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We show that the working principle of the differential equation solving analog electrical

circuits is exactly the same as the Picard’s method available for numerically solving
the ordinary differential equations. The integrator circuit (low-pass filter) uses an initial
condition and electrical input signal to generate the Maclaurin’s series of a time varying
function in recursion. This direct connection between the differential equation solving
electrical circuits and Picard’s method can be exploited to simplify the procedure of
Picard’s method to solve any order linear and nonlinear differential equations.
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1. Introduction

The dynamics of any system is usually modeled using differential equations. De-
pending on the complexity of the system, the modeled differential equation will
also be complex in nature. The types of the differential equations include linear
and nonlinear ordinary and partial differential equations. Different procedures were
developed to study and solve the differential equations. The studies on the dif-
ferential equations help to control the systems and to explore the stability of the
systems. On the other hand, the exact solution of the differential equations helps in
understanding the complete dynamics of the systems. When the system equation
becomes quite difficult to derive the exact analytical solution, the other powerful
handy procedure namely the numerical methods are used to solve the initial value
problems and boundary value problems.

Analog electric circuits can also solve the ordinary differential equations (ODEs).
Basically a low-pass-filter with resistor, capacitor and operational amplifier is uti-
lized to design a simple integrator circuit.1 For any given ODE, a proper combina-
tion of the integrators, adders and multipliers can be used to visualize the solution
for the dependent variable on an oscilloscope, while time (t) being the independent
variable. In this work, we show that an analog electric circuit which can solve an
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ODE, works on the same basic concept of how Picard’s method solves the ODE,
numerically. In recursion, an integrator circuit uses the initial condition and the
electrical signal input to generate the Maclaurin’s series for the output integrated
function. This direct connection between the differential equation solving electric
circuits and Picard’s method can be exploited to simplify the procedure of Picard’s
method to solve any order linear and nonlinear differential equations.

2. Analog electric circuit ODE solver

A real time analog integrator circuit can be designed with a resistor, capacitor and
an operational amplifier as shown in Fig. 1. Figure 1 also shows the the conventional
schematic representation of the integrator on the right-hand side. The time constant
RC can be scaled to ‘1’ using a resistor value R = 1 MΩ and a capacitor value C = 1
µF. Hence if the electric signal input to the integrator is y′(t) (′ denotes d/dt), then
the output would be y(t). In the integrator one can give the initial condition also
as shown in the right-hand side of Fig. 1.

y(0)=0

y'(t) y(t)

y'(t) R

C

y(t)

Fig. 1. Electrical integrator circuit (left-hand side) and its pictorial representation (right-hand
side).

Now let us see how the integrator can be used to solve an ODE. Consider a
simple ODE in the form:

y′′ + y = 0. (1)

Let the initial conditions for the ODE (1) are y′(0) = 1 and y(0) = 0. ODE (1) can
be rewritten as y′′ = −y. This way of rewriting the ODE with the highest derivative
in terms of the lower derivative terms will help to realize the analog circuit solver
as shown in Fig. 2. From the expression y′′ = −y, it is obvious that the second
derivative (y′′) potential is equal to the negative value of the solution (y). That is
why in the circuit shown in Fig. 2, the output of the inverter is fed back as the
input of the first integrator. That is how the circuit becomes the solver for the ODE
(1).

In fact the solution of the ODE (1) and its first derivative y′(t) take the analytic
forms:

y(t) = sin(t), y′(t) = cos(t). (2)

Thus the sin(t) and cos(t) waveform can be visualized in the oscilloscope, respec-
tively, at the output of the integrators two and one in Fig. 2. As such, the circuit
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y'' y'

y'(0)=1 y(0)=0

y -y

Fig. 2. Analog circuit solver for the ODE (1).

in Fig. 2 behaves like an oscillator. Let us see how these oscillatory waveforms
are generated. The obvious source in the circuit is the initial condition y′(0) = 1.
Hence when t = 0 at the output of the first integrator, 1 is available for y′(t). Thus
y′(0) = 1 will be the input to the second integrator which integrates y′(t) to get
y(t) as t. Then the inverter generates −y which equals y′′ as given by the ODE (1).
This whole process can be treated as the first iteration:

First iteration:

y′ = 1; y = t; y′′ = −t. (3)

Now, at the input of the first integrator, −t is available as the electrical signal
which will be integrated and added with the initial condition 1 to generate y′ =
1−t2/2. Thus the electrical signal 1−t2/2 will be integrated by the second integrator
to generate y = t − y3/6. Hence the second iteration is given by:

Second iteration:

y′ = 1 − t2

2!
; y = t − t3

3!
; y′′ = −t +

t3

3!
. (4)

This process can go on indefinitely within no time to generate the following nth

iteration:

nth iteration:

y′ = 1 − t2

2!
+

t4

4!
− t6

6!
+ · · · ;

y = t − t3

3!
+

t5

5!
− t7

7!
+ · · · ; (5)

y′′ = −t +
t3

3!
− t5

5!
+

t7

7!
− · · · .

From the above expressions for y, y′ and y′′ it is obvious that the iteration
process, in fact, generates the next term in the Maclaurin’s series corresponding to
the analytical expression for y = sin(t), y′ = cos(t) and y′′ = − sin(t), respectively.
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3. Picard’s method for differential equations

We now consider Picard’s method for solving differential equations. Starting with
the initial value problem, we have,

y′ = f(t, y), with y(0) = y0. (6)

Here we have chosen the initial point t0 = 0 in equation (6) in order to simplify the
calculations . If both f(t, y) and fy(t, y) are continuous then a solution to equation
(6) exists.2

The following method was developed by Emile Picard in 1891.3 If y(t) is the
solution of equation (6), then by reformulating equation (6) as an equivalent integral
equation,

t∫

0

y′(z)dz =

t∫

0

f(z, y(z))dz. (7)

The Fundamental Theorem of Calculus is used to integrate the left-hand side
of equation (7), and the result, after rearranging the terms, is:

y(t) = y0 +

t∫

0

f(z, y(z))dz. (8)

If we use equation (8) and input a formula for y(z) in the integrand f(z, y(z)),
then the function y(t) on the left-hand side is considered as the output. Start by
substituting Y0(z) = y0 for y(z) in f(z, y(z)) and get the integrand f(z, y0), this
defines Y1(z). Next substitute Y1(z) for y(z) and get the integrand f(z, Y1(z)), this
will define Y2(z), etc.,. The process is repeated, and eventually leads to a sequence
of functions {Yn(z)} which are defined successively by:

Yn+1(t) = y0 +

t∫

0

f(z, Yn(z))dz for n ≥ 0. (9)

The sequence of approximations converges to the solution, i.e.,

lim
n→∞Yn(t) = y(t). (10)

Consider the following initial value problem:

y′ = y − t with y(0) = 2. (11)

When we use the Picard’s iterative method to find the solution of the equation
(11) up to six iterations (starting with Y0 = 2), we get

Y6 = 2 + 2t +
t2

2
+

t3

6
+

t4

24
+

t5

120
(12)
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Techniques from calculus can be used to find the solution y(t) = 1 + t + exp(t).
We can express this as a Maclaurin series and observe that the sequence {Yn(t)}
converges to the solution

y(t) = 1 + t + exp(t) = 2 + 2t +
t2

2!
+

t2

2!
+ · · · + tn

n!
+ · · · . (13)

Extension to higher order differential equations
Let us see how to solve the initial value problem for a second order differential

equation using Picard’s iterative method. Any second order ODE can be trans-
formed to a coupled system of two first order ODEs. Thus we have to consider the
following system of ODEs to find the solution of a second order ODE using Picard’s
method:

x′ = f(t, x, y) with x(0) = x0, and
y′ = g(t, x, y) with y(0) = y0,

(14)

Picard’s iteration can be used to generate sequences {Xn(t)} and {Yn(t)} which
converge to the solution functions x(t) and y(t), respectively.4 They are defined by

X0(t) = x0,

Y0(t) = y0,
(15)

Xn+1(t) = x0 +
t∫
0

f(z, Xn(z), Yn(z))dz for n ≥ 0,

Yn+1(t) = y0 +
t∫
0

g(z, Xn(z), Yn(z))dz for n ≥ 0.

(16)

The sequences of approximations converge to the solution, i.e.,

lim
n→∞Xn(t) = x(t) and

lim
n→∞Yn(t) = y(t).

(17)

Consider the following second order ODE with the initial conditions:

y′′ = 3y′ − 2y, with y′(0) = 5 and y(0) = 2. (18)

Above second order ODE (18) can be transformed to a coupled system of two first
order ODEs as follows:

x′ = −x − 2y with x(0) = −1, and
y′ = 3x + 4y with y(0) = 2.

(19)

Using the Picard’s iterative method the solutions of the equations (19) up to
five iterations (starting with X0 = −1 and Y0 = 2) are found to be
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X5 = −1 − 3t − 7
2
t2 − 5

2
t3 − 31

24
t4 − 21

40
t5,

Y5 = 2 + 5t +
11
2

t2 +
23
6

t3 +
47
24

t4 +
19
24

t5.

(20)

The analytic solutions are x(t) = exp(t) − 2 exp(2t) and y(t) = − exp(t) +
3 exp(2t) and can be expanded in their respective Maclaurin series. Hence, we can
observe that the sequences converge to the solution

x(t) = exp(t) − 2 exp(2t)

= −1 − 3t − 7
2
t2 − 5

2
t3 − 31

24
t4 − 21

40
t5 − 127

720
t6 − · · · ,

y(t) = − exp(t) + 3 exp(2t)

= 2 + 5t +
11
2

t2 +
23
6

t3 +
47
24

t4 +
19
24

t5 +
191
720

t6 + · · · .

(21)

Thus any nth order ODE can be transformed to n–system of first order ODEs
and then the Picard’s method can be used to find the solutions.

4. Discussion

When we compare the mathematical description of how an analog electric ODE
solver works (discussed in Section 2) and the Picard’s method to solve the ODEs
(discussed in Section 3), it is quite obvious that both of them are one and the same.
One can clearly see how both of them generate the Maclaurin series as the solution
for the ODE.

In Section 3, we have described how the higher order ODEs are solved using the
Picard’s iterative method. In fact there is no need to transform the higher order
ODEs to the system of first order ODEs to use the Picard’s method. When we use
the schematic block diagram for the electric circuit ODE solver, any order ODE
can be directly solved to generate the Maclaurin series. The electric circuit solver
for the second order ODE (18) can be drawn schematically as shown in Fig. 3.

y'' y'

y'(0)=5 y(0)=2

y

-2y
-2

3
3y'

3y'-2y

Fig. 3. Analog circuit solver for the second order ODE (18).

Now let us see how the solution for the second order ODE (18) is directly obtained
from the electric circuit schematic diagram as shown in Fig. 3. When t = 0, the
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initial conditions y′(0) = 2 and y(0) = 5 are available, respectively, in the first and
second integrators. These initial conditions are respectively, multiplied by 3 and −2
in the scalar multipliers and thus 3y′ = 15 and −2y = −4 are available as inputs
to the summing amplifier. The output of the added 3y′ − 2y = 11 is fed back as
the input to the first integrator. Hence the output of the first integrator in addition
to the initial condition would be y′ = 5 + 11t. Similarly, the output of the second
integrator will be y = 2 + 5t + 11t2/2. This iteration process can be continued to
generate the other terms in the Maclaurin series for y(t) as in the equation (21).

The schematic block diagram can be used not only for first and second order
linear ODEs, it can also be used for system of equations like higher order ODEs.
Using multipliers and dividers in the block diagram, one can find the solutions
for nonlinear ODEs as well. The examples illustrated in this work are all based
on homogeneous ODEs. But the electric circuit can be constructed to solve non-
homogeneous ODEs and as well for time-varying ODEs. More details about how
to draw the schematic diagrams for different kinds of ODEs can be found in the
literature.1

5. Conclusion

In this work, we have shown the mathematical description of how an analog elec-
tric circuit ODE solver works. Both the Picard’s iterative method for solving an
ODE and the electric circuit solver generate the Maclaurin series of the solution
of the ODE. The schematic block diagram representation of the ODE as an elec-
tric circuit can simplify the process of using the Picard’s method for various kinds
of ODEs. Picard’s method is being utilized for solving various kinds of system
equations.4,5,6,7,8,9,10 So we believe that the block diagram representation of the
differential equations can simplify the procedure of applying the Picard’s method
to solve the equations.
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