMSD

Class (Total # of
templates)

Targets with
better GDT

Targets with both better
GDT & RMSD

16 Mainly Alpha (10194) 75.0% 62.5% All Alpha (4807) 75.0% 56.3%

18 Mainly Beta (10532) 61.1% 38.9% All Beta (7534) 77.8% 55.6%

33 (29+ 4) Alpha Beta (22685) 75.8% 63.6% Alpha + Beta (7824) 86.2% 65.6%

Alpha / Beta (9186) 100.0% 100.0%

3 Few Secondary Structures (531) 33.3% 0.0% Small Proteins (853) 66.6% 66.6%

70 All 68.6% 54.3% All 81.4% 62.9%
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performance; even if they are predicted since current se-
quence based predictions are sufficiently accurate. Results
also support our hypothesis that reduction towards a better
focused structure space conducts to quicker identification
of better models.
Since our methodology produces models the quality of

which is up to 7% higher in average than those generated
by a standard fragment-based predictor, we believe it
should be considered before conducting any fragment-
based protein structure prediction. Despite such progress,
ab initio prediction remains a challenging task, especially
for proteins of average and large sizes. Apart from improv-
ing search strategies and energy functions, integration of
additional constraints seems a promising route, especially if
they can be accurately predicted from sequence alone.

Methods
Fragment-based protein structure prediction software
Since we propose to enhance performance of fragment-
based protein structure predictors by customising their
fragment libraries, validation relies on using an existing
predictor which can be tailored to suit our methodology.
Among state-of-the-art methods, QUARK does not pro-
vide user control of protein template selection and it has
only been available very recently for I-TASSER (V4.1
Figure 5 Qualitative distribution of the average GDT of the best 10 model
released in August 2014). As a consequence, Rosetta was
selected, since, in addition to offer state-of-the-art ab
initio protein structure predictions [9], it is open-source,
providing full control of the template proteins used for
fragment extraction [98].
In Rosetta, fragment-based protein structure prediction

relies on high resolution template proteins to excise frag-
ments from. When using the standard Rosetta framework,
the database of template proteins of Rosetta’s web server is
used [105]. Indeed, Rosetta’s developers strongly recom-
mend using it since it is supposed to contain idealised and
diverse collections of structures that are believed to allow
the construction of any possible conformation. However,
the Rosetta package also offers the facility – a local frag-
ment builder called ‘Fragment_Picker’ [106] and a local
copy of the database of template proteins called “vall” - to
build user-specific fragment libraries by using a user-
defined set of templates.
Here, our approach takes advantage of that capacity

under the ‘Quota’ protocol, which is specifically designed
for ab initio predictions, so that the high resolution tem-
plate proteins selected by structural class annotation of the
target become the source of the fragment libraries. We have
used the latest version of the “vall” supported by Rosetta3,
which comprises high resolved proteins of different classes
s.



Table 5 Average number of conformations for convergence
towards the structure with highest GDT or/and lowest
RMSD (and associated standard deviations)

Standard
predictions

SCOP-based
predictions

CATH-based
predictions

GDT 10848 (5469) 9743 (5753) 9452 (5968)

RMSD 9836 (5536) 10166 (5770) 10491 (5639)

GDT & RMSD 13560 (4707) 13175 (4583) 12625 (5125)
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and folds. A list of a class’s PDB code is provided to “Frag-
ment_Picker”, so that the intersection of that set and “vall”
is used as fragment libraries’ source.

Structural class annotations
Our novel approach relies on structural class annota-
tions of target sequences. Both SCOP and CATH are
widely used databases, attracting diverse publics accord-
ing to appreciation of their different degrees of automa-
tion. Since SCOP-based annotations rely largely on a
manual process, they are preferred by many biologists as
it is seen to be “more natural” [55]. On the other hand,
CATH’s higher degree of automation makes annotations
more systematic and allows processing a larger share of
the PDB. Here both classification schemes are consid-
ered in our evaluation. Since we wish to both validate
the concept of using class-specific fragment libraries for
protein structure predictions and demonstrate its practi-
cality, all protein targets were annotated twice based on
either their known structure – classifications seen as the
gold standard - or their sequence.
First, structural class annotations, according to both

SCOP and CATH classifications, were conducted on all
protein targets using their structure. Note that all selected
targets only contained a single domain. Initially, when avail-
able, annotations were extracted from SCOP and CATH
databases. If a target was present only in one of the two,
the second annotation could generally be deduced directly.
However, in the case of a protein belonging to CATH’s
class ‘alpha beta’, manual inspection was used to allocate it
to either the alpha/beta or alpha + beta class in the SCOP
classification. Alternatively, when targets did not have any
annotation in neither databases, we classified them manu-
ally based on the secondary structure contents of their PDB
entry as provided by the Dictionary of Protein Secondary
Structure (DSSP) [107] and the thresholds adopted by
CATH [53].
Second, class annotations were predicted from sequence

alone. As seen in the ‘Background’ section, structural class
prediction is a very mature field where accuracy reaches up
to 90%. Among the most competitive methods, MODAS
[79] - MODular Approach to Structural class prediction –
is particularly suitable for our application since it is freely
available online and it provides predictions for the main
seven classes of SCOP, from which CATH-like annotations
can automatically inferred. MODAS classifiers are based on
a SVM which operates on combined features from both
predicted secondary structure and multiple sequence align-
ment profiles.

Evaluation framework
In order to evaluate the proposed framework, predic-
tions have to be performed using protein sequences the
structure of which is known. Since we intend to simulate
ab initio protein structure prediction, it is important to
make sure that information about the actual native and
potential homologous structures is not exploited. As a
consequence, when the standard Rosetta framework is
used the ‘exclude homologues’ flag is set, whereas the
pipeline presented in Figure 2 was slightly modified.
First, structural class annotation is conducted according

to the experiment aim, i.e. concept validation or practicality
demonstration using either CATH or SCOP. Second, all
high quality structures of the PDB belonging to same struc-
tural class are extracted. A 2.5 Angstrom resolution cut-off
is used to produce high quality fragments. Third, the target
and all its homologues (based on PSI-BLAST with an
E-value < 0.05) were removed from the set of collected
structures. Fourth, the fragment libraries were constructed
by providing Rosetta’s fragment-picker with this set of pro-
tein templates. Apart from setting the ‘exclude homologues’
flag, all the default options were kept including parameter
weights and the number of fragments at each position,
i.e. 200. Finally, since picking and assembling fragments
to construct a whole conformation is a stochastic
process that relies on Monte Carlo simulation, it needs
to be performed a large number of times. As it is suit-
able to produce as many as possible structures for each
target as an attempt to cover the highest number of
permutations amongst the total number of fragments,
the recommended value of 20,000 models was chosen
for all experiments [12].

Evaluation metrics
The main metric used to assess our structure prediction
pipeline is the global distance test-total score (GDT_TS).
It was introduced as a part of the LGA (Local Global
Alignment) method and since then it has been widely
accepted in the community mainly due the fact it is less
sensitive to outliers than the popular root mean square
deviation (RMSD) [108]. GDT_TS is the formal criterion
CASP uses in order to qualify and assess Tertiary Struc-
ture (TS) prediction and it is defined as the average of
the percentage of residues that are less than 1, 2, 4, and
8 angstroms. For the sake of completeness, we have also
included the RMSD in our analysis. Metrics were gener-
ated using MaxCluster, a tool for protein structure com-
parison and clustering [109]. Since our study mainly
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aims at improving the quality of the generated confor-
mations, structure results are evaluated using the aver-
age of the best 10 scores for each metric, although
results for the best score of each metric are provided as
well in the Additional file 1: Table S1. Therefore, when-
ever GDT and RMSD are mentioned in this paper, un-
less otherwise stated, they refer to the average of the
highest 10 GDT_TS and lowest 10 RMSD respectively.
Besides, GDT_TS and RMSD, GDT-HA (High Accur-
acy) is also shown in the detailed results presented in
the Additional file 1: Table S1 since it proves useful es-
pecially for high accuracy predictions. It is defined as
the average of the percentage of residues that superim-
pose within 0.5, 1, 2, and 4 angstroms.

Additional files

Additional file 1: Table S1. It includes the detailed results for the 70
targets using three metrics: GDT_TS, GDT_HA and RMSD for the three
experiments (Standard, CATH-based and SCOP-based). For each experiment
two sets of data are provided; the best and the average of the best 10 scores
of each metric.

Abbreviations
SCOP: Structural classification of proteins; CATH: Class, architecture, topology,
and homologous superfamily; FSS: Few secondary structures; SP: Small
proteins; MODAS: MODular approach to structural class prediction;
SVM: Support vector machine; DSSP: Dictionary of secondary structure of
proteins; PDB: Protein data bank.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JCN proposed the initial idea and designed the methodology. JA
implemented the concept and processed the results. JCN and JA wrote the
analysis part including all discussions. Both authors read and approved the
final manuscript.

Acknowledgments
We would like to thank the IT department at Faculty of Science, Engineering
and Computing at Kingston University namely Adams Hobs and Colin
Macliesh for their support in using the Kingston University High Performance
Cluster (KUHPC). This work was in part supported by grant 6435/B/T02/2011/
40 of the Polish National Centre for Science.

Received: 8 December 2014 Accepted: 17 April 2015

References
1. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Philips DC. A

three-dimensional model of the myoglobin molecule obtained by x-ray
analysis. Nature. 1958;181:662–6.

2. Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science.
2012;338:1042–6.

3. Anfinsen CB, Haber E, Sela M, White FH. The kinetics of formation of native
ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl
Acad Sci U S A. 1961;47:1309–14.

4. Lee J, Liwo A, Ripoll DR, Pillardy J, Saunders JA, Gibson KD, et al. Hierarchical
energy-based approach to protein-structure prediction: Blind-test evaluation
with CASP3 targets. Int J Quantum Chem. 2000;77:90–117.

5. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP,
et al. Atomic-level characterization of the structural dynamics of proteins.
Science. 2010;330:341–6.
6. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. How fast-folding proteins fold.
Science. 2011;334:517–20.

7. Abbass J, Nebel J-C, Mansour N. Ab Initio Protein Structure Prediction: Methods
and challenges. In: Elloumi M, Zomaya AY, editors. Biol Knowl Discov Handb.
Hoboken, New Jersey: John Wiley & Sons, Inc; 2013. p. 703–24.

8. Lee J, Wu S, Zhang Y. Ab initio protein structure prediction. In: From Protein
Structure to Function with Bioinformatics. Netherlands: Springer;
2009. p. 3–25.

9. Tai CH, Bai H, Taylor TJ, Lee B. Assessment of template-free modeling in CASP10
and ROLL. Proteins. 2014;82:57–83.

10. Lu W, Liu H. Correlations Between Amino Acids at Different Sites in Local
Sequences of Protein Fragments with Given Structural Patterns. Chin J Chem
Phys. 2007;20:71.

11. Bowie JU, Eisenberg D. An evolutionary approach to folding small alpha-helical
proteins that uses sequence information and an empirical guiding fitness
function. Proc Natl Acad Sci U S A. 1994;91:4436–40.

12. Bradley P, Misura KMS, Baker D. Toward high-resolution de novo structure
prediction for small proteins. Science. 2005;309(80-):1868–71.

13. Hockenmaier J, Joshi AK, Dill KA. Routes are trees: the parsing perspective
on protein folding. Proteins. 2007;66:1–15.

14. Voelz VA, Dill KA. Exploring zipping and assembly as a protein folding
principle. Proteins. 2007;66:877–88.

15. Bystroff C, Simons KT, Han KF, Baker D. Local sequence-structure correlations
in proteins. Curr Opin Biotech. 1996;7:417–21.

16. Xu D, Zhang Y. Toward optimal fragment generations for ab initio protein
structure assembly. Proteins. 2013;81:229–39.

17. Jones DT. Successful ab initio prediction of the tertiary structure of NK-lysin
using multiple sequences and recognized supersecondary structural motifs.
Proteins. 1997;Suppl 1(August):185–91.

18. Moult J, Pedersen JT, Judson R, Fidelis K. A large-scale experiment to assess
protein structure prediction methods. Proteins. 1995;23:ii–v.

19. Jones DT, Bryson K, Coleman A, McGuffin LJ, Sadowski MI, Sodhi JS, et al.
Prediction of novel and analogous folds using fragment assembly and fold
recognition. Proteins. 2005;61(Suppl 7(April)):143–51.

20. Wright PE, Dyson HJ, Lerner RA. Conformation of peptide fragments of
proteins in aqueous solution: implications for initiation of protein folding.
Biochemistry. 1988;27:7167–75.

21. Dyson HJ, Sayre JR, Merutka G, Shin HC, Lerner RA, Wright PE. Folding of
peptide fragments comprising the complete sequence of proteins. Models
for initiation of protein folding. II. Plastocyanin. J Mol Biol. 1992;226:819–35.

22. Jones DT. Predicting novel protein folds by using FRAGFOLD. Proteins.
2001;45 Suppl 5:127–32.

23. Jones DT, McGuffin LJ. Assembling novel protein folds from super-
secondary structural fragments. Proteins. 2003;53(Suppl 6(April)):480–5.

24. Schonbrun J, Wedemeyer WJ, Baker D. Protein structure prediction in 2002.
Curr Opin Struct Biol. 2002;12:348–54.

25. Han KF, Baker D. Global properties of the mapping between local amino
acid sequence and local structure in proteins. Proc Natl Acad Sci U S A.
1996;93:5814–8.

26. Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary
structures from fragments with similar local sequences using simulated
annealing and Bayesian scoring functions. J Mol Biol. 1997;268:209–25.

27. Rohl CA, Strauss CEM, Misura KMS, Baker D. Protein structure prediction
using Rosetta. Methods Enzymol. 2004;383:66–93.

28. Vincent JJ, Tai C-H, Sathyanarayana BK, Lee B. Assessment of CASP6
predictions for new and nearly new fold targets. Proteins. 2005;61
Suppl 7:67–83.

29. Jauch R, Yeo HC, Kolatkar PR, Clarke ND. Assessment of CASP7 structure
predictions for template free targets. Proteins. 2007;69 Suppl 8:57–67.

30. Ben-David M, Noivirt-Brik O, Paz A, Prilusky J, Sussman JL, Levy Y. Assessment of
CASP8 structure predictions for template free targets. Proteins. 2009;77 Suppl
9:50–65.

31. Bradley P, Malmstrom L, Qian B, Schonbrun J, Chivian D, Kim DE, et al. Free
modeling with Rosetta in CASP6. Proteins. 2005;61 Suppl 7:128–34.

32. Kinch L, Yong Shi S, Cong Q, Cheng H, Liao Y, Grishin NV. CASP9 assessment of
free modeling target predictions. Proteins. 2011;79 Suppl 10:59–73.

33. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, et al. Structure
prediction for CASP8 with all-atom refinement using Rosetta. Proteins.
2009;77 Suppl 9:89–99.

34. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated
protein structure and function prediction. Nat Protoc. 2010;5:725–38.

http://www.biomedcentral.com/content/supplementary/s12859-015-0576-2-s1.docx


Abbass and Nebel BMC Bioinformatics  (2015) 16:136 Page 12 of 13
35. Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: Parallel
hyperbolic Monte Carlo sampling of protein folding. Proteins.
2002;48:192–201.

36. Zhang Y. Interplay of I-TASSER and QUARK for template-based and ab
initio protein structure prediction in CASP10. Proteins. 2014;82
(Suppl 2(April)):175–87.

37. Xu D, Zhang Y. Ab initio protein structure assembly using continuous
structure fragments and optimized knowledge-based force field. Proteins.
2012;80:1715–35.

38. Kolodny R, Koehl P, Guibas L, Levitt M. Small libraries of protein fragments
model native protein structures accurately. J Mol Biol. 2002;323:297–307.

39. Baeten L, Reumers J, Tur V, Stricher F, Lenaerts T, Serrano L, et al.
Reconstruction of protein backbones from the BriX collection of canonical
protein fragments. PLoS Comput Biol. 2008;4:e1000083.

40. Wu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative
TASSER simulations. BMC Biol. 2007;5:17.

41. Konopka BM, Nebel J-C, Kotulska M. Quality assessment of protein
model-structures based on structural and functional similarities. BMC
Bioinformatics. 2012;13:242.

42. Cao R, Wang Z, Wang Y, Cheng J. SMOQ: a tool for predicting the absolute
residue-specific quality of a single protein model with support vector
machines. BMC Bioinformatics. 2014;15:120.

43. Wu S, Szilagyi A, Zhang Y. Improving protein structure prediction using
multiple sequence-based contact predictions. Structure.
2011;19:1182–91.

44. Kosciolek T, Jones DT. De novo structure prediction of globular proteins
aided by sequence variation-derived contacts. PLoS One. 2014;9:e92197.

45. Michel M, Hayat S, Skwark MJ, Sander C, Marks DS, Elofsson A. PconsFold:
improved contact predictions improve protein models. Bioinformatics.
2014;30:i482–8.

46. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based
on the TM-score. Nucleic Acids Res. 2005;33:2302–9.

47. Skwark MJ, Raimondi D, Michel M, Elofsson A. Improved Contact Predictions
Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol.
2014;10:e1003889.

48. Levitt M, Chothia C. Structural patterns in globular proteins. Nature.
1976;261:552–8.

49. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural
classification of proteins database for the investigation of sequences and
structures. J Mol Biol. 1995;247:536–40.

50. Lo Conte L, Brenner SE, Hubbard TJP, Chothia C, Murzin AG. SCOP database
in 2002: refinements accommodate structural genomics. Nucleic Acids Res.
2002;30:264–7.

51. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM.
CATH–a hierarchic classification of protein domain structures. Structure.
1997;5:1093–108.

52. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The
Protein Data Bank. Nucleic Acids Res. 2000;28:235–42.

53. Michie AD, Orengo CA, Thornton JM. Analysis of domain structural class
using an automated class assignment protocol. J Mol Biol. 1996;262:168–85.

54. Csaba G, Birzele F, Zimmer R. Systematic comparison of SCOP and CATH: a
new gold standard for protein structure analysis. BMC Struct Biol. 2009;9:23.

55. Kurgan LA, Zhang T, Zhang H, Shen S, Ruan J. Secondary structure-based
assignment of the protein structural classes. Amino Acids. 2008;35:551–64.

56. Nakashima H, Nishikawa K, Ooi T. The folding type of a protein is relevant
to the amino acid composition. J Biochem. 1986;99:153–62.

57. Klein P, Delisi C. Prediction of protein structural class from the amino acid
sequence. Biopolymers. 1986;25:1659–72.

58. Chou P. Prediction of Protein Structural Classes from Amino Acid
Compositions. In: Fasman G, editor. Prediction of Protein Structural Classes
from Amino Acid Compositions - 12. US: Springer; 1989. p. 549–86.

59. Kneller DG, Cohen FE, Langridge R. Improvements in protein secondary
structure prediction by an enhanced neural network. J Mol Biol.
1990;214:171–82.

60. Chou KC. A novel approach to predicting protein structural classes in a
(20–1)-D amino acid composition space. Proteins. 1995;4:319–44.

61. Eisenhaber F, Frömmel C, Argos P. Prediction of secondary structural
content of proteins from their amino acid composition alone. II The
paradox with secondary structural class. Proteins. 1996;25:169–79.

62. Chou KC, Liu WM, Maggiora GM, Zhang CT. Prediction and classification of
domain structural classes. Proteins. 1998;31:97–103.
63. Chou KC. Using amphiphilic pseudo amino acid composition to predict
enzyme subfamily classes. Bioinformatics. 2005;21:10–9.

64. Chou KC, Zhang CT. Prediction of protein structural classes. Crit Rev
Biochem Mol Biol. 1995;30:275–349.

65. Chou KC. Some remarks on protein attribute prediction and pseudo amino
acid composition. J Theor Biol. 2011;273:236–47.

66. Dehzangi A, Paliwal K, Lyons J, Sharma A, Sattar A. Proposing a highly
accurate protein structural class predictor using segmentation-based
features. BMC Genomics. 2014;15 Suppl 1:S2.

67. Anand A, Pugalenthi G, Suganthan PN. Predicting protein structural
class by SVM with class-wise optimized features and decision probabilities.
J Theor Biol. 2008;253:375–80.

68. Hayat M, Khan A. Mem-PHybrid: Hybrid features-based prediction
system for classifying membrane protein types. Anal Biochem.
2012;424:35–44.

69. Jahandideh S, Abdolmaleki P, Jahandideh M, Asadabadi EB. Novel two-stage
hybrid neural discriminant model for predicting proteins structural classes.
Biophys Chem. 2007;128:87–93.

70. Cao Y, Liu S, Zhang L, Qin J, Wang J, Tang K. Prediction of protein structural
class with Rough Sets. BMC Bioinformatics. 2006;7:20.

71. Dong L, Yuan Y, Cai Y. Using Bagging classifier to predict protein domain
structural class. J Biomol Struct Dyn. 2006;24:239–42.

72. Yang J-Y, Peng Z-L, Chen X. Prediction of protein structural classes for
low-homology sequences based on predicted secondary structure. BMC
Bioinformatics. 2010;11 Suppl 1:S9.

73. Dehzangi A, Paliwal K, Sharma A, Dehzangi O, Sattar A. A combination of
feature extraction methods with an ensemble of different classifiers for
protein structural class prediction problem. IEEE/ACM Trans Comput Biol
Bioinform. 2013;10:564–75.

74. Chen KE, Kurgan LA, Ruan J. Prediction of protein structural class using
novel evolutionary collocation-based sequence representation. J Comput
Chem. 2008;29:1596–604.

75. Hayat M, Khan A, Yeasin M. Prediction of membrane proteins using split
amino acid and ensemble classification. Amino Acids.
2012;42:2447–60.

76. Cai YD, Feng KY, Lu WC, Chou KC. Using LogitBoost classifier to predict
protein structural classes. J Theor Biol. 2006;238:172–6.

77. Feng KY, Cai YD, Chou KC. Boosting classifier for predicting protein domain
structural class. Biochem Biophys Res Commun. 2005;334:213–7.

78. Li Z-C, Zhou X-B, Lin Y-R, Zou X-Y. Prediction of protein structure class by
coupling improved genetic algorithm and support vector machine. Amino
Acids. 2008;35:581–90.

79. Chou KC. Prediction of protein structural classes and subcellular locations.
Curr Protein Pept Sci. 2000;1:171–208.

80. Ding Y-S, Zhang T-L, Chou K-C. Prediction of protein structure classes with
pseudo amino acid composition and fuzzy support vector machine
network. Protein Pept Lett. 2007;14:811–5.

81. Mizianty MJ, Kurgan L. Modular prediction of protein structural classes from
sequences of twilight-zone identity with predicting sequences. BMC
Bioinformatics. 2009;10:414.

82. Deschavanne P, Tufféry P. Exploring an alignment free approach for protein
classification and structural class prediction. Biochimie.
2008;90:615–25.

83. Hayat M, Khan A. MemHyb: Predicting membrane protein types by
hybridizing SAAC and PSSM. J Theor Biol. 2012;292:93–102.

84. Liu T, Jia C. A high-accuracy protein structural class prediction algorithm
using predicted secondary structural information. J Theor Biol.
2010;267:272–5.

85. Kurgan L, Chen K. Prediction of protein structural class for the twilight zone
sequences. Biochem Biophys Res Commun. 2007;357:453–60.

86. Jones DT. Protein secondary structure prediction based on position-specific
scoring matrices. J Mol Biol. 1999;292:195–202.

87. Kurgan LA, Homaeian L. Prediction of structural classes for protein
sequences and domains-Impact of prediction algorithms, sequence
representation and homology, and test procedures on accuracy. Pattern
Recogn. 2006;39:2323–43.

88. Chou K-C. Progress in protein structural class prediction and its impact to
bioinformatics and proteomics. Curr Protein Pept Sci. 2005;6:423–36.

89. Kurgan L, Cios K, Chen K. SCPRED: accurate prediction of protein structural
class for sequences of twilight-zone similarity with predicting sequences.
BMC Bioinformatics. 2008;9:226.



Abbass and Nebel BMC Bioinformatics  (2015) 16:136 Page 13 of 13
90. Ding S, Li Y, Shi Z, Yan S. A protein structural classes prediction method
based on predicted secondary structure and PSI-BLAST profile. Biochimie.
2014;97:60–5.

91. Liu T, Zheng X, Wang J. Prediction of protein structural class for
low-similarity sequences using support vector machine and PSI-BLAST
profile. Biochimie. 2010;92:1330–4.

92. Zhang S, Ye F, Yuan X. Using principal component analysis and support
vector machine to predict protein structural class for low-similarity
sequences via PSSM. J Biomol Struct Dyn. 2012;29:1138–46.

93. Liu T, Geng X, Zheng X, Li R, Wang J. Accurate prediction of protein
structural class using auto covariance transformation of PSI-BLAST profiles.
Amino Acids. 2012;42:2243–9.

94. Li L, Cui X, Yu S, Zhang Y, Luo Z, Yang H, et al. PSSP-RFE: Accurate
prediction of protein structural class by recursive feature extraction
from PSI-BLAST profile, physical-chemical property and functional
annotations. PLoS One. 2014;9, e92863.

95. Handl J, Knowles J, Vernon R, Baker D, Lovell SC. The dual role of fragments
in fragment-assembly methods for de novo protein structure prediction.
Proteins. 2012;80:490–504.

96. Sillitoe I, Cuff AL, Dessailly BH, Dawson NL, Furnham N, Lee D, et al. New
functional families (FunFams) in CATH to improve the mapping of
conserved functional sites to 3D structures. Nucleic Acids Res.
2013;41:D490–498.

97. Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG. SCOP2 prototype:
A new approach to protein structure mining. Nucleic Acids Res.
2014;42:D310–4.

98. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, et al.
ROSETTA3: an object-oriented software suite for the simulation and design
of macromolecules. Methods Enzymol. 2011;487:545–74.

99. Abbasi E, Ghatee M, Shiri ME. FRAN and RBF-PSO as two components of a
hyper framework to recognize protein folds. Comput Biol Med.
2013;43:1182–91.

100. Kavousi K, Moshiri B, Sadeghi M, Araabi BN, Moosavi-Movahedi AA. A
protein fold classifier formed by fusing different modes of pseudo
amino acid composition via PSSM. Comput Biol Chem. 2011;35:1–9.

101. Giorgetti A, Raimondo D, Miele AE, Tramontano A. Evaluating the usefulness
of protein structure models for molecular replacement. Bioinformatics.
2005;21 Suppl 2:ii72–i76.

102. Shi S, Pei J, Sadreyev RI, Kinch LN, Majumdar I, Tong J, et al. Analysis of
CASP8 targets, predictions and assessment methods. Database (Oxford).
2009;2009:bap003.

103. Zhang J, Wang Q, Barz B, He Z, Kosztin I, Shang Y, et al. MUFOLD: A new
solution for protein 3D structure prediction. Proteins. 2010;78:1137–52.

104. Kalman M, Ben-Tal N. Quality assessment of protein model-structures using
evolutionary conservation. Bioinformatics. 2010;26:1299–307.

105. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using
the Robetta server. Nucleic Acids Res. 2004;32(Web Server issue):W526–31.

106. Gront D, Kulp DW, Vernon RM, Strauss CEM, Baker D. Generalized fragment
picking in Rosetta: design, protocols and applications. PLoS One.
2011;6:e23294.

107. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers.
1983;22:2577–637.

108. Zemla A. LGA: a method for finding 3D similarities in protein structures.
Nucleic Acids Res. 2003;31:3370–4.

109. Siew N, Elofsson A, Rychlewski L, Fischer D. MaxSub: an automated measure
for the assessment of protein structure prediction quality. Bioinformatics.
2000;16:776–85.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Fragment-based protein structure prediction
	Structural classification
	Overview

	Results
	Dataset, databases and software tools
	General performance
	Performance according to structural class
	Convergence towards native-like conformations

	Discussion
	Conclusions
	Methods
	Fragment-based protein structure prediction software
	Structural class annotations
	Evaluation framework
	Evaluation metrics

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

