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Abstract. We use recent work on spectral synthesis in multiplier algebras to give an
intrinsic characterization of the separable C∗-algebras A for which Orc(M(A)) = 1, i.e.
for which the relation of inseparability on the topological space of primitive ideals of the
multiplier algebra M(A) is an equivalence relation. This characterization has applications
to the calculation of norms of inner derivations and other elementary operators on A and
M(A). For example, we give necessary and sufficient conditions on the ideal structure of a
separable C∗-algebra A for the norm of every inner derivation to be twice the distance of
the implementing element to the centre of M(A).
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1. Introduction

The origin of the paper lies in the following problem: suppose that A is a non-unital
C∗-algebra and that Prim(A), the primitive ideal space of A with the hull-kernel topology,
has some topological property. In what circumstances does Prim(M(A)) (where M(A) is the
multiplier algebra of A) inherit the same or a similar property? For instance, if Prim(A) is
Hausdorff, when is Prim(M(A)) Hausdorff? This question is non-trivial, even in the simplest
case when A is n-homogeneous, and in Theorem 2.1 we give an example of a 2-homogeneous
C∗-algebra A for which Prim(M(A)) is non-Hausdorff.

Although Prim(M(A)) in Theorem 2.1 is non-Hausdorff, it does have the property that the
relation ∼ on Prim(M(A)) is an equivalence relation (where for a C∗-algebra B we say that
P ∼ Q if the primitive ideals P and Q cannot be separated by disjoint open sets in Prim(B)).
In general the relation ∼ is reflexive and symmetric but not necessarily transitive. When ∼
is an equivalence relation on Prim(A) we say that Orc(A) = 1, and otherwise the connecting
order Orc(A) is greater than 1 (for an explanation of this terminology, see [40]). C∗-algebras
with Orc(A) = 1 include von Neumann and AW∗-algebras and their quotients, numerous
group C∗-algebras (see Section 3), the spoke-algebras of [13], and also quasi-standard C∗-
algebras (i.e. those for which the relation ∼ is an open equivalence relation on Prim(A)
[9]).

The main purpose of this paper is to characterize the separable C∗-algebras A for
which Orc(M(A)) = 1. Since Prim(A) is canonically homeomorphic to an open subset of
Prim(M(A)) [37, 4.1.10], it is easily seen that such algebras necessarily have Orc(A) = 1.
Regarding A as a C0(X)-algebra in a natural way, we show in Theorem 4.2 that a
necessary condition for Orc(M(A)) = 1 is that M(A) should have spectral synthesis as a
C(βX)-algebra in the sense of [12] (where βX is the Stone-Čech compactification of X).
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Combining this with the characterization of spectral synthesis in [12, Corollary 3.10], it
follows that Orc(M(A)) = 1 if and only if Orc(A) = 1 and the Glimm ideals of A are locally
modular (Corollary 4.7).

Part of our interest in the condition Orc(A) = 1 arises from its connection with the
derivation constant Ks(A) (see Section 5). Indeed, if A is a unital non-commutative C∗-
algebra, Ks(A) takes the optimal value 1/2 if and only if Orc(A) = 1 [40, Theorem 4.4]. Thus
Corollary 4.7 allows us to characterize the separable C∗-algebras A for which Ks(M(A)) =
1/2 (Corollary 5.1).

We now describe the structure of the paper. In Section 2 we give the example of a 2-
homogeneous C∗-algebra A such that Prim(M(A)) is non-Hausdorff. In Section 3, we solve
an old problem for σ-unital C∗-algebras with Orc(A) = 1 by showing that if primitive ideals
P and Q can be separated by disjoint open sets then they can be separated by a continuous
function (Theorem 3.3). The solution of this problem is needed in Section 4 for the proofs of
Theorem 4.6 and Corollary 4.7. On the other hand, we show in Example 3.4 that if Prim(A)
is not σ-compact then it is possible to have Orc(A) = 1 and primitive ideals P and Q which
can be separated by disjoint open sets but not by continuous functions.

In Section 4 we show that if A is a separable C0(X)-algebra then an ideal Jx of A which is
not locally modular gives rise to an ideal Hx of M(A) which is not 2-primal (Theorem 4.2).
This leads to Theorem 4.6 which uses local modularity to link n-primality of the ideals Jx
with n-primality of the ideals Hx. From this, the characterization of separable C∗-algebras
A for which Orc(M(A)) = 1 follows easily (Corollary 4.7).

If A is a non-unital C∗-algebra then the multiplier algebra M(A) provides the natural
setting for the study of elementary operators. In particular, if T : A → A is an elementary
operator of the form T (x) =

∑n
i=1 aixbi (x ∈ A), where ai, bi ∈ M(A) (1 ≤ i ≤ n) then

T extends to M(A), without increase of norm, by using the same formula for x ∈ M(A).
In Section 5 we see how the results of the previous section can be used in estimating the
norms of elementary operators on M(A) and in particular the derivation constants K(M(A))
and Ks(M(A)) introduced in [3] (see Section 5 for the definitions). For non-commutative
A, the optimal value of K(M(A)) is K(M(A)) = 1/2, which occurs precisely when the
norm of every inner derivation of A (or of M(A)) is equal to twice the distance of the
implementing element to the centre of M(A). We show, for example, that if A is a separable
non-commutative C∗-algebra then K(M(A)) = 1/2 if and only if every Glimm ideal of A
is 3-primal and locally modular (Theorem 5.2). We also give applications to the canonical
contraction ΘZ : M(A) ⊗Z,h M(A) → CB(A) from the central Haagerup tensor product of
M(A) to the space of completely bounded linear maps on a C∗-algebra A (Theorem 5.7 and
Theorem 5.9).

We are grateful to the referee for several comments including a suggestion which led to a
refinement of our original argument for Lemma 3.1.

2. A 2-homogeneous C∗-algebra with Prim(M(A)) non-Hausdorff

We begin with an example of a 2-homogeneous C∗-algebra A for which Prim(M(A)) is non-
Hausdorff. Recall that a C∗-algebra A is n-homogeneous if every irreducible representation
A has the same finite dimension n. If A is n-homogeneous then A is quasi-central (i.e.
no primitive ideal of A contains the centre of A) and Prim(A) is Hausdorff [28, Theorem
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4.2]. Furthermore M(A) is n-subhomogeneous (i.e. every irreducible representation is of
dimension bounded by n).

It is known that if A is an n-homogeneous C∗-algebra then M(A) is n-homogeneous if and
only if A is of ‘finite type’ [34, Remark 3.3] (see also [16, 3.16(ii)]). For examples where A is
separable and not of finite type, see [39, Corollary 4.8] and [38, Example 3.5]. If A is not of
finite type then it is known that Orc(M(A)) = 1 and that M(A) forms a continuous field of
C∗-algebras over the Stone-Čech compactification of Prim(A) [10, Corollary 4.10] (see also
the proof of [34, Lemma 3.4]). Some of the fibre algebras corresponding to points in the
Stone-Čech remainder are isomorphic to Mn(C) [34, Lemma 3.4] but little is known about
the others; in particular, it appears to be previously unknown whether Prim(M(A)) can be
non-Hausdorff (i.e. whether the fibre algebra corresponding to a point in the Stone-Čech
remainder can be non-simple).

In this section we exhibit an example with Prim(M(A)) non-Hausdorff. We are grateful
to Chuck Akemann, Larry Brown, Bojan Magajna, and Chris Phillips for discussions on this
subject.

Theorem 2.1. There exists a 2-homogeneous C∗-algebra A for which Prim(M(A)) is non-
Hausdorff.

Proof. For a completely regular Hausdorff space W , set W ∗ = βW \W . Let Λ = βR \ N∗.
Then Λ is a locally compact Hausdorff space, since N∗ is a closed subset of βR, but Λ is
not normal [23, 6P]. To see this, note that since Λ ⊇ R, βΛ = βR [23, 6.7]. The closure of
Λ \R in βR is equal to R∗, and hence X := Λ \R and Y := N are disjoint closed subsets of
Λ whose closures in βΛ = βR are not disjoint, since they both contain N∗. The space Λ is
pseudocompact (i.e. every continuous real-valued function on Λ is bounded) [23, 6P]. Since
Λ is locally compact, it follows that Λ × Λ is also pseudocompact [43, 8.21]. This implies
that β(Λ×Λ) = βΛ×βΛ by Glicksberg’s theorem [43, 8.12]. Note also that, since βΛ = βR,
Λ∗ = N∗.

Now set S = X × Y and T = Y × X. Then S and T are homeomorphic disjoint closed
subsets of Λ × Λ, and their closures in βΛ × βΛ both contain N∗ × N∗. Let Θ be the
homeomorphism of Λ×Λ that takes (x, y) ∈ Λ×Λ to (y, x). Then Θ(S) = T and Θ(T ) = S.
Let B = C0(Λ× Λ)⊗M2(C), and let

A = {f ∈ B : f((x, y)) = zf(Θ((x, y)))z∗, (x, y) ∈ S},

where z is the self-adjoint unitary diag(1,−1). We claim that A is a 2-homogeneous C∗-
algebra but that Prim(M(A)) is not Hausdorff.

First note that by standard representation theory, every irreducible representation of A
is (unitarily equivalent to) a summand of the restriction to A of a point evaluation of B.
By constructing suitable matrix-valued functions, it can be seen that each such restriction
to A is irreducible, mapping A to M2(C). For example, for (x, y) ∈ S, let U and V be
disjoint neighbourhoods of x and y respectively in Λ and let g ∈ C0(Λ × Λ) such that g is
supported in U × V and g(x, y) = 1. For m ∈ M2(C) define a cross-section f by f(u, v) =
g(u, v)m+ g(v, u)z∗mz ((u, v) ∈ Λ×Λ). Then f ∈ A (since z = z∗) and f(x, y) = m. Hence
A is 2-homogeneous.

For (x, y) ∈ Λ × Λ, let π(x,y) denote the irreducible representation of A given by point
evaluation at (x, y). Then π(x,y) extends to an irreducible representation π̃(x,y) of M(A).
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Hence for b ∈M(A), the map σ(b) given by σ(b)((x, y)) = π̃(x,y)(b) defines a bounded M2(C)-
valued cross-section over Λ×Λ. By constructing suitable scalar-valued functions f ∈ A and
using the fact that bf ∈ A, it can be checked that σ(b) is a continuous cross-section, and
satisfies σ(b)((x, y)) = zσ(b)(Θ((x, y)))z∗ for (x, y) ∈ S. For example, for (x, y) ∈ S, let U ,
V , and g be as above. Define a cross-section f by

f(u, v) = g(u, v)1 + g(v, u)1 ((u, v) ∈ Λ× Λ).

Then f ∈ A and f(u, v) = g(u, v)1 for (u, v) ∈ U × V . Let (uα, vα) be a net in Λ× Λ with
(uα, vα)→ (x, y). Then eventually (uα, vα) ∈ U × V , so

σ(b)(uα, vα)g(uα, vα) = σ(b)(uα, vα)f(uα, vα) = (bf)(uα, vα)→ (bf)(x, y) = σ(b)(x, y).

Hence σ(b)(uα, vα) → σ(b)(x, y) because g(uα, vα) → 1. Thus σ(b) is continuous at (x, y),
and

σ(b)((x, y)) = (bf)((x, y)) = z(bf)((y, x))z∗ = zσ(b)((y, x))z∗.

Since M(B) is the C∗-algebra of all bounded continuous functions from Λ×Λ into M2(C)
[1], the map σ : b 7→ σ(b) defines a ∗-homomorphism from M(A) into M(B) fixing elements
of A; and since A is essential in M(A), we have that kerσ = {0}. It follows from standard
theory that σ(M(A)) is the idealizer of A in M(B). For h ∈ M(B), each of the four entry
functions has a unique extension to a continuous function on β(Λ×Λ) = βΛ×βΛ, and thus
we may consider M(B) as the C∗-algebra of continuous M2(C)-valued functions on βΛ×βΛ.

For w ∈ N∗ = Λ∗, there exist nets (xα) and (yα) (both indexed by a neighbourhood base
for w) in X and Y respectively such that xα → w and yα → w. Then for b ∈M(A) we have
σ(b)((xα, yα))→ σ(b)((w,w)), and

z∗σ(b)((xα, yα))z = σ(b)((yα, xα))→ σ(b)((w,w)).

Hence σ(b)((w,w)) = z∗σ(b)((w,w))z, so σ(b)((w,w)) is a diagonal matrix. Note that the
constant cross-section d1,1 given by d1,1((x, y)) = diag(1, 0) ((x, y) ∈ β(Λ×Λ)) belongs to the
idealizer of A in M(B), and likewise the constant cross-section d2,2 given by d2,2((x, y)) =
diag(0, 1). Hence the map b 7→ σ(b)((w,w)) (b ∈ M(A)) is a ∗-homomorphism from M(A)

onto C⊕ C. Thus the net (π̃xα,yα) converges to two distinct limits in M̂(A). Finally, M̂(A)
is homeomorphic to Prim(M(A)) since M(A) is 2-subhomogeneous. �

The example just given makes heavy use of special properties which can only hold in a
non-normal space such as Λ. This raises the question of whether Prim(M(A)) can be non-
Hausdorff if A is a σ-unital n-homogeneous C∗-algebra (recall that a C∗-algebra A is σ-unital
if it contains a strictly positive element or, equivalently, a countable approximate unit [37,
3.10.5]).

3. Separation by continuous functions

In this section we consider the following basic problem (which arises in the proofs of
Theorem 4.6 and Corollary 4.7). Let A be a C∗-algebra and suppose that the relation ∼ of
Section 1 is an equivalence relation on Prim(A). Let P,Q ∈ Prim(A) with P 6∼ Q. Does
there exist a continuous real function f on Prim(A) such that f(P ) 6= f(Q)? The second
author showed twenty years ago that this is the case if Prim(A) is compact [40, Corollary 2.7].
Here we use a method recently introduced by Lazar to exhibit such a function if Prim(A) is
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σ-compact. On the other hand, we give an example to show that such a function may not
exist if Prim(A) is not σ-compact.

Following Lazar [30], we work in a more general context. We say that a topological space
X is locally compact if every point has a neighbourhood base consisting of compact sets. A
subset F of X is a limit set if there is a net in X converging to all the points of F . Let L(X)
be the set of closed limit sets of X and set L′(X) = L(X) \ {∅}. Define a topology τs (the
Fell topology [22]) on L(X) as follows. A base for τs consists of the family of all sets

U(C,Φ) = {F ∈ L(X) : F ∩ C = ∅; F ∩ V 6= ∅, V ∈ Φ},
where C is a compact subset of X (possibly the empty set) and Φ is a finite family of open
subsets of X. Then with this topology L(X) is a compact Hausdorff space, and L′(X) is a
locally compact subspace. If X is σ-compact then L′(X) is σ-compact [30, Lemma 2.5].

The first lemma is [15, Vol.2: Exercise 15(b) on p.244]. For completeness, we give a proof
in the Appendix.

Lemma 3.1. Let Y be a locally compact, σ-compact Hausdorff space and let R be an equiv-
alence relation on Y . If the graph of R is closed in Y × Y then Y/R is a normal Hausdorff
space.

The proof of the next result is modelled on the methods of Lazar [30].

Proposition 3.2. Let X be a locally compact, σ-compact space and let ∗ be an equivalence
relation on X. The following are equivalent:

(i) X/∗ is a Hausdorff space;
(ii) X/∗ is a normal Hausdorff space;
(iii) ∗ contains ∼ and the graph of ∗ is closed in X ×X.

Proof. Let q : X → X/∗ denote the quotient map. Suppose that (i) holds. Let x, y ∈ X
with x ∼ y and let (xα) be a net in X converging to both x and y. Then (q(xα)) converges
to both q(x) and q(y), so q(x) = q(y) since X/∗ is Hausdorff. Hence x ∗ y, so ∗ contains ∼.
Now let (xα, yα) be a net in X × X with limit (x, y) ∈ X × X and with xα ∗ yα for each
α. Then q(xα) → q(x) and q(yα) → q(y). Hence q(x) = q(y), by the Hausdorffness of X/∗,
since q(xα) = q(yα) for each α. Thus x ∗ y, so the graph of ∗ is closed in X ×X. This shows
that (iii) holds.

Now suppose that (iii) holds. Define a relation � on L′(X) by F �G if there exist x ∈ F
and y ∈ G such that x ∗ y. Then � is reflexive and symmetric. Since ∗ contains ∼ we see
that x ∗ x′ for all x, x′ ∈ F and hence if F � G then x′ ∗ y′ for all x′ ∈ F and y′ ∈ G. Thus
� is transitive, and hence we see that � is an equivalence relation on L′(X). We now show
that the graph of � is closed. Let (F,G) ∈ L′(X) × L′(X) with (F,G) /∈ �. Let x ∈ F and
y ∈ G. Then (x, y) /∈ ∗, and the graph of ∗ is closed, so there exist open neighbourhoods M
of x and N of y such that the basic open neighbourhood M ×N of (x, y) does not meet ∗.
Set

M ′ = {F ′ ∈ L′(X) : F ′ ∩M 6= ∅} and N ′ = {G′ ∈ L′(X) : G′ ∩N 6= ∅}.
Then M ′ ×N ′ is an open neighbourhood of (F,G) in L′(X)×L′(X). If (F ′, G′) ∈M ′ ×N ′
then there exist x′ ∈ F ′ ∩M and y′ ∈ G′ ∩N . Hence (x′, y′) ∈M ×N which does not meet
∗. Thus (F ′, G′) /∈ �, so the graph of � is closed.

Since L′(X) is σ-compact [30, Lemma 2.5], it follows from Lemma 3.1 that L′(X)/� is
normal and Hausdorff. It remains to show, therefore, that X/∗ is homeomorphic to L′(X)/�.
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Let Q : L′(X) → L′(X)/� denote the quotient map, and define a map χ : X/∗ → L′(X)/�
by χ(q(x)) := Q(F ) where F is any closed limit set containing x. By definition of �, the
map χ is well-defined and injective, and it is trivially surjective. Let V be a closed subset of
L′(X)/� and set W = q−1(χ−1(V )). Let (xα) be a net in W with limit x ∈ X. For each α
let Fα ∈ L′(X) with xα ∈ Fα and note that Q(Fα) ∈ V for each α. By the τs-compactness of
L(X), and by passing to a subnet if necessary, we may assume that there exists F ∈ L(X)
with Fα → F . Then x ∈ F by [30, Lemma 2.1], so F ∈ L′(X). It follows that Q(F ) ∈ V ,
since Q is continuous and V is closed. Thus χ(q(x)) ∈ V , so x ∈ W . This shows that W is
a closed subset of X and hence that χ−1(V ) is closed in X/∗. It follows that the map χ is
continuous.

Now let V be a closed subset of X/∗ and set W = q−1(V ). Let Y = {F ∈ L′(X) : F ⊆ W}.
Then Y is �-saturated since W is ∗-saturated. Let F ∈ L′(X) \ Y . Then there exists x ∈ F
such that x ∈ U := X \W . Hence the set {G ∈ L′(X) : G ∩ U 6= ∅} is a τs-neighbourhood
of F disjoint from Y . It follows that Y is closed and hence that Q(Y ) = χ(V ) is closed in
L′(X)/�. Thus χ is a homeomorphism and (ii) holds. �

Before proceeding, we need to introduce some further terminology. A weaker relation than
∼ on Prim(A) is the relation ≈ which is defined by P ≈ Q if P and Q cannot be separated by
a continuous bounded real-valued function. The relation ≈ is always an equivalence relation,
and the ≈-classes are called Glimm classes. The kernel of a Glimm class (i.e. the intersection
of all the primitive ideals in the class) is called a Glimm ideal of A, and the set of Glimm
ideals is denoted Glimm(A). If A is unital then these are precisely the ideals of A generated
by the maximal ideals of the centre of A [24]. The usual topology on Glimm(A) is the
weakest topology such that the functions on Glimm(A) induced by the continuous bounded
functions on Prim(A) are all continuous [17]. This topology is Hausdorff and completely
regular. The map which takes each primitive ideal of A to the unique Glimm ideal which it
contains is called the complete regularization map, and is continuous.

A closed two-sided ideal J of a C∗-algebra A is said to be primal if whenever n ≥ 2 and
J1, J2, . . . , Jn are ideals of A with product J1J2 . . . Jn = {0} then at least one of the Ji is
contained in J . This concept arose in [4] where it was shown that a state of A is a weak∗-
limit of factorial states if and only if the kernel of its Gelfand-Naimark-Segal representation
is primal. The ideal J is primal if and only if there is a net in Prim(A) which converges
to every point in (a dense subset of) Prim(A/J) (see [4, Proposition 3.2]). If the variable
integer n in the definition of a primal ideal is replaced by a fixed integer n ≥ 2, we obtain
the notion of an n-primal ideal J . By [8, Lemma 1.3], the ideal J is n-primal if and only if
the ideal

⋂n
i=1 Pi is primal whenever P1, . . . , Pn are primitive ideals of A containing J .

If an ideal J is 2-primal then P ∼ Q whenever P and Q are primitive ideals containing J .
Hence P and Q lie in the same Glimm class. It follows that every 2-primal ideal contains
a unique Glimm ideal. The condition that every Glimm ideal be 2-primal is equivalent to
requiring that for P,Q ∈ Prim(A), P ∼ Q if and only if P ≈ Q. Evidently this condition
implies that ∼ is an equivalence relation on Prim(A), i.e. that Orc(A) = 1, and the question
naturally arises as to whether the reverse implication holds. It is already known that this is
so when A is unital [40, Corollary 2.7], and we are now able to extend this to the case when
A is σ-unital.

Theorem 3.3. Let A be a σ-unital C∗-algebra.
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(a) The relation ≈ is the smallest equivalence relation on Prim(A) which contains ∼ and
which has closed graph in Prim(A)× Prim(A).

(b) Define a relation ∗ on Prim(A) by P ∗Q if P and Q belong to the same ∼-component.
Then the graph of ∗ is closed in Prim(A) × Prim(A) if and only if every Glimm class is a
∼-component of Prim(A).

(c) If Orc(A) = 1 then ∼ and ≈ coincide on Prim(A) and every Glimm ideal of A is
2-primal.

Proof. (a) Let R be the set of all equivalence relations on Prim(A) which contain ∼ and
which have closed graph. Clearly the equivalence relation ≈ contains ∼, and we now show
that the graph of ≈ is closed. Let (Pα, Qα) be a net in Prim(A) × Prim(A) with limit
(P,Q) ∈ Prim(A) × Prim(A). If P 6≈ Q then there is a continuous bounded real-valued
function f on Prim(A) such that f(P ) 6= f(Q). Hence eventually f(Pα) 6= f(Qα). It follows
that the graph of ≈ is closed, and hence that ≈ belongs to R. Now let R =

⋂
{S : S ∈ R}.

Then R is a equivalence relation on Prim(A) containing ∼ and with closed graph. Thus R
is contained in ≈. On the other hand, since A is σ-unital, Prim(A) is σ-compact and so, by
Proposition 3.2, Prim(A)/R is a normal Hausdorff space and hence is completely regular.
This implies that R contains ≈, and thus R coincides with ≈.

(b) Clearly ∗ is the smallest equivalence relation on Prim(A) containing ∼. Hence by part
(a), ∗ coincides with ≈ if and only if the graph of ∗ is closed. On the other hand ∗ coincides
with ≈ if and only if every ≈-class is a ∼-component of Prim(A).

(c) Let (Pα, Qα) be a net in Prim(A)×Prim(A) with limit (P,Q) ∈ Prim(A)×Prim(A). If
P 6∼ Q then eventually Pα 6∼ Qα. Thus the graph of ∼ is always closed in Prim(A)×Prim(A).
If Orc(A) = 1 then ∼ itself is an equivalence relation with closed graph, so ∼ and ≈ coincide
by part (a). Hence every Glimm ideal of A is 2-primal. �

Since the relations ∼ and ≈ can be defined on any topological space, the proof of The-
orem 3.3 may be applied to any locally compact, σ-compact space X instead of Prim(A),
with the analogous conclusions.

One application of Theorem 3.3 is to the following problem. For N ≥ 3, let GN be the
‘threadlike’ nilpotent Lie group of dimension N [8] (so that G3 is the continuous Heisenberg
group). It was shown in [8, Corollary 3.10] that ∼ is an equivalence relation on Prim(A) for
the group C∗-algebra A = C∗(GN) except when N ≡ 0 (mod 4) with N > 4. If N is odd
then ∼ and ≈ coincide on Prim(A) [8, Corollary 3.7 and remark after Corollary 3.10], but
the relation ≈ was left undetermined in the case N ≡ 2 (mod 4) (see [14, p.1426]). It follows
from Theorem 3.3(c) that ∼ and ≈ must coincide in this case.

It is worth remarking that group C∗-algebras with Orc(A) = 1 are surprisingly com-
mon. For example, in addition to the ‘threadlike’ nilpotent Lie groups GN just mentioned,
A = C∗(G) has this property if G is any of the following groups: SL(2,C) (see [20] and [19,
18.9.13]); an amenable [SIN] group [27]; a universal simply connected, 2-step nilpotent Lie
group Wn (n ≥ 2) [8, Corollary 2.8]; any simply connected, nilpotent Lie group of dimension
not exceeding 6. For this last claim, note that this class contains thirty-two indecompos-
able non-abelian groups, listed in [35]. All but G5,2, G5,4 and G6,18 were observed to have
Orc(C∗(G)) = 1 in [5] or [8]. The orbit data in [35] is sufficient to determine the relation
∼ in the three remaining cases, from which it follows that Orc(C∗(G)) = 1 for these too.
Finally, if G is a Type I group and H is any other locally compact group then C∗(G×H) is
isomorphic to the unique C∗-tensor product C∗(G) ⊗ C∗(H) and has primitive ideal space
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canonically homeomorphic to Prim(C∗(G))× Prim(C∗(H)). It follows easily from this that
Orc(C∗(G×H)) = 1 if and only if Orc(C∗(G)) = 1 = Orc(C∗(H)) (cf. [26, Lemmas 3.1 and
3.2]).

We close this section with an example where Orc(A) = 1 but ∼ and ≈ do not coincide.

Example 3.4. A (non-σ-unital) C∗-algebra A for which ∼ is an equivalence relation (i.e.
for which Orc(A) = 1) but for which ∼ is not equal to ≈.

Let X be a non-normal locally compact Hausdorff space with disjoint closed subsets Y
and Z which cannot be completely separated, i.e. such that there is no continuous function
on X taking the value 1 on Y and 0 on Z. Set B = C0(X), and let C (respectively D) be the
∗-homomorphic image of B in Cb(Y ) (respectively Cb(Z)) obtained by restricting functions
in B to Y (respectively Z). By [9, Theorem 3.6] there are quasi-standard C∗-algebras E and
F with Glimm ideals G and H respectively such that C ∼= E/G and D ∼= F/H. Let A1

be the direct sum of B, E and F , and let A be the C∗-subalgebra of A1 consisting of those
elements (b, e, f) ∈ A1 such that b|Y = e+G in C and b|Z = f +H in D.

Then ∼ is an equivalence relation on Prim(A) with the primitive ideals associated with Y
forming one ∼-class, and the primitive ideals associated with Z forming another. But there
is no continuous bounded function on Prim(A) separating these two ∼-classes, and therefore
together they form a single Glimm class. Hence Orc(A) = 1 but ∼ and ≈ do not coincide on
Prim(A). Note that the graph of ∼ is automatically closed by the proof of Theorem 3.3(c),
and hence this example shows that parts (a), (b), and (c) of Theorem 3.3 can all fail in the
non-σ-unital case.

4. Characterizing Orc(M(A)) = 1

In this section we prove the central result of the paper which is to give an intrinsic char-
acterization of the separable C∗-algebras A for which Orc(M(A)) = 1, or equivalently, for
which every Glimm ideal of M(A) is 2-primal.

For a proper, closed, two-sided ideal J in a C∗-algebra A, let J̃ denote the strict closure of
J in M(A) (see [10, Proposition 1.1]). Note that for, P ∈ Prim(A), P̃ is the unique primitive
ideal of M(A) such that P̃ ∩ A = P . We begin with a lemma relating the primality of J to
that of J̃ .

Lemma 4.1. Let A be a C∗-algebra and let J be a closed, two-sided ideal in A with strict
closure J̃ in M(A) . Then for n ≥ 2, J is n-primal (respectively primal) in A if and only if
J̃ is n-primal (respectively primal) in M(A).

Proof. Since an ideal is primal if and only if it is n-primal for all n ≥ 2, it is enough to prove
the result for n-primality. If J is n-primal then J̃ is n-primal by [10, Lemma 4.5] and its
proof.

Conversely, suppose that J̃ is n-primal. Let P1, . . . , Pn ∈ Prim(A/J). Then by the n-
primality of J̃ there is a net in Prim(M(A)) converging to P̃1, . . . , P̃n, and by the density
of Prim(A)∼ in Prim(M(A)) this net may be chosen to be of the form (P̃α) where each
Pα ∈ Prim(A). Hence (Pα) converges to P1, . . . , Pn, so J is n-primal. �

Next we give the main technical result of this section. It is convenient to work in the
context of C0(X)-algebras. Recall that a C∗-algebra A is a C0(X)-algebra if there is a
continuous map φ from Prim(A) to the locally compact Hausdorff space X. The map φ is
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called the base map and the image of φ is denoted Xφ. For x ∈ Xφ, we define H(x) :=
φ−1(x) and Jx := ker(H(x)). The map φ has a unique extension to a continuous map
φ : Prim(M(A)) → βX, such that φ(P̃ ) = φ(P ) for all P ∈ Prim(A); and for x ∈ Xφ we

define Hx := ker((φ)−1(x)). Then Jx ⊆ Hx ⊆ J̃x, so Hx is strictly closed if and only if
Hx = J̃x. When Hx = J̃x we say that spectral synthesis holds at x [12]. For further details,
see [10] and [12].

Theorem 4.2. Let A be a separable C0(X)-algebra with base map φ and let x ∈ Xφ with Hx

not strictly closed. Then Hx is not 2-primal.

Proof. Let b ∈ J̃x such that ‖b+Hx‖ = 1, and let Q be a primitive ideal of M(A) containing
Hx such that ‖b + Q‖ > 1/2. Set U = {S ∈ Prim(M(A)) : ‖b + S‖ > 1/2}, an open
neighbourhood of Q in Prim(M(A)), and set V = {P ∈ Prim(A) : P̃ ∈ U}. Since Prim(A)∼

is a dense open subset of Prim(M(A)), V is open in Prim(A) and Ṽ is dense in U . Let
T ∈ H(x). If T̃ 6∼ Q then Hx is not 2-primal, so we may assume that T̃ ∼ Q. Then T̃ lies
in the closure of U in Prim(M(A)) and hence in the closure of Ṽ . Thus T lies in the closure
of V in Prim(A). Since A is separable, T has a countable neighbourhood base in Prim(A)
[19, 3.3.4] and so there exists a sequence (Pn) in V such that Pn → T .

Let Ib be the closed ideal of A generated by b, that is, the norm-closure of AbA. Using
an approximate identity for A, we obtain that ab, ba ∈ Ib (a ∈ A) and hence b ∈ Ĩb. Set
W = φ(Prim(Ib)) (where Prim(Ib) is regarded as a subset of Prim(A) in the usual way). If
P ∈ Prim(A) and P ⊇ Ib then b ∈ Ĩb ⊆ P̃ and so P /∈ V . It follows that V ⊆ Prim(Ib) and
hence φ(V ) ⊆ W . On the other hand, if P ∈ H(x) then b ∈ J̃x ⊆ P̃ and so Ib ⊆ P̃ ∩A = P .
Thus x /∈ W . Since A is separable, Xφ is perfectly normal [12, Lemma 3.9] and so there is a
continuous function ρ : Xφ → [0,∞) with zero set equal to the closed set {x}. In particular,
ρ(y) > 0 for all y ∈ W .

We shall use the following observation. Let f be any continuous bounded function on W .
Then f ◦ φ defines a continuous bounded function on Prim(Ib), and hence defines a unique
central multiplier zf of Ib such that

zfc+ (P ∩ Ib) = f(φ(P ))(c+ (P ∩ Ib))

for all c ∈ Ib and P ∈ Prim(A) such that P 6⊇ Ib. We now define a double centralizer
(R,L) on A by R(a) = zf (ab), L(a) = zf (ba) (a ∈ A). Since Ib = I2

b , (zfc)a = zf (ca) and
a(czf ) = (ac)zf for all a ∈ A and c ∈ Ib. Thus, for a1, a2 ∈ A,

R(a1)a2 = zf (a1ba2) = (a1ba2)zf = a1L(a2).

Hence by [37, 3.12.3] there exists bf ∈M(A) such that bfa = zf (ba) and abf = zf (ab) for all
a ∈ A. Let y ∈ W , a ∈ A and P ∈ Prim(A) with P ⊇ Jy. If Ib 6⊆ P then

bfa− f(y)ba = zf (ba)− f(y)ba ∈ P ∩ Ib ⊆ P.

On the other hand, if Ib ⊆ P then bfa− f(y)ba = zf (ba)− f(y)ba ∈ Ib ⊆ P . Thus in either
case, bfa − f(y)ba ∈ P . Since this is true for all such P , bfa − f(y)ba ∈ Jy and similarly

abf − f(y)ab ∈ Jy. Hence bf − f(y)b ∈ J̃y.
Recall that Pn ∈ V and set xn = φ(Pn) so that xn ∈ φ(V ) ⊆ W and

‖b+ J̃xn‖ ≥ ‖b+ P̃n‖ > 1/2 (n ≥ 1).
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Since φ is continuous, xn → x and hence ρ(xn) → 0. By passing to a subsequence, we may
suppose that ρ(xn) is strictly decreasing to zero. Let g : (0,∞) 7→ (0,∞) be a continuous
function such that g(ρ(xn)) = 2

π(2n−1)
(n ≥ 1). Let f be the continuous bounded function

on W defined by

f(y) = sin

(
1

g(ρ(y))

)
(y ∈ W ). Then f(x2m) = −1 and f(x2m−1) = 1 (m ≥ 1). Let f+ and f− be the positive
and negative parts of f . Then f+ and f− are non-zero continuous bounded functions on
W and f+f− = 0. Set b1 = bf+ and b2 = bf− . Then b1Ab2 = {0}. For c ∈ M(A) and
a ∈ A, b1cb2a = lim b1cuλb2a = 0 (where (uλ) is an approximate identity for A) and similarly
ab1cb2 = 0. Thus b1cb2 = 0 and so b1M(A)b2 = {0}. Hence J1J2 = {0} where J1 and J2

are the smallest closed ideals in M(A) containing b1 and b2 respectively. On the other hand,
since b1 − f+(x2n−1)b ∈ J̃2n−1, we have

‖b1 +Hx2n−1‖ ≥ ‖b1 + J̃x2n−1‖ = |(f+)(x2n−1)| ‖b+ J̃x2n−1‖ > 1/2

for all n, and similarly ‖b2 +Hx2n‖ > 1/2 for all n. Hence neither b1 nor b2 belong to Hx, by
the upper semi-continuity of norm functions on X. Thus Hx is not 2-primal. �

If φ is the complete regularization map for Prim(A) then Hx is a Glimm ideal of M(A)
(see the remarks after Proposition 4.4). Thus we see that if A is separable then necessary
conditions for Orc(M(A)) = 1 are that Orc(A) = 1 and that every Glimm ideal of M(A)
which does not contain A should be strictly closed. This latter property has been called
‘global spectral synthesis’ in [12].

We give two examples which illustrate Theorem 4.2. The second of these shows that when
A is non-separable it is possible for Hx to be 2-primal but not strictly closed.

Example 4.3. (i) Let A be the C∗-algebra of sequences x = (xn) of 2× 2 complex matrices
such that xn → diag(λ(x), 0) as n→∞. Then M(A) is the C∗-algebra of sequences y = (yn)
of matrices whose off-diagonal terms converge to zero, whose (1, 1)-entries converge to a limit

λ̃(y), and whose (2, 2)-entries form a bounded sequence. Set J∞ = kerλ, and for n ≥ 1,
set Jn = {x ∈ A : xn = 0}. It is well-known that Prim(A) = {Jn : n ≥ 1} ∪ {J∞} and
is homeomorphic to the Hausdorff space N ∪ {∞}. Hence Prim(A) = Glimm(A). It is not

difficult to see that J̃∞ = ker λ̃ while

H∞ = {y ∈M(A) : yn → 0} = J∞.

Hence H∞ is not strictly closed (see also [12, Proposition 2.6(iii)]) so it follows from Theo-
rem 4.2 that H∞ is not 2-primal. This can also be seen directly by considering, for instance,
the ideals of elements in M(A) whose even (respectively, odd) terms are zero.

(ii) Let X = βN and let y ∈ βN \ N. Let A be the C∗-algebra of continuous functions f
from X into the 2× 2 complex matrices such that f(y) = diag(λ(f), 0). Routine arguments
show that M(A) is the algebra of all continuous functions f from X into the 2× 2 complex
matrices such that f(y) = diag(λ(f), µ(f)) (cf. [13, Example 12]). Then, as in example
(i), Prim(A) is homeomorphic to the base-space βN and every primitive ideal of A is a
Glimm ideal. Set Jy = {f ∈ A : λ(f) = 0}. Then J̃y = {f ∈ M(A) : λ(f) = 0} while
Hy = {f ∈ M(A) : λ(f) = µ(f) = 0}. Hence Hy is not strictly closed. Theorem 4.2 does
not apply, since A is non-separable, and in fact Hy is primal.



SEPARATION IN PRIMITIVE IDEAL SPACES 11

We now need some further definitions [12]. Let A be a C0(X)-algebra with base map
φ : Prim(A)→ X. For x ∈ Xφ we say that φ is locally closed at x [29, §13.XIV] if whenever
Y is a closed subset of Prim(A) such that x lies in the closure of φ(Y ) then x ∈ φ(Y ), that
is, Y ∩H(x) is non-empty.

For the next definition, it is helpful to have the following notation. For x ∈ Xφ, let ∂H(x)
be the boundary and U(x) the interior of H(x) in Prim(A). We say that Jx is locally modular
if for each P ∈ ∂H(x) there exists a relatively open neighbourhood V of P in Prim(A)\U(x)
such that A/ kerV is a unital C∗-algebra. Examples of locally modular ideals are given in
[12, Section 3 and Examples 6.4].

For a useful formulation, which is equivalent to local modularity when A is σ-unital,
we need a slight variant of the definition of ∼. For Q,R ∈ Prim(M(A)) \ Ũ(x) we say
that Q ∼x R if there is a net (Pα) in Prim(A) \ U(x) such that (P̃α) converges to both Q
and R. If A is σ-unital then Jx is locally modular if and only if for all P ∈ ∂H(x) and
R ∈ Prim(M(A)/A), P̃ 6∼x R [12, Lemma 3.3].

Proposition 4.4. Let A be a separable C0(X)-algebra with base map φ. Let x ∈ Xφ and let
n ≥ 2. Then the following are equivalent:

(a) Hx is n-primal (respectively, primal);
(b) Jx is n-primal (respectively, primal) and Hx is strictly closed;
(c) Jx is n-primal (respectively, primal) and locally modular, and φ is locally closed at x.

Proof. (a)⇒(b) If Hx is n-primal then so too is the containing ideal J̃x, and then Jx is
n-primal by Lemma 4.1. Furthermore Hx must be strictly closed by Theorem 4.2.
(b)⇒(a) This follows from Lemma 4.1 since J̃x is the strict closure of Hx.
(b)⇔(c) This follows from [12, Corollary 3.10]. �

Any C∗-algebra A may be viewed as a C0(X)-algebra where the base map φ is the complete
regularization map and where X is either Glimm(A) (if this is locally compact) or the
Stone-Čech compactification of Glimm(A). In either case Xφ = Glimm(A). From now on,
for the sake of generality and definiteness, we will take X = β Glimm(A) as the target of
the complete regularization map for A. As noted in [6, p. 2054] (with slightly different
notation), if G ∈ Xφ = Glimm(A) then JG = G and HG = ι(G), where ι : β Glimm(A) →
Glimm(M(A)) is the canonical homeomorphism described in [10, Proposition 4.7]. There
is a continuous map φ : Prim(M(A)) → X = β Glimm(A) such that φ(P̃ ) = φ(P ) for
all P ∈ Prim(A) and ι ◦ φ = φM(A), where φM(A) : Prim(M(A)) → Glimm(M(A)) is the
complete regularization map for M(A) [6, p. 2054]. For x ∈ X = β Glimm(A), Hx =⋂
{Q ∈ Prim(A) : φ(Q) = x} by definition. But φ(Q) = x if and only if φM(A)(Q) = ι(x)

and so Hx = ι(x) ∈ Glimm(M(A)). Since ι is surjective,

Glimm(M(A)) = {Hx : x ∈ β Glimm(A)}.
The topology on Xφ = Glimm(A) is the complete regularization topology, and this coin-

cides with the quotient topology induced from Prim(A) by φ if A is σ-unital [30, Theorem
2.6].

Proposition 4.5. Let A be a σ-unital C0(X)-algebra where φ is the complete regularization
map for Prim(A) and suppose that Orc(A) = 1. Suppose that the Glimm ideal Jx is locally
modular for all x ∈ Xφ. Then, for all x ∈ Xφ, φ is locally closed at x and Hx is strictly
closed.
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Proof. The main thing is to show that φ is locally closed at x for all x ∈ Xφ. As a matter of
fact, this follows from [12, Theorem 5.3], but the proof of that theorem is somewhat involved
and we can give a much simpler proof in the present case where Orc(A) = 1 by exploiting
the new result in Theorem 3.3(c).

Let Y be a closed subset of Prim(A). We are required to show that φ(Y ) is closed in
Xφ. But A is σ-unital and so it is enough to show that φ−1(φ(Y )) is closed [30, Theorem
2.6]. Since ∼ and ≈ coincide on Prim(A) (Theorem 3.3(c)), this amounts to showing that
Y 1 := {Q ∈ Prim(A) : ∃P ∈ Y with P ∼ Q} is closed.

Let (Qα) be a net in Y 1 with Qα → Q ∈ Prim(A). Set x = φ(Q). Suppose, for a
contradiction, that Q /∈ Y 1. For each α there exists Pα ∈ Y such that Pα ∼ Qα. By the
compactness of Prim(M(A)), and by passing to a subnet if necessary, we may assume that
P̃α → R for some R ∈ Prim(M(A)). Then R ∼ Q̃. If R ∈ Ỹ then Q ∈ Y 1, contrary to
our assumption. Hence R ⊇ A, since Y is closed. If Qα ∈ H(x) for any α then Pα ∈ H(x)
since Pα ∼ Qα. This implies that H(x) ⊆ Y 1, since ∼ and ≈ coincide, and hence that
Q ∈ H(x) ⊆ Y 1, contrary to our assumption. Thus we see that no Qα belongs to H(x). It
follows that Q lies in the boundary of H(x).

Let U and V be open neighbourhoods of Q̃ and of R respectively in Prim(M(A)). Set
U ′ = {P ∈ Prim(A) : P̃ ∈ U} and V ′ = {P ∈ Prim(A) : P̃ ∈ V }. Then there exists α such
that Qα ∈ U ′ and Pα ∈ V ′. Since Qα, Pα /∈ H(x), U ′′ = U ′ \H(x) and V ′′ = V ′ \H(x) are
open neighbourhoods of Qα and Pα respectively. Since Qα ∼ Pα, there exists P ∈ Prim(A)
such P ∈ U ′′ ∩ V ′′. Hence P /∈ H(x) and P̃ ∈ U ∩ V . It follows that Q̃ ∼x R. By [12,
Lemma 3.3], this contradicts the local modularity hypothesis on Jx. Thus Q ∈ Y 1 and Y 1 is
closed. It follows, as above, that φ is locally closed at each x ∈ Xφ. Hence, using the local
modularity of Jx again, Hx is strictly closed for all x ∈ Xφ [12, Proposition 3.4]. �

Theorem 4.6. Let A be a separable C∗-algebra and let φ be the complete regularization map
for Prim(A). Then for n ≥ 2, Hx is n-primal (respectively, primal) for all x ∈ βXφ if and
only if Jx is locally modular and n-primal (respectively, primal) for all x ∈ Xφ.

Proof. Suppose first that Hx is n-primal (respectively primal) for all x ∈ βXφ. Then it
follows from Proposition 4.4 that Jx is locally modular and n-primal (respectively primal)
for all x ∈ Xφ.

For the converse, it suffices to assume that A is σ-unital rather than separable. Suppose
that Jx is locally modular and n-primal (respectively primal) for all x ∈ Xφ. In particular,
this implies that Orc(A) = 1. By Proposition 4.5, Hx is strictly closed for all x ∈ Xφ.

Hence Hx = J̃x is n-primal (respectively primal) for all x ∈ Xφ = Glimm(A) by Lemma 4.1.
Since A is σ-unital, Xφ is normal [11, p. 366]. Recalling that Glimm(M(A)) = {Hx : x ∈
β Glimm(A)}, we obtain from [6, Corollary 3.3] that Hx is n-primal (respectively primal)
for all x ∈ βXφ. �

Translating Theorem 4.6 back into the language of Glimm ideals, we obtain our main
result. We observe that condition (b) below is intrinsic to A.

Corollary 4.7. Let A be a separable C∗-algebra. Then the following are equivalent:
(a) Orc(M(A)) = 1;
(b) Orc(A) = 1 and every Glimm ideal of A is locally modular;
(c) Orc(A) = 1 and HG is strictly closed in M(A) for all G ∈ Glimm(A).
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Proof. Let φ be the complete regularization map for Prim(A) so that Xφ = Glimm(A) and
the ideals Jx (x ∈ Xφ) are the Glimm ideals of A.
(a)⇒ (b). Suppose that Orc(M(A)) = 1. Then Orc(A) = 1 since Prim(A) is homeomorphic
to an open subset of Prim(M(A)). Furthermore, since M(A) is unital, Hx is 2-primal for all
x ∈ βXφ [40, Corollary 2.7] and so Jx is locally modular for all x ∈ Xφ by Theorem 4.6.
(b) ⇒ (c). This follows from Proposition 4.5.
(c) ⇒ (a). Suppose that (c) holds. Since Orc(A) = 1, Jx is 2-primal for all x ∈ Xφ

by Theorem 3.3(c). Hence, as in the proof of Theorem 4.6, Hx = J̃x is 2-primal for all
x ∈ Xφ = Glimm(A) by Lemma 4.1 and so every Glimm ideal of M(A)) is 2-primal by [6,
Corollary 3.3]. �

As noted before Proposition 4.5, any C∗-algebra A may be regarded as a C(X)-algebra
where X is the Stone-Čech compactification of Glimm(A) and the base map φ is the complete
regularization map. The corresponding structure map µ : C(X)→ Z(M(A)) satisfies µ(h) =
θA(h ◦φ) where θA : Cb(Prim(A))→ Z(M(A)) is the Dauns-Hofmann isomorphism (see [10,
p. 74]). In this case, the algebra Z ′(A) := µ(C(X))∩A (see [10, Section 2] and [12, Section
2]) coincides with Z(A). To see this, let z ∈ Z(A) and let f = θ−1

A (z) ∈ Cb(Prim(A)).
By the definition of the complete regularization topology on Glimm(A), there exists g ∈
Cb(Glimm(A)) such that f = g ◦ φ. Let h ∈ C(X) be the unique extension of g. Then

µ(h) = θA(h ◦ φ) = θA(g ◦ φ) = θA(f) = z.

We now introduce the following notation. Let A be a C∗-algebra with centre Z(A) and
let φ be the complete regularization map for Prim(A). Set Uφ = {x ∈ Xφ : Jx 6⊇ Z(A)} and
let Wφ = Xφ \ Uφ. Then Uφ is an open subset of Xφ (see [12, Section 2] and [10, Section
2]). Recall that a C∗-algebra A is said to be quasi-central if no primitive ideal of A contains
Z(A). If A is quasi-central then Uφ = Xφ(= Glimm(A)) and so every Glimm ideal of A is
locally modular (see [12, Section 3]).

Corollary 4.8. Let A be a separable C∗-algebra with Orc(A) = 1 and suppose that every
Glimm ideal of A is locally modular.

(i) Suppose that Z(A) = {0}. Then A is a direct sum of primitive C∗-algebras.
(ii) Suppose that Prim(A) is a T1-space. Then A = B ⊕ C where B is quasi-central and

C is a direct sum of simple C∗-algebras.

Proof. (i) Let φ denote the complete regularization map for Prim(A). By Proposition 4.5,
Hx is strictly closed for all x ∈ Xφ. Since Z(A) = {0}, Xφ is discrete by [12, Corollary
4.4(ii)]. Let x ∈ Xφ. By Theorem 3.3(c), Jx is a 2-primal ideal of A. Suppose that K and L
are (closed two-sided) ideals of A such that KL ⊆ Jx. Using the canonical correspondence
between open subsets of Prim(A) and ideals of A, we have

Prim(K) ∩ Prim(L) ⊆ Prim(Jx) = Prim(A) \H(x).

Since H(x) is a clopen subset of Prim(A), Prim(K)∩H(x) and Prim(L)∩H(x) are disjoint
open subsets of Prim(A) and so one or other is contained in Prim(Jx) by the 2-primality of
Jx. Hence either Prim(K) or Prim(L) is contained in Prim(Jx) and so Jx is a prime ideal of
A. Since A is separable, Jx is a primitive ideal of A [37, 4.3.6]. Hence A is a direct sum of
primitive C∗-algebras.

(ii) Let x ∈ Xφ. Since Orc(A) = 1 and Jx is locally modular, it follows from [12, Corollary
6.3] that either x ∈ Uφ or H(x) has non-empty interior. In the latter case, there exists
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a separated point M of Prim(A) in the interior of H(x) [19, 3.9.4]. But M is a maximal
ideal since Prim(A) is a T1-space, and thus the singleton {M} is a ∼-class in Prim(A) (by
definition of a separated point). But Orc(A) = 1 and hence H(x) = {M} by Theorem 3.3(c)
and so M = Jx. Since {M} is a clopen subset of Prim(A), its characteristic function is
continuous and so x is an isolated point in Xφ. It follows that Wφ is a discrete open subset
of Xφ. Set B = kerWφ and C = kerUφ. Then B is quasi-central and C is a direct sum of
simple C∗-algebras and A = B ⊕ C. �

If A is as in Corollary 4.8 but Prim(A) is not a T1-space then A can have more complicated
structure, see [12, Example 6.4(i)].

As Corollary 4.8 shows, the local modularity condition in Corollary 4.7(b) is a restrictive
one. However, if A = C∗(G) where G is an [SIN] group then A has a central approximate
identity (see [36] and [33, Section 1]). Hence A is quasi-central and so every Glimm ideal of
A is locally modular.

5. Applications to norms of elementary operators

In this section we give some applications of the results of the previous section to norms of
elementary operators. We begin with the definitions of the constants K and Ks associated
with inner derivations, see [25], [3]. Let A be a C∗-algebra and let a ∈ A. Then a simple
application of the triangle inequality shows that

‖D(a,A)‖ ≤ 2d(a, Z(A)) (1)

where D(a,A) is the inner derivation generated by a and d(a, Z(A)) is the distance from a
to Z(A), the centre of A. Define K(A) to be the smallest number in [0,∞] such that

K(A)‖D(a,A)‖ ≥ d(a, Z(A))

for all a ∈ A. If the elements a are restricted to being self-adjoint then the corresponding
constant is denoted Ks(A). Clearly Ks(A) ≤ K(A), and it follows from (1) that 1/2 ≤ Ks(A)
unless A is commutative.

It was shown in [40, Theorem 4.4] that if A is a unital non-commutative C∗-algebra then
Ks(A) = 1/2 if and only if Orc(A) = 1. If A is a non-unital C∗-algebra then, as discussed in
Section 1, the multiplier algebra M(A) provides the natural setting in which to study inner
derivations and their norms. By applying the unital result above to the algebra M(A) and
combining with Corollary 4.7, we obtain the following.

Theorem 5.1. Let A be a separable, non-commutative C∗-algebra. Then Ks(M(A)) = 1/2
if and only if Orc(A) = 1 and every Glimm ideal of A is locally modular.

In a similar direction, it was shown in [41, Theorems 3.2 and 3.3] that for a unital non-
commutative C∗-algebra A, K(A) = 1/2 if and only if every Glimm ideal of A is 3-primal.
Thus from Theorem 4.6 we obtain the following.

Theorem 5.2. Let A be a separable, non-commutative C∗-algebra. Then K(M(A)) = 1/2
if and only if every Glimm ideal of A is locally modular and 3-primal.

In [6, Section 4] there are several examples of second countable, locally compact groups G
such that K(M(C∗(G))) = 1/2.



SEPARATION IN PRIMITIVE IDEAL SPACES 15

It was also shown in [41, Theorems 3.3 and 3.4] that if A is a unital C∗-algebra then
K(A) = 1/

√
3 if and only if every Glimm ideal of A is 2-primal (i.e. Orc(A) = 1) but A has

a Glimm ideal which is not 3-primal. Applying this to M(A), we obtain the following from
Theorem 4.6.

Theorem 5.3. Let A be a separable C∗-algebra. Then K(M(A)) = 1/
√

3 if and only if
every Glimm ideal of A is locally modular and 2-primal but at least one Glimm ideal of A is
not 3-primal.

Proof. Suppose first that K(M(A)) = 1/
√

3. Then every Glimm ideal of M(A) is locally
modular and 2-primal but at least one is not 3-primal. By Theorem 4.6 (first with n = 2
and then with n = 3), every Glimm ideal of A is locally modular and 2-primal but at least
one is not 3-primal.

Conversely, suppose that every Glimm ideal of A is locally modular and 2-primal but at
least one Glimm ideal of A is not 3-primal. Then by Theorem 4.6 (with n = 2 and n = 3),
every Glimm ideal of M(A) is 2-primal but M(A) has at least one Glimm ideal which is not
3-primal. Hence K(M(A)) = 1/

√
3. �

On the other hand, it was shown in [40, Theorem 4.4] that if A is a unital non-commutative
C∗-algebra then Ks(A) = Orc(A)/2. Thus Corollary 4.7 implies the following.

Theorem 5.4. Let A be a separable C∗-algebra. Then the following are equivalent:
(i) either Orc(A) > 1 or A has a Glimm ideal which is not locally modular;
(ii) K(M(A)) ≥ Ks(M(A)) ≥ 1.

For the computation of K(M(C∗(G))) for a number of group C∗-algebras, see [6] and
[7]. It was shown in [6, Theorem 4.8] that if G is a second countable [FD]−-group of
type I then either K(M(C∗(G))) ≤ 1/2 or K(M(C∗(G))) = 1 and hence, in particular,
K(M(C∗(G))) 6= 1/

√
3. This raised the question of finding a locally compact group G such

that K(M(C∗(G))) = 1/
√

3 [6, p. 2052]. By using results of Losert [33], we show below
that this is not possible for second countable groups which are amenable or CCR or almost
connected. We begin with a lemma.

Lemma 5.5. Let A be a C∗-algebra of the form A = B⊕C where B is a separable C∗-algebra
with centre Z(B) = {0} and C is a quasi-central, quasi-standard C∗-algebra. Then either
K(M(A)) ≤ 1/2 or K(M(A)) ≥ 1. Equivalently, K(M(A)) 6= 1/

√
3.

Proof. If Orc(M(A)) ≥ 2 then K(M(A)) ≥ 1 [40, Theorem 4.4], so we suppose from now
on that Orc(M(A)) = 1. Since M(A) = M(B) ⊕M(C), Orc(M(B)) = 1 and hence B is a
direct sum of primitive C∗-algebras by Corollary 4.8. Then Glimm(B) is discrete and B is
quasi-standard by [9, Theorem 3.4]. We now have that M(B) is quasi-standard [10, Corollary
4.9] and so also is M(C) [10, Corollary 4.10]. It follows that M(A) is quasi-standard and
hence K(M(A)) ≤ 1/2 [41, Theorem 3.2]. The final part of the statement follows from the
trichotomy in [41, p. 569]. �

For the next result, we recall that if a locally compact group G has a compact nor-
mal subgroup N then there is a canonical ∗-isomorphism εN from C∗(G/N) onto a di-
rect summand of C∗(G) such that εN is a right inverse for the canonical ∗-homomorphism
τN : C∗(G) → C∗(G/N) and hence C∗(G) = ker τN ⊕ εN(C∗(G/N)). More generally, the
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same holds true if N is a closed normal subgroup with property T (see [33, Section 2] and
[42, Section 3]).

Theorem 5.6. Let A = C∗(G) where G is a second countable locally compact group which
is either (i) amenable or (ii) CCR or (iii) almost connected. Then either K(M(A)) ≤ 1/2
or K(M(A)) ≥ 1. Equivalently, K(M(A)) 6= 1/

√
3.

Proof. Since G is second countable, A is separable and hence so is any C∗-subalgebra. If
Z(A) = {0} then the result follows from Lemma 5.5 with C = {0}. So we assume from now
on that Z(A) 6= {0}.
(i) Suppose that G is amenable. By [33, Corollary 1.2], G is an IN-group. As discussed in
[33, proof of Corollary 1.3] (see also [32, proof of Proposition 1.2]), G has a compact normal
subgroup K such that G/K is a SIN-group and

Z(L1(G)) = εK(Z(L1(G/K))) ⊆ εK(C∗(G/K)).

Since G is amenable, Z(A) is the norm-closure of Z(L1(G)) [33, Theorem 1.1] and hence is
contained in εK(C∗(G/K)). Writing B = ker τK , we have Z(B) = {0}. Since G/K is an
amenable SIN-group, C∗(G/K) is quasi-central [33, Corollary 1.3] and quasi-standard [27]
and hence the same holds for C := εK(C∗(G/K)). The result follows from Lemma 5.5.
(ii) Suppose instead that G is a CCR group. By [33, Theorem 3.1], G has a closed normal sub-
group N with property T such that G/N is an amenable SIN-group and εN(Z(C∗(G/N))) =
Z(C∗(G)). With B := ker τN and C := εK(C∗(G/N)) we have Z(B) = {0} and, as before,
C is quasi-central and quasi-standard. The result follows from Lemma 5.5.
(iii) Finally, suppose instead that G is almost connected. By [33, Theorem 5.1 and its
proof], G has a closed normal subgroup N with property T such that G/N is an amenable
IN-group and εN(Z(C∗(G/N))) = Z(C∗(G)) 6= {0}. Arguing as in (i) (with G replaced
by G/N), we obtain C∗(G/N) = B ⊕ C where Z(B) = {0} and C is quasi-central and
quasi-standard. The result follows by applying Lemma 5.5 to the decomposition C∗(G) =
(ker τN ⊕ εN(B))⊕ εN(C). �

Now let A be a C∗-algebra and let Z be the centre of M(A). Let A ⊗h A denote the
Haagerup tensor product. Then the central Haagerup tensor product A⊗Z,hA is the quotient
of A⊗h A by the subspace JA defined to be the closure of the span of elements of the form
az ⊗ b − a ⊗ zb (a, b ∈ A, z ∈ Z). Let CB(A) be the space of completely bounded maps
on A and let θ be the contractive linear map from A⊗h A→ CB(A) defined on elementary
tensors by

θ

(
n∑
i=1

ai ⊗ bi

)
(x) =

n∑
i=1

aixbi (x ∈ A).

Thus θ(u) is an elementary operator whenever u is an elementary tensor. Furthermore
JA ⊆ ker θ, so θ induces a contractive map θZ : A⊗Z,hA→ CB(A) where θZ(u+ JA) = θ(u)
(u ∈ A ⊗h A). It was shown in [14, Theorem 3.8] that θZ is injective if and only if every
Glimm ideal of A is 2-primal and that θZ is isometric if and only if every Glimm ideal of A
is primal.

If A is non-unital then we can also consider the extended map θZ : M(A) ⊗Z,h M(A) →
CB(M(A)) and its restriction ΘZ : M(A)⊗Z,hM(A)→ CB(A) defined by

ΘZ(u+ JM(A)) = θZ(u+ JM(A))|A (u ∈M(A)⊗hM(A)).
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It was shown in [13, Corollary 9] that ΘZ is isometric if and only if every Glimm ideal of
M(A) is primal. Thus Theorem 4.6 implies the following.

Theorem 5.7. Let A be a separable C∗-algebra. The canonical contraction

ΘZ : M(A)⊗Z,hM(A)→ CB(A)

is isometric if and only if every Glimm ideal of A is locally modular and primal.

Theorem 4.2 requires a separability hypothesis, or something similar, and so the theorems
thus far in this section are valid only for separable C∗-algebras. The problem of determining
the σ-unital C∗-algebras A for which Orc(M(A)) = 1 seems to be formidable, even if one
makes the further assumption that A is quasi-standard. If A has enough non-unital quotients,
however, then this problem can be solved [6, Theorem 3.6]. Theorem 5.9 will supplement that
result. We begin with a proposition which augments the results in [31] and [18] concerning
the relationship between modular ideals and non-trivial centre. It shows that the density
hypothesis in [6, Theorem 3.6] can be replaced by the assumption of trivial centre.

Proposition 5.8. Let A be a σ-unital quasi-standard C∗-algebra. The following conditions
are equivalent:

(i) the centre Z(A) = {0};
(ii) the set S = {P ∈ Prim(A) : A/P is non-unital} is dense in Prim(A).

Proof. (ii) ⇒ (i) This is an elementary consequence of the lower semi-continuity of norm
functions (see, for example, [31, Section 1] and [6, Proposition 2.1]).
(i) ⇒ (ii). Note that if P ∈ Prim(A) and A/P is unital then the assignment a+P → a+ P̃
(a ∈ A) defines a ∗-isomorphism of A/P onto M(A)/P̃ because the image is a unital essential
ideal of M(A)/P̃ . Let u be a strictly positive element in A with ‖u‖ = 1. Suppose that
the set S is not dense in Prim(A) and that W is a non-empty open subset of Prim(A) with
A/P unital for all P ∈ W . The norm function P 7→ ‖(1− u) + P̃‖ (P ∈ Prim(A)) is lower
semi-continuous on the Baire space Prim(A) and thus there is a dense subset of Prim(A)
consisting of points of continuity of this norm function (see the proof of [19, Appendice B18]).
Let Q ∈ W be such a point of continuity. Since A/Q is unital, ‖(1− u) + Q̃‖ < 1 and hence
there is an open neighbourhood W ′ of Q in Prim(A) such that ‖(1 − u) + P̃‖ < (1 + α)/2
for all P ∈ W ′, where α = ‖(1− u) + Q̃‖.

Now let R ∈ W ′ and let S ∈ Prim(A) with R ∼ S. Then ‖(1 − u) + S̃‖ ≤ (1 + α)/2 for
otherwise the set {P ∈ Prim(A) : ‖(1 − u) + P̃‖ > (1 + α)/2} is an open neighbourhood
of S disjoint from W ′, contradicting the fact that S ∼ R. Let W ′′ be the ∼-saturation of
W ′ and let Y = φ(W ′′), where φ is the complete regularization map for Prim(A). Then Y
is an open subset of Xφ = Glimm(A) since A is quasi-standard (see [9, Proposition 3.2 and
Theorem 3.3]).

Let f : [0, 1]→ [0, 1] be a continuous function such that f(0) = 0 and f([(1− α)/2, 1]) =
{1}. Let v = f(u) ∈ A. For all P ∈ W ′′, the spectrum of u+ P̃ is contained in [(1−α)/2, 1]
and so ‖(1−v)+ P̃‖ = 0 which implies that v+P is the identity of A/P . Let h : Xφ → [0, 1]
be a non-zero continuous function vanishing off Y and let z = θA(h ◦ φ) ∈ Z(M(A)),
where θA : Cb(Prim(A))→ Z(M(A)) is the Dauns-Hofmann isomorphism. If P ∈ W ′′ then
zv + P = h(φ(P ))(v + P ) and if P ∈ Prim(A) \W ′′ then zv + P = h(φ(P ))(v + P ) = 0
because φ(P ) /∈ Y . Hence zv is a non-zero central element in A. �
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Recall that a completely regular Hausdorff space X is an F-space if disjoint cozero sets in
X can be separated by disjoint zero sets.

Theorem 5.9. Let A be a σ-unital quasi-standard C∗-algebra and suppose that the centre
Z(A) = {0}. Let ΘZ : M(A) ⊗Z,h M(A) → CB(A) be the canonical contraction. Then the
following are equivalent:

(i) Glimm(A) is an F-space;
(ii) Orc(M(A)) = 1;
(iii) K(M(A)) = Ks(M(A)) = 1/2;
(iv) every Glimm ideal of M(A) is primal;
(v) the map ΘZ is isometric;
(vi) the map ΘZ is injective.

Proof. The equivalence of (i)– (iv) follows from [6, Theorem 3.6] and Proposition 5.8. The
implication (iv)⇒(v) follows from [13, Corollary 9] while (v)⇒(vi) is trivial. Now suppose
that (vi) holds. Let u ∈ M(A) ⊗h M(A) and suppose that θZ(u + JM(A)) = 0. Then

ΘZ(u + JM(A)) = θZ(u + JM(A))|A = 0, so u ∈ JM(A) by assumption. Hence θZ is injective,
so every Glimm ideal of M(A) is 2-primal by [14, Theorem 3.8]. Thus (ii) holds. �

Let A be a σ-unital quasi-standard C∗-algebra with Z(A) = {0}. Then Theorem 5.9
shows that every Glimm ideal of M(A) is primal if and only if Glimm(A) is an F-space. On
the other hand, M(A) satisfies the stronger condition of being quasi-standard if and only if
Glimm(A) is a basically disconnected space [10, Corollary 4.9].

Notice, in conclusion, that the density of the subset S in Lemma 5.8 implies that if A is a
σ-unital quasi-standard C∗-algebra with Z(A) = {0} then any locally modular Glimm ideal
of A must be an isolated point in Glimm(A). On the other hand, there exist F-spaces such as
βN \ N which have no isolated points. Thus the local modularity condition of Corollary 4.7
loses its significance for the problem of characterizing Orc(M(A)) = 1 when the separability
assumption on A is dropped.

6. Appendix: Proof of lemma 3.1

Lemma 3.1 [15, Vol.2: Exercise 15(b) on p.244] Let X be a locally compact, Hausdorff,
σ-compact space and let R be an equivalence relation on X whose graph is closed in X×X.
Then X/R is Hausdorff and normal.

Proof. Let x ∈ X. Since the graph of R is closed, the equivalence class [x] = {y ∈ X : yRx}
is closed in X. It follows that singleton subsets of X/R are closed, i.e. X/R is T1. So it
suffices to prove that X/R is normal. Let q : X → X/R be the quotient map.

First note that if Y is a compact subset of X then q(Y ) is closed. To see this, let
Z = q−1(q(Y )) and let (xα) be a net in Z converging to a limit x ∈ X. Then for each α
there exists yα ∈ Y such that xαRyα. Using the compactness of Y , we may obtain a subnet
(yβ) of (yα) such that (yβ) converges to a limit y ∈ Y . But then xRy since the graph of R
is closed, so x ∈ Z. Hence q(Y ) is closed by definition of the quotient topology.

Since X is σ-compact and locally compact, standard arguments lead to the existence of a
sequence (Un) of open subsets of X such that Un is a compact subset of Un+1 for all n ≥ 1
and X =

⋃∞
n=1 Un. For n ≥ 1, let Xn = Un and let Rn be the restriction of R to Xn, that is

Rn = R ∩ (Xn ×Xn). Since the graph of R is closed, the graph of Rn is closed in Xn ×Xn.
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By [15, Vol.1, Prop.8 on p.105], Xn/Rn is compact and Hausdorff and hence normal. Let
qn : Xn → Xn/Rn be the quotient map and let in : Xn/Rn → X/R be given by in([x]) = q(x)
(x ∈ Xn). Then in is a bijection between Xn/Rn and q(Xn).

We now show that in is a homeomorphism between Xn/Rn and q(Xn). Note that q(Xn)
is closed by the work of the second paragraph above. Let W be a subset of q(Xn). We
claim that the following is true: W is closed if and only if Z := q−1(W ) is closed if and
only if Z ∩Xn is closed if and only if qn(Z ∩Xn) is closed. The first and third equivalences
follow from the definition of the quotient topology together with the fact that Z ∩Xn is an
Rn-saturated subset of Xn. For the second equivalence, one direction is trivial. For the other
direction, note that if Z ∩ Xn is closed then it is compact and hence Z = q−1(q(Z ∩ Xn))
is closed by the second paragraph above. Since in ◦ qn(Z ∩Xn) = W it follows that in is a
homeomorphism. Hence q(Xn) is normal for all n ≥ 1.

Next note that a subset W of X/R is closed if (and only if) W ∩ q(Xn) is a closed subset
of q(Xn) for all n ≥ 1. Indeed, suppose that W ∩ q(Xn) is closed for all n ≥ 1 and let (xα)
be a net in Z := q−1(W ) converging to a limit x ∈ X. Then x ∈ Um for some m and hence
eventually xα ∈ Um ⊆ Xm. Thus eventually q(xα) ∈ W ∩ q(Xm) and q(xα) → q(x). Since
W ∩ q(Xm) is a closed subset of q(Xm), it follows that q(x) ∈ W ∩ q(Xm) and hence that
x ∈ Z. Thus Z is closed, so W is closed. By taking complements, it follows that a subset
W of X/R is open if and only if W ∩ q(Xn) is an open subset of q(Xn) for all n ≥ 1.

Now let A and B be disjoint closed subsets of X/R. For each n ≥ 1, set An = A ∩ q(Xn)
and Bn = B ∩ q(Xn). Then A1 and B1 are closed and disjoint so, working in q(X1), by two
applications of normality there exist disjoint closed neighbourhoods C1 and D1 of A1 and
B1 respectively. Then A2 ∪ C1 and B2 ∪D1 are disjoint closed subsets of q(X2) so, working
in q(X2), there exist disjoint closed neighbourhoods C2 and D2 of A2 ∪ C1 and B2 ∪ D1

respectively. Proceeding inductively, for each n ≥ 2 we may find in q(Xn) disjoint closed
neighbourhoods Cn and Dn of An ∪ Cn−1 and Bn ∪ Dn−1 respectively. For each n ≥ 1, let
Vn be the interior of Cn in q(Xn) and Wn the interior of Dn in q(Xn). Set V =

⋃∞
n=1 Vn and

W =
⋃∞
n=1Wn. Since Cn and Dn both increase with n, so too do Vn and Wn. For N ≥ 1,

V ∩ q(XN) =
⋃
n≥N(Vn ∩ q(XN)) which is open in q(XN). Hence V , and similarly W , is

open in X by the previous paragraph. Furthermore for m,n ≥ 1, Vm ∩Wn ⊆ Cm ∩Dn = ∅,
and hence V and W are disjoint. Since An ⊆ Vn and Bn ⊆ Wn for each n ≥ 1, we see that
A ⊆ V and B ⊆ W . Hence X/R is normal as required. �
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