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Abstract

We consider an Allen-Cahn/Cahn-Hilliard system with a non-degener-
ate mobility and (i) a logarithmic free energy and (ii) a non-smooth free
energy (the deep quench limit). This system arises in the modelling of
phase separation and ordering in binary alloys. In particular we prove in
each case that there exists a unique solution for sufficiently smooth initial
data. Further, we prove an error bound for a fully practical piecewise
linear finite element approximation of (i) and (ii) in one and two space
dimensions (and three space dimensions for constant mobility). The error
bound being optimal in the deep quench limit. In addition an iterative
scheme for solving the resulting nonlinear discrete system is analysed.
Finally some numerical experiments are presented.

1 Introduction

Let © be a bounded domain in R d < 3, with a Lipschitz boundary 9.
We consider the Allen-Cahn/Cahn-Hilliard system with varying mobility and

logarithmic free energy:
(Py) Find {ua(z,1), ve(x,t), wo(z,1), zo(2,t)} such that

%L;’ = V. (b(ug, vg)Vwy) in Qp :=Qx(0,7), (1.1a)
pf’aLto = —b(ug, ve) 29 in Qp, (1.1b)
wy = —y Aug + 0 [ d(uo + vg) + ¢(ug — ve) | — v ug in Qp, (1.1¢)

zo = —yAvg 4+ 0[P(ug +ve) — d(ug —vg)] — Bug in Qp, (1.1d)
ug(x,0) = u’(x), we(x,0) = v°(x) Ve, (1.1e)
%Llf = %Llf = b(ug,ve) 65‘1’/9 =0 on 99 x (0,7); (1.1f)

where v is normal to 02 and p, v, 0, @ and § are given positive constants. On
introducing ® € C10, 1] such that

B(s) := ®T(s) + PT(1 — s), where &% (s) := s In s; (1.2a)
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then the monotone function ¢ € C'°°(0,1) in (1.1c,d) is defined to be
¢(5) =@ (s) :=lns—In(l —s)=¢t(s) —¢T(1—5), (1.2b)

where ¢ = (®1)’. The singularities in ¢ at 0 and 1 force (ug dvg)(z,t) € (0, 1),
see Theorem 2.2 below; that is, {ug(z,t),ve(x,t)} € Q a.e. in Qr, Wher Q =
{{s1,52} ER?:0< 51 +52<1,0< sy —s3 <1}. The mobility b € C(Q) in
(1.1a,b) is non-negative such that

0 S bmin S b(Sl, 52) S bmax v {Sla 52} S @ (13)

On introducing the total free energy
TJo(ug,vg) == /ﬂ { %'y [|[Vugl? + |Vvg|?] + Wo(ug, ve) } dz, (1.4a)
where
Wo(ug,ve) =0 [ P(ug+ ve) + Pug —ve) ] + % [aug (1 —up)— Buil; (1.4b)

it follows that 27¢ — w, + a and 6‘79 = zp. On noting this and that (1.1a,f)

5ug
implies that fﬂ Gue qp =0, 1t follows that (1.1a—f) can be viewed as a (weighted)

ot
gradient flow in H ! x L2 with je non-increasing in time, ¢. Furthermore, the
1

choice u° = 1 ylelds that uy = 5 and wy = —5a. Hence (1.1d) collapses to
29 = —yAuy —|— 29(;5( + vg) — Pug and the system (Py) to a logarithmic Allen-
Cahn equation with a varying mobility. Whereas, the choice v = 0 yields that
vg = zp = 0. Hence (1.1c) collapses to wy = —yAug + 20¢(ug) — cuy and the
system (Py) to a logarithmic Cahn-Hilliard equation with a varying mobility.
Therefore for general initial data {u®(z),v(z)} € Q, for all x € Q, (Py) can
be considered as a system encompassing both the logarithmic Allen-Cahn and
Cahn-Hilliard equations with varying mobility.

The system (1.1a—f) was derived in [11] to model the simultaneous order-
disorder and phase separation in binary alloys on a BCC lattice, for example in
Fe-Al alloys. Here uy denotes the average concentration of one of the compo-
nents and, as noted above, is a conserved quantity; and vy is a non-conserved
order parameter. The parameter # denotes the absolute temperature. We note
that if 8¢ < max{a, 8}, then ¥y is non-convex.

Existence, uniqueness and regularity have been established for (1.1a—f) with
constant mobility and with ®(s) in (1.2a) replaced by the quartic s* in [10]. In
[12] and [23] formal asymptotics are used to describe the long time behaviour of
the system (1.1a—f) close to the deep quench limit (f = 0). We note that the local
minima of Wy (ug,ve) are transcendentally close, O(e=%/?), to {%,:I:%}, {0,0}
and {1,0}; the vertices of @, for § ~ 0. The first pair of local minimizers are
known as ordered variants and the second pair as disordered phases. Which pair
are global minimizers depends on the ordering of o and f, since \Ilo(%, :I:%) =
L (a—p) and ¥4(0,0) = Wy(1,0) = 0. Partitions between an ordered variant and

8
a disordered phase or between the two disordered phases are known as interphase
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boundaries (IPBs), whereas partitions between the two ordered variants are
known as antiphase boundaries (APBs); see [12] and [23] for details. Finally,
existence of a weak solution in one space dimension was established in [15] for the
degenerate mobility b(s1, s2) := b1(s1) ba(s2), where ba(s) := %—52 and by (s) :=
ba(s— %), which vanishes in the pure regions: the two ordered variants, {%, :I:%},
and the two disordered phases comprising of just one of the two components
of the alloy, {0,0} and {1,0}. This specific choice for b leads to a number of
mathematical difficulties since it is degenerate, i.e. bpin = 0 in (1.3). The key
difficulty being that there is no uniqueness proof, as is common for fourth order
degenerate parabolic problems; see e.g. [16] for the logarithmic Cahn-Hilliard
equation with a degenerate mobility ((Pg) with the above degenerate b and
v? = 0).

A simpler model is to consider for example b(s1, s2) := b7 (s1) b3 (s2), where
for o >0

(3+0)° =5 if s€[0,3(1+0)],
b3(s) =< 2?1+ (140)(s—3)7'] if s>1(1+0), (1.5)
b3 (—s) if s<0

and b7(s) := b9(s — ). The choice ¢ = 0 yields the degenerate mobility
mentioned above, whereas for ¢ > 0 the resulting mobility b € C1(R?) and
is non-degenerate over R?. For the purposes of the analysis in this paper, a
general mobility b is extended to R? so that b € C'(R?) and is non-degenerate
over R? if b is non-degenerate over Q. Such a non-degenerate mobility is also
considered in [15], where existence and regularity of a solution to (Py) is then
proved for u®, v* € H1(Q), |Q|! fﬂ u®(z)de € (0,1) and {u’(z),v"(2)} € Q for
all z € 2. However, the question of uniqueness is not addressed. Throughout
the paper, we will assume that

be CR?),  0<bumin <b(s1,52) <bmax V¥ {s1,50} €eR*.  (L.6a)
For the majority of our results we require the further restrictions

bmin >0, be CHR?) with |32-b(s1,50)| <C V{s1,s2} €R? i=1,2.
(1.6b)

There are two major difficulties in studying problem (Py) under the above as-
sumptions on b. One is that ¢ is singular on the edges of Q and therefore
equations (1.1c,d) have no meaning if up + vg = 0 or 1 in an open set of non-
zero measure. Secondly, establishing uniqueness of a solution is considerably
more difficult for varying mobility. In the next section we prove a uniqueness
result for (Py) assuming a smoother class of initial data than that quoted above
for the existence result in [15], see Theorem 2.2 below.

In the above we have adopted the standard notation for Sobolev spaces,
denoting the norm of W™ (Q) (m € N, p € [1,]) by || - ||m,p and semi-norm
by | |m,p. For p =2, W™2(Q2) will be denoted by H™(£2) with the associated
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norm and semi-norm written, as respectively, || - ||m and | - |m,. Throughout
(-,-) denotes the standard L? inner product over € and (-, -) denotes the duality

pairing between (Hl(Q))/ and H'(Q). In addition we define
Fo=ghl) Vel
For a number of reasons it is more convenient to rewrite (1.1c,d), by adding
and subtracting, as
wy + 20 = —y Aug + vg) + 260 ¢(ug + vo) — v ug — g in Qp, (1.7a)
wy —zo = —y Aug —vg) + 260 ¢(ug — ve) — v ug + [ vg in Qp.  (1.7b)

Clearly (1.7a,b) can be written more succinctly as
wytzg = —yA(ug £ vg) + 20 ¢(up +vs) — (v ug = Fug) in Qp  (1.8)

and we adopt this convention throughout this paper. It then follows, see Section
2, that the deep quench limit of (Py); that is, the limit as § — 0; is the free
boundary problem:

(P) Find {u(z,t),v(z,t), w(x,t),z(x,t)} such that

% = V. (b(u,v)Vw) in Qp, (1.9a)
p% =—b(u,v)z in Qp, (1.9b)
w2z € —yA(uzxv)+ 0 (utv) — (cut o) in Qp, (1.9¢)
u(z,0) = u’(x), wv(z,0) = () Ve (1.9d)
g—ﬁ = g—l”/ = b(u,v) ?}% =0 on 99 x (0,7); (1.9¢)

where 07y 17 is the subdifferential of the indicator function Zj ; for the set
[0,1]; that is Zjg 11(s) = 0 if s € [0, 1] and 400 otherwise. Furthermore, we prove
a uniqueness result for (P) and error bounds between u and wg, and v and vg;
see Theorem 2.3 below.

In Sections 3 and 4 we consider continuous piecewise linear finite element
approximations of (P) and (Pg) under the following respective assumptions on
the mesh:

(A) Let Q be a convex polyhedron. Let 7" be a quasi-uniform partitioning of
2 into disjoint open simplices k with k. := diam(k) and h := max,c7» hs,
so that Q = U ernR.

(Ag) In addition to the assumptions (A), it is assumed that 77" is a (weakly)
acute partitioning; that is for (a) d = 2 for any pair of adjacent triangles
the sum of opposite angles relative to the common side does not exceed .
(b) d = 3 the angle between any two faces of the same tetrahedron does
not exceed /2.

Associated with 77 is the finite element space

Sh={x€C(Q): x| islinear ¥k € T"} C HY(Q).
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Let 7" : C(Q) — S" be the interpolation operator such that 7"n(z;) = n(z;)
(j =1 —=J), where {J:j}“j]:l is the set of nodes of 7”. A discrete semi-inner

product on C(€), is then defined by

(m.m)" = /ﬂ 7 (o (2) ma(2)) de = 3 g () ), (1.10)

j=1

where 0 < m; < Ch?®. We introduce the weighted H' projection QZ cHYQ) —
S* defined by

Y(VUI=@QMn, V) + (I -Qn,x)=0 Vxes" (1.11)
For the approximation of (P), we require in addition
M= {xeS" x(z;)€0,1],j=1—J}.

Let 0 =1 <1 < -+ ty—1 <ty =T be a partitioning of [0, T into possibly
variable time steps 7, :=t, —t,_1,n =1 — N. Let 7 := max,—1_n 7. In this
paper we consider the following fully practical finite element approximations of
(Py) and (P):

(PZ’T) Let UJ = quo and V) = szo. Forn=1— N find {U}, V), W}, Z7}
€ [S"]* such that

( il ) + (UL VYR, V) =0 Yy € ST (1.12a)

n—1 h
p (VG s x) + (U VY28 x) =0 ¥y e St (1.12b)

Y(V(U £ V3), Vx) +20 (6(UF £ V"), )"
=(We+Zy +aUp P23V 10" vxes (112

(P"7) Let UY = Qhuo and VO = Qh O Forn=1-— N find {U?,V*, W", 7"}
€ [S"]* such that U” £ V" € K" and
n n—1 h
(B2 )+ (U= V)T, V) =0 ¥y e St (1.13a)

Tn

—1 h
p (U2 ) 4 0 VT 2 =0 Ve s (1.130)

(VU £V), Vx = (U"£V"))
> (WP 2" +aUm P28V x— (U2 V™)" Vxe K" (1.13c)

It is notationally convenient to introduce for n > 1

Ugey (-, 1) i= === UG () + 2L URTH) € [ty ). (1.14)
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The notation “(4)” adopted in (1.14) and throughout is abbreviation for either
“with” or “without” the subscript “6”. In addition, we adopt similar notation
for the other variables, Vi4), W4y and Z(4). It is the main purpose of this paper

to prove the following error bounds for the approximations (PZ’T) and (P™7):

TueorREM. 1.1. Let «® € H3(Q), o* € HX(Q), 22 = 22 — 0 on 9Q and
J € (0, %) be such that ||u® £ v° — %HO,OO < % — . Let the assumptions (A))
hold for the approzimation (P?é;) Let either d < 2 with b satisfying (1.6a,b) or

d = 3 with b > 0 constant. Then for all h < hy such that ||Qg(u0:|:v0)— %HO,OO <
%(1 —93) if 6 >0, (% if 0 = 0), and for all partitions {T, }N_; of [0,T] such that
Tho1/Tn < C, n =2 = N, the unique solutions {UJ}, VP YN_, {U™, VPIN_ to

n=0’
(PZ’T), (Ph’T) satisfy the error bounds

llus = UsllZa (0,7, () + l1ue = UsllZoe 0,70 )1y
+ Moo = Vellzao,rim ) + llve = Vollzw o, 22

Co(T)h3(In L) 5 ifd <2,

(1.15)
Co(TY R if d = 3 and b is constant;

< Co(T)r? + {

[|u— UH%?(O,T;Hl(Q)) +[Ju — UH%‘X’(O,T;(Hl(Q))’) + v - V||%2(0,T;H1(Q))
+ v = Vliieore@y < Co(T)[7*+07]. (1.16)

We remark that the error bound (1.16) is optimal, whereas the error bound
(1.15) is optimal in time, but probably not in space. It should be noted that the
singular nature of the nonlinearity ¢(-) and the use of numerical integration on
those terms in (1.12c), which leads to a fully practical scheme, make the analysis
of the spatial error in the approximation of (Py) by (PZ’T), particularly delicate.
We remark also that a “standard” error analysis in time would require bounds
on ||%ﬂl||Ll(oyT;(Hl(ﬂ))1) and ||%ﬂl||Ll(oyT;L2(ﬂ)). Unfortunately, these are not
available for (Pg) and (P) due to the singular nature of ¢(-) and the variational
inequality structure, respectively. However, by adapting the approach developed
in the papers [21] and [22] for analysing the time discretization error of the
backward Euler method applied to “subgradient flows”| it is possible to prove
an optimal error bound in time for the discretizations (P?é;) without having
bounds on these second time derivatives.

The layout of this paper is as follows. In the next section we extend the
results of [6, §2] for the scalar Cahn-Hilliard equation with concentration de-
pendent mobility to (Pg). We introduce a regularized version, (Pj.), of (Pj)
by regularizing the singular ¢. Firstly we prove some ¢ independent stability
bounds for the solution {ug ., vg e, wo e, 29 }. Passing to the limit, ¢ = 0, we
prove existence of a solution {ug, vy, wy, z¢} to (Pg). We prove uniqueness of
these solutions to (Py.) and (Py), and an error bound for this regularization
procedure under a number of regularity assumptions; which are shown to hold
for sufficiently smooth initial data and either d < 2 and b(-) satisfying both
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(1.6a,b) or d = 3 and b > 0 constant. Finally in Section 2 we show that (P) is
the @ — 0 limit of (Py), extending the uniqueness and regularity results for (Pg)
to (P). In section 3 we introduce “semidiscrete finite element approximations”
(P2 ), (PE) and (P") of (Ps.), (Pg) and (P); respectively. These are not true
semidiscrete finite element approximations for non-constant mobility, since for
technical reasons the mobility b is “frozen”; that is, b(ug ., ve ), b(ug, vs) and
b(u,v) appear in (nga), (P%) and (P"), respectively. Hence for non-constant
mobility the problems (nga), (P%) and (P") are not computable. We prove
error bounds between the unique solutions of (P(4)) and (P?e)). In the case
6 > 0, this is via an error bound between the unique solutions of (Py.) and
(nga), and an error bound for the regularization procedures on (Py) and (P%).
In Section 4 well-posedness and a number of stability bounds are proved for
(P?é;) Then adapting the approach in [22], we prove an optimal a priori error

bound in time between (P'(LLG)) and (P?é;) Moreover, for the case of constant
mobility this is an optimal a posteriori error bound. Combining the regular-
ization, spatial and temporal error bounds above we obtain the desired error
bounds (1.15) and (1.16). In Section 5 the iterative algorithm in [8, §3 & 4] for
the scalar Cahn-Hilliard equation with concentration dependent mobility is ex-
tended to the nonlinear algebraic system arising from the discretizations (P?é;)
at each time level. Moreover, global convergence is proved. Finally in section
6 we report on some numerical experiments in one space dimension illustrating
the error bounds (1.15) and (1.16).

Throughout C' denotes a generic constant independent of the four key pa-
rameters, 6, £, h and 7. In addition C(ay,---,ay) denotes a constant depend-
ing on the non-negative parameters {a;}/_,, such that C(ay,---,a;) < C if
a; < C for : = 1 — I. For notational convenience we write C = C’(b;liln) and
Cylay, - ,ay) = C'(b_1 ay, -, ag).

min?

2 The Continuous Problems and Regularization

2.1 Logarithmic Free Energy

In order to analyse (Py), we employ a regularization procedure. The logarithmic
convex function ® is replaced for ¢ € (0, %) by the twice continuously differen-
tiable convex function

d.(s) 1= O (s) + T (1 — s), (2.1a)
L (% —¢? 1 if s <
where  @F(s) = 2500 T Eelme dese o,
Ot (s) if e <s.
We note for future reference that
Bo(s) > %1([5]2_—1—[5—1]3_—62) %f5§00r521, (2.2)
Q(5)=—In2 if s €[0,1];
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where [-]- := min{-,0} and [-]4 := max{-,0}. The monotone function
bels) = L(s) = 6F(s) —6F(1—s),  where 67 (s) i= (8)(s),  (23)
has the following properties: For all £ € (0, %)
be(s) 2 6(5) HsE(00)  45) 2 uls) Hse(l-cl).  (24)
For ¢ € (0,1) and for all , s € R

4(r— 5)
and  (¢e(r) — ¢c(s))?

(¢e(r) — @< (s))(r — 5) (2.5a)
¢L(% 4+ max{|r — 1[,|s = $[})(6:(r) — ¢c(5))(r — 3)
32 (0:(r) = 6:(5))(r — 5). (2.5b)

In addition, if r,s < e or r,s > 1 — ¢ then

(r—5)2 < (¢e(r) = ¢<(5))(r — 5). (2.6)

For later use we need to bound below Wy ., the corresponding regularized
version of Wy (see 1.4b). To achieve this we first note from using a Young’s
inequality that for all {s;,s2} € R?

IN I/\ I/\

asy(1—s1)— ﬁsz—%[20[(7“1—1—7“2)—(oz—i—ﬁ)(r%—i—r%)—l—?(ﬁ—a)rlrz]

2
5 Z [ar; — max{a, 5} riz], (2.7)
i=1

|—

where 71 := s1+ s and 7o := s1 — s3. Next we note, again from using a Young’s
inequality, that for all r € R

2[ar —max{a, f} r?] > — max{a,43 — 3a}
—max{3a,48 — o} ([r]> +[r = 1]3). (2.8)

Combining (2.2), (2.7) and (2.8) we have for all ¢ < &g := min{%, m}
and for all {s;, s>} € R? that

Uy o (51,82) :=0[D (51—1—52)+<I>(51—52)]—1—%[0[51(1—51)—&5%]
> —L max{e, 43 -3a} —0(1+2In2)+ £ ([s1 + s2]°
+ [s1— s2]” 4 [s1 4 52— 1]5 + [s1 — 52 — 1]3). (2.9)

For later purposes, we recall also the following well-known Sobolev interpo-
lation results, e.g. see [1]: Let p € [1,00], m > 1,
[p, o0] if m— % > 0,
r e [p,oo) ifm—%:O,
d : d .
[p,—m] lfm_z—)<0,
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m \p
and m such that

and p = & (l — %) Then there 1s a constant C' depending only on €, p,

[olo.r < Cloloy” ol Vv e W™P(Q). (2.10)

Replacing ¢ by ¢. in (1.1c,d), we obtain (Py ), the regularized version of
(Pg). Adopting the notation throughout that “,.y” is an abbreviation for
either “with” or “without” the subscript “c”, and noting (1.8); the weak formu-
lations of (Py) and (Pp.) are then:

(PG(,a)) Find {UG(,a)a Vg(,e)s Wa(,e), 29(75)} such that Ug(ya)(', 0) = u0(~), 1)9(75)(', 0)
=v%(+) and for a.e. t € (0,7)

(P16 ) 4 (b(ug (o), vo(.e)) Vws(e), V) =0 ¥ n e HY(Q), (2.11a)
Qug(,«
p(ﬁga 77) + (b(ut?(,a)a v&(,a)) 28(,¢)> 77) =0 Vv ne LZ(Q)a (211b)
7 (V{tg(e) £ voge)), Vi) + (20 ¢ (to(e) £ vo(e)) — (aug(e) £ Bvg(e)),m)
= (wg(ya) T+ Zo(e)s n) Vne Hl(Q) (2.11¢)

It is convenient to introduce the “inverse Laplacian” operator G : F — =
such that

(VGF, V)= {f,n) ¥YneH(Q), (2.12)
where
F={feH Q) (£, 1)=0}, EZ:={ecH (Q):(£1)=0}. (2.13)

The well-posedness of G follows from the Lax-Milgram theorem and the Poincaré
inequality

oy <C(nhp+1m1]) YneW"(Q) and pell,oc].  (2.14)
One can define a norm on F by
Ifll-1 = 1Gfh ={£,6H7 VY feF. (2.15)

We note also for future reference that using a Young’s inequality yields for all

f€F, ne HYQ) and for all 4 > 0 that
(F,m = (VG V) < fll-1 Ik < s5lIF120 + SInlE. (2.16)
In addition it follows from (2.12), (2.10) and (2.14) that
IVGflo <Clflo, Y feL"(Q)NF; (2.17)

where r = 1,1+, %, for any ¢ € (0, %), for d = 1,2, 3 respectively.
Assuming that by, > 0 and given ¢; measurable in Q) 1t 1s also convenient
to introduce the operator G, 4, : F — = such that

(b(q1,92)VGq, 0o/, V) = (frm) Ve H(Q). (2.18)
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It follows for all ¢; measurable in €2 and f € F that

IVGFI2=(f,GF) = (b(q1,92) VG, [, VGT)
< bZax|[b(a1,42)] VGas 00 flo VG fo.

Similarly we have that

I6(g1,92)) 3V Gr 0 F12 = (F,Garan f) = (VG F, Vo 0o f)
< b2 1VG o |b(q1, 42)]3 VG g0 Flo.

Combining the above, it follows for all ¢; measurable in ©Q and f € F that

bunin 0(41. 42)] ¥ VG, o [ < IVGFIE < e (0(41,02)]7 VG o [15. (2:19)
Let ¢; be measurable in Q, f € F and n € H(Q), then

(fLrm=(@ (‘JIa‘J?)vgql,qua V) < br%laxub(qla‘12)]%vgq1,qu|0|77|1
= birax(f, Ggr.x /) 7 I (2.20)

so that an analogue of (2.16) holds. Similarly to (2.17), we have from (2.18),
(2.10) and (2.14) that
VGar0:fl0 < Copil oy VY f €L (Q)NF; (2.21)
where r = 1,1+, %, for any ¢ € (0, %), for d = 1,2, 3 respectively.
For a.e. t € (0,T), let ¢;(-,¢) be measurable in Q and f(-,¢) € L*(Q) N F be
such that %qt’ (-, 1), %(~, t) € L%(Q). If b satisfies (1.6a,b), then by differentiating
(2.18) with respect to t and setting n = G, 4, f we obtain that

(atagql,qz ) (%[b((ha(h)vgql,qu] vgql,qu)
(%b(‘ha q2), |vgq1,qu|2) + (b(q1, ‘12)v%[gq1,qu]a vgql,qu)
= (%b(91,92), VG0 F17) + (£1G01,0:11, ) (2.22)

Hence applying (2.22) and noting (2.18) yields that

%(quyqu’ ) (a [gququ] f) (gququ’%)
2 (gq1,q2 at ! f) (6t ((h’ qz) |vgq1,qz f| ) (223)

We note for future reference that if 6(1’ L(. 1) e L*(Q) for a.e. t € (0,T) and if b
satisfies (1.6a,b) then (2.10) yields for all n € HY(Q) that

2 2-4, 4
[(Fb(a1, 42), 7)) < C155b(a1,42)lo o 4 < C15b(ar, g2)|o Inlo™ 2 lInlly - (2:24)

In addition if ¢;, ¢; € H*(Q) and b satisfies (1.6a,b), then (2.10) yields that

161, 32)1*V (Gar 42 = G ) o



J.W. Barrett and J.F. Blowey 11

[0(31,32) — b(q1,42)]VGq1.0.F V(Gar0o — Ga1.3.) ) 2
i 116(q1, 2) — b(qq, Q2)]ng1,qu|o

-

(
b

IN

mm |vgq1,qu|0 42 |QZ - (Jz|0 4

i=1
2

e NPT
1Goraa I3 S [as = lo™* llgs — @ill 1. (2.25)

i=1

1__

< Cbmln |g<117<12f|1

Adapting an argument in [17], we now find a bound on ||G,, 4, f||2 when b satisfies
(1.6a,b), ¢; € H*(Q), f € L*(Q)NF and Q is a convex polyhedron or 92 € C'H1.
It follows from the standard regularity estimate | |2 < ClA - o, gqu € =,
(2.21), (2. 18) and (2.10) with r; = oo, C’6 pr=3%1-=¢land ry =2 3,
ps =0,¢, % 5 for all ¢ € (0,1), when d = 1,2, 3 respectively, that

» 1= Ca

bmianql,quH? < C[bmin|qu1,qu|0 +1flo] < CTlb(gu, ‘12)qu1,qu|0 +[flo]
2

= O Va) VG + flo + 1£1)

i=1

2
LY IVailors ) [VGasa Flora + 110]

=1
Z e N1 ) (G o 12 G e FIE + |f 0.
(2.26)

Hence applying a Young’s inequality to (2.26) and noting (2.21) yields that

2

G105 Nl2 < Co LY lalt™ [14ill5* ) 1Ggn g 11+ 1£1o] (2.27a)
i=1

< Cyllgill2) [flo ¥ fe L2 (Q)NF, (2.27b)

where p; = 2, - C’O for all ¢ € (0,1), and pgy = 2972 when d = 1,2, 3 respec-
tively. Finally, it follows from (2.24), (2.10), (2.19), (2.15), (2.27b), (2.16) and
a Young’s inequality that for all f € =

[(Zb(01,42), [VGar gu P < Col &b, a2)lo 155 141
< IR+ Colllaall) [0 (ar, a2)l5 ™" 1F11Z- (2-28)

Assuming that by, > 0 and given ¢; measurable in Q) 1t 1s also convenient
for later purposes to introduce the operator Mg, 4, : L*(£2) — L*(2) such that

(b(q1,92) Mg, qu f;n) = (F,m) ¥V ne L*(Q). (2.29)
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As My, 0. f = f/b we have for all f € LP(Q), p € [2, x], that

br;éx|f|0,p < |Mq1,qu|0,p < bmlln|f|0,p~ (2~30)

For a.e. t € (0,7), let ¢;(-,t) be measurable in Q and f(-,t) € L?(Q) be such
that %qt’ (1), 5 or ( t) € L*(Q). If b satisfies (1.6a,b), then we have the analogue
of (2.23)

%(Mququa f) = Q(Mqh(h at’f) (6t ((h’qz) |M<11,<12f| ) (231)
Similarly if ¢;, ¢; € H*(Q) and b satisfies (1.6a,b), we have the analogue of (2.25)

1641, 32)]% (Mg, .z — Mmmo

< C1bmln |M<11,<12f|042|(h (Jz|04

i=1
2

4 AR
< Cbmln |M<117<12f|0 ||M<117<12f||1 ZHQZ_(]Z|0 ||qz—qz||1 ] (232)

i=1

We now find a bound on ||M,, 4, f||> when b satisfies (1.6a,b), ¢; € H*(£2) and
J € HY(Q). Similarly to (2.26) and (2.27a), it follows from (2.29), (2.10), a
Young’s inequality and (2.30) that

|M<11,<12f|1 = |v([b((ha (]2)] 1f)|0 < bmln H(Vb(qla (]2)) Mq17q2f|0 + |f|1]
2
< G L0 lalt Naills*) [ Mg 00 flo + 1£11], (2.330)

< Colllall) Al ¥ € HY(Q), (2.33b)

where p; are defined as in (2.27a). Similarly to (2.28), it follows from (2.24),
(2.10), (2.33b), (2.30) and a Young’s inequality that for all f € Hl(Q)

(201, 02), [ Moy o FI < T A+ Colllaille) [ 2eban a) |57 1£13. (2:30)

. . . Oug( e .
Choosing n = 1 in (2.11a) yields that (—5&= 1) = 0, i.e. (ug(e)(-1),1) =
(u®(-),1) for all ¢. Hence it follows from (2.11a,b), (2.18), (1.6b), (2.14), (2.29)
and (2.11c) with n = 1 that

_ Oug( e _ Qug( e
Wo(e) = = Guo(opvage —ae T A0y 20e) = =P Mg g0 e
(2.35&)
and /\9( : :F [9¢ ( —|—v9( )+9¢>(a)(ue(,a) —vg(ya)) —Ozue(ya)].
(2.35b)

Therefore for byin > 0, (Pe(yg)) can be rewritten as:
Find {ug( <), ve()} such that ug( (-, 0) = u® (), vg(e)(-,0) = v?(+) and for a.e.
€ (0,7), (ug(e)(-,1),1) = (u®(-),1) and

Qug( e Qug( e
v (V(UG(,f) + v9(,€))’ Vﬁ) + (gue(,s)yve(,s) % - /\9 :l: pMuo( )V (,e) Ug(t) : ) 77)
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+ (20 ¢ (up(e) £ voe)) — (cvug(e) £ Bvg(ey),n) =0 Ve H(Q),
(2.36)

where Ag( .y is defined by (2.35b) and {wg( ), z9()} can be obtained from
(2.35a). Theorems 2.1 and 2.2 below are extensions to (Pg) of Theorems 2.1 and
2.2 in [6] for the scalar Cahn-Hilliard equation with concentration dependent
mobility.

THEOREM 2.1. Letd < 3 and u®, v° € H'(Q) be such that ||u’+v° ——||0 o < %
and | £ (u® — —)| < ——(5 for some 6 € (0, ) If b satisfies (1.6a) with by > 0,
then for all 8 < Hmax, where Oy > 0 1s arbitmry, and for all e < e there exists
{Ug e, V9e,Wo e, 29 -} solving (Py ) such that the following stability bounds hold
wndependently of € and 6

lug,ell Lo (0,711 (02)) (0,73(H*(2))")
+ v el Loe 0,751 (0)) + 112825 | 202r) < €, (2.37a)

0 [N[use £ voc]-lFooro0,r 220 + Mo e £ 06 = Uillooorin2i)] < Ce
(

2. 37b)

In addition the following stability bounds hold independently of ¢ and 6

| X6.cllL=(0,0) + llwe c|lL20, 01 (2)) + [126,¢ || L2(00r)
+ 0 ||¢>€(u€7€ + v€7€)||L2(QT) < Cb(T) (238)

and if Q is a convexr polyhedron or 9Q € C'1!
[we cllL=o,0;m2(02)) + Ve cllL20,7:m2(0)) < Co(T). (2.39)
Furthermore, if either b > 0 is constant or b satisfies (1.6b) and

[l + 1175

HL12 4 (0,T;(H(2))") + ||u€’€||L2(d_1)(0,T;H2(Q))

+ ||v€v€||L2(d_1)(O,T;HQ(Q)) S Cb(g_la 6_1aT);
(2.40)

L= = (0,T;L2(2

3U9 <

+ || ||L12 3d (0,T;L2(£1))

then the solution {ug ., ve o, We e, 26} of (Py ) is unique.

Proor. Existence follows from standard arguments using Galerkin approxima-
tions and then passing to the limit, e.g. extend the d = 1 argument in [15,
Theorem 2.1]. The choices of n below can be justified in a similar way.

Adding together the + regularized versions of (2.36) with n = 2 (ug . £ vy ),
respectively, noting (2.18), (2.29), (2.3), (2.9) and <61(f;; = 1) = 0, and integrating
over (0,1) yields for all ¢ € (0,7T) that

3 oGO+ Jvae (OR T+ (W (o e (1), v0,( 1), 1)

t
4 / | [b(tg e 08,15V Gy . 0n . 222, )2 ds
0
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t
1 Jvg e
+p/|wW@WAwamw5£«@mm
0
= R+ O]+ (e (w®00), 1) <, (241)

where we have noted (2.1a,b) and the assumptions on u° and v°. The bounds
(2.37b) follow immediately from (2.41) and (2.9). The bounds (2.37a) follow
from noting (2.41), (2.9), (2.37b), (2.14), (2.19), (2.15) and (2.30).
Noting (2.35a), (2.14) and (2.41) yields that
dug <
lws « = Ao cllrzqo,rm1 Q) < ClIVGus e 5 llL2(0r)

< C by [I[b(us e, v6,)]7 Vg e, "5l L2020

<Cb: (2.42)

Choosing n = 20 ¢.(up = vg.) — Ag in the regularized versions of (2.36),
respectively, noting that ¢.(-) € [4, %6_1], see (2.5a,b), and applying a Young’s
inequality yields for a.e. ¢ € (0, T) that
370 |0e(up e £vge)[f + 51206 (wp e £ vpe) — Asel?
Oug e Jvg e
< % |gue,s,ve,s aet, ipMue,syvo,s aet, - (aueﬁ iﬁveﬁ)%' (243)

Integrating the above over ¢ € (0,7), noting (2.14), (2.37a) and (2.41) yields
that

-3 (2.44)

min*

126 ¢ (up e £vp.) — /\9,a||L2(QT) <Cb

Adding together the + regularized versions of (2.36) with 5 = (ug vy .) — p,
respectively, for any p € R yields for a.e. t € (0,7 that

(Moo p—uge) ==y [lupelf+lvacli]+ o (upe,ug e — )+ B lvgc[g
- (guo,s,ve,s%a ueyf) =P (Muo,s,ve,s%a veyf)
+ 0(¢a(u€,a +v9,€)a/'t_ (UG,a +v€,a))

+ 0 (¢a(u€,a - v&,a)a H— (UG,a - 09,5))
<O+ |pl) + Chp | [b(us e, v6,:)]2 Vi vs. 2220 |ug o
+ Cbo | [b(us e, v0,2)]F My . vp . 2|0 [vg e o

+ 6 (2 q)a(ﬂ) - q)a (UG,a + 0975) - q)a (UG,a - 0975), 1);

where we have noted (2.14), (2.37a) and the convexity of ®.. Hence it follows on
choosing ¢ = 0 and 1, and noting (2.1a,b), (2.2), (2.37a) and the assumptions
on u? that

F1Q Mo o] < O+ Cbo2 [ [b(ug e, v6,:)]7 VG o e et

min
1

+ CObE | [b(us e, ve,0)]F Mug . vy . 22221, (2.45)

min
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Squaring the above, integrating over ¢ € (0,7) and noting (2.41) yields that

A0 cllz20, 7y < C(T) by (2.46)

Combining (2.46), (2.42) and (2.44), and recalling (2.35a) and (2.41) yields the
desired result (2.38). Finally (2.39) follows from (2.11c), (2.35a,b), (2.37a),
(2.38) and standard elliptic regularity theory.

We now consider the question of uniqueness of the solution to (Ps.). As-
suming that the regularized version of (2.36) has two solutions {uéya,véya},
i = 1,2, with corresponding {wé,a’zé,a’Aé,a} defined by (2.3ba,b), it follows
that for a.e. t € (0,7T) Wy - (-, 1) := (Ué,a — Ugya)(',t) €=, Ve = véya — vgya and
Ao e = /\9 i /\9 . satisfy

Y |U97€ + 69 €|% + 26 (¢€(u$,a + Ué a) - ¢€(ug,a + Ug a)aueyf + 6975)

du} du? du} v <~ _ _
+ (G137 = Goa—77) £ p(Mi—p= = Mo—2%) — X o, Up - £7p )
= (Oé Up. x BUs ., Up e £ Ue,a), (2.47)

where for notational convenience b; = b(ué a,vé ., Gi = gué i and M; =
M, , 1 = 1,2. Adding together the + versions of (2.47) and noting the

Upg Vg, e

monotonicity of ¢. yields for a.e. t € (0,7

_ _ dul du? _
Yt elf + [Tocli ]+ (G122 — Go—522), s,
dul _ _ _
p (M1 =72 — Mo aef),ve,a) < altgls+ 815 (2.48)

If b satisfies (1.6a,b), on noting (2.23), (2.31), (2.24), (2.20), (2.25), (2.29),
(2.32), (2.27a), (2.33a), (2.30), (2.19), (2.16), (2.15) and applying Holder’s and
Young’s inequalities it follows that for any w € [0, 2] and for a.e. t € (0,7)

o [[Ta,c 7+ o ,c |31+ & S (GuTo e, To.e) + & (M5 0, T,)

7
<l g+ 87, a|§ — (&1, |VGuy . |*) — % Zby, IM1Ts |?)
_ v _
- ((gl gZ) 6t auea)_p((Ml_MZ) aotsave,a)
_ _ _ 1—4 _ 1—4 4
<l eld+ BT l5+ Co (|U€a|0 ! ||U9,a||f + [Voely * ||vea||f)

xham41|ww“mn““nl+whwm My 11 1210
+ 0 (155l + 155 ) (1611177 1701
§ M [ ||wealll% )

< G (115l + 175l ) 1o el Wl + el [0l |

8 8 8 dvE 9
+Cb(| “os|0_|_| U@s|0+|| “os|2 w_|_| get,sg w)

_ 2-2 —_ 4 _ 2-4 _ 4
« (16370 {7 #1170 15 + [MiTo [ M7 | ]
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2
vy .

w ,e |w a7 2_% a7 % 7 2_% 7 %
1+ 1251 ) (10 l5 ™ 170 e+ [Foclo* [T e ]

a 2 a vy 2
+a(%ﬂw+%m+n%w ‘4 xﬁw)

6u9 .

<cb(1+||

s { [ el ek 153 1o bl ] (1070 17 + Mmoo )

+WWMJWMEHM®m7mAﬂ}

Y= |2 — auos av@s‘ld 6“95%
sﬂmm+WAHa0H| 57 + |25 37 | 253
ol ouZ . gz_z vz A=) 5 5
|7 1 sl Tug 1 g o[l
+ Jvg o [3 (v €||2“2) {(glm,a,m,a) + (M1 e, Tp ) } (2.49)

where p; are defined as in (2.27a). Uniqueness then follows from choosing
w = %, noting (2.37a), the assumptions (2.40), a Gronwall inequality, (2.14)
and (2.35a,b). Clearly for constant b > 0 the uniqueness argument in (2.49)

above is trivial and the assumptions (2.40) are not required. a

We note that the integral assumption on the initial data, in Theorem 2.1
above, only excludes the trivial (physically uninteresting) case of u® =0 or 1,
when only one component of the alloy is present.

If %(~,t) € = and 6‘12( ) € HY(Q) for ae. t € (0,7) and b satisfies
(1.6a,b), then alternatively to (2.24), we have from (2.16) and (2.17) that for
all n € L20+9(Q)

|(Zeblar, a2), ) < QU F 2l 1 [Fsn

- )5l

S C[|a_qt|1 + ||6q2|| ] |77|0 2(14¢)
< TUFER+ 11T+ C Il sgey (2.50)

where ¢ = 0, any ¢ € (0, %), (= %, for d = 1,2, 3 respectively.

CorOLLARY. 2.1. Let u® € H3(Q), +° € HX(Q), 2 = 22 — ( on 9Q and
J € (0, %) be such that ||u® £ v° — %HO,OO < % — 3. Let d < 3 with either Q being
a convex polyhedron or O € CY1. Let b satisfy (1.6a,b). Then for all 0 < Opax
and for all ¢ < g1, where ¢1 := min{eg, 8}, solutions {ug e, vg ., Woe, 29} Of

(Py . ) are such that the following stability bounds hold independently of ¢ and 0

6ug e

dug <
== lL2(0, 750 () + 15522 Lo (0,750 (2))1) + ||us,ellLoe (0,712 (02))

Vg <
+ || =7 ||L2(0,T;H1(Q)) +12 = Lo (0,7:02(92)) F |[09,¢ || oo (0,7 252
+ 0|p<(up e £ o )l|Loso0,7:L2() + l|we cllLos 0,70y < Co(T)  (2.51)

forany T > 0 if d < 2, and some T > 0 «f d = 3. Hence the solution
{tg e, V9e,Woe, 29} of (Poc) is unique over Q.
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Proor. Differentiating the regularized version of (2.11c) with respect to ¢ and
setting n = %(Ue,a + vy ) and noting that ¢. > 0, yields for a.e. t € (0,7

a - a -
v 12 (g £ vee)|F — (o Tt £ 8 T5em D (ug . + vg )

Jwg e 024 o
§< (’;; + aet a(’?t(u9€:tv€ a)> (252)

Once again this differentiation and these choices of test function can be justified
in the standard way by using a Galerkin approximation and then passing to the
limit. Adding together the + versions of (2.52), noting (2.11a,b) and (2.50)
yields for a.e. ¢ € (0,T) that

'Y[ 6ues|1+ |6U9E ]_|_ %di(b(ue,a,ve,a)a|vw€,€|2+p_1zg,a)
Sue, 9ve, e B
uo |0+5| ?t 0~ 5 (z?tb(uea,ve <), |Vw97€|2—|—p 1292,5)

<«
6u5 61/5 dug e 12 31/5
<SSR+ 152+ O U= 1R + e ]

+ C [ |w€,a|1,z(1+g) + |Z€,a|0,2(1+g) ], (2.53)
where ( = 0, any ¢ € ( %), ¢ = %, for d = 1,2, 3 respectively. Next we note
from (2.10), (2.35&), (2.27a), (2.37a) and a Young’s inequality that

4(1— I} s
s el o1 vy < C lwo el 7 1 Gug v . P[5

< C g <} (||uea||4”“2 + s 13 )

4(l—w
+Cy [|w9€|11 2 +|6”“|g], (2.54)

where p; are defined as in (2.27a) and w = (1+C) Similarly to (2.54), we have
from (2.10), (2.35a), (2.33a), (2.37a) and a Young’s inequality that for any x > 0

4(l—w
26,5 20140 < Cb( |20, [ IIUe,allz“”” + lva e [1542 ) + 12,clg =
(1+¢)
6;*;5 2, (2.55)

It follows from standard elliptic regularity, (2.36), (2.37a), (2.35a,b), (2.43),
(2.45) and (2.14) that

lug ella + lJveella < C 1+ 0[¢e(up e £ voe)lo+ [weelo+ |20.e]0]
SOy [T+ fwe el + |z0.el0] - (2.56)

Combining (2.53), (2.54), (2.55), (2.56) and noting (2.20) and (2.35a,b) yields
that for a.e. t € (0,7)

dug e Vg e -
YUZ= R 4 152 B+ S (b(uo e, voe), [Vws |+ p7123 )
<GCp[1+ |w97€|1 (e) 4 |Z€,a|0 (1+8) ]
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<Cp |14 (b(ueyfa 0975), |vw9,€|2 + p—1237€)2(1+u) ) (257)

where p = gc
We set B(t) := max{(b(ug (-, 1), v (-, 1)), |Vw97€(~,t)|2—|—p_1|Z97€(~,t)|2), 1}
for a.e. t € (0,T). It follows from (2.38) that

T
/ B(t)dt < Gy(T). (2.58)
0
From (2.57) and the above notation we have for a.e. ¢ € (0,7') that
4B <, B2HH, (2.59)

Via a Galerkin approximation in the standard way, one can show from (2.36)

and (2.35a) that
B(0) < C [1+ |wse( 0)F + |26, (-, 0)[5 ]

< C [T+l + 102 + lloe (u” £ o)1 ]

< O[T+ E+11°13] < € (2.60)

provided u® € H3(Q), v* € H*(Q), %—f = %—f =0ondQande <ey. Ford =1,
i.e. g =0, it follows from (2.59) and (2.58) that for ¢t € (0,7

t
Cb/ B(s)ds
B(t) <e Jo B(0) < Co(T) B(0). (2.61)
For d = 2, i.e. for any p € (0, %), it follows from (2.59) that for a.e. t € (0,7

BT <Gy B. (2.62)

Hence we have from (2.62) and (2.58) that
t
BO) < (1= 20 G [BO [ B(s)ds]F B0)
0

<G BT [ B 515 BO)

<

Cy [B(0)]*# /tB(s) ds
e 0 B(0) < Cy(T, B(0)) te(0,7); (2.63)

provided p € (0, %) is chosen sufficiently small so that
T
4 Cy, [B(O)]z“/ B(s)ds < 1. (2.64)
0
For d =3, i.e. p= %, it follows from (2.59) that for a.e. t € (0,7)

—ﬁ%B—ﬂHu) < Ch. (2.65)
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Hence we have from (2.65) that
B(t) < [1— (1+2p) G [B(0)])'+2 1]~ B(0)
< [1+2(1 + 2u) Gy [B(0)] 2 ¢ ] B(0)
e BOTTE B(0) < Cy(T, B(0)) te(0,7); (2.66)

IN

provided T is such that 2(1 + 2u) C, [B(0)]}T2# T < 1.

The second, fifth and eighth bounds in (2.51) then follow from (2.61), (2.63),
(2.66), (2.60), (2.35a,b), (2.45), (2.19), (2.15), (2.30) and (2.14). The first and
fourth bounds in (2.51) then follow from the fifth and eighth, (2.35a), (2.30),
(2.57) and (2.60). Similarly, the third, sixth and seventh bounds in (2.51) follow
from the fifth and eighth, (2.35a) and (2.30). Finally, uniqueness of a solution
to (Py ) over Qp follows from the bounds (2.51) and the assumptions (2.40) on
noting (2.16). O

THEOREM. 2.2. If d < 3, b satisfies (1.6a) with byin > 0 and the assump-
tions on u® and v° of Theorem 2.1 hold, then for all 6 < On.y there exists
{ug,ve, we, zg} solving (Py) such that the following stability bounds hold inde-
pendently of 0

||U9||L<>°(0,T;H1(ﬂ)) + ||%L;||L2(07T;(Hl(ﬂ))’)

+ lvollooomma)y + 152200y < €, (2.67a)
1Allz20.0) + lwsll 20,202 ) + 126|220
—|—9||q/>(u€ :I:vg)||L2(QT) < Cb(T); (267b)
where the latter implies that (ug + vg)(x,t) € (0,1) for a.e. (x,t) € Qp. In
addition if Q is conver polyhedron or Q € C11, then
lugllz2(o,7;m52(0)) + lvellrz(o,7,m2(0)) < Co(T). (2.68)

Furthermore, if u°, v° and b satisfy the assumptions of Corollary 2.1 then so-
lutions {ug, vg, we, z9} of (Po) are such that the following stability bounds hold
independently of 0

15 20,7500 (00) + | 5 | Loe (0,030 (00))) + sl Low (0,702 ()

+ ||%||L2(O,T;H1(Q)) + ||%L;||L°°(O,T;L2(Q)) + [|vellLoe 0,782 (02))

+ 0|¢(up £ vo)|lLoo(0,7:.22(0)) + [wsllLoso,rym1 () < Co(T)  (2.69)
forany T > 0 «fd < 2, and some T > 0 if d = 3. Moreover, the solution
{uo,ve, wa, 29} of (Po) is unique over Qp and we have for all ¢ < &1 that

|lus — u9,€||%2(0,T;H1(Q)) + ||us — u9,€||%°°(0,T;(H1(Q))’)
+ oo = vo,c 720,75 m () + 106 = Vol (o mi02(0)) < Co(T) 67 . (2.70)
Note that if b > 0 is constant the solution {ug, vg, wy,ze} of (Py) is unique over

Qp for any T > 0 and the bounds (2.70) hold under the minimal assumptions
on u’ and v° of Theorem 2.1.
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PRrROOF. As the bounds (2.37a) and (2.38) are independent of ¢, it follows that
there exist ug € L°°(0,T; HX(Q)) N H(0,T; (H(Q))), ve € L>(0,T; HY(Q)) N
HY(0,T;L*(Q)), wg € L*(0,T; HYQ)), 26 € L*(Qr), ¢4 € L*(Qr) and a

subsequence {ug ./, vg .1, Ws 1, 26 ,¢r } such that as e’ — 0

uger — ug in L0, T} H*(Q)) weak-star and in H'(0,7; (H'(Q))) weakly,
vg,er — vp in L=(0,T; H*(Q)) weak-star and in H'(0,7; L*(R2)) weakly,
wy .+ — wy in L?(0,7; H(Q)) weakly and zg ./ — 2¢ in L?(Qr) weakly,
Ger(uger L vger) = ¢4 In L*(Qr) weakly. (2.71)

The first two lines of (2.71) imply that ug . — us and vg . — ve in L?(Qr)
strongly and a.e. as ¢’ — 0, see [18]. Hence adapting the argument in the proof
of Theorem 2.1 in [2], it follows that ¢3 = ¢(ug+vy). Therefore taking the limit
¢’ — 0 in the regularized version of (2.11¢) yields that {ug, ve, wa, zg } solves the
corresponding non-regularized version of (2.11¢c). Tt follows from (1.6a), the
a.e. convergence of ug .+ — ug and vy .+ — vg that b(ug e, vg 1) — b(ug, vg) in
LP(Qr), any p € [1,00), as ¢/ = 0. Noting this, (2.71) and a density argument
we have for a.e. t € (0,T) that as ¢/ = 0

(b(uger,v9,:)Vwg 1, V) — (b(ug, va) Vws, V) Ve HY(Q) (2.72a)
and (b(uger,vp 1) 29,1, 1) = (b(ug, ve) 26, 7) Ve L*(Q). (2.72b)

Therefore taking the limit ¢ — 0 in the regularized versions of (2.11a,b) yields,
on noting (2.72a,b) and (2.71), that {ug, ve, wy, zo } solves (Py). Hence we have
existence of a solution {ug,ve, ws, 29} of (Py), satisfying (2.67a,b) on noting
(2.35a,b). The regularity results (2.68) and (2.69) follow from the ¢ independent
bounds (2.39) and (2.51). Uniqueness of a solution to (Py) over Qp then follows
as for (Pg o), see (2.47)—(2.49).

We now prove an error bound between the unique solutions {ug,vg} and
{ug e, vg .} of problems (Py) and (Py ). Let e, := up —up . and e, := vg — vy c.
Subtraction of the regularized form of (2.36) from their non-regularized form
with 7 = ey + €y, then adding together these + versions and noting (2.23) and
(2.31) yields for a.e. t € (0,7") that

Y[ leal] + leo]i]+ 0 ((us + ve) — ¢e(us - +voc), eu + )
+ 0 (¢(ug — ve) — dc(tse — Vo), eu — €0) + 2 2(Go eu,en) + £ (Mg ey, ey)
< alew|+ Blesls — 5(Z5bs, IVGo eul”) — 5(55bs, My ey |?)
= (G = Go.) 250=, eu) = p (Mo — My o) 5= e), (2.73)

where for notational convenience by ) ) Go(e) = gug( ) Ya(e)

= (u
M. MUo(,s),vo(,s) From (2.5a) and (2.6) t follovvs that for ae. te(0,7)

(¢ (us £ vg) — de(tge Lvge), eutey) > et /i (ey + ev)2 dz, (2.74)
Q= (¢)
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where

Q) ={r e Q: (ugetvp.)(x,1) < (ug £v4)(x,1) <
or 1—¢e<(ugtvg)(z,t) < (ugexvsc)(z,t)}.

Next we note from (2.4) that

O<r<ecand r<s = (¢:(r) — ¢(r))(r — s)
l—e<r<land s<r=(¢.(r) — ¢(r))(r—2s)

, (2.75a)
(2.75b)

Hence it follows from (2.3), (2.75a,b) and a Young’s inequality that for a.e
te(0,7)

(¢5(U9 + UG) - ¢(u€ = v€)a Cu = ev)

§/ (pe(ug £ vo) — ¢(ug £ vg))(ey + &y)d
Q)

§—/ d(up L vg)(ey L ey)da
aF (1)

%6_1 / (ey + ev)2 dz + %6/ [¢(ug £ Ue)]zdl‘. (2.76)
o) ()

IN

Using the bounds (2.74) and (2.76) in (2.73), it follows for a.e. t € (0, T) that

el +lefl4 g [ ore)fderd [ (e-e)tda
QF (1) Q: (1)

+ %%(QG euaeu) + %%(MG evaev)

< alenld 4 Bleul? — L(2bs, [VGseul?) — £(Lbo, | Mo eu]?)
— ((Gs — Go,o) Tar ) — p (Mg — My o) 28 )

—1—%6/ [(/)(ue—i—v@)]zdx—l—%g/ [¢(up — vg)]* da. (2.77)
o) 2z (t)
The desired result (2.70) then follows from (2.77) on treating the first six terms
on the right hand side as in the uniqueness proof, (2.49), by using (2.24), (2.20),
(2.25), (2.29), (2.32), (2.27a), (2.33a), (2.30), (2.19), (2.16), (2.15) and applying
Holder’s, Young’s and Gronwall inequalities; noting (2.14) and the regularity
results (2.69) and (2.51), which also deal with the remaining two terms on the
left hand side.

For constant b > 0 the uniqueness argument for (Py), and hence the proof
of the bound (2.70), simplifies considerably in that the stronger regularity as-
sumptions (2.69) and (2.51) are not required. O

2.2 The Deep Quench Limit

Introducing

K :={ne HYQ) :n(x) €[0,1] for a.e. € Q},
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the weak formulation of (P), (1.9a—¢), is then:
(P) Find {u,v,w,z} such that u(-,0) = u°(-), v(-,0) = v"(:) and for a.e. t €
(0,7, u(-,t) v(-,t) € K and

(2 )+ (b(w,v)Vw, Vi) =0 Ve HY(Q), (2.78a)

p(Gem) + (b(u,v) z,m) =0 ¥ ne L*(Q), (2.78b)

y(V(uxv),Vin—(uxv)) > (wtz+autfu,n—(utv)) VneK.
(2.78¢)

Then similarly to (2.36) and (2.35a,b), for bnin > 0 the weak formulation of (P)
can be rewritten as:
Find {u,v, A} such that u( 0)

= u’(:), v(-,0) = v°(:) and for a.e. t € (0,T),
u(,t) £o(,t) € K, Al) € R, (u(-t

), 1) = (u°(-), 1) and
Y(V(u£v), V(= (u£0) + (Guot — At p My, n— (utv))
> (auxfuv,n— (utv)) VUEA (2.79)
with w= —gwg—g + A, 2= —pMun at (2.80)

Choosing n = (u£v)+ 45 (utv) (1—(u£v)) and (udv)— % (u£v) (1—(utv))
in (2.79) yields that for a.e. ¢ € (0,7') that

v (V(ut0), V((u £ o)(1 = (utv))))

+ (Gup Gt —AEpMuu G — (@uzx o), (uxv)(1 — (uEv))) = 0.
(2.81)

THEOREM. 2.3. Ifd < 3, b satisfies (1.6a) with by > 0 and the assumptions
on u® and v° of Theorem 2.1 hold, then there exists {u,v,\,w, 2} solving (P)
such that

u€ L0, T, HHQ)) N HY (0, T; (HY(R))), A€ L*0,T), (2.82a)
we L0, T; HY(Q)) and v & L0, T; H'(Q)) N H'(0,T; L*(Q)). (2.82b)

In addition if either 2 is a convex polyhedron or 02 € CLL, then
u, v € L*(0,7; H*(Q)). (2.83)

Furthermore, if u®, v° and b satisfy the assumptions of Corollary 2.1 then so-
lutions {u, v, \,w, z} of (P) are such that

w€ L0, T HA(Q)) N HY (0, T; HH(Q)) N Whe(0,T; (HY(Q))),  (2.84a)
v € L0, H*(Q)) N HH0,T; HY(Q)) n Whe2(0,T; L*(Q)), (2.84b)
AEL®(0,T) and we L®(0,T; HY(Q)) (2.84c)

forany T >0 if d <2, and some T >0 if d = 3. Moreover, the solution {u, v}
of (P) is unique over Qp and we have for all § < % that

[|lu— u9||%2(0,T;H1(Q)) + |lu — ue”%‘x’(O,T;(Hl(ﬂ))’)
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+ v = vsllZ2g0, 7,11 (0 + 110 = vel|Zo (0 7i02()) < Co(T) [01n(5)]7. (2.85)

Note that if b > 0 is constant the solution {u,v} of (P) is unique over Qr for
any T > 0 and the bounds (2.85) hold under the minimal assumptions on u°
and v° of Theorem 2.1.

PRrROOF. As the bounds (2.67a) and the first two bound in (2.67b) are indepen-
dent of @, it follows that there exist uw € L (0, T; HY(Q)) N H(0,T; (HY(Q))),
v e L™(0,T; HH(Q)) N HY0,T; L*(Q)), w € L*(0,T; HY(Q)), z € L*(Qr) and
a subsequence {ug, vg, wyr, zg'} such that as 8/ — 0

ugr — w in L°°(0,T; H'(Q)) weak—star and in H(0,T; (H'(R))') weakly,

vgr — v in L®(0,T; HY(Q)) weak-star and in H'(0,T; L*(Q))

wgr — w in L2(0,T; HY(Q)) weakly and zg — 2z in L*(Qr)

weakly,
weakly. (2.86)

The first two lines of (2.86) imply that wg: — u and vg: — v in L?(Q7) strongly
and a.e. as ' — 0. Then similarly to (2.72a,b), noting this, (1.6a) and (2.86) it
follows for a.e. ¢ € (0,7") that as ' — 0

(b(UQI, vgf)ngf, Vn) — (b(u, v)Vw, Vn) Vne Hl(Q) (287&)
and (b(ugr, vgr) zgr,m) = (b(w,v) z,n) Y e LiQ). (2.87b)

Taking the limit ¢ — 0 in the non-regularized versions of (2.11a,b) yields, on
noting (2.87a,b) and (2.86), that {ug,ve, ws, 79} satisfies (2.78a,b). Next we
note that

lim inf |ug: & ves |2 > |u £ v]?. (2.88)
6/'—=0
In addition the monotonicity of ¢ and the boundedness of ® on K yields that

limsup 6’ (¢(ugr & ver), n — (ug: & ver))

6/'—=0

< €l’i£>n0 o (CI)(U) — <I>(u€/ + vgl), 1) =0 VnekK. (289)
Taking the limit  — 0 in the non-regularized version of (2.11c) with n =
n — (ugr + vgr) for any m € K and noting (2.86), the strong convergence in
L?(Q7) of ug: and vgr, (2.88) and (2.89) yields (2.78¢c) with n = 7;. Hence we
have existence of a solution {u, v, w, z}, satisfying (2.82a,b), of (P). The bound
on A following from (2.80), (2.19), (2.15) and the bounds on u and w. The
regularity results (2.83) and (2.84a—c) follow from the # independent bounds
(2.68) and (2.69).

We now consider the uniqueness of this solution to (P). Assuming that (2.79)
has two solutions {u’,v’, A}, i = 1,2, with corresponding {w’, 2’} defined by
(2.80); then choosing n = uw/ 4+ v/ in the i*® version of (2.79), j # i, and
adding together the resulting four inequalities yields for a.e. ¢t € (0,7) that
(-, t) = (u! —u?)(-,t) €2, 7 :=v! —v? and X := A! — A\? satisfy the analogue
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of (2.48) with all -4 . subscripts removed. Uniqueness of {u, v, z} over Qr, then
follows from the analogue of (2.49) on noting the regularity results (2.84a,b) and
(2.80). From (2.81) and the uniqueness of {u, v} it follows for a.e. ¢ € (0,7') that
A1, (uxv)(1 = (u=%v))) = 0. Hence it follows that {\(t),w(-,t)} are unique,
provided {u(-,t),v(-,t)} # {3,—%} or {4, 3} and this can be guaranteed if
fub £ L

We now prove an error bound between the unique solutions {u,v} and
{ug,ve} of problems (P) and (Pg). Let e, := u—uy and e, := v — vp. Choosing
n=ugt vy €K, see (2.67b), in (2.78¢c) and n = e, + ¢, in the non-regularized
version of (2.36); then adding together the resulting four (in)equalities and not-
ing (2.23) and (2.31) yields for a.e. t € (0,7T) that

yllealf + leol?]+ 355 (G eu eu) + 55 (Mew, e0)
< aleul+ Bleol — (b [VGeul?) — 8(2b, [Me]?)
((g g9) 6t ) U) - ((M MG) 6t ) v)
—|—9(¢(U9—|—U€),€u—|—6U)—|—9(¢(U9—Ue), u_ev)a (290)

where for notational convenience b(gy = b(u(s), v(9)), G(o) = Gueyv(e, and M(g)
= Mu,ve,- Wenote for all r, s € [0, 1] that

(r—s+60)(In(r4+0*) —In(1—r+06%)—¢(s)) >0 (2.91a)
and  [In(r+6°)|<-2mng if6e(0,3) (2.91b)

It follows from (2.91a,b) and a Holder inequality that for a.e. ¢ € (0,7)

0 (¢p(ug £ vo), ey +ey)
< C[6PIn(2) + 6% |p(up £ vg)|o + 0 1n(3) [ew £ euo]. (2.92)

The desired result (2.85) then follows from (2.90) on firstly treating the first six
terms on the right hand side as in the uniqueness proof, (2.49), by using (2.24),
(2.20), (2.25), (2.29), (2.32), (2.27a), (2.33a), (2.30), (2.19), (2.16) and (2.15),
secondly bounding the remaining two terms on the right hand side of (2.90) via
(2.92), then applying Holder’s, Young’s and Gronwall inequalities and noting
(2.14) and the regularity results (2.84a-b) and (2.69).

Once again for constant b > 0 the uniqueness argument for (P), and hence the
proof of the bound (2.85), simplifies considerably in that the stronger regularity
assumptions (2.84a—b) and (2.69) are not required. a

3 Finite Element Approximations

3.1 Logarithmic Free Energy

Throughout this subsection we assume that the assumptions (Agp) hold. We
introduce the following “semidiscrete finite element approximation” of (Pg(.)):
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(Ph ) Find {ug )( t) Ug(ya)(',t),wg(ya)(',t),zg(ya)(',t)} € [S"]* such that
ug( ( 0) = Qhu 0(~), 8, )(~,0):ng0(~) and for a.e. t € (0,7

6u9 .
(=522 0)" + (b(use), ve(,a))VwZ(ya), Vx)=0 VxeSsh (3.1a)
61/3 .
p (=5 )" + (blus e ve.e) 2 x) =0V x €5, (3.1b)
¥ (Vg oy £ v500)s V) + (2060 (w0 vp( o)) — (g o £ Bug ), X)"
= (wp Wy oy £ Z@(,g)aX) Vxe Sh~ (3.1¢c)

This is not a true semidiscrete finite element approximation for non-constant
mobility since for technical reasons, see Remark 3.1 below, the mobility is
“frozen”; that is, we have b(ug( ), vo(c)) in place of b(ug( o) vg( a)). Hence for
non-constant mobility the problems (Pg( a)) are not computable.

In addition to the interpolation operator ©” ‘and the weighted H' projection
we introduce the “lumped” L? projection QO L3*(Q) — S* such that

@ )"=(mx) Yxes (3.2)

Below we recall some well-known, or easily derived, results concerning S* and
the above operators. For m = 0 or 1, we have that

h
)

d(py

|X|m,p2 S Ch p1p22 |X|m P1 v X € Sha 1 S P1 S P2 S 0. (33)
IXlloo <C(InH)Hx|lh VxES", h<hy, d<2.
(I = 7" lmpe < CR* Ilap, ¥V n€ W2PH(SQ);

1 < p2 < o0, wherep1>1ifd<20rp1>§ifd:3
and either p; :=2 —m — d(—l——)>00ru1>01fp2<oo (3.5)

(I = QM) nlmyp < Ch*nly ¥V neH*(Q), pe 2 x]

and either ps ::2—m—d(%—%)>00ru220ifp<oo. (3.6)
(7= @byl + 510 = @l < iy ¥y € H(0) (37)
Xlo < [xlh =[0G 0)"]7 < (d+2)7 [xlo ¥ xeS". (3.8)
[(x1, x2) = (v, x2) " < CRF Ixallm (Ixalll ¥ x1,x2 € S (3.9)

Since ¢. is monotone, (2.5b), and the partitioning 7" is (weakly) acute it follows
for all ¢ € (0, 1) that

Va6 ()] 15 </>( +1Ix = 3llo,00) (Vx, V[ ()])

VX, VA e (X)) VY x € 5", (3.10)

see [13] and [20, §2.4.2]. Tt is easily deduced from (3.5), (3.10) and (2.5b) for all
n € H*(Q) with %} = 0 on 0% that

(1= 7") (5 + h* | 7" [ ()] 11}

<
<
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< Ce R [lee (s + (1+ 71 A7) Inf3], (3.11)

see [3, (3.25-26)]. If d < 2, then one can exploit the concavity of ¢, see (2.3),
to show, on noting (3.5), that for all n € W*1(Q) with g—z = 0 on 99 the
improved bound
(T =7")b(n) loq < |(1 = 7")oF (n) o + (1 = 7")oF (1= 1) [o,1
S Ch?*[|¢F )20 + 165 (L= )21 < Ce™ R Pla (3.12)
holds, see [5, (3.69-70)].
—=h

Similarly to (2.12), it is convenient to introduce the operator éh FC—=E
defined by

(VG"£,VX) = (£.0)" Vxes (3.13)
where ' := {¢h € S* (P 1) =0} Cc Fe = {f € C(Q) : (f,1)* = 0}. Note
that the analogue of (2.16) holds: for all f € F¢, y € S* and for all g > 0

(£, = (VG £, V%) < 16" Fhlxh < 16" I + &1x13 (3.14)

In addition we have for all £ € =* that
W2 IE < Crh €My < CalGMeM ) < Cs ||| < CalG"e L. (3.15)

The first inequality on the left is just an inverse inequality on noting (3.8) and
holds for all ¢ € S". The second follows from the first and (3.14). The third
and fourth follow from (2.12), (3.13) and (3.9); see (3.10) and (3.21) in [6]. For

L

later use, we introduce also M" : C(Q) — S" defined by
(M) = (F,)" ¥ yest. (3.16)

Assuming that by, > 0 and given ¢; measurable in Q, we introduce the

analogue of (2.18): ggm - F — 2" such that

(b(q1, 42)VGo [, VX) = (f,x) Vxesh (3.17)

It follows immediately from (2.18), (3.17) and (3.5) that for all measurable ¢,
and f € F that

16(g1,92)] 7V (Garrq — G2 ) Flo < |[6(91,42)]2 V(I = 7")Gay a0 Flo
< Ch|Ggy o flo- (3.18)

Similarly to (3.17), we introduce gAj]th : F¢ — =" such that

(bq1, 42)VGE , F, YY) = (£, )" ¥y e s, (3.19)
The analogues of (2.19) and (2.20) hold: for all f € F°¢

bunin [0(q1, 42)]EVGE L FI2 < IVG" F12 < brnax|[b(g1, 42))2VGE, . fI2, (3.20)
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= (b(g1, 42)VGE .. J. VX) < b2 {(f,ggm )’T Ixli ¥V xesh (3.21)

(f, )"
It is easily deduced from (3.17), (3.19), (3.9) and (2.14) that for ¢; measurable
1G4, 4 = G0 1 < COZL A€M ¥ €" € 2", (3.22)

It follows from (3.3) that for all p > 2

|gq1 ng |1,p < |gq1,q2€h|1,p + |(gq1,qz
+ R (G,

It follows from (3.3), (3.5), (2.27b) and (3.18) that for all p > 2

_ggl,qz)ghh,p
—Gh EM vehes . (3.23)

|(gq1,qz - ggl,qg)gh |17P
(2=p)d
r |(7Th gquqz - ggl,qg)gh |1
—G41.0,)€" 1]

< |(I - Fh)gqh%ghhyp +Ch
[h |€ lo+[(I — ﬂ'h)gql,nghh + (941,00
(3.24)

< Co(llgill2) A
(2 _
< cb<||qz||2>h1+ € ¥ Eh e =t
and (3.24), and noting (2.14), (3.22), (3.15), (3.8), (2.10)

Combining (3.23) .24),
(2.27b), (2.19), (2.15) and (2.16) yields for all p € [2, 6] that
L_L
1G5, 02€" 11 < Colllgillz) [1Gas,0:6" 115 + ' 1€"1o]
< Co(llaillz) ML €1 v € e 2P,
analogue of (2.28) follows from (2.24)

(3.25)

where ¢ = ﬂip%zl. Finally the gql %
(3.25) and a Young’s inequality:

|(Zb(q1,42), [VGE €8P < F1EME + Colllaill) [ 2b(ar, a2) 7 (1671124
v ehezh

(3.26)

Assuming that by, > 0 and given ¢; measurable in €2, we introduce the

analogue of (2.29): /\/l’(;1 o L) — Sh such that
(b(qr, g2) ML L Fox) = (f,x) YV xesm (3.27)
It follows immediately from (2.29), (3.27) and (3.7) that for all measurable ¢;
and f € HY(Q) that
(g1, 22)]* (Mg g = MG, )10 < 1(a1,42)]* (1 = QE) Mgy 0. /1o
< Ch Myl (3.25)

C(Q) — S" such that

we Introduce /\/l’(;1 .
(3.29)

— B
aaad> X) =

Similarly to (3.27),
(b(q1, g2)M

(£ )" Vxest



28 Finite Element Approximation of an Allen-Cahn/Cahn-Hilliard System

It follows from (3.16), (3.29) and (3.8) that
€718 < MMM 3 < b (b0, 42)]2 MG, 4,618
< bmax 0L (d+2)%[€M2 v el e 5 (3.30)
It is easily deduced from (3.27), (3.29), and (3.9) that for ¢; measurable

(Mg

q1,92

It follows from (3.3) that for all p > 2

ql <12)€ |0 < Cbr:nln h ||€h||1 V gh € Sh~ (331)

|Mq1 q2€ |0,p < |Mq1,q2€h|0,p+ |( 91,92 — ql q2)€ |0,p
+OonSE (M ), Vet e st (3.32)

91,92 ql q2

It follows from (3.3), (2.10), (3.7), (2.30), (2.33b) and (3.28) that for all p € [2, 6]

|(Mq1,q2 <I1 q2)€ |0,p
< |(I_ Qo) ql,ng |0,p +Ch |(Q0 91,92 ql q2)€ |0
< Gylllaill) 5T et v €t e s (3.33)

Combining (3.32) and (3.33), and noting (3.31), (3.15), (3.8), (2.30) and (2.10)
yields for all p € [2, 6] that

L_L
IME 0 < Colllaill2) [ Mgy, g 6o + 70 [|EP||1]

< Cylllasll) 6" o™ NlE™ (13 v &" € 5", (3.34)

3
(3.34) and a Young’s inequality:

where ¢ = d(p;Z). Finally the /(/l\f;hq2 analogue of (2.34) follows from (2.24),

(2:b(q1,92), IME L€M) < TEME + Colllaslla) | 2b(ar, a0)[5 7 16713
Ve e st (3.35)

Uh
Choosing x = 1 in (3.1a) yields that (Lgtﬂ, DA =0, ie. (ug(a)(~,t), 1) =
(Q’Wluo(), 1) = (u%1) for all t. Hence, similarly to (2.35a,b), it follows from
(3.1a,b), (3.19), (1.6b), (2.14), (3.29) and (3.1c) with x = 1 that

n — AR Bug( s 3 o= Ovg(.e
Wo(,e) guo( oveie 0t T /\9(,5)’ Fo(e) = PMUo< vete Ot ( )
3.36a
and Ay = 7060 (ug o)+ V5 o) + 0 Do) (g o) — i) — aug ]
(3.36D)

It 1s convenient to introduce

h={xeS fFx=m:=Ffu}. (3.37)
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Therefore for byin > 0, (PZ( a)) can be rewritten as:
Find {UZ(,a)avg(,a)} € S% x S such that u’;(ya)(UO) = Qzuo(), vg(ya)(yO) =
Q’leo() and for a.e. t € (0,7
7 (Vg oy £ v354), VX)
(gh uy(

Ug(,e),V0(, s) at

+ (2060 (ug o E vy ) — (aue yEBup ) X)) =0 Vxest (338

vl .
— Moy P M, s )"

Ug(,e))Vo(,e)

where /\9(5) is defined by (3.36b) and {we(g),ze(g)} can be obtained from

(3.36a). Theorems 3.1 and 3.2 below are adaptations to (P%) of Theorems 3.1
and 3.2 in [7] for a multi-component Cahn-Hilliard system with a concentration
dependent mobility matrix.

THEOREM. 3.1. Let u® € HB(Q) L= HZ(Q), 9l — 92 — () on 0 and
J € (0, ) be such that ||u® £ v° — —||0 . < = —0d. Let b satzsfy (1.6a,b) and let

the assumptzons (Ag) hold. Then for all 9 < Omax, € < €2, where e2(0,8) =
min{eg, %(5}, and for all h < hg such that ||Qz(u0 + %) — %HO,OO < %(1 —9)
there exists a unique solution {ug(ya),vg(ya),wg(ya),zg(ya)} to (Ph ,a)) on Qr for
any T > 0 ¢fd <2 orif b > 0 is constant, and for some T > 0 ¢fd = 3 and
b s non-constant, such that the following stability bounds hold independently of
e, 0 and h

oy llstorms @y + 12562 oo, )
ol oy + 1 222 gy <€ (3.39)
9”7" [ ):I:v9 ]—||L°° 0,T;L2())
+ 017" [ug o) £ b o) = UallFeo.7,02()) < Ces (3.39b)
NGy llz20m) + [lwf oy llLao,rm () + 0 17" e (uf oy £ 05 )llz2(0r)
+ 125 oy leaan) + (02)2 [|7" [ (wf o) % v 2o msm () < Co(T).
(3.39¢)

Furthermore, the unique solutions of (PY) and (P} _) satisfy ul + vl (-,t) € K"
fora.e.t€(0,T) and

Sul Sul
=522 20,750 () + (1522 oo 0,7 (B0 (2)))
dul - avh "
+ =52 e20,7,m1 @) + (1582 Lo (0,7502(0)) < Cb(T), (3.40)

Jug — ug,a||%2(0,T;H1(ﬂ)) + g — ug,a”%""(O,T;(Hl(ﬂ))’)
+ v — o8 720 o ay) + 1106 = Ve Toe o n20)) < Co(T) 07 e (3.41)

PrROOF. The existence of a solution to (P# _) with the resulting bounds (3.39a-

c) for {ugya, vgya, wgya, Zg,a} is a simple analogue of that for (Pg.), see Theorem



30 Finite Element Approximation of an Allen-Cahn/Cahn-Hilliard System

2.1 above. We just highlight the three main differences. Firstly, it follows from
(1.11) and the assumptions on u” and v° that for all A > 0

1Q5ulls < Crlle’lli < Co and  [|Q4°[li < Cs|v°l1 < Ca (3.42)

Secondly (3.6), the assumption ||u” 4 v% — —||0 oo < = — ¢ for some § € (0, )
(2.9) and (2.1a,b) yield that there exists a hg >0 such that for all A < hg

Q8 (u® £0°) — Hjo,co < 5(1—8) = (Vo (Qu", QM%) )P < C. (3.43)

Finally, the last bound in (3.39c) follows by choosing x = 20 7" [qbg(ugya:tvgya)] —
/\ga in the regularized versions of (3.38) and noting (3.10), which yields the
analogue of (2.43).

As the mobility 1s “frozen”, the proof of uniqueness of a solution to (Pg}a)
is simpler than that of (Py.). Once again, we just stress the main differences.
Let Ug,a = (Ug,a)l — (ug,a)Z € =" and Uga = (vga) — (vga)z € S”, where
{(Ug,a)ia (vg,a)i} are solutions to (nga) It follows from (3.38) and the Gh

91,92’
—~
My, ,, analogues of (2.23), (2.31) that for a.e. t € (0,7)

[|u€ ,E 1 |v€ a| ] + %%(Q’Ze,s,vg Euga’uga)h + %%('MZG £V, Evga’vga)h
<alug i+ 8w}
((’?tb(ue e Vg 5) |vgue Vo, EUG a|2 + 4 |Mue Ve, EUG a| ) (344)

Applying (3.21), (3.8), (3.30), (3.29), (3.26), (3.15), (3.20), (3.19), (3.35), on
noting (1.6b) and (2.51), and Young and Gronwall inequalities to (3.44) yields
the desired uniqueness result for (nga).

The bounds (3.40) for ul _, v} _ follow in a similar fashion to their analogues
for ug ., vg ; see (2.51). Hov{/ever; once again due to the “frozen” mobility their
proof 1s simpler. Diﬂerentiating the regularized version of (3.38) with respect
to t, choosing x = gt(ue . £ vy a), adding together these + versions, noting

#L(-) > 0 and the Gh  and M" analogues of (2.23) and (2.31), respectively,

91,92 91,92
yields for a.e. t € (0, T) that
oug . 0vg . 1d(Fh Oug . Oug.\p
[ ai 1 | 0 ] Ed_(guos,vosa—i’ (’;; )
d 77k vk . vk . aul . vk .
+ 55 (M, e 05 20" < el + Bl5h

6u9 .

ol
- %(%b(ueﬁf’ veﬁf) |vgue 5Ve,e Ot |2 + 4 |Mue PR aets 2)' (345)

It follows from (3.1c), (1.11), 66“; = %—f =0 on 92 and (3.2) that

(wh o & 2.) (- 0) = QoL =7 A+ (I — Q%) (u” £ °)()
+20 7" [0 (Q (u® £ 0°)I() — Q(au’ £ F0°)().  (3.46)
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Hence it follows from (3.46), (3.36a), (3.7), (3.10), (3.43), (3.42), (3.2) and (3.8)
as € < %(5 that

6u95
1GE, s 522 (- 0) 1 < CLIulls + [[0°] + 62 (1 = 38) ([[u®[ly + [[v°[]1) ]
< Cllells + [10°]11], (3.47a)
61/95
|Muo cVe,e Ot (’ )| §C'[||v0||2—|—||u0||1—|—¢€(1—%6)]
< C[°f2 + [Ju®[l1 ]. (3.47b)

Applying (3.21), (3.8), (3.30), (3.29), (3.26), (3.15), (3.20), (3.19), (3.35), (1.6b),
(2.51) and Young and Gronwall inequalities to (3.45) yields, on noting (3.47a,b)

and (2.14), the desired results (3.40) for uZ . and vga

Existence of a solution {uf, vk, wh 28} to (P%) with the corresponding bou-

nds (3.39a—c) and (3.40) follow by letting ¢ — 0 in (P ga); this is a simple
adaption of the argument for (Py) from (Py .), see Theorem 2.2 above. Unique-

ness of this solution follows as for (Pga). Finally, we need to prove the error

bound (3.41). This is a semidiscrete ‘analogue of the result (2.70), which is
also proved in Theorem 2.2 above. This proof is easily adapted to prove (3.41)

on noting (3.26), (3.35), (3.40) and the two results below. Firstly, on setting
(h) (h) _ () (h) (h) _ ()

e =uy —uy . and ey =, — Vg ., We have from (3.21), the gql g, Version

of (2.25), (3.19); (2.10), (3.25), (2.15) and a Young’s inequality that

Sh &k oug . vk
Ug,Veg Ug e,V e U
|((Getgv = Guip oo, ) 55 )|

1
~ ~ 8 R 3
S C |(g’39,v9 - g’ZQ)E,’Ug)E) ue |1 |:(g39 Ve Z’ e’thi)hi|

6u9 .

1
o~ 2
< Cy(leuloat leuloa) IGL, Loy . Zo8= 110 [(Gh, el )]

6u9 .

< ||6u||f+II%IIf+Cb(IIUe,a||z,||ve,a|| MI=55= 117 (G, wocliyel). (3.48)

Similarly, we have from (3.8), the /(/l\f;hq2 version of (2.32), (3.30), (3.29), (2.10),
(3.34) and a Young’s inequality that

61/35
(M2, ., — M )5 e0)" |

Ug,Ve Ug,s,V0,e/ Ot U

< Newll? + lleoll? + Colllus clla.llos <ll2) || 25 (V4 tove€yr€r). (3.49)
O

THEOREM. 3.2. Let the assumptions of Theorem 3.1 hold. Then we have for all
0 < Opmax, € < g and for all h < hy, such that ||Q’Wl(u0:|:v0)— %HO,OO < %(1—5),
that the unique solutions of (Py . ) and (nga) satisfy

h h
l|ug,e — u€,a||%2(0,T;H1(Q)) + [Jug,e — u€,a||%°°(0,T;(H1(Q))’)

+ [lvg,e — vg,a||%2(0,T;H1(Q)) + [lvg,e — vg,a”%""(O,T;LQ(Q))
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Co(T) [R?+ 7 2R (In 124D ] 4fd < 2, (3.50)
< .
N Co(T) [e71h? + e72h%] if d = 3 and b is constant.
Moreover, the unique solutions of (Py) and (P}) satisfy
|lus — ug”%?(O,T;Hl(Q)) + ||us — UZH%‘”(O,T;(Hl(Q))’)
+[|ve — vg||%2(o,T;H1(n)) + ||ve — vg”%w(o,T;m(n))
Co(TY RS (In )25 ifd <2,
_ [ Gt p= s .
Co(T) h if d =3 and b is constant.
ProoFr. For a.e. t € (0,T), we set e, = up. — uga EE e 1= Vg — vga,
ed = (I - 7Th)U97€, et = (I - Fh)vgyg and el := ﬂhuag — uga, el = Fhvgyg —
vgya € S". We note for future reference that £ el = — f e, On subtracting

the regularized version of (3.38) from the regularized version of (2.36), it follows
for a.e. t € (0,T) that

Y(View £ev), VX) + (guo,syvo,s% + pMUo,s,Uo,s%’ X)
+ 20 (¢e (ug,e £ vgc) = be(ug . £ 05 ), 0" = (aew £ Few + (Noe = A5 L) X)
= aul . aul . ol .
+ [(g’gg PR 6ot ’X) (gUO ,V6,e 60t ’X)] [(MZG =V, 6ot ’X)

61/9 .
= (Mug e =525 X) |+ [(20 6c (uo e £ vp.) — (g . £ Bvg ), )"
— (20 pe(up - vg.) — (a ugya + 5”?;%)()] Yy e s (3.52)

Adding together the + versions of (3.52) with x = el 4 e respectively, and
noting (2.5b), (2.16), (2.15), (2.14), (2.19), (2.30), (3 9), (3.20), (3.15), (3.8),
(3.22), (3.24), (2.51), (3.31), (3.33) and a Young’s inequality yields for a.e.
€ (0,7) that
yleul? + lel7 ]+ (Ge m,eu)—I—p(./\/lg%,ev)
<y llealt +leol]+ (G- 5 ew) +P(/Vlaaat  €v)
+6 (¢€ (ueﬁf + veﬁf) - ¢€ (UG,a + v€,a)’ eu + ev)
+6(¢€( _vef)_QJ)&(ugb,a_vg,a)an_eg)h
= (aeq, u) (Bew, U)—i—’y[(Veu,VeA) (VeU,Vef)]
(gfagtu’ u)+p(M€6;tv’ v) (/\95_/\ga’ 3)
dub . _ dub . _ duh . _
[(gh ai ’ Z) (gh (’; ’ Z)] (( 5) 60t ’ Z)
1+

[@Mh e M)t (M2 o] 4

h
dug .

pME = M) == el)

O1(¢c(upe +voc) eq+ey)" — (de(us e +vea),eﬁ+eh)]
O1(c(upe —voc) ey — €)' — (9e(upe —voe) ey —ey)]
o[ (ug o en) = (ug o en)" T+ B0 e0) — (v5 o )]
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< Flleuli +leult ]+ C llleully + leu [ + Nl + llel17)
+ Oy L[5l + o el + 1A T ledto + Co [ 5o ledt o

ul vk
+ Co b [ =22 15 + 12217 + C A [Huf N1F + llvf [1F]
+ C R |76 (ug e + v ) + 17" [0e (wo e — vo 2)]|IT]
+0|((1 = 7)o (g e +vo ), ep + €

011 = 7")¢c(us e — voc) ey — ey, (3.53)
where e = (I — £ e h e =" and for notational convenience G, = Gug. e v6 e
Gl =Gly oy Me= My o, and ME= ML,

We now bound the terms on the right hand side of (3.53). In the case d < 2
we have from (3.4) and (3.12) for a.e. t € (0,7") that

|((I—ﬂ'h)q/)€(u€€ tvg.), eh :I:eh)|
<Ce P h?(In£) 7 uge £ vgclon|lel £ el|r. (3.54)

Combining (3.53), (3.11) and (3.54), and noting (2.23), (2.28), (2.31), (2.34)
2.51), (3.5) and a Young’s inequality yields for a.e. ¢ € (0,7) that
g
'y[|eu|f + |6v|%] + %(gaezu‘%) —I—p%(./\/lgev,ev)
< lleul? + leol P+ Co(T) [1 4+ | 5b(us e, v0,2)5 7 TlHleul|21 + leol3]
+C(h* 472 h* (In 1)*E= 1) [[lug ] 3 + [Jvs,e 13 ]
ault . vl . ey ey

+ Oy R (155825 4 15521 + 1152120+ 15215 + ol + 147

+ 05_1 h4 [ |¢a(u€,a + v€,a)|0 + |¢a(u€,a - Ue,a)%]

+ Ch* [[Jug T+ g -N17). (3.55)

The desired result (3.50) for d < 2 then follows from applying a Gronwall
inequality to (3.55) and noting (1.6b), (2.51), (2.38), (3.39a,c), (3.40), (2.14),
(2.19), (2.15), (2.30) and (3.6).

For the case d = 3 we do not have the bound (3.54), so we have to use (3.11)
instead and this leads to the inferior bound in (3.50).

Finally the bounds (3.51) follow immediately from (3.50), (2.70) and (3.41)
on choosing e = Ch$(In 1)*5™ < e, ifd <2ande=Ch <y ifd =3 and b
is constant. a

REMARK. 3.1. If we replaced b(ug( ), ve(,c)) by b(ue( e vg( ) in (3.1a,b); that
15, considered the natural semidiscrete finite element apprommatzon then this
would lead to a number of difficulties. Uniqueness of a solution to (P () ) on
Qr and the regularization bound (3.41) would not follow immediately; since the
present proofs use for example the bounds (3.26) and (3.35) which exploit the
H?(Q) bounds on ug( ey and vg(cy, see (2.51) and (2.69).



34 Finite Element Approximation of an Allen-Cahn/Cahn-Hilliard System

3.2 The Deep Quench Limit

Similarly to (3.38) and (3.36a) the corresponding “semidiscrete finite element
approximation” of (P) can be rewritten as:

(P") Find {u® v" A} € S? x S* x R such that «"(-,0) = qu0(~), v (-,0) =
Q’leo() and for a.e. t € (0,7), u(-,t) £ v"(-,t) € K" and

~ o~

Y (V(uh £ 0h), V(x = (uh £ ")) + (G, 2+ p I 2y — (uh & o))

u,v ot
> (N4 au £ 80" x — (u" ") ¥V x e K" (3.56)
with — wh=—Gh oul y\h o k= g ot (3.57)

The following theorem is an adaption to (P”) of Theorem 3.3 in [7] for a deep
quench multi-component Cahn-Hilliard system with a concentration dependent
mobility matrix.

THEOREM. 3.3. Let u®, v¥ and b satisfy the assumptions of Theorem 3.1. Let
the assumptions (A) hold. Then for all h < hqy such that ||Qg(u0:|:v0)— %HO,OO <
% there erists a solution {u” v M wh 2"} to (P") on Qp for any T > 0 if
d <2 orifb >0 is constant, and for some T’ > 0 if d = 3 and b s non-constant,

such that the following stability bounds hold independently of h

(| e 0,750 () + 1125 20,72 (2))1)

+ [ o mim )y + 1% lar) < €, (3.58a)
1285 o (o 20 ))) + 13 220 st )y + 135 s (0 722050

+ 1% 120 a0 (@) + Nl go,my < Co(T). (3.58D)

In addition the solution {u” v"} is unique over Qp. Furthermore, these unique

solutions {u,v} and {u", v"} of (P) and (P") satisfy

[|lu— uh||%2(0,T;H1(Q)) +{lu— uhH%‘x’(O,T;(Hl(Q))’)
+[lv— vh||%2(0,T;H1(Q)) +[Jv — vhH%w(o,T;U(n)) < Gy(T) %, (3.59)

ProOF. One could prove existence of a solution to (P?) and the corresponding
bounds (3.58a,b) by passing to the limit # — 0 in (P%). This would be an
analogue of the existence proof for (P), see Theorem 2.3 above. However, this
approach would require the more restrictive assumptions (Ap) on the mesh.
An alternative approach 1s to discretize (Ph) in time yielding the analogue of
(P"7) with a “frozen” b. Then prove existence and a priori bounds for this
fully discrete scheme, which is a simple adaption of Theorem 4.3 below, and
then pass to the limit 7 — 0 to prove the existence of a solution to (P*) and
the corresponding bounds (3.58a,b), which are the analogues of (3.39a,c) and
(3.40).

Uniqueness of the solution {u”, v* 2"} to (P*) follows as for (Pg(,a))’ see
(3.44). Similarly to (P), see the proof of Theorem 2.3 above, we can not guar-
1

antee the uniqueness of A and hence w” if f u’ = 5.
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Finally we prove the error bound (3.59). For a.e. t € (0,T), we set e, :=

u—ut € 2 e, = v—0" e = (I —ah)u, e == (I — 7")v and € =

mhu—ul, el = ghy — P € §*. Choosing n = " £ v" € K" C K in (2.79),
x = 7u+v] € K" in (3.56), adding together the four resulting inequalities
and rearranging yields, similarly to (3.53), for a.e. ¢ € (0,7) that

Y eul? +lewlt]+ (Guo B eu) + p (Mo 5 €0)
< (aew, @)+ (Bev,el) + 7 [(Vew, Veld) + (Vey, Vel) ]
+ (G 25, e) + p (Mo B2, ef)
+ (AU = Gy % +au+ N ed) + (YA — p My 2+ Bu,eft)
+ (G, B E ) — (Gl 28 E ]+ (G, — Gun) 2. 20
+p[ (MY, B8 e — (ME 282 )]+ p (ME, = My o) % eh)
+al(uheh) — (uh P+ BL(" eh) — (v el)P ], (3.60)

where e = (I — f Jeh € =" On noting the bounds (2.84a,b) and (3.58a,b),
the remainder of the proof of (3.59) follows the techniques used in (3.53) and
(3.55) above. 0

4 Fully Discrete Approximations

4.1 Logarithmic Free Energy

We now consider the fully discrete approximation (PZ’T), see (1.12a—c), to (Pyp).
Choosing x = 1 in (1.12a) yields that £ U = £ U = f v, n =1 — N.
Hence, similarly to (3.36a,b), it follows from (1.12a,b), (3.19), (1.6b), (2.14),
(3.29) and (1.12¢) with y =1 that forn =1 = N

wip=—gnh (B g, g = MO (HEE) ()

and Aj = 7" [0o(UF + V) + 06U — V) —a U™ (4.1b)

where for notational convenience we set QAfL’fl = QAgn_l - and M\Z’fl =
] 1 e

/\/l’;]n Ly throughout this section. Therefore for by > 0, (PZ’T) can be

rewrltten as:
Let U = quo and V) = szo. Forn = 1 — N, find {U},V*} € Sk, x Sh
such that

n n 59, Ug-uy—! n 78, Vo =Vt
YV £ V), Tx) + G0ty (B ) —ap 2 p M2, (B2

+ 200U £ V) — (U P £V )" =0 ¥V xesh, (4.2)

where A} is defined by (4.1b) and {W§, Z7} can be obtained from (4.1a). For
later use, we introduce the discrete Lyapunov functional j€ S8 - R
defined by

Totoy (i, x2) = 3Ll + elf]+ (Teo(xa, x2), D' ¥ oxa, xo € 5" (4.3)
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Theorems 4.1 and 4.2 below are adaptations to (PZ’T) of Theorems 4.1 and 4.2 in
[7] for a multi-component Cahn-Hilliard system with a concentration dependent
mobility matrix.

THEOREM. 4.1. Let 9 < Omax and b satisfy (1.6a) with by > 0. Let the
assumptions on u®, v of Theorem 2.1 and (Ag ) hold. Then for all h < hy such
that ||Qh(u0:|:v )= %llo,c0 < & and for all time partitions {7, }}_, of [0, T] there

erists a unique solution {UY VI Wi, Z2YN_| to (Ph ") such that

N
max [UF 1T+ 1V (2] + + Y L0 = U8+ [V = VR
n=1
al Uy
3mSR, 1 < (4.4a)
n=1

N
Z [6° | 7" o (U £ VLT + NG+ IWENT + 128 (5] < G (4.4D)

Furthermore, U} € Shand Ug £V e K" n=0-= N;in fact
0< U2V <1 n=1—N. (4.5)

ProoF. From our assumptions on u’ Qh(u + %), and (1.11), (3.42) and
(1.4b) we have for all A < hy that

U% €Sy, Ug Ve KM IUF11 + VI + (W (UG, V3), )" < C. (4.6)

For n = 1 — N, given Uy~ € Sh with Uy~ £ V"' € K" and [|U}™ |1 +
||V€"_1||1 < (', we prove existence of {UJ, Vj*} satisfying (4.2) by considering
the regularized version for £ < €g:

Find {Ug., V', } € Sh x Sh such that

(V(0F % V3D, T+ @0 (500 ) it ()

+ (200 (U5 £ Vi) = Af . — (U7 28V 71, 0)" =0 Yxesh, (47)

where _:’: 9¢€ U9€—|—V9€)+9¢5(U9€ VGT,la)_aUGH_l]' (48)

Existence and uniqueness of {UJ'_, V. } follows by noting that (4.7) is the Euler-
Lagrange equation of the strictly convex minimization problem

min {%[lel% + X202+ 6 (@ (x1 + x2) + P (X1 — x2), 1)?
X1€S5h , x2€5"

o 108 1V = U ) B = a (U7 xa)"
o W M (e = V) B = B0 )" (4.9)
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where for notational convenience we set b2 _ = b(U7 ™, V;*~!) throughout this
section. Choosing y = (U}, — UR) £ (V. — V*) € S* in (4.7), then adding
together these 4+ versions yields that

YUV V(UG = U ) + (VY V(e = V)]
+0 (qsf(UGH,a + VGT,La)’ (U€n,a - U€n_1) + (VGT?a - V€n_1))h
+0 (qsf(UGH,a - VGT,La)’ (U€n,a - U€n_1) - (VGT?a - V€n_1))h
U AN G I I G DN e T
= a (U™ U = U™+ B (V= Vi = vVt (4.10)
Rearranging (4.10) on noting the convexity of ®. and the identity
20s —r)s=s*—r’+ (s —r)? Vr sER, (4.11)
yields that
FOURT+ Ve |f = U7 = Ve T+ |05 = U+ 1V = VTR
+0 (q)f(UGH,a + VGT,La) + q)f(UGH,a - VGT,La)’ 1)h
= 0@ (U5~ + VT + @ (U = V), )"

U AN G I I G DN e T
(U= g~ U B0V Vi
< S 1URE — 1051+ S Ve~ ViR (112

On noting (4.3), (2.9), (2.1a,b), Ug. — U‘Q"_1 € Z" and our assumptions on
Uen_l, Ven_l; it follows from (4.12) that

jGIfa(UGH,a’ VGT?&) + % [ |U€n,a - U€n_1|% + |V€T,La - V€n_1|%]
1 A vy —urt 1~ Vi oyt
s |0 13VGR (Bl ) B pl 10 1A, (550 )
< Ty UpThvpth <c (4.13)

Hence on noting (4.13), (4.3) and (2.9) there exist positive constants Cj, inde-
pendent of 8, ¢, h and 7,, such that

On choosing x = 7, (20 ﬂh[an(Ue”@ + nga)] — Ag,a) in (4.7), we have the
analogue of (2.43) on noting (3.10), a Young’s inequality, (3.8), (2.14), (1.6a),
our assumptions on U‘Q"_1 and Ven_l, and (4.13)

T390l m[0:(Ug. £ VEIIE + 51200 (U. £ V5) — Aj 7]
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0 h Ur —upt —~a h vyl _ _
< gl () e p Rt (St ) oot

Tn Tn

1L 5 ur_ —uUrt
<t Gy [1+ |[B_,]3VG" (7) ?

Tn

Tn

+ 185 1M (w) 21< Gy (4.15)

Similarly to (2.45), on choosing x = (Ug', £ V{'.) — p in (4.7), adding together
the resulting + versions, choosing ¢ = 0 and 1, and noting (3.19), (3.29), (4.14),
the convexity of @, (2.1a,b), (2.2), the assumptions on u° and (4.13) we have
that

AP S Gl ([0, 90 (L )

Tn

A (B Y s 6 )

It follows from (4.14) that there exist U} € S and VJ* € S* and subse-
quences {Ug'_,, Vi’ } such that U, — Ug and V', — V" as ¢’ — 0. It follows
from (4.15) and (4.16) that there exist ¢ € S* such that 7" [0 (Ug o £V)] —
¢ as ¢ — 0. Noting that qb(j € CHR) and [¢:]71(s) — ¢~ 1(s) as e — 0,
for all s € R, we have that ¢% = 7"[¢(U} £ V;*)]. Therefore we may pass to
the limit ¢/ — 0 in (4.7) to prove existence of a solution to (4.2) at time level
t,. Uniqueness of {U}, V' } follows, as for {U}., Vy. }, from the monotonicity
of ¢. Hence noting (4.1a,b), we have existence and uniqueness of a solution
U3, Vi, Wi, Z7} to (1.12a—) at time level ¢,. In addition non-regularized
versions of the bounds (4.13)—(4.16) hold; that is, with the ¢ subscript removed
and £ = 0 on the left hand side of (4.15). The non-regularized versions of (4.15),
(4.16) and (4.14) immediately yield (4.5) and the first two bounds in (4.4a) for
Uy and V;'. Hence we have these bounds for n = 1 — N by the above in-
duction process. Finally, summing the non-regularized versions of (4.13), (4.15)

and (4.16), and noting (3.8), (2.14), (4.1a,b), (3.20), (3.15) and (3.30) yield the

summation bounds in (4.4a,b). O

Given u°, v satisfying the assumptions of Theorem 3.1 above, we introduce

for the purposes of the analysis below W0, ZJ € S" defined by
(W' £ 25,)" = —y(A(® £0°),x) + (206(U7 £ V7)) — (@ U§ £ V), x)"
¥ xesh (4.17)
Hence we have that
WP £ 25 = —y QA" & 0°)) + 20" [p(U} £ V)] — (a UJ £ F V). (4.18)
Similarly to (3.47a.b), it follows from (4.18), (3.7), (1.2b), (3.10), (4.6) and the

assumptions on u°, v° that for all A < hg, defined as in Theorem 3.1 above,

W5l + 12510 < C [lle’lls + [|+]]2] < € (4.19)
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THEOREM. 4.2. Let v’ € H3(Q), o* € HX(Q), 22 = 22 — 0 on 9Q and
J € (0, %) be such that ||u®£v° ——||0 o < ——(5 Let either d < 2 with b satisfying
(1.6a,b) or d = 3 with b > 0 constant. Let 0 < Omax and the assumptions (Ag)
hold. Then for all h < hy such that ||Qz(u0 +0%) — %HO,OO < %(1 —6) and for
all partitions {1, }2_, of [0 T] such that Tno1/T < C, n=2— N, the unique

solution {UR Vi Wi, Z W to (P ) satisfies

N

Ug-U,~ V=V, 1 n Lo
S IS+ I ) 4 max (1083 VW + () 2512
n=1

oS (A ey

Tn ) Tn

Z s

(b )2V (W5 = W™+ 166 _112 (25 — 2576

by = O, VWP + 125 )] < G (4.20)

+> 11
LY

PROOF. Let D} := (U} — U2~ ") /7 € E* and Fp = (V] = V'Y /7, € SP,
n=1-— N. It follows from (1.12¢) and (4.17) for n > 1 that
¥ | Dy £ FPE+20 (8(UF £ V) — o(Uy 1 £ V1), D £ B
= (W3 =Wy £ (25 — 2371, Dy + )"

+{ ¥ (VI(u® = U) £ (v° = V), V(D £ ) ifn=1,

Taot (@ Dyt £ BEPTY, DR £ )R if n > 2. (4.21)

Adding together the & versions of (4.21) and noting (1.12a,b) with y = W} —
I/VG"_1 and x = 25 — Zg_l, respectively, and noting (4.11) and (1.11) yields for
n > 1 that
Y7 LIDF 1R+ 1FRIT1+ 60 (8(UF + Vi) — o(Ug ~" + Vi), Dy + Fg)"
+0(o(UF = V') = o(Uy ™ = V™), Df — F)"
+ 5 O [IVWEP + IV W = WP+ o7 2517 + 125 = 2571 1))
=dy, = 5 (b VWP 4 7 20T

+{[@%—U,Db + (V) =", F})] ifn=1,

. 4.22
Toot La(Dp = DI 4+ B(FP~Y F)h] ifn > 2. (4.22)

It follows from (2.16), (3.15), (3.20), (2.29), (2.30), (3.30), (4.1a), (3.14), (3.8)
and a Young’s inequality that
di <5 (b8, IVWEIP + p~ M| Z41%) + 5 (68, VW17 + o= Z5°)
+Cy[u” = UFIE + 0" = VP15, (4.23a)

dy < 5 (0o IVWE TP 4+ p7HZE TP + 3 [1DR 17 + 1173

IN
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F L[y — b8 ] VW 4 2 )
+C “nl D= Y2, +Fp~1 2] ifn>2. (4.23b)

Similarly to (2.50), we have from (1.6a,b), (2.16), (2.17), a Young’s inequality
and (3.3) that for n > 2

(1

bo

0
s e M L ER S O
LD =M+ NEG M+ CUWE ™ aagey + 125 718 2140

D= 2 4+ (|ER Y3+ w09 4z =t U - o2,
(4.24)

INIA *H

X
4
X
4

where ( = 0 for d = 1, and for any ¢ > 0 for d = 2. For b constant the above
term is zero and the argument below simplifies considerably. We set ry := 1
and for n > 1

pui= 3 LIDRE 4 IFPR), g = EOA VWG + 75 2),

ro = max{p + qn, o1}, sn = CIDRIE L + [FP[S + | Fy TR ]+ O Chm?
and Yn = C gy + 5,. (4.25)

It follows from (4.4b) and if ¢ < C'h?? that

N-1 N-1 N-1

D mvn=CD Tatat > Tasn <Co(1+(h7) <G (4.26)

n=1 n=1 n=1

It follows from (4.25), (4.22), (4.23a), (4.19) and (4.6) that r; < C. Tt follows
from (4.25), (4.22), (4.23b), (4.24) and the assumption 7,,_1/7, < C that for
n>?2
(1+c)
max{l, gn_1}t <rpo1 <1y <rp1+Crpo1 g, 4 7181 (4.27)
For d = 1,i.e. { =0, it follows from (4.27) and (4.26) that forn =2 > N

Tn S (1 + CTn—l QH—I) Tp—1+ Tho1Spn—-1 S n-1 exp(CTn—l QH—I) + Tho1Sp-1

n—1 n—1
S(r+ Y misi) exp(CY mq) < C. (4.28)
i=1 i=1

For d = 2, i.e. { > 0, it follows from the mean value theorem, (4.27) and (4.25)
that

£11+2C) [7“” - rn—l] S Tn—1Yn—-1 n Z 2. (429)
From summing (4.29) and noting (4.26) and that vy < C, we have that

n—1
< =207 Y mwl % [1+4CT1CZszz r

i=1 i=1
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n—1
<7 exp(?r%CZTiyi)gC n=2-— N; (4.30)
i=1
provided ¢ > 0 is chosen sufficiently small so that ¢ < Ch*, as d = 2, and
N—1
4(’7“%C Z Tn Yn < 1. Hence the second bound in (4.20) follows from (4.25),
n=1
(4.28) and (4.30). The remaining bounds in (4.20) follow from summing (4.22)
and noting (4.23a,b), (4.24), the second bound in (4.20), (4.4b) and (2.14). O

REMARK. 4.1. The timestep constraint 7,_1/7, < C in Theorem 4.2 above
arises solely from using the split time level approzimation in (1.12¢). If we
replaced o U‘Q"_1 +p VG"_1 in (1.12c) by a U} £ B V], then this constraint could
be removed. However, instead we would require 7, max;e y b(Uen_l, Ven_l)(xj) <
min{i—z, %}, n=1-— N, in order to guarantee the uniqueness of {UR, VP 1A_,.

A similar comment applies in the deep quench limat.

4.2 The Deep Quench Limit

Similarly to (4.2) and (4.1a) the fully discrete approximation of (P), (P*7) see
(1.13a—c), can be rewritten as:

Let U° = quo and V0 = szo. For n = 1 — N, find {U", V" A"} €
Sh x Sh x R such that U" £ V" € K* and

VU V™), V(x — (U £V")))
(G () — A p M () - (U V)

> (U BV — (U2 V) YV xe K", (4.31)

_ AAh

where for notational convenlence we set g,’;_l = g[’}n_lvn_l, M

n—1
M\Zn_l vnor and b,y = b(U"™H V1) throughout this section. It follows
forn =1— N that

Wwn = _é\rl;b_l (U"—U"‘l) + A, 70 = —Pﬂz—l (w) . (4.32)

Tn Tn

We introduce the analogue of (4.3), the discrete Lyapunov functional J” :
[S"]? — R defined by

T"(xa,x2) = Fhali + helil+ (Thaxe), 1) Vi, xe€5",  (4.33)
where on recalling (1.9¢) and (1.4b)

W(x1,x2) = Zpoay(xe + x2) + Zpoay(xe — x2) + s [axa (1—x1) — B3]
(4.34)

Theorem 4.3 below is an adaption to (P*7) of Theorem 4.3 in [7] for a deep
quench multi-component Cahn-Hilliard system with a concentration dependent
mobility matrix.
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THEOREM. 4.3. Let b satisfy (1.6a) with byin > 0. Let the assumptions on
u®, ¥ of Theorem 2.1 and (A) hold. Then for all h < hy such that ||Qz(u0 +

v0) — %HO,OO < % and for all time partitions {T,}7_, of [0,T] there exists a
solution {U™, V™ A" Wn Z"}N_ to (PP7 ). Moreover {U™, V"™ Z"}N_, are

unique and the following stability bounds hold such that

N
(max [IU7[F+ (V7] + ST = U YR 4 v - Vet
n=1
N
) IS+ [Pl < (4.35a)
n=1
N
Yo U+ 1273 + A" ?] < G, (4.35b)
n=1

Furthermore if u® € H3(Q), v° € H*(Q), %—f = %—f =0 on 0Q and if either
d < 2 with b satisfying (1.6a,b) or d = 3 with b > 0 constant; then for all h < hy
and for all partitions {7, }"_, of [0, T] such that 1,_1/mn < C, n =2 — N, the

solution {U™, V™ A" W, Z"IN_ | to (PHA1) satisfies

n=0
N
> ISR + 1527+ max ([ 2V [+ [[ba-i]2 27 3]
n=1
N
+ D Hlba- ]2V W™ = WG 4 |[ba-a]2 (27 = 277 Y[5]
n=1
N-1
+ |(b, — b1, VW 4+ | 27)%)| + max_ |A")? < Cp. (4.36)
n=1—

1
-

n

ProoF. Existence and uniqueness of {U™, V"} follows by noting that (4.31) is
the Euler-Lagrange inequality of the strictly convex minimization problem

. 1 - —
o Sh{%[|xl|%+|><z|%]+ﬁ|[bn_1]zvgs_1<xl—U” Bl
X1€5,,, X2€
x1Ex26K"

o [t M (s = V) = a (U x) = B (VP )t |

(4.37)

Existence of the Lagrange multiplier A in (4.31) then follows from standard
optimization theory. On noting (4.32) we then have the existence of W™ and
the existence and uniqueness of Z". Once again, as for (P) and (P"), we can
not guarantee the uniqueness of A™ if £ u’ = %

Choosing x = U"~1 4+ V"1 in (4.31) yields the analogues (subscripts and

superscripts #, ¢ removed) of (4.13) and (4.14) on noting that U™ + V" € K*;
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that is, {UT, V]'} € Q for all j € J. The latter yields the first bound in (4.35a).
Summing the former and noting (3.20), (3.15) and (3.30) yields the remaining
bounds in (4.35a). Choosing x = p in (4.31), adding together the resulting
+ versions and then choosing p = 0 and 1 yields the analogue (subscripts and
superscripts 0, £ removed) of (4.16). Summing this analogue of (4.16) and noting
(4.32), (3.20), (3.15), (3.30) and (4.35a) yields the bounds in (4.35b).

Given the further stated assumptions on u°, v", then similarly to (4.17) we
introduce for the purposes of the analysis below W9, Z° € S* defined by

(WO 2% )" = —4(A’ £ 0°),x) = (@U £ 8V), )" Vxes" (4.38)

Similarly to (4.19), we have that ||W°||;+|Z%|o < C. Let D" := (U"=U""1) /7,
and F™ := (V" —=V"=1) /7, for n > 1. It follows from (1.13c) and (4.38) that the
analogue of (4.21) holds; that is, all # subscripts and superscripts and the 6 ¢(-)
terms removed and “=" replaced by “<”. Adding together these £ versions and
noting (1.13a,b) with x = W™ — W"~! and y = Z" — Z"~! respectively, and
(4.11) and (1.11) yields for n > 1 that

Y7 [ID" [+ 1P
+ 5 (bnn, [[VWPP VW = WP P4 p7 127 + 27 = 2771 ]
= dn = %(bn—l, |VWTI—1|2 _|_p—1 |Zn—1|2)

+{ [(UY —u® DY+ (VO =" FY] ifn =1,

oy [a(DP=L, DY B (FP-L ] it > 2, (39

Following the remainder of the proof of Theorem 4.2 yields the bounds involv-
ing {U",V* Wn Z"}N_ in (4.36). The bound on the Lagrange multipliers,
{A"}N_| in (4.36) follows from the analogue of (4.16), discussed above, (4.32)

and the maximum bounds on {|W"|y,|Z2"|o}2_; in the first line of (4.36). O

4.3 Error Analysis

We now adapt the framework in [22] for analysing the discretization error in the
backward Euler method. In addition to (1.14), we introduce

U () =Ty () Uiy (1) = URTH) e (taon,ta). (4.40)
On setting
20t) = t’;:t, T(t) = 1y t € (th-1,tn], n=1-—N; (4.41)

it follows from (1.14) and (4.40) that for a.e t € (0,7")

_ , U, _ _ 8U (g
Ugy = Ugyy = =Tl Uge) = UGy =T (1= ) 5. (4.42)

Obviously, similar identities hold for the other variables, Vi), W4, Z(4) and
Agy. On recalling (4.3), (1.4b), (4.33) and (4.34); let j(f;’)-l' :[S"]? = R be
defined for all yi, xy2 € S* by

T 0asxe) = 3 Lhali + heli ]+ (0, (a,xe), D7 (4.43a)
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where \IjEl—g)(XlaX2) = Wgy(x1,x2) — 5 Laxi (1= x1) — B3] (4.43b)
We then introduce for a.e. t € (0,7T) the residual

Rigy = = Wik +aUly, Uy = Ul = (28 + 8 V(5 Viey = Vid)"

+ [T Wiy Vi) = i W Vi) | (4.44)
We introduce also
n n— n U _U%_l n— n Vis _Vz_l
£l = (aU(€)1—|—W(9), @@ )k BV, Lz, O

h, n n h, n— n— _ .
o {J(G;—(U(G)av(e)) - J(9)+(U(9) 1,‘/(9) 1)} , n=1=N; (4.45)

n n—1
U(G)—U

Dl = (o (U = U™+ Wy = Wy ), =)
n— n— n n— Vie _Vz_l
+ (ﬁ(v(e) t- V(e) 2) + (Z(e) - Z(e) 1), %‘L)ha n=2-=N;

(4.46a)
Vi)~V )h

Vi, —v
D= (VV), V(Hee))h

(UL + V) + (Uf — V), Le=leyr

Y ULV — (U — V), ek ifg >0, (446D)
0 iféd=0.

1 0
U)=Ut)
T

1

Digy := (@ Ugy) + W), )"+ BV + Zigy,

— 7 (VUG V(7@ le

It follows from the uniqueness of U(”G), V(Z) €S xS" n=0— N, (4.1a) and
(4.32) that R4y and {D%),S&)}nj\;l are uniquely defined.

LEMMA. 4.1. Forn=1— N we have that

TG = Uy i+ 1V = Vi T < m €5y

<Dy = 3LV — Ul 4+ WV — VAT B < 7Dy (447)
For a.e. t € (0,T) we have that
Ry < EFS(Q) < EFD(Q), (4.48a)
where
g(g)(t) = g&), D(g)(t) = D?&)’ t € (th-1,tn], n=1—>N. (4.48b)
Moreover under the assumptions of Theorem 1.1, we have that

N N
S ()€ <Y DYy <Gyt (4.49)

n=1 n=1
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ProoF. The first inequality in (4.47) for > 0 follows from the ¢ = 0 limit of
(4.12) on noting (3.19), (3.29), (4.1a), (4.43a,b) and (1.4b). The deep quench
limit (@ = 0) of (4.47) follows from the corresponding analogue of (4.12); that is,
all 8 and ¢ subscripts and superscripts removed. Choosing y = (U‘Q”‘I'1 =
(V‘g”"'1 — V) in (4.2),and x = Ut £ V7 in (4.31),n =1 — N — 1, adding
together the resulting + versions in each case, noting (4.1a), (4.32), (4.11) and
the convexity of \I!EI'G) yields the second inequality in (4.47) for n = 2 - N.
This inequality follows for n = 1 by comparing D(le) and 8(19) and noting (4.11)
and the convexity of \I!E;). The bounds (4.48a) follow immediately from (4.48b),

(4.44), (4.42), (4.41), the convexity of J(he’)-" and (4.47).

The first inequality in (4.49) follows from (4.47). We now prove the second
inequality. From (4.46a), (4.11), (3.19), (3.29), (4.1a), (4.32), (3.8), (4.20),
(4.36) and the assumption 7,1 < C'r;, we have that

Tn—1 Tn—1

Dn <l N UnlUn2 anvn2
Z _QZT I e r—— |h‘|'5|4‘Q |h]

N
Uly=U_ Vi V
IS BEHECEE I RN

N
3 D0 = b VW 4 e 20 )
+ 1 (0 [VW 2+ 7 |28 17) < o (4.50)
Finally it follows from (4.46b), (4.17), (4.38), (1.11), (3.19), (3.29) (4.1a), (4.32),
(2.16), (3.42), (3.15), (3.20), (3.30), (4.20), (4.36), (4.19) and its @ = 0 analogue
that

Ulo —UDG Ulo _UDo

1 71

(V0 = V), V(I 4 (7, = 7y oty
< (Ufyy - u°, 0220 (10, VWG, W)
(V) — o, ey e 2y < (451)
Combining (4.50) and (4.51) yields the desired result (4.49). O

LEMMA. 4.2. Let the assumptions of Theorem 1.1 hold. Then fora.e.t € (0,T)
LLIEY [+ ST + 1B 2+ B2
+3 [(ng) vy oy EF)) (MZw) v<o>E(U€)’E(U€))h]
< a(By, Big)" + 8 (B Bly)" + R
— L& (e, v, |vgu(9),v(g)Eu 2 p | S e B )
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ah ~h U u
((guw) v(e) gU(G), (9))%’%&’@9))'&
YL Oih Vi)

((M“w) (o) MU(G), (;)) T Bl )) (4.52)

+ + —_ + +
where Ezg(,)e) = u?e) — U((e)) e =" and EM) = v(ﬁg) — V( ) e Sh.

ProoF. Adopting the notation (1.14) and (4.40), then (4.2) can be restated as:
Find {Uyp,Va} € HY0,T;5") x HY0,T;S") such that {Us(-,0), Ve(-,0)} =
{quo(), szo()} and for a.e. t € (0,7
V(VWF £V, V) + (G o Tt = AT £ My 50
+(200(UF £ V) = (alUy £8V7),x)" =0 Vxes", (453

where A = £ 7Th[9¢>(U€+ + VY + 06U — V,F) —aU; ], Similarly (4.31)
can be restated as:

Find {U,V} € HY0,7;5") x H(0,T;5") such that {Uy(-,0),Vs(-,0)} =
{quo(), szo()} and for a.e. t € (0,7) U+ V € K" and

y(VUT £V, V( —(UF£VT)
+ (G- V-G AT +p My v-Sex— (UY £ V)
> (U™ £BV -, x—(UT+VT)" VxeK" (4.54)
Choosing x = E§ + Ej in the non-regularized version of (3.38) and x =U+V in

(3.56), adding together the two resulting (in)equalities in each case, and noting
(4.11) and the convexity of \I!EI'G) yields that

FUE [+ 1B | + lufy|F + 017 = 1U) |7 = [Vig) 7]
aul Buiyy ”
+ (\IIEI—G)(U?G)a v?&)) - \IIEI—G)(U(G)a V(G))a 1)h S ( gZ(g) ve) Ot aE( ))
vl 9vigy v
+ (6 v?& pMU(g) Vi) Ot aE( )) (455)

Similarly on choosing x = Ey't 4+ F't in (4.53) and x = u® £ v" in (4.54), it
follows that

SBSER + 1EGHE + (U8 R+ 1V = el 2 — ol 2]
h h ~h Uy Futyh
+ () Uy, Vidy) = oy (uley, i), )" < (gU(g),v(;) o — Uy EG))"
+p My, T gV BT (4.56)
(9)’ (9)

Adding (4.56) to (4.55) and noting the QAql 4 analogue of (2.23), the /\/l’(;1 e

analogue of (2.31), (4.1a) and (4.32) yields the desired result (4.52). a
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THEOREM. 4.4. Let the assumptions and notation of Lemma 4.2 hold. Then
we have that

1Et 1220700 (02)) F 1B |7 0.7 a1 (52))1)
+ HEEJG)H%Q(O,T;Hl ) FIE 12w 0,722

< Co(T) [y — Uhe)”?ﬂ 0T H Q) T llviey — (9)||L2(0,T;H1(Q))

Y

n=1
Co(T) h# (In )4%1 if0 >0 and d < 2;
Cy(T f60 >0, d=3
< G(T) T o g and b is constant; (4.57)
Cy(T) h? if 6 =0.
ProOF. Similarly to (3.48) we have that
~h __Ah U, U
|((gu(9) 'U(o) U(;)yv(g))AatilaE( )) |
< 5““(9) - U(_‘g)ﬁ + ||v(9 —Vie ||2]
aU pu u
+ Cllwallos lvsylla) 175221 (Gl o, Bl B
< 2B B + 1B 21+ C Lugs) =l 2+ [0y — oy I
U oV,
+ O {12 + IS
U u u
+ Clllulls o ll2) 1292 (@ o Bl Bl ), (458)
where we have noted (4.42). Similarly to (3.49) and (4.58) we have that
AR Aqh Vo) pu
|((MU(9) Y(g) MU(_G),V(;)) ot aE( )) |
< 5 LE R+ 1B 1T+ C [lug) — U?g)ﬁ + [lvge) — U?@)H%]
U oV,
+ O |2 E + +HISE R
oV, v v
+ Cllluylls o lla) 1220 (2L, 0 Fry Elp)h. (159)

On noting (4.42), (3.21), (3.8) and (3.30) we have that

U, — U U aUgo)

(E(é) aE( )) S l6|E1 |%+C(g3(9) V(g) ( )aE( ))h+CT2| ot |%a (460&)
v,—  w v OViey

(Bgy  Blgy)" < (MZ(G) v Bloys Bloy))" + O || =517 (4.60b)

Combining (4.52), (4.58) and (4.60a,b), noting (3.26), (3.35), (1.6b), (3.15),
(3.20), (3.19), (3.30), (2.69), (2.84a,b), (4.20), (4.36), (4.48a,b) and (4.47), and
applying a Gronwall inequality yields the first inequality in (4.57). The second
follows from (4.49), (3.51) and (3.59). a
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Finally, we have the proof our main result.

PrROOF OF THEOREM 1.1. The desired result (1.15) follows from combining
(3.51) and (4.57). The desired result (1.16), which is optimal, follows from
combining (3.59) and (4.57). O

5 Solution of the Discrete Problem

We now consider an algorithm for solving the discrete system at each time
level in (P?é;) This is based on the general splitting algorithm of [19]; see

also [14], [4] and [8] where this algorithm has been applied to solve a single
Cahn-Hilliard equation with a constant mobility, a Cahn-Hilliard system with
a constant mobility matrix and a single Cahn-Hilliard equation with a concen-
tration dependent mobility; respectively.

For n fixed, as U £ V* € K", see (4.5), (1.12c) and (1.13c) can be rewritten
as

Y(V(UGy £ Vi), VIx — (U £ Vi)
+ (o) (Ulsy £ Vigy) = (Wiay & 2y + a U £ BV ) x = (U £ V)"
>0 VyeK" (5.1)
where @g(-) = 260¢(-) if # > 0 and ¢(-) = 0. Multiplying (5.1) by u >
0, a ‘relaxation’ parameter, adding (U(”e) + ‘/(’5),)( — (U(”e) + V&))h to both

sides and rearranging and recalling (1.12a,b) and (1.13a,b); it follows that
{U(”e), Viay Wik Z(”e)} € [S"]* are such that Ulyy £ Vg € K" and satisfy

(0 1) (U = Vi) — (7 £ Y2, x = (U £ V) 20 ¥ x € KP,
(5.2a)
U _UT;_I n— n n— n— n— n
(%‘LaX)h +0 1(VW(9)a Vx) = ([0 - b(U(e) g V(g) 1)] VW(G)a Vx)
Yyxes'  (5.2b)
Vi _Vz_l n— n n— n— n— n
p(%aX)h +b 1(Z(9)aX) =([b b b(U(e) 1a V(@) 1)] Z(Q)ax)
Yyesh  (52)
where (I + pg)(s) = s+ ppg(s). In the above Y?, Y* € S* are such that for
all y € S*

(Y7 = Uy, x)" = —p [V(VU(”@), VX) = (Wiey +a Ui x0)" } (5.3a)
(V8 = Vi )" o= = 3TV, V) = (2 + 8V 0" (5.3)
and 0"~ is chosen such that b"~1 € [b271 b 0] with 8721 and byay as defined

in Theorem 4.1. We introduce also X7, X2 € S” such that for all y € S”

(X3 = Uy )" 5= g [ 1T 07y, V) = Wiy +a U 0" |, (5.1a)
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(X5 = Vi, )" = [ 7(VVE), VX) = (Zfy + BV 0)" (5.4b)

and note that X7 =2 U(”G) —Y" and X} =2 V’el) —Y]'. We use this as a basis

(
for constructing our iterative procedure:
For n > 1 set {U™0, V0 Jm0, 700} = (Un=t Vit Witz 1) € [
where W(Oe), Z(Oe) € S" are arbitrary if n = 1.
For k > 0 we define Yln’k,an’k € S x S" such that for all y € S*

(Y — U )= - {’Y(VU"’k,VX)—(Wn’k‘i'aU(ne)_laX)h}a (5.5a)

(= vk ) i= [TV TN = (204 VL0 (5.5h)
Then find {U™*+3 Y+ +3} € [§7]? such that U™FF3 £ V443 ¢ K7 and for
all y € K"

(74 o)) (UMHF3 £ VIRER), = (Unds £ yies))f

e P S (A S ) B (5.6)

and find {U™k+L yrktl pynktl gnktl) ¢ [GR]4 such that for all y € S”

Ursk+l _pn-1

8) ’X)h + bn—l(vwn,k+1’vx)

= ([ = (UG L VET DI VR V), (5.7a)

p(V",k+71——V(z)—1 ’X)h + bn—l(zn,k-l—l’x)
= ([ = o(UG L VET DI 2 ) (5.7b)
(Un,k+1’ X)h 4 [ {’y(VUn’k-H, VX) _ (Wn,k+1’ X)h}
= (Xf’k-l'l—l—uaU("e)_l,X)h, (5.7¢)
(Vn,k+1’ X)h 4 [ {v(vvn,k+1’ VX) _ (Zn,k+1’ X)h}
= (G B VT (5.7d)
where X?’k-l'l = 2UMkE — Yln’k and Xg’k-l'l =2 ymkts an’k.

Existence and uniqueness of Unkts 4 ynkts solving (5.6) and hence of
{Un k43 yrktay follows from the monotonicity of ©(g). In fact if & > 0 one
has to solve two decoupled nonlinear equations at each mesh point; that is, for
Jj=1—=1J

(4200 8) (U5 £ V5 () = (07 £ V375 (). (5.8)
Whereas if § = 0 one has two simple projections at each mesh point; that is, for

Jj=1—=1J

(U £V ) = minfmax{(V7 £ V) (), 01, 1), (5.9)
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It remains to show that there exists a unique solution to (5.7a—d). Introducing
{R™* R} € 2P % Sh such that
(RYM 0" = (U= Ve VIR V) ¥ oy € S, (5.10a)
(Ry" )" = (U1 v ) 275 y) ¥ x e s (5.10Db)
it then follows from (5.7a,b), (3.13), (3.16) and (5.7¢c) with x = 1 that

. pmktl_pn-1
Wn,k+1 — (I _ :’: )Wn,k _ [bn—l]—lgh( — [CD)] + erl,k)
(GO XPE) —a U, (5.112)
Zn,k+1 — Zn,k _ [bn—l]—lﬂh( (Vn’k-H_V(z)_l) + Rn,k) (5 llb)
= p —_— 2 . .

Tn

Therefore combining (5.7¢,d) and (5.11a,b), (5.7a-d) may be written equiva-
lently as find U™+t € S* "see (3.37), such that for all y € S*

(U4 (1= )N
Y pmktl_pn-1
[y (UL Ty G (), )

Tn

= (XD Wk 4 a U T = TG RYF), (- £ )x)" (5.12a)

and V™F+1 € §* such that for all y € S”

o n,k+1_yn—1
v Ve

(Vn,k+1’X)h + ﬂ{v(vvn,k+1’ VX) + [bn—l]—l p(Mh(é_L)’X)h}

Tn

= (X (2 BV - MR )R (5.12b)

Existence and uniqueness of {U™F+L ymh+l} ¢ Gh o Gh gsatisfying (5.12a,b)
follows since they are the Euler-Lagrange equations of the strictly convex min-
imisation problems

min { |x[2 + p 71X} + e IVG (0 - Ul
XESh, "

=2 (X p (R e U = BTG R, v }

: 2 2 P AP (~ _ /=12
fe“ﬁ{ IXIh + # {'ylxlﬁr gy M (= Vi) )|0}
—2 (X (2R BV = [ MRS, )
respectively. Finally W%+ and Z7#+Ll are uniquely defined by (5.11a,b).
Hence the iterative procedure (5.5a,b)—(5.7a~d) is well-defined.

THEOREM. 5.1. For all p € Rt and {U™0, y0 yn0 7701 ¢ [Sh] the se-
quence {U™F Vbl Wk Znky o generated by the algorithm (5.5a,b)~(5.7a-
d) satisfies

n,k n n,k n
U™ = Uy, VR = Vi,
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/ﬂb(U(’;)‘l, Vi DIV W — W) [P de — 0

and /ﬂb(U(’;)—l, V(’;)‘l) |Z7AH = Z0 P de = 0 as k — oo, (5.13)

In addition, if 6 > 0 then U™ +5 5 U2, V443 5 V2 as k — oo.

Proor. It follows from (5.3a,b), (5.4a,b), (5.5a,b), (5.7¢c,d), the definition of
Xin’k-l'l, for k > 0, and the appropriate choice of XZ»”’O, t = 1,2, that for £ > 0

- %(X{l—i_yln)g Un,k: %(X{l,k_i_yln,k)’ Un,k+% — %(X{l,k-l-l_i_yln,k);

(5.14a)
n n n n n,k n,k n i n,k n,k
Vie) = X3+ V), VR = LX), VRt = (X Ty,
(5.14b)
For notational convenience we set Ef = U™F — U(”e), B = Yk — V(Z),

n 7 — 7n n — n,k n — n.k n
Bly o= Wk W, B = 20k 70 Bl o= XPF X7 and B, = Y/ F vy,
i =1,2. Tt follows from (5.7c), (5.4a) and (5.14a) that

VIR = (Y, BERY = o (5 — B R

= & (IEXH - |Ek+1|h) (5.15a)
Similarly, it follows from (5.7d), (5.4b) and (5.14b) that
yIBGHE = (BT BV = 4 (IERT G — 1By R ). (5.15b)

In addition, we note that subtracting (5.7b) from (5.2¢) with x = 1 yields that
p (B 1) =y ([0 — BT V) (% — B, 1)
— 7 (B(UG VT EZYL D (5.16)
Choosing y = U™*+3 £ ymk+s ip (5.2a) and y = U(”e) + V(Tg) in (5.6) yields

n 1l n 1l n n k"’z k+3\h
p (o) (UMEFE 2 VIIES) — oy (Ul £ V), By * £ By )"

BT 2 BT < (Y, £ BY BT £ BT (5.17)

Adding together the + versions of (5.17) and noting (5.14a,b) yields that

nk+i nk+i n ny phts kt3
2 p (o) (U2 4 VR Fa) — o (U7 +V ), By 4 BLTE)

n i n L n n k43 k+%
+ 2p (e (U My v ’k+2)—80(9)(U(9)—V(9))aEU — By )"
+IEXH R + 1B < B+ 1By (5.18)

It follows from (5.7a), (5.2b) and (4.11) that

(Ek+1 Ek+1) (Ek+1 (Un,k+1 _ U(r;)—l) 4 (U(T;)_l _ U(T‘lg)))h
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= 7 | (U7 Vi DIV B

(9)
+ 7, ([bn 1 _ b(U(n) 1 V(n) 1)] V(Wn,k+1 _ Wn,k)’ VE[le-I_l)

=7 [b(U(l;% Var BV

b [ b Ve BV R

(8) > "6

VATV B

(n) 1 V(n) 1)]%V(Wn,k+1 _ Wn,k)%

— | [b"_1 —b(U
+ [Pt =b(U
(5.19a)
Similarly, it follows from (5.7b), (5.2¢) and (4.11) that
U(“)-l, Vsl ESLE
+ |[6"~ 1_b(U(n)1 V(n)l)]%E?H%
- l[b”‘l—b<U€;1,v<";1>PEZ|o

—p (B B = | [b(

By Vi DE @ = 2] (5.190)

+ [Pt =b(U
Adding (5.15a,b) and noting (5.18) and (5.19a,b) yields that

[ (U VT RV R 4 (g, vy SR

1 nkdl PR kit i
+%(@(9)(U”’k+2 4V ,k+2) _ 30( )(U( )_|_ V( )) + +EV+ )h
n 1 n 1 n n k+5 k"‘%
+%( o) (U Mz -V ’k+2)_80(€)(U(9)_V(9))aEU — B, )
L BSR4 BT+ b |80 — 000, Vi IRV BRI

+ Tn pH bt — b(U(n) ! V(n) 1)]%E2+1|0 + 7[|E5+1|1 + |Exk/+1|%]

< LTIEE R 1B ]+ dm | [0 = b0, VT NIV EL 2

FLm = b VT I B, (5.20)
Therefore noting the monotonicity of ¢g)(-) we have that

{ LB R + 1BY B 1+ 4 | Bt = b Vi DIV B 1

+ T p DT = B(UT VT IR ES R (5.21)

(8) (6 £>0

is a decreasing sequence which is bounded below and so has a limit. Therefore
the desired results (5.13) follow from (5.21), (5.20), (2.14), EF. € " and (5.16).
Finally if & > 0, the strict monotonicity of ¢(-), (5.21) and (5.20) yield the

. 1 1
desired convergence of U™**3 and V"h+3, ad
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REMARK.

We see from (5.5a,b)—(5.7a—d) that at each iteration k one needs to solve
only: (i) Two decoupled nonlinear equations (or two simple projections if § = 0)
for (U”’k‘l'% :I:V”’k*'%)(xj) at each mesh point z;, j =1 — J; see (5.8) or (5.9).
(ii) A fixed linear system with constant coefficients for U™**! see (5.12a). (iii)
A fixed linear system with constant coefficients for V™*+1 see (5.12b). On
a uniform mesh (ii) and (iii) can be solved efficiently using a discrete cosine
transform; see [9, §5], where a problem similar to (ii) is solved.

6 Numerical Experiments

For the first experiment, we considered (PZ’T) with the following data: d = 1,
Q=1(0,1),y =5x1073, 60 = 0.15, p = 0.08, « = 2, B = 4, b(-) given by
(1.5) with & = 0.1 and hence byax = (0.5+ o)*. As no exact solution to (Pg) is
known, a comparison between the solutions of (PZ’T) on a coarse uniform mesh,
Uy, with that on a fine uniform mesh, uy, was made. For the coarse meshes
we chose h = (J — )"t with J = 2 +1, (p = 6,7,8,9), and 7 = 0.25h%.
In addition 7" was taken to be N 7, where N was the largest integer such that
N 7 < 4. For the fine mesh we chose J = 2'?41 and 7 to be the value closest to
0.25 h# so that the corresponding time step on the coarse mesh was an integer
multiple of this fine 7. For the iterative method of Section 5, we chose the
relaxation parameter pu = m and 6" "' = bpax, n = 1 = N. For a stopping
criterion we chose

max {||U;"* — Uy Yoo, Ve = Vi "Hloee} < 1077

The initial data {u® v} were taken to be the clamped (complete) cubic
splines taking the values

{0.85,0.85,0.56,0.96,0.60, 0.24, 0.64, 0.64, 0.64}

and

{-0.13,-0.13,0.23,0,0, —0.1, —0.2, 0.34, 0.34},

respectively, at the points i/8 (i = 0 — 8), see Figure 1. Hence we have that
u’, 0" € HP(Q)\ H*(Q) and 2 = du_(7) = dv(0) = (1) = 0.
On setting U° = Qzuo and V0 = szo, then the assumptions on {u’ v°} and
{U°, V°} of Theorem 1.1 hold with § = —f5 and hg = z5. In addition this choice
of initial data ensured that the singularities in ¢ played a role.
We computed three quantities

1

2

N
1
G = |5 2 I ue (o) = U Cnnlff |
n=1
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Figure 1: wy (-, 1), vy (- 1), uee) (1) + vig)(-, 1) and wgy(-,t) — v(e)(-, ) when

t = 0 and 4.
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€2
€3

n=1—-N

N

1

= Sl vy (o nr) = Vi (ol
n=1

2

max |7Thv(9)(~, nr) — ‘/(9)(', nt)lo
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and obtained the following table of values to three significant figures:

TJ] 6 | 129 [ 27 [ 513 |
€2 [ 6.28x1072 ] 2.37x1072 | 8.36x1073 | 2.76x10~3
€2 [ 3.86x10-2 | 1.24x10~2 | 4.02x10~3 | 1.26x10~2
€2 [ 151x10~% [ 5.57x10° | 1.88x107° | 5.99x10~°

We see that the ratio of consecutive €2, £2 and £2 are between 2.6 and 3.2, which
is better than 23 = 2.5 to two significant figures, the rate of convergence proved
in Theorem 1.1 for the above choice of 7 = 0.25 k3.

Finally, we repeated the above experiment in the deep quench limit. We
chose precisely the same data as above except 7 = h. Once again all the
conditions in Theorem 1.1 hold. We obtained the corresponding table of values:

[J] 6 [ 129 [ 257 | 513 |
€7 [ 1.21x10" " | 3.14x10 2 [ 7.98x10°° | 1.87x10°°
€2 [ 1.02x107" | 1.93x10° 2 | 4.25%10°° | 9.20x10"*
€2 | 553x107° | 1.10x10°° | 2.:20x10~° | 5.15x10~7

The ratio of consecutive &2, €2 and &2 are between 3.9 and 5.3 which are close
to 22 = 4, the rate of convergence proved in Theorem 1.1 for the above choice

of 7 =h.
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