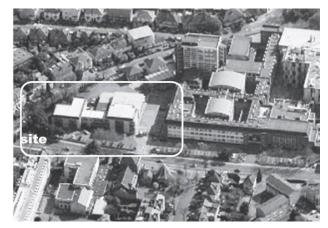


Mathematics eAssessment using Numbas: Experiences at Kingston with a partially "flipped" classroom


- 1. Background & motivation
- 2. Approach adopted
- 3. Findings
- 4. Discussion

Dr James Denholm-Price and Dr Peter Soan School of Mathematics

Surely it's just Linear Algebra, why change anything?

There's a lot of change underway at Kingston

Building programmes.

Revised Academic Framework:

- 30 credit modules,
- rationalised courses,
- greater emphasis on feedback,
- fewer summative assessments...

Pegg, Ann (2013). 'We think that's the future': Curriculum reform initiatives in higher education. HEA.

Aims?

- Coverage
 - Introductory Linear Algebra:
 - Matrices, Gaussian Elimination, Eigenvectors
- Efficient and Effective Engagement
 - over 4 weeks, ~100 students,
 - despite timetable & classroom constraints
 - using appropriate techniques/tools
 - eAssessment
 - Matlab

The "flipped" classroom approach?

- Hopes
 - Changing this

Into this?

- Fears
 - Engagement is lost

Chaos ensues!

It's not exactly new...

1967

Hartley J., Cameron A. Some observations on the efficiency of lecturing. Educ. Rev. 1967

1981

"The More I Lecture, The Less I Know If They Understand." 6th February 2014 (online)

"The lecturer is prone to self-deception ... egocentrism and confirmation bias"

What did we do? Partial Flip + eAssessment.

- Partial as there was no structured offline interaction
 - c.f. Eric Mazur's Peer Instruction approach: "concepts-in-the-classroom"
- Formative eAssessment
 - with a miniscule marks incentive (~1%)
 - to encourage students to self-test
 - leading to summative eAssessment

How did we use eAssessment? Why use Numbas?

- Formative eAssessment

 - Numbas (Newcastle & mathcentre.ac.uk)
 - Random parameters encourage students to

learn the *method*

rather than

learning the *question*

Stage 1: Advance material

Gapped notes (Word & PDF) with separate formative eAssessment

Gaussian Elimination

How do we solve a 2x2 system of linear equations?

Example 4

$$2x_1 + 2x_2 = 4$$
 (1)

$$4x_1 - 3x_2 = 1 \quad (2)$$

Exercises

Use Gaussian elimination to solve the following linear systems:

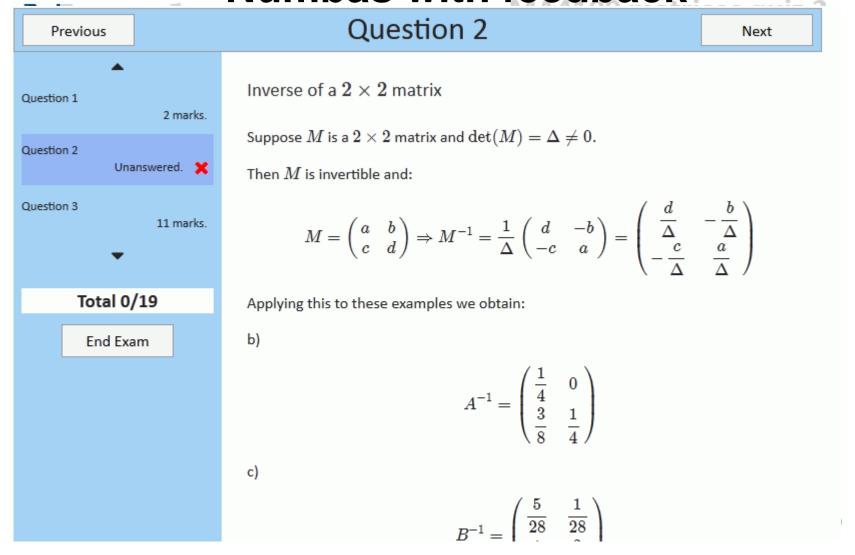
1.
$$x_2 + x_3 = 6$$

 $x_1 - 2x_2 - x_3 = 4$
 $x_1 - x_2 + x_3 = 5$

$$2x_1 + 4x_2 - x_3 = -5$$

$$x_1 + x_2 - 3x_3 = -9$$

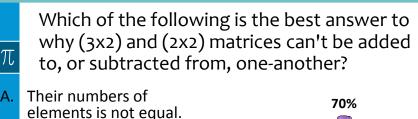
$$4x_1 + x_2 + 2x_3 = 9$$


3.
$$\begin{bmatrix} 1 & -5 & 1 \\ 10 & 0 & 20 \\ 5 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \\ 4 \end{bmatrix}$$

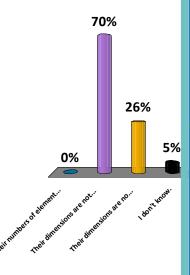
Which operations did we use?

We added a multiple of equation (1) to the equation ($\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} x_i \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$ resulting equation by a non-zero constant to get the solution for x2.

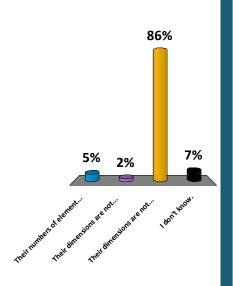
Formative eAssessment using Numbas with feedback


Matlab & fractions

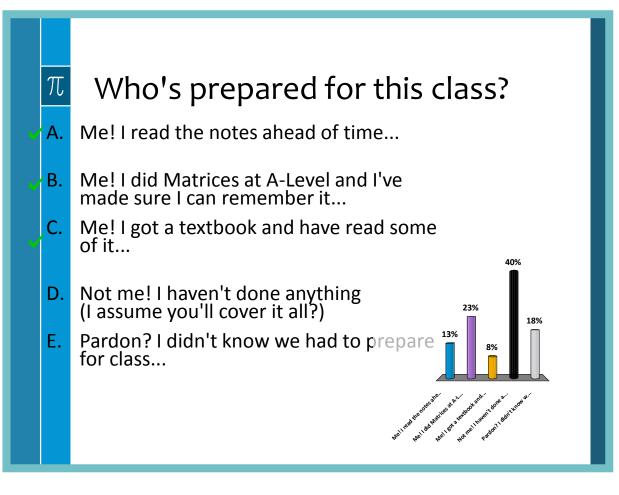
- Matlab makes (some) answers easy
 - ... even the ones requiring rational input
 - ...but then they're learning Matlab too :-)
- However key methods like Gaussian Elimination aren't so badly affected

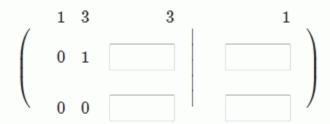


Stage 2: In-class discussion.


 Topics for further discussion were identified by electronic voting

- Their dimensions are not identical.
- Their dimensions are not compatible, e.g. $(n \times m)$ and $(\mathbf{m} \times \mathbf{p})$.
- I don't know.


- Which of the following is the best answer to why (3x2) and (3x2) matrices can't be multiplied together?
- Their numbers of elements is not equal.
- Their dimensions are not identical.
- Their dimensions are not compatible, e.g. $(n \times m)$ and $(m \times p)$.
- I don't know.



Did students prepare for class?

Little prepwork, but evidence in marks is blurred by spread of student Alevel experience

From this you should find:

$$z =$$

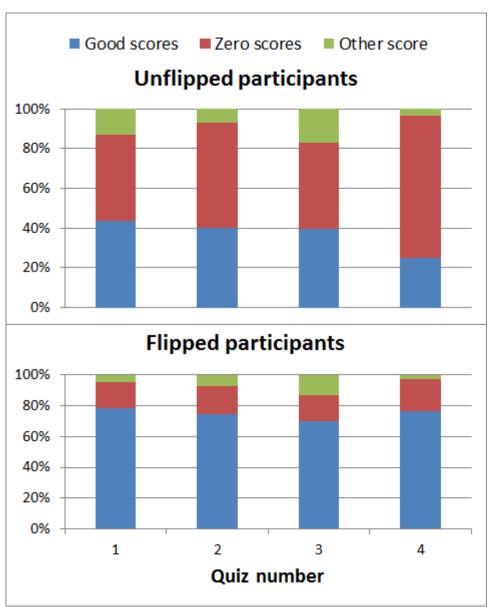
d)

From the second row of the reduced matrix you find an equation involving only y and z and using your value for z we find:

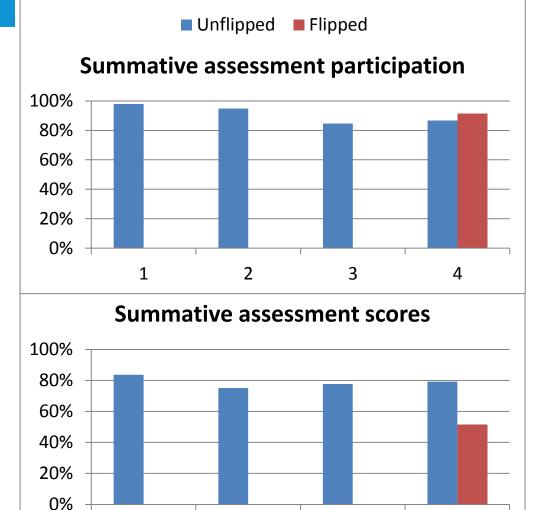
$$y =$$

Then using the first row we have the equation:

$$x + 3y + 3z = 1$$


Using this you can now find x:

$$x =$$



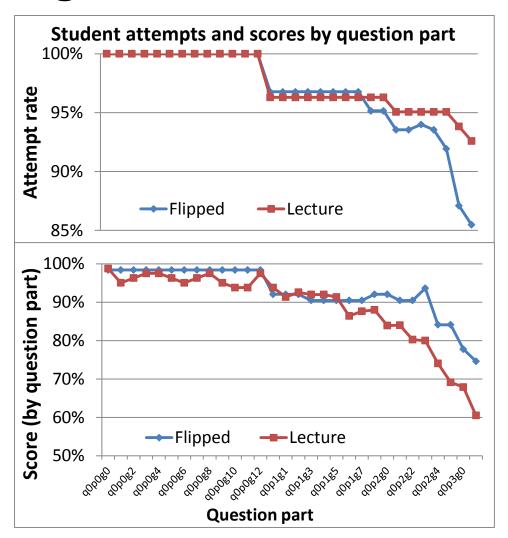
Formative Participation

Formative engagement, e.g. numbers doing quizzes 1-4 and/or doing well.

3

Assessment period

4


Summative assessment

- Not a cohort effect!
- E.g. Calculus module scores

Fatigue?

- Gaussian Elimination question
 - 30 discrete parts
 - Flipped group dropsout quicker but scores better

Confounding factors

- Matlab encourages surface learning?
- Too high expectations?
- Test fatigue?

Lessons

Scaffolding to smooth the transition into a flipped approach

Managing student expectations and assessment literacy

Investigate confounding factor (test fatigue) in our measure of success

- Link eAssessment directly to preparatory material
- Turn "gapped notes" into interactive e-resources?

Questions

- Is the "flipped classroom" appropriate
 - for Linear Algebra and Matlab?
 - for mathematics in general?
 - in higher education?
 - for 1st year?

Thanks for listening

- With thanks to
 - Bill Foster, Christian Perfect, Anthony Youd from Newcastle University for Numbas
 - Michael Grove from Birmingham University for **HESTEM**