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Summary

We present here a first attempt at modelling microbial
dynamics in the human colon incorporating both
uncertainty and adaptation. This is based on the
development of a Monod-equation based, differential
equation model, which produces computer simula-
tions of the population dynamics and major metabo-
lites of microbial communities from the human colon.
To reduce the complexity of the system, we divide
the bacterial community into 10 bacterial functional
groups (BFGs) each distinguished by its substrate
preferences, metabolic pathways and its preferred pH
range. The model simulates the growth of a large
number of bacterial strains and incorporates variation
in microbiota composition between people, while also
allowing succession and enabling adaptation to envi-
ronmental changes. The model is shown to reproduce
many of the observed changes in major phylogenetic
groups and key metabolites such as butyrate, acetate
and propionate in response to a one unit pH shift in
experimental continuous flow fermentors inoculated
with human faecal microbiota. Nevertheless, it should
be regarded as a learning tool to be updated as our
knowledge of bacterial groups and their interactions
expands. Given the difficulty of accessing the colon,
modelling can play an extremely important role in
interpreting experimental data and predicting the con-
sequences of dietary modulation.

Introduction

The human colon is one of the most densely populated
microbial ecosystems on Earth (Whitman et al., 1998)
with several hundred different bacterial strains co-
existing at any one time (Eckburg et al., 2005; Qin et al.,
2010). The exact composition of the bacterial community
in any given person varies with host factors including
secretory products, peristalsis and host genotype; and
environmental factors including diet, microbial inocula
and drugs (Egert et al., 2006). It has become apparent
recently that diet plays a particularly important role in
determining microbiota composition (de Filippo et al.,
2010; Walker et al., 2011; Wu et al., 2011; Flint et al.,
2012a; Cotillard et al., 2013; David et al., 2014). The
impact of diet is assumed to be mediated largely via the
substrate preferences of different bacterial groups, but
also depends on microbial interactions such as cross-
feeding and changes in environmental variables such as
pH and transit time (Stephen et al., 1987; Walker et al.,
2005; Flint et al., 2007; Louis et al., 2007; Duncan et al.,
2009). Incomplete data and the high variability in micro-
bial composition within the human population make fully
deterministic modelling of the human gut microbial com-
munity difficult. Nevertheless, modelling can potentially
play an extremely important role in the interpretation of
experimental data and ultimately in predicting responses
to dietary modulation.

While the human colonic community is highly diverse
from a phylogenetic viewpoint, there is also a high
degree of functional redundancy (Flint et al., 2007;
Turnbaugh et al., 2009; Louis et al., 2010). This makes it
feasible and indeed desirable to simplify the system in
order to analyse its functional interactions and dynamics
in a quantitative manner. This approach has also been
taken by Munoz-Tamayo and colleagues (2010) who
developed a mathematical model of colonic bacteria
using four functional groups and much physical detail.
Our approach here uses a simpler physical environment
(corresponding to a laboratory fermentor experiment),
but investigates the behaviour of human colonic micro-
bial communities that are represented by 10 bacterial
functional groups (BFGs) and comprise a large number
of microbial strains with stochastically varying traits. The
10 BFGs include producers of the three major short
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chain fatty acids detected in faecal samples [acetate
(Ace), butyrate (But) and propionate (Pro)] together with
utilizers of Ace, lactate (Lac), succinate (Suc), formate
(For) and hydrogen (H2) (see Table 1). It is worth
emphasizing that a small number of highly abundant
bacterial species dominate the system, including the But

producers, Faecalibacterium prausnitzii and Eubacter-
ium rectale (Flint et al., 2012b) and that many of these
have now been cultured (Tap et al., 2009; Walker et al.,
2011); in a recent study, more than 60% of phylotypes
that individually accounted for > 0.5% of sequences
were found to have been cultured (Walker et al., 2011).

Table 1. Functional groups are defined by their contributions to dietary substrate (DS) breakdown and SCFA metabolism (see Appendix S2 for
more detail on metabolic activity).

BFG Name Examples Metabolic activity

B1 Acetate-propionate-
succinate group

Bacteroides spp. Grow on all DS including protein; when growing on
either carbohydrate or protein they produce
acetate, propionate, succinate, H2 and CO2

(Macfarlane and Gibson, 1997); when growing on
protein, they also produce other metabolites (50%)
not included in this model. Assumptions about
substrate utilization are based on Salyers and
colleagues (1977).

B2 Non-butyrate-forming
starch degraders

Ruminococcaceae related to Ruminococcus bromii.
Might also include certain Lachnospiraceae.

Grow on starch and (poorly) on NSP to produce
acetate, CO2 and H2 (Moore et al., 1972; Ze et al.,
2012).

B3 Non-butyrate-forming
fibre degraders

Ruminococcaceae related to Ruminococcus albus,
Ruminococcus flavefaciens. Might also include
certain Lachnospiraceae.

Grow on NSP, but poorly on starch, to produce
acetate and succinate (Moore et al., 1972;
Macfarlane and Gibson, 1997; Robert and
Bernalier-Donadille, 2003).

B4 Lactate producers Actinobacteria, especially Bifidobacterium spp,
Collinsella aerofaciens

Grow on all DS except protein to produce acetate,
lactate, formate and ethanol (Macfarlane and
Gibson, 1997).

B5 Butyrate producers 1 Lachnospiraceae related to Eubacterium rectale,
Roseburia spp.

Grow on all DS except protein. Acetate is regarded
as a semi-essential substrate and growth is
optimal when acetate is present, but there is no
growth on acetate alone. They produce butyrate,
H2 and CO2 (Barcenilla et al., 2000; Duncan et al.,
2006; Duncan and Flint, 2008; Louis et al., 2010).

B6 Butyrate producers 2 Certain Ruminococcaceae, in particular
Faecalibacterium prausnitzii

Grow on all DS except protein, but with limited ability
to utilize starch (Lopez-Siles et al., 2012). Acetate
is regarded as a semi-essential substrate and
growth is optimal when acetate is present, but
there is no growth on acetate itself. They produce
butyrate, lactate, formate and CO2 (Duncan et al.,
2002).

B7 Propionate producers Veillonellaceae e.g. Veillonella spp., Megasphaera
elsdenii

Representatives are assumed to be able to grow on
NSP, starch and sugars to produce acetate,
propionate and CO2. Alternatively, they can grow
on lactate to produce acetate, propionate and CO2

(Prins, 1977; Gottschalk, 1979; Seeliger et al.,
2002)

B8 Butyrate producers 3,
able to utilize lactate.

Lachnospiraceae related to Eubacterium hallii,
Anaerostipes spp.

Representatives are assumed to be able to grow on
all the DS except protein to produce acetate,
butyrate, formate, H2 and CO2. If acetate is
present, they can also grow on lactate to produce
butyrate, H2 and CO2 (Duncan et al., 2004a).

B9 Acetogens Certain Lachnospiraceae, e.g. Blautia
hydrogenotrophica

Representatives are assumed to be able to grow on
all DS except protein to produce acetate, or they
can grow on H2 and CO2 (and formate) to produce
acetate (Ragsdale and Pierce, 2008), or they can
convert formate while growing on carbohydrates to
produce acetate, H2 and CO2 (Wolin et al., 2003).

B10 Methanogens Methanogenic archaea, e.g. Methanobrevibacter
smithii

Can grow on H2 and CO2 to produce CH4.
Alternatively they can grow on formate to produce
CO2, and CH4 (Liu and Whitman, 2008).

The putative relationships of BFGs to phylogenetic groupings are based on information from cultured representatives allied to 16S rRNA-based
enumeration (e.g. Aminov et al., 2006, Flint et al., 2007, Walker et al., 2011, Flint et al., 2012b). These associations must be regarded as first
approximations. A recent survey suggests that although the most dominant bacterial species have been isolated from the human colon, many less
abundant bacterial phylotypes have not been studied in culture (Walker et al., 2011).
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Our assumptions are largely based on studies with
these dominant cultured bacteria.

This paper describes the development of a theoretical
model, which simulates the human colonic microbial
community and its major metabolic products. The model
is designed to simulate a wide range of different micro-
bial communities in an attempt to reproduce the kind of
diversity that can be found in the human population.
However, before attempting to produce realistic popula-
tion scale results (future work), we compare the model to
results generated in more tightly controlled environ-
ments. Thus in this paper, we describe comparisons with
continuous flow fermentor experiments on the effects of
pH and peptide supply on human faecal microbiota from
healthy volunteers (Walker et al., 2005). The pH of
the colon is potentially a key factor in determining the
species composition and metabolic outputs of the human
intestinal microbiota because of the relative sensitivity of
most Gram-negative anaerobes to slightly acidic pH
(Duncan et al., 2009).

The model (described in detail in Appendix S1, with
Tables S1–S9) has been developed as a framework within
which to test our current understanding of gut microbial
interactions and to study the effects of diversity on system
function. The metabolic pathways are easy to change
(they are input files), the parameter ranges can be as
wide or narrow as the user wishes, and the model can be
run with any subset of the 10 BFGs or even for just one
strain in one BFG. Thus, the model can also be used by
researchers wishing to understand and parameterise rela-
tively simple interactions. In this paper, however, we aim
to demonstrate the potential that the model has at a wider
level; for example, to simulate variation between microbial
communities at the (human) population scale and to

investigate the role of diversity within each microbial com-
munity. We hope that our model, which we refer to as
‘AMES’ for Anaerobic Microbial Ecosystem Simulator, will
prove useful for all of these different requirements and the
source code (FORTRAN 90) which runs on Linux and
Windows is available in Appendix S4. However, because
this model is part of an ongoing research project, we
strongly recommend that researchers wishing to use the
code for their own research should contact the lead author
for the latest version.

Results

Model description and assumptions

Our aim here is to develop a model that simplifies the
enormous complexity of the human intestinal microbiota
by focussing on major functional groups and their meta-
bolic products. The 10 BFGs shown in Table 1 were
chosen to represent functional groups that can be defined
based on our existing knowledge of the substrate prefer-
ences and fermentation products (specifically short chain
fatty acids) of numerically predominant species. In order
to relate bacterial growth and substrate utilization to meta-
bolic outputs, it was essential to specify stoichiometries
and these were derived from the major fermentation path-
ways described for representatives of each BFG (shown
in detail in Appendix S2). Some BFG (e.g. B5 and B6 But
producers, B10 methanogenic archaea) correspond
closely to well-defined phylogenetic groups, whereas
others include representatives of several phylogenetic
groups.

Growth substrates available in the large intestine
are divided into four categories: protein, non-starch
polysaccharides (NSP), resistant starch and sugars (and
sugar alcohols); for simplicity, all carbohydrate units
are regarded as being hexoses. NSP comprise major
components of dietary fibre including the structural
polysaccharides of the plant cell wall (cellulose, xylan,
pectin), whereas RS refers to the fraction of dietary starch
that resists digestion in the small intestine. We consider
10 major metabolites that arise from substrate fermenta-
tion: Ace, Pro, But, Lac, Suc, For, H2, carbon dioxide
(CO2), methane (CH4) and ethanol. Six of these metabo-
lites (Ace, Lac, Suc, For, H2 and CO2) are also considered
as substrates, because they are known to be consumed
by some BFGs. The relationships among substrates,
BFGs and metabolites are summarized in Table 1 and
Fig. 1. The assumed stoichiometries for metabolite pro-
duction and uptake, which are derived from the schemes
shown in Appendix S2, are given in Table S1. For each
substrate and BFG combination, we have assumed a
maximum growth rate μM and yield Y, as detailed in Tables
S2 and S3. These values are in part empirically derived,
but most must be regarded as crude approximations. A

Fig. 1. Summary of functional groups among human colonic
bacteria. For detailed assumptions see Table 1, Supplementary
Tables S1 and S9, and Appendix S2. CoA, coenzyme A; PEP,
phosphoenolpyruvate.
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further aim of the model was to simulate the responses of
different BFGs within the microbial community to physi-
ologically relevant pH changes. The impact of pH on
growth was based on available empirical evidence for
representatives of each BFG (Duncan et al., 2009). In the
model, each BFG is assigned a preferred range of pH
within which it can reach its maximum growth rate, but
outside of which, its growth is reduced or zero [Table S4
and Appendix S1 (A2.4)]. The pH limitation is incorporated
into the model by scaling the bacterial growth rate by
a pH limitation factor H (where 0 ≤ H ≤ 1), which is given
a trapezoidal shape [see Appendix S1 (A2.4)].

In the interests of brevity, the governing equations for
the model are included in Appendix S1 and only a brief
overview is given here. Essentially, we model the rate of
bacterial growth using Monod kinetics and assume that
from 1 g of resource, Y g of biomass is produced (Table
S3). We then assume that any of the resource that is
taken up, but is not used to produce biomass, is converted
to metabolites. If not all of the resource is converted to
biomass or to the metabolites represented in our model, it
is discarded. This applies, for example, to many diverse
fermentation products of proteins (e.g. phenols, amines)
that are not among the 10 major products covered by the
model.

The model takes an ‘emergent behaviour’ approach,
meaning that each simulation starts not with just 10
strains (one for each BFG), but with 100 (10 per BFG)
strains with traits stochastically assigned within the limits
of the respective BFG, thus allowing the system to
respond through strain competition. Because we assign
strain traits stochastically each time we run a simulation,
the microbial community will be slightly different. We will
henceforth refer to each model run as a ‘realization’. The
importance of this inbuilt strain diversity in producing
meaningful simulations will be explained and illustrated in
more detail once we have considered the application of
the model to some real experimental data.

Application of the model to the human gut microbiota in
in vitro continuous culture

In order to explore the potential of the model, we applied
it to earlier experiments that determined the effect of
different controlled pHs and peptide inputs upon microbial
community composition and net short chain fatty acid
(SCFA) formation for human colonic microbiota in anaero-
bic continuous culture. These experiments used two par-
allel single-stage anaerobic fermentors of 250 ml of
volume that were simultaneously inoculated with bacteria
from a faecal sample (‘donor 1’) and then supplied con-
tinuously with fresh medium at the rate of one turnover per
day (Walker et al., 2005). The supply medium contained a
mixture of dietary polysaccharides (total 0.74% w/v) as

energy sources, together with either 0.1% peptide or 0.6%
peptide. The experiment was repeated using a faecal
inoculum from a second donor (‘donor 2’). The pH in each
vessel was controlled at 5.5 for 6 days (144 h; donor 1) or
9 days (216 h; donor 2) and then increased over 2 days to
reach 6.5 at which it was then fixed for 9 days (Walker
et al., 2005). The allocation of the constituents of the
fermentor medium to our four model substrate groups is
shown in Table S5. Because fermentor medium was main-
tained under a steady stream of CO2, we added this to the
inflow in the model at 1 g d−1 to ensure that the system
was not CO2 limited. In the experiments, fluorescence in
situ hybridization (FISH) microscopy was used to monitor
the absolute populations of different phylogenetic groups
of bacteria (Walker et al., 2005). The phylogenetic groups
detected by the FISH probes correspond well with our
assumed BFGs for bacterial groups B1 (Bac303), B4
(Bif164), B5 (Rrec584), B6 (Fprau645) and B7 (Prop853)
(Table S6). On the other hand, B2 and B3 are expected to
include a subset of species recognized by the Erec482
(Lachnospiraceae) and Rfla729/Rbro730 (Ruminococcus
spp.) probes and B8 and B9 comprised a subset of
species recognized by Erec482; estimation of their
numbers must therefore be regarded as a crude approxi-
mation (see Table S6).

We performed 100 realizations of the model for each
donor, with 10 strains per BFG, and then found the reali-
zation that was the closest [in terms of root mean squared
error (RMSE)] to the measured Ace, Pro and But concen-
trations and BFG counts from the FISH probes (Table S6).
The results for the high (0.6%) peptide input are shown for
SCFA in Fig. 2 and for BFGs in Fig. 3. First, it is clear that
the SCFAs from the two donors have a very similar
response to the change in pH and our model captures the
experimental data well, especially for Pro and But. The
model tends to overpredict the rate of uptake of Ace at pH
5.5, however, probably reflecting the fact that Ace is both
produced and consumed by different BFGs (Flint et al.,
2012b), which makes it more difficult to accurately simu-
late its concentration changes.

The model was very successful in predicting the
switchover from a more butyrogenic to a more pro-
pionigenic fermentation between pH 5.5 and pH 6.5.
This was largely explained by the greater ability of the B5
(and in the model, B8) groups of But producers to
compete for carbohydrate substrates at pH 5.5, whereas
these groups were outcompeted by B1 (Bacteroides) at
pH 6.5 (Fig. 3). In addition, some new experimental evi-
dence shown in Fig. 4 reveals that pH can alter the fer-
mentation stoichiometries for representatives of the B5
group, changing in favour of increased But production and
Ace utilization as the pH becomes more acidic. For this
reason, the simulations presented in this paper assumed
the stoichiometry for group B5 that is observed at pH 5.5
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(Table S1) although an alternative stoichiometry closer to
that observed at pH 6.5 in E. rectale (‘Alt. B5’ in Table S1;
Duncan and Flint, 2008) did not greatly change the find-
ings (data not shown). The third group of But producers
(B6) did not achieve large populations either in these
simulations or in the experiments of Walker and
colleagues (2005). This is explained by the limited ability
of F. prausnitzii strains (B6) to utilize the dietary
polysaccharide substrates (mainly starch) supplied here
(Lopez-Siles et al., 2012). Results from all model realiza-
tions are shown in the box and whisker plots in Figs 5
(SCFA) and 6 (BFGs).

The model also broadly captured the responses to pH
observed at the 0.1% peptide input, at least for donor 1
where the proportion of B1 bacteria again increased
markedly with the pH change from 5.5 to 6.5, although this
was not seen for donor 2 at 0.1% peptide (Fig. 6). Gen-
erally, the simulations covered the data (i.e. the data
points fall within the whiskers of the box plots) (Figs 5 and
6). Total SCFA concentrations were similar for the two
peptide input levels both in the model prediction and
experimental data (Fig. 5), whereas the observed bacte-
rial count (Eub probe) at 0.1% peptide was only about
20% of that observed at 0.6% peptide (Walker et al.,
2005) (Fig. 6). Thus, SCFA production was maintained
despite the decreased growth rates, reflecting limitation
by the nitrogen supply rather than the carbohydrate
energy source. As a result, the predicted biomass at 0.1%

peptide was higher than the observed biomass and
adjustments of the model would clearly be needed to
predict absolute bacterial numbers whenever the carbo-
hydrate energy supply is not the main growth-limiting
factor.

The measured concentrations of Lac, Suc and For were
generally close to zero in the 0.6% peptide condition
although showing some transient increases in the 0.1%
peptide condition. The model overestimated both For and
Suc, which suggests that either their consumption via
cross-feeding is being underestimated or their production
is being overestimated (for reasons that will be consid-
ered in the Discussion).

Investigation of competition and cross-feeding by
‘knockout’ of single BFGs

An influence of input microbiota composition is apparent
from the different predicted outcomes for BFG propor-
tions and SCFA concentrations for donors 1 and 2
(Figs 3, 4). It is of considerable interest therefore to ask
how complete elimination of any one of the 10 functional
groups would affect the remaining BFGs and the
metabolite profile of the residual community. For simplic-
ity, we assumed an even spread of the initial biomass
between groups for these simulations, but retained a pH
switch after 8 days, as in the Walker and colleagues
(2005) experiments. Figs 7 and 8 show the

Fig. 2. Comparing SCFA concentrations from the ‘best-fit’ model realization and the mean of 100 model realizations with the Walker and
colleagues (2005) fermentor experiment data for peptide at 0.6% for Donor 1 (top row) and Donor 2 (bottom row). In the column on the far
right, the bold lines are from the ‘best-fit’ model and the thin lines are the mean of the 100 model realizations. Observed concentrations of
lactate, succinate and formate (not shown) did not exceed 2 mM in the fermentor experiment.
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consequences on the mean SCFA concentrations and
the mean microbial community composition (over 50
realizations) if any one group was removed at a time.
When all groups were present, B1 (Bacteroides) domi-
nated the 6.5 pH regime in the model community; at pH
5.5 the community is more evenly spread (Fig. 8). When
B1 is removed, B2 dominates the pH 6.5 regime. With
regard to SCFA, removing B7 had multiple effects in
decreasing Pro and also allowing But to increase in the

pH 5.5 regime. Interestingly, removing B1 had a large
effect in maintaining But concentrations at pH 6.5. The
reason for this must be that by removing B1 (which domi-
nates the pH 6.5 regime and does not produce But) the
But producers (B5, B6 and B8) are given greater access
to the available resources. Removing B6 significantly
decreases the uptake of Ace in the pH 5.5 regime. The
resulting Ace profile is similar to the fermentor results
(Fig. 2) and implies that the overestimation of Ace uptake

Fig. 3. Comparing bacterial communities from the ‘best-fit’ model realization with our estimates of the BFGs from Walker and colleagues
(2005) probe data where the fermentor pH is changed from 5.5 to 6.5 at 144 h (Donor 1) and 216 h (Donor 2) for peptide at 0.6%. The plots
show the community composition at the end of the pH 5.5 regime and at the end of the experiment (360 h for Donor 1, and 458 h for Donor
2). The ‘model’ values are a percentage of the total biomass at the end of the simulation; the ‘fermentor data’ values are a percentage of the
total biomass in our allocated BFGs at the end of the fermentor experiment.
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by the model could be due to an overestimate of B6.
Furthermore, removing B10 allows a large build-up of For
at pH 5.5, which implies that the high For concentrations
shown in Fig. 2 would be reduced (and therefore more
similar to the fermentor measurements) if the proportion
of B10 was increased in the model.

It is also interesting to consider how many BFGs are
actually required to accurately represent the system. For
the input medium used here (Table S5), knocking out B4
and B9 makes very little difference to the metabolite con-
centrations (Fig. 7), so for this particular situation, these
BFGs could be omitted and the system could be
adequately modelled with eight groups. However, for a
different input medium, this may not be the case.

Emergent behaviour and adaptation to environmental
change (resilience)

A very important feature of our model, which should now
be explained in more detail, is that we have adopted an
‘emergent behaviour’ approach. In practice, this means
that each simulation starts not just with 10 strains (one

for each BFG), but with 100 (10 per BFG) or more (this
is simply a model parameter, Ns). The multiple strains
assigned into each of these BFGs have stochastically
generated parameter values [from ranges appropriate to
the given BFG; see Appendix S1 (A5)] for the following
traits: maximum growth rate μM, half-saturation constant
K, yield Y and pH preference H. Although the strain traits
are stochastically generated at the start of the simulation,
they are fixed at these values throughout the duration of
the simulation, and it is the competition between these
strains that then allows the community to adapt as a
whole. The generation of these traits is described in
detail in Appendix S1 (A5), the parameter values are
given in Table S8 and the relative growth rates for each
BFG are given in Table S2. The philosophy behind this
approach is that given a certain environment, a large,
stochastically generated bacterial community will self-
organize until it reaches a stable community composi-
tion. In a low resource situation, the strain with the
highest value of μM/K is expected to outcompete the
other strains, whereas in a high resource situation, μM is
more important.

In order to demonstrate how the model allows the mean
trait values of each BFG to adapt through strain succes-
sion, we will briefly consider how the mean pH trait of just
one BFG, B1, changes as the environmental pH changes.
We define the mean trait as a weighted average based on
the concentration of each strain, Xi, such that for a trait
value, zi, the mean trait value, zav, for the group is given by

z
X z

X

av
i i

i

N

i
i

N

s

s
= =

=

∑

∑
1

1

(1)

(Norberg et al., 2001). Fig. 9A shows how the biomass
of B1 varies in response to a sinusoidally daily varying
environmental pH when Ns is changed from 1 (i.e. only
one strain in the group) to 25. It is clear that the ability
of the group to adapt has a big effect on maintaining
bacterial growth – the group biomass is consistently
higher when there are 25 strains present initially rather
than one (mean concentration of 2.9 g l−1 compared to
2.1 g l−1 – an increase in biomass of almost 40%). The
result that increased diversity leads to greater production
is a well-known result, sometimes referred to as the
‘insurance hypothesis’ (Yachi and Loreau, 1999).

Fig. 9B shows how the mean pH trait of the group (Eq.
1) containing 25 strains changes from the centre of the
trait space at the start towards the lower end of the trait
space as those strains with the lowest pH range
outcompete the others. Thus, the initial intra-group diver-
sity is important in allowing selection to occur, but this
diversity decreases with time as the best strain will often

Fig. 4. Effect of pH upon observed formation stoichiometries for
two butyrate producers (representatives of group B5). Data
represent the means of triplicate cultures. A shift towards greater
butyrate production and acetate consumption is evident for both
strains at pH 5.5.
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dominate the group to the exclusion of all other strains.
This is beginning to happen in our simulation (Fig. 9C)
where currently two strong strains have begun to domi-
nate, and as time goes on, the top strain will outcompete
all others (competitive exclusion). We recognize that intra-
group diversity is high within the colonic microbiota in
vivo, which means that there must be mechanisms that
counteract this tendency towards competitive exclusion
(e.g. see Kettle et al., 2014 for a possible explanation).

An inverse relationship between microbiota diversity and
variability within the human population

The model can also be used to consider the question of
variability of microbial communities within the human
population by regarding each model realization as repre-
senting the microbiota of a different person. Individual
microbial communities can of course be made to differ by
using different random seeds to generate the stochastic
strain traits or by omitting some of the BFGs; however, we
can also consider the influence of microbiota diversity
simply by varying the number of strains per group (Ns).
When this was done, we found that as Ns increases,

the differences between the microbial communities
in metabolite outputs (exemplified by Ace) emerging
from different realizations (or individual microbiotas)
decreases, leading to a less varied population of (human)
individuals. This is because the model allows adaptation
through strain succession (as described in the previous
section) and the higher the value of Ns, the more likely it is
that the best strain for the environmental conditions will be
very similar from one model realization (‘person’) to the
next. On the other hand, if Ns is small, it is more likely that
the randomly allocated strain traits will differ between
people. Fig. 10 shows a simulation over 20 days with pH
held at 6.5 for 50 ‘people’ for 1, 10 and 30 strains per
group where the initial biomass is spread evenly between
all BFGs. Looking at Fig 10A–C and the summary of
these in Fig. 10D, it is clear that a small number of strains
per group results in more variation with respect to net Ace
formation between the microbial communities in our mod-
elled ‘human’ population than high strain diversity. This is
important to note if one wishes to use the model to simu-
late response statistics for a human population – e.g. if
wishing to simulate the average effects of changes in diet
on gut microbiota.

Fig. 5. Comparing the three main SCFA [acetate (Ac), butyrate (Bu) and propionate (Pr)] for different peptide and pH for two donors at the
end of each pH period. One hundred model realizations are represented by box and whisker plots where the mean is shown as a line and the
box covers 50% of the simulations and the whiskers extend to 95%. The observed data are shown by stars.
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Discussion

We have developed a theoretical model of the human
colonic microbiota that is based on BFGs with the long-
term aim of relating dietary intake, microbiota composi-
tion and metabolic outputs. The ‘emergent behaviour’
approach to modelling that we have adopted proved
important in several ways. First, it allowed the introduc-
tion of variability and uncertainty into the model,
meaning that knowledge of precise parameter values
was not a crucial requirement and there was no need
to overly constrain the model at the outset. Because
species succession sorts the strains into a viable com-
munity structure (through resource competition) for the
given environment, this means that after sufficient time
has elapsed, the biomass-weighted average parameter
set for any group is determined to a large extent by the
environment rather than being fixed a priori. Second, the
approach mirrors the in vivo situation in which the gut
microbiota displays a high degree of strain diversity and
dynamic competition. Third, it provides a mechanism for
simulating the bacterial community of a large number of

human individuals; thus, 100 model runs could be inter-
preted as representing data from 100 different people by
initializing the model with different bacterial communities.
Multiple model runs can then be analysed to identify the
characteristics of this simulated human population. Thus,
by assigning the individual strain parameters stochasti-
cally for each model run, we can incorporate both the
uncertainty in our knowledge of the system and the
natural variation between people. An important conclu-
sion from the modelling reported here is that a system
comprising a larger number of strains with variable input
values gave rise to more reproducible behaviour than
one comprising a smaller number of strains. This implies
that high strain diversity within the microbiota will tend
to decrease variation in functional responses between
people.

The model was used here to simulate the observed
effects of controlled perturbations of the human colonic
microbial community in anaerobic continuous flow
fermentors. The results show that our model is able to
reproduce many of the observed dynamics of an ex-
perimental continuous flow model of human colonic

Fig. 6. Comparing the bacterial community composition (as percentage of the total biomass at the end of the simulation) for different peptide
and pH for two donors. One hundred model realizations are represented by box and whisker plots where the mean is shown as a line and the
box covers 50% of the simulations and the whiskers extend to 95%. The data are indicated by stars.
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microbiota in response to an imposed pH change. In
particular, But concentrations were very close to the
observed values, presumably reflecting our relatively
detailed knowledge of bacterial groups involved in But
production based on isolation and culture (Barcenilla
et al., 2000; Duncan et al., 2004b; Louis et al., 2010).
For example, the ability of many of these bacteria to
take up Ace and produce But is built into the model and
was reflected in the initial changes in Ace and But.
Another key feature appears to be the impact of slightly
acidic pH in conferring a competitive advantage to
certain groups of But producer (notably B5). Other
aspects of SCFA metabolism were less accurately mod-
elled, however, suggesting more limited understanding
of the phylogenetic groups responsible and their physi-
ology. Pro is formed by Bacteroides spp. and certain
groups of Firmicutes, but the partitioning of flux between
Pro and Suc in Bacteroides spp. is known to differ with
the type of growth limitation and gas phase (Macfarlane
and Gibson, 1997). Nevertheless, the dominant
Bacteroides populations at pH 6.5 (both in the model
and experimentally) apparently produced less Pro plus
Suc per unit cell mass in the mixed system than is pre-
dicted by the assumed stoichiometries. Recent evidence

also suggests that very few Firmicutes produce Suc,
contrary to the assumption made here for B3 (Reichardt
et al., 2014).

The model also overestimated For concentration. Most
bacteria can produce either For or H2 and CO2 depending
on the regulation of pyruvate-metabolizing enzymes and
For H2 lyase activity (Gottschalk, 1979). It has been
shown in Escherichia coli that For H2 lyase is involved in
cytoplasmic pH regulation in response to high For con-
centrations and low pH (Bagramyan and Trchounian,
2003). We may therefore either be overestimating the
production of For in the mixed community, or underesti-
mating its conversion to H2 and CO2 or CH4 by other
community members. The interactions of the main groups
of H2-consuming microorganisms are of considerable
interest in relation to gut health (Nava et al., 2012), but
more theoretical and experimental work will be needed
before we can modify this model to examine the compe-
tition between acetogens (B9), methanogens (B10) and
the third group (not included here) of sulfate-reducing
bacteria (SRBs). It will clearly be of interest to expand the
model by including SRBs, which can also use Lac as a
co-substrate (Marquet et al., 2009). Neither gas produc-
tion nor the populations of methanogens, SRBs and

Fig. 7. The effect of removing one group at a time on the mean SCFA concentrations over 50 model realizations. The model was set up with
biomass equally distributed between the 10 BFGs. The line marked with ‘0’ shows the response when no groups are removed (i.e. the full
community response). The model is run for a change in pH from 5.5 to 6.5 after 192 h (as in Walker et al., 2005). All other conditions and
settings are as given in Table S8.
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acetogens were measured by Walker and colleagues
(2005).

In constructing this model, we have had to make a
number of approximations that require some comment.
The correspondence between functional groups (BFGs)
within the model and phylogenetic groups as defined by
16S rRNA probes is often approximate, and some BFGs,

for example B8 (acetogens) (Drake et al., 2008), do not
fall into clearly defined phylogenetic groups. In the future,
it may be better for this purpose to develop detection
methods that are based on functionally relevant
genes (Louis et al., 2010; Flint et al., 2012b) rather than
relying on 16S rRNA-based methods. Assumptions about
stoichiometry were based largely on in vitro culturing of a

Fig. 8. The effect of removing one group at a time on the mean composition of the bacterial community (over 50 model realizations) at the
end of the pH 5.5 regime (193 h; shown in white) and at the end of the pH 6.5 regime (480 h; shown in black). The model was set up with
biomass equally distributed between the 10 BFGs. The plot marked ‘Missing BFG: 0’ shows the response when no groups are removed (i.e.
the full community response). All other conditions and settings are as given in Table S8.
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small number of isolated bacteria. It is known that
stoichiometries will vary in the mixed community as a
result of microbial interactions and cross-feeding (Latham
and Wolin, 1977; Flint et al., 2007) and can be influenced

by substrates, growth rates and nutrient supply (Louis
et al., 2007). It is therefore remarkable how closely the
model fits the observations for certain products (espe-
cially But) and BFGs, and this degree of fit should improve
markedly as the discrepancies prompt research to provide
the necessary information. Another approximation is that,
for simplicity, a single mass per bacterial cell has been
assumed throughout, independent of phylogenetic group
or environmental conditions.

The model includes substrate affinities, but assumes
simultaneous growth on all of the available substrates that
the bacterial group is capable of utilizing. Bacteroides
thetaiotaomicron, for example, expresses enzymes for
the utilization of different diet-derived polysaccharides
simultaneously (Rogers et al., 2013) and this flexibility
has also been shown for numerous other examples
(Kovarova-Kovar and Egli, 1998). However, it should be
noted that it is also possible for individual bacteria to
possess regulatory mechanisms that result in substrate
preferences (Russell and Baldwin, 1978). Because sub-
strate preferences are also likely to vary within functional
groups, the group assumptions in the present model
should be taken to represent an assumed average behav-
iour. As presented here, the model can be regarded as a
learning tool to enhance our understanding of microbial
communities in the gut, and because there is still much to
be discovered about this system, the model has been
coded to allow a reasonable amount of flexibility. For
example, the metabolic pathways and stoichiometries for
each group are simply input files (i.e. they are not hard
coded) so that they can be updated as our knowledge of
each bacterial group increases.

The model clearly has greater potential than we have
illustrated here. In particular, there is potential to apply this
model with appropriate refinements to the human colon.
One refinement would be to greatly diversify the range of
substrates to include endogenous secretions (mucins)
and to subdivide the complex category of NSPs, with a

Fig. 9. The effect of the number of strains per group, Ns, on the
group’s ability to adapt when subjected to a daily varying
environmental pH. The model is set up for just one group – B1with
pH limitation, H, equal to 1 (i.e. no limitation) for pH > 6.35, and
decreasing linearly to 0 (i.e. no growth) as pH decreases to 6.1
(H = 0 for pH < 6.1). Two model realizations were performed:
Ns = 1 and Ns = 25.
A. Shows the variation in the total bacterial concentration for the
group and the pH.
B. Shows the adaptation of the group’s mean pH trait.
C. Shows the concentration for each strain for the Ns = 25
realization.

Fig. 10. The relationship between Ns (the number of strains per group) and variation in model realizations (here demonstrated with acetate
concentrations for 50 realizations). The model was set up with biomass equally distributed between the 10 BFGs and kept at pH 6.5 for 400 h.
Ns was set at (A) 1, (B) 10 and (C) 30 strains per group; all other conditions are as specified in Table S8. D shows how the variance of
acetate (over 50 realizations) changes with Ns.
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corresponding expansion of the number of BFGs. This
could have a major impact on the maintenance of strain
diversity, but would also be computationally demanding. It
also appears necessary to represent both the proximal
and distal colon – i.e. a two-box model rather than a
one-box model. We also anticipate the future inclusion of
feedback on pH from SCFA production, which will intro-
duce a degree of self-regulation to the system (Kettle
et al., 2014). More than 90% of SCFA produced by the
colonic microbiota are absorbed across the colonic
mucosa, and it will therefore be important to consider the
impact of changes in absorption that can result for
example from changes in flow rate or intestinal physiol-
ogy. Furthermore, the experiments considered here rep-
resent a pseudo steady-state system with a constant rate
of substrate supply, while in vivo conditions resulting from
meal feeding will show more variation with time. These
factors can however be examined quite readily through
modifications to the model. Finally, because the fermentor
system was supplied with soluble substrates and repre-
sents a relatively homogeneous community, the model
has not attempted to consider local spatial heterogeneity
resulting from attachment to insoluble substrates,
although this occurs in vivo (Swidsinski et al., 2008;
Walker et al., 2008).

To conclude, the work presented here describes a first
attempt at modelling microbial dynamics in the human
colon incorporating both uncertainty and adaptation.
Given the difficulty of accessing the colon itself, and the
need to rely on measurements made on faecal samples,
modelling can play an extremely important role in the
interpretation of experimental data and the prediction of
consequences from dietary modulation. It also provides a
rigorous examination of our developing knowledge and
understanding of the microbial community of the human
large intestine.

Experimental procedures

Modelling procedures

The equations used in the model and details on the software
are included in Appendix S1 and the model code is also
available in Appendix S4. Furthermore, a sensitivity analysis
of the model is given in Appendix S3. Here, however, we
include some details on how we used the model to simulate
the particular fermentor experiments described by Walker
and colleagues (2005).

Relating experimental data on microbiota composition
to BFGs

The bacterial counts from the probes used in the laboratory
experiments are apportioned to our 10 BFGs as shown in
Table S6. Because microbial data are given in cell counts

per unit volume and our model variables are in mass per
unit volume, we need to convert cell counts to mass for
each BFG. This is problematic due to a lack of appropriate
data and we therefore simply assume that all of the groups
have the same mass per cell. The cell mass is estimated by
assuming that the bacteria have the same density as water
and have a tubular shape with radius 0.3 μm and length
6 μm (based on Duncan et al., 2002), giving a cell mass of
1.7 10−12 g. Assuming that the dry weight is 50% of wet
weight (Bratbak and Dundas, 1984) gives the dry weight of
one cell as 0.85 10−12 g. This value was then used to
convert the FISH probe counts (count l−1) into biomass
(g l−1). However, it should be noted here that these values
will vary between strains and species (e.g. Feijó Delgado
et al., 2013 found the water content of E. coli to be 72% of
the mass) and therefore this conversion factor should be
treated with caution.

Each BFG contains 10 strains with the initial mass for that
group evenly distributed between them. Although the initial
conditions in terms of the biomass for each group are defined
by the probe data for each donor (and therefore will change
when simulating a different donor), this does not fully con-
strain the model because the model parameters (strain traits)
required for every strain are not known (and there will also be
some strains that have not been identified by the probes). In
an attempt to find the community best suited to the particular
donor, we therefore run the simulation many times, with each
realization beginning with a slightly different bacterial com-
munity in terms of the strain traits [details in Appendix S1
(A5)].

Modelling SCFA outputs

Concentrations of substrates, metabolites and each microbial
strain are output from the model at 6 h intervals. For each
experiment, we find the model realization that is the closest fit
to the data and assume that this was started with a commu-
nity most similar to the faecal donor who participated in the
experiment. To compute the fit errors, we find the RMSE for
the data from the three main SCFA (Ace, Pro and But) and
the probe data for the 10 bacterial groups, and we then
compute the total error as a weighted sum of these. Because
the SCFA data are directly comparable with our model and
subject to less uncertainty than the probe data, when mini-
mizing the errors, after normalizing by the means, we weight
the importance of the SCFA errors at 75% and the probe
errors at 25%.

Bacterial growth and SCFA changes of Roseburia
strains at different initial pH values

Overnight cultures of two isolates deposited with Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH
(DSMZ), Roseburia intestinalis (L1-82; DSM 14610T) and
Roseburia hominis (A2-183; DSM 16839T), were used to
inoculate yeast casitone fatty acid glucose (YCFAG) medium
(Lopez-Siles et al., 2012; prepared at initial pH values of 5.5,
6.2 and 6.7) in triplicate. Following 24 h incubations at 37°C,
the SCFA profiles were determined on culture supernatants
(Richardson et al., 1989).
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Table S1. Metabolic stoichiometries (relative number of
moles of resource that are consumed or produced by each
BFG).
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Table S2. Estimated relative maximum growth rates (μM
fj,

dimensionless – for absolute values multiply by μmax, which is
24 d−1) for each BFG.
Table S3. Properties of resources: molar mass (m, g mol−1),
and yield (Y g g−1).
Table S4. The centre of the pH preference range pHm for use
in the pH limitation function Hi [see Appendix S1 (A2.4 and
A5) for details on the pH limitation function].
Table S5. Initial (or fixed) conditions for the fermentor experi-
ments (Walker et al., 2005).
Table S6. Assigning the probes used in the fermentor experi-
ment by Walker and colleagues (2005) to the bacterial func-
tional groups in the model.
Table S7. Percentage covered by individual probes used for
deriving data for the ten bacterial groups, expressed as per-
centage of Eub probe.

Table S8. Model variables and parameters (see Appendix
S1 for details and usage).
Table S9. The metabolic pathways for each BFG. Consump-
tion and production of dietary substrates (left) and meta-
bolites (right) by each BFG.
Appendix S1. Describing the governing equations and
assigning strain traits.
Appendix S2. Fermentation pathways for each BFG.
Appendix S3. Describing a sensitivity analysis of model.
Appendix S4. AMES_SourceCode.tar.gz Model code
(Fortran 90).
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