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Abstract 
In this paper creep data have been collected on uniaxial specimens of a carbon 
manganese (C-Mn) steel and a 9% Cr steel, designated P91, at 360 and 625°C, 
respectively. Additional tests have been performed at these temperatures on precracked 
compact tension (CT) specimens and pressurized pipes and tubes containing axial cracks 
to measure the creep crack initiation (CCI) and creep crack growth (CCG) rate properties 
of these steels. All the data have been analysed statistically assuming log-normal 
distributions in properties. The results of this analysis have been incorporated into a 
Monte-Carlo simulation to predict the cracking behaviour of the pressurized pipes from 
the uniaxial and ‘benchmark’ CT specimen data. Good agreement has been obtained for 
the P91 steel but not for the C-Mn steel. The discrepancy observed for the C-Mn steel has 
been attributed to constraint effects, possible extensive plasticity which occurred on 
loading and to uncertainties in the determination of the creep fracture mechanics 
parameter C* used for characterising the cracking behaviour. Further comparisons have 
been made with deterministic calculations involving different combinations of material 
properties in a sensitivity study to establish probabilities of failure in the pipes based on 
the ‘benchmark’ CT specimen. 
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Introduction 
For design and safety assessment purposes it is often necessary to establish the 
significance of defects in components that are subjected to creep and creep/fatigue 
loading. Several procedures are available [1-5] for this purpose. When these procedures 
are used at the design stage, the sizes of defects postulated are determined by the 
resolution of non-destructive inspection methods. Otherwise the sizes of defects detected 
in service are used to make estimates of remaining lifetimes. It is essential that the 
procedures are reliable and sufficiently conservative.  

The procedures assume that creep crack initiation (CCI) and creep crack growth 
(CCG) rate are correlated by the creep fracture mechanics parameter C*. Normally for 
components this term is estimated by reference stress methods [6-7]. However, when CCI 

  



 
 

and CCG properties are being determined in the laboratory from compact tension (CT) 
specimens, experimental methods are employed to calculate C* [8].  

In this investigation the significance of scatter in the measured creep properties is 
examined using statistical analysis. Data are reported on uniaxial creep specimens, CT 
test-pieces and pressurized pipes and tubes which contain external axial cracks [9, 10]. 
Deterministic calculations are performed, using combinations of upper bound, lower 
bound and mean material properties values taken from the uniaxial and ‘benchmark’ CT 
data, to predict the CCI and CCG behaviour of the pipes and tubes and make comparisons 
with Monte-Carlo simulations to obtain probabilities of failure.  

 
Fracture mechanics at high temperatures 
In general, plastic deformation and creep can be described by the same type of power law 
expression. For plasticity, plastic strain ε can be expressed in terms of stress σ by  

 

    
NAσε =  (1) 

and creep strain rate ε  by 

 
nCσε =  (2) 

 
where A, C, N and n are material constants. Normally equation (2) is used to describe 
secondary creep. When primary, secondary and tertiary creep are all observed it can be 
modified to describe an average creep rate  so that Aε
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where ε f  is the uniaxial creep failure strain, tr is the time to rupture and CA and nA are 
material constants.  

For a cracked body the stress field generated at a crack tip is characterised by J when 
plastic strains dominate [11]. When creep dominates it is characterised by C* [8, 12-16]. 
For the case when N = n, identical stress fields are produced for the plastic and creep 
situations and similar methods can be employed to calculate both J and C* [13]. 

For CT specimens ASTM E1457-01 [8] allows C* to be calculated from creep load 
line displacement rate  using the expression  cΔ
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where P is the applied load, b is the remaining ligament ahead of the crack and Bn is the 
net thickness between side-grooves when used. Here, F is a factor which depends on 
geometry and creep stress index, n, and is given by 
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It is important to note that the accepted procedure in the codes [1-2,4-5] is to estimate 

residual lives in components from ‘benchmark’ data derived from CT specimens using 
the C* approach [12-14].  

In components where a formula similar to equation (4) is not available, C* must be 
determined by finite element methods or reference stress concepts [6-7, 13]. When the 
reference stress approach is adopted 
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where K is the stress intensity factor and refε  is the uniaxial creep strain rate at the 
appropriate reference stress, σref. Ideally, refε  should be taken from uniaxial data 
obtained on the same batch of material.  

Usually it is convenient to employ limit analysis [17],[18] to obtain σref from 
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where Plc is the collapse load of the cracked body and yσ  is the yield stress. The value of 
Plc, and hence estimates of C* in equation (6), will depend on the collapse mechanism 
adopted and whether plane stress or plane strain conditions are assumed. Both ‘Global’ 
and ‘Local’ collapse mechanisms can be chosen [19]. Collapse load solutions are 
available for many geometries [e.g. 1-4,19-20], but in some cases need to be derived 
numerically. 

Previously it has been shown [21] that a ‘Global’ solution of reference stress [4] is 
most appropriate for cracked pipe components and therefore this solution is chosen in this 
paper to estimate C*. ‘Global’ solutions are based on collapse of the entire cross-section 
at the site of the defect. For a semi-elliptical axial defect in a pipe subjected to an internal 
pressure p, σref can be expressed as [4]
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where bate(a, c) is given by  
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In these equations, a is crack depth, c is half crack length at the surface and  and  
are the internal and external radii of the pipe, respectively. 
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Characterisation of creep crack initiation and growth 
Arguments for correlating high temperature crack initiation and growth essentially follow 
those of elastic-plastic fracture mechanics methods. For situations where creep 
dominates, it has been found that [8,12-16] crack growth rate can be described by a

 
φ*DCa =  (10) 

 
where D and φ are material constants that can be measured experimentally or determined 
from uniaxial creep data [4,12-16,22].  

Prior to the onset of steady state creep crack growth that is described by equation (10), 
usually an incubation period is observed during which damage builds up at the crack tip 
[23]. The duration of this period is determined to some extent by the resolution of the 
crack monitoring equipment used to detect it. Typically this corresponds to a crack 
extension Δa of between 0.1 and 0.5 mm depending on component shape and size. In this 
study an extension of 0.5mm is adopted as relevant to defects in pipes. From equation 
(10) it may be expected that the time ti to initiate an extension of Δa is given by an 
expression of the form. 
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where φi and Di are material constants. A lower bound to ti can be obtained by assuming 
that steady state cracking dominates in this period so that φ =φi, Di= /D [24] and the 
incubation time becomes 

aΔ
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Equations (10)-(12) will be used in conjunction with equations (8) and (9) to make 
predictions of CCI and CCG in the pressurized pipes and tubes. 

  

  



 
 

Probabilistic Analysis 

Uniaxial creep properties and CCI and CCG rate data are subject to experimental scatter. 
In order to quantify risk of failure, statistical analysis of the data is required [25]. 
Alternatively, a sensitivity study can be carried out using deterministic calculations with 
different combinations of upper, mean and lower bound material properties. When a 
statistical analysis is undertaken equations (2) or (3), (10) and (11) are re-written as; 
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where e with the appropriate subscript is the error in the variables which are obtained 
from the experimental data and statistical analysis. In equations (13)-(15), en, eφ and 

i
are normal standard distributions derived form the scatter in n, φ and φi and εe , a  

and 
it
corresponds to the normal error distribution in creep strain rate, creep crack 

growth rate and creep initiation time respectively. Finally C′, D′ and Di′ in equations 
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e

(13)-(15) are the value of C, D and Di, respectively, in equations (2), (10) and (11), which 
ensure that the mean line fitting the experimental results always pass through the centroid 
of the available data set (as shown for example in Fig. 1) when slopes of n + en, φ + eφ 
and φi +  are adopted. 
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It should be noted from Fig. 1 that when the data are generated from CT specimens, 
C* is determined experimentally and the statistical analysis is assumed to be accurate. 
While, for components when C* is calculated from equation (6), it will include the 
variability in strain rate given by equation (13) so that estimates of a  will not only 
depend on scatter in the data from Fig. 1 but also variability in C* as illustrated in Fig. 2. 
This combination of variabilities is discussed later in the analyses using a Monte-Carlo 
simulation. In this simulation calculations are carried out for combinations of values of 
the variables (chosen randomly from their statistical distributions) to produce 
probabilities of times to crack initiation or a specific amount of crack extension in a 
pressurized cracked pipe. In each case, 10,000 calculations were made to obtain 
probabilities of failure in the ‘tails’ of the cumulative distribution function. 

 
Experimental Data 

Experimental data from three European collaborative projects [9-10,26-27] have been 
examined. The materials tested were a C-Mn steel and a 9%Cr steel (P91) with the 
compositions given in Table 1. They were tested at respectively 360 and 625 oC. Their 
tensile properties at these temperatures are given in Fig. 3 and Table 2. Their 
corresponding creep strain rate data are shown in Figs. 4 and 5 and Table 3 which also 
lists the uncertainties in C, n and εf obtained from a statistical analysis of the results. The 
stresses applied during creep for the C-Mn steel were above the yield stress and 
significant plasticity occurred on loading. There was also appreciable primary and tertiary 

  



 
 

creep and average creep strain rate has been recorded for this material in Fig. 4 and Table 
3. For the P91, stresses were below yield and mainly secondary creep was observed. It is 
evident from the results that much less variability was obtained from the creep properties 
of P91 and this is reflected in the smaller standard deviations calculated in the table.   

Creep crack initiation and CCG rate data obtained from the collaborative projects [26-
27] for each material are shown in Figs. 6 to 9. The corresponding mean and standard 
deviations obtained from statistical analysis of the results are listed in Tables 4 and 5. The 
data were collected from tests on CT specimens that were performed according to ASTM 
E1457-01 [8] standard specifications. It is apparent from the tables that similar standard 
deviations are calculated for both materials. For the C-Mn steel three sizes of specimen 
were examined and no distinction in the results was found. There is more scatter in the 
initiation data (Fig. 7) than in crack growth rate (Fig. 6) for this material. This is 
attributed to the difficulty in accurately determining crack initiation. For the P91 material 
(Figs. 8 and 9) some slow cyclic (frequency f < 0.01 Hz) data have been included. Little 
effect on cracking rate (Fig. 8) is observed but it is apparent that cycling shortens the 
initiation time (Fig. 9). Also included in Figs. 7 and 9 are predictions of CCI using CCG 
rate data and equation (12). Approximate agreement with the means time in Fig. 7 for the 
C-Mn steel is obtained suggesting that cracking during the incubation period is close to 
the steady state CCG rate. For the P91 steel, equation (12) approximately corresponds 
with the -2SD prediction suggesting that damage takes some while to build up at a crack 
tip in this material. 

Results of CCI and CCG tests on the pressurized tubes and pipes have been reported 
previously [26, 27-29]. The dimensions of the pipes and tubes and pressures applied are 
given in Table 6. Also included are the dimensions. All the defects were axial and 
introduced on the outside. For P91 the defects were approximately semi elliptical; for the 
C-Mn steel they were nearly rectangular and represented long shallow slits. The results 
are shown in Figs. 10-13. In calculating C* for the pipes and tubes in these figures, C* 
was determined from equation (6) using equations (8) and (9) and the mean creep strain 
rate properties taken from Figs. 4 and 5. In the P91 steel, cracking proceeded along the 
surface (c) and radial (a) directions so that the crack maintained approximately the same 
semi-elliptical shape. For the C-Mn steel cracking only grew in the radial (a) direction. 
From Figs. 10 and 11 it is clear for the C-Mn material that cracking initiates sooner in the 
tubes and pipes and progresses faster than it does for CT specimens. There are a number 
of possible causes. The large difference can be due to constraint effects, the material 
properties used and the method of C* estimation. For example no allowance has been 
made for plasticity when determining C* from displacement rates in the experimental 
relation equation (4) when plotting the CT data. This could result in these C* values 
being over-estimated. In addition, the formulae used (equations (8) and (9)) for 
calculating C* in the tube and pipe are for semi-elliptical cracks, whereas the defects 
more closely resembled rectangular slits. Nevertheless use of a references stress σref based 
on 2 dimensional axial cracks although giving improved correlation, still does not give 
close agreement. Also with n = 12.5 for this material, only a small error in σref could 
translate into a large error in C*. The situation is different for the P91 steel. In this 
material close correspondence is achieved between the CT and pipe results. The standard 
deviations for CCG and CCI for the tubes and pipes for both materials are given in Tables 

  



 
 

7 and 8, respectively. It is apparent that they are very close to those for the CT specimens 
as is to be expected, assuming that the same processes control cracking in each case. 

Since it has been shown from analysis of the experimental results in Tables 4 and 5, 
and 7 and 8 that the same values of φ and φi can be chosen for the CT specimens and 
cracked pipes and tubes for both materials (note that for C-Mn steel φ can be chosen at 
lower value of C*, which gives conservative estimation of CCG rate at higher value of 
C*), a scaling factor approach is proposed for predicting the behaviour of the pipes and 
tubes from the ‘benchmark’ CT data. This can be achieved by estimating the cracking 
rate in the cracked pipe  from equation (10) using cpa

 
φκ *DCa scp = . (16) 

 
where κs is a scaling factor which superimposes the cracked pipe and ‘benchmark’ CT 
CCG rate data shown in Figs. 10 and 12. Similarly for the initiation time of the cracked 
pipe, ticp, equation (11) can be re-written as 
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where κi is the scaling factor which superimposes the cracked pipe and ‘benchmark’ CT 
CCI data shown in Figs. 11 and 13. For both CCG and CCI, the scaling factors are used 
to allow for differences in constraint between specimen types and different methods of 
calculating C*. A scaling factor close to one implies close agreement between the 
cracked pipe and CT experimental results. 

The actual values obtained for κs and κi for each material are shown in Tables 7 and 8. 
It is evident that agreement within a factor of about 2 between the cracked pipe data and 
CT results is obtained for P91 steel. For the C-Mn steel, the ‘benchmark’ CT specimen 
CCG rate has to be elevated by about 15 times and the CCI time reduced by 
approximately 1/4 to achieve correspondence with the cracked pipe and tube results. It is 
also evident from the P91 data that although the CCG static and cyclic data have the same 
scaling factor, different values are needed for the CCI data. Appropriate use of the scaling 
factors based on Tables 7 and 8 will ensure accurate predictions of cracked pipes and 
tube behaviour from ‘benchmark’ CT data. 

 
Sensitivity Analysis and Monte-Carlo Simulation 
When making predictions of component lifetimes by deterministic methods it is common 
practice to undertake a sensitivity analysis to establish the importance of changes in 
material properties, loading conditions, component dimensions and crack size. In this 
investigation choice of material properties and whether an incubation period is included 
or not in the calculations, are considered for examining the time taken for a crack to grow 
a specified amount in the C-Mn steel and P91 pipes. In making the calculations, the 
uniaxial creep properties given in Table 3 have been employed to determine C* and the 
CT specimen data provided in Tables 4 and 5 to estimate CCG and CCI using the scaling 

  



 
 

factors listed in Tables 7 and 8. In the deterministic calculations, combinations of 
materials properties listed in Table 9, where ±2SD values have been chosen to represent 
bounding behaviour, have been selected and applied to the pipe geometries and loading 
conditions given in Table 10. The results are included in Tables 11 and 12 for each 
combination of material properties specified in Table 9.  

In each case, the initiation time to 0.5 mm crack extension, the time to reach a 
specified amount of crack growth assuming steady state conditions and the combined 
time involving initiation and steady state growth are given. Analysis C1 represents mean 
properties throughout, C2 upper bound creep strain rate and CCG behaviour and lower 
bound CCI, C3 upper bound creep strain rate properties and mean CCG and CCI 
behaviour, C4 and C5 mean creep strain rate properties with either upper or lower bound 
CCG and CCI characteristics and C6 examines the influence of change in creep stress 
index. In all cases the creep strain rate properties determine the magnitude of C* and 
because either mean or upper bound values were chosen for these, all the initiation times 
are less than the average given by C1. Similar observations can also be made for the time 
to reach a specified amount of crack growth assuming steady state cracking or a 
combined initiation time plus steady state growth.  

It is apparent that the biggest range in predicted times occurs for the C-Mn steel. This 
is because of the larger scatter in its uniaxial creep properties (see Fig. 4 and Table 3). It 
is also evident for some combinations of CCG and CCI behaviour, as for example in P91, 
that assumption of a combined incubation period followed by steady state growth using 
cyclic incubation data results in shorter lives than when steady state cracking is assumed 
throughout. This happens when an initiation time is chosen which gives an average 
cracking rate for the first 0.5 mm of growth which is higher than the steady state growth 
rate. This is not physically realistic whilst creep damage is building up at a crack tip. The 
implication is that a bound on ti should be selected such that it is never so small that it 
gives an initial cracking rate that is greater than the steady state value. 

In order to make comparisons between deterministic and probabilistic assessments a 
Monte Carlo simulation has been carried out for the pipe examples using the distributions 
obtained from the statistical analyses. In Monte Carlo simulation, all variability of 
material properties were taken into account. For each example, 10000 calculations were 
performed to produce sufficiently accurate probability distributions. The results are 
shown in Figs. 14 and 15. Superimposed on these figures are the predictions of the 
deterministic analysis. The comparisons have been made from combined initiation plus 
steady state growth. It is clear in Tables 11 and 12, when mean properties are used 
throughout, that an approximately 50% probability of reaching the desired crack growth 
is achieved as is expected. In contrast, use of the worst case properties (analysis C2) 
corresponds with a probability of about 1/300 for the C-Mn steel and 1/500 for the P91 
material (i.e. less than 1% for both materials) in reaching the specific crack extensions 
identified in Figs. 14 and 15. The next most pessimistic prediction is given by analysis 
C4 for which mean uniaxial creep properties were assumed and worst case CCG (upper 
bound) and CCI (lower bound) data were employed. 

 

  



 
 

Conclusions 

Uniaxial creep strain rate data and creep crack initiation (CCI) and creep crack growth 
(CCG) rate information have been presented for a C-Mn steel at 360°C and a 9% Cr steel 
(designated P91) at 625°C. The CCI and CCG data were collected on compact tension 
(CT) fracture mechanics specimens and also on pressurized cracked tubes and pipes. The 
cracked pipes and tubes contained either an external axial rectangular slit or an axial 
external semi-elliptical defect. In all cases the cracking results have been interpreted 
using the creep fracture mechanics parameter C*. Scatter in all the data has been analysed 
statistically to obtain standard deviations (SD). Good agreement has been found between 
the cracking behaviour of the P91 pipes and CT specimens. This has not been found to be 
the case for the C-Mn steel. For this material cracking in the tubes and pipes has been 
seen to occur faster than in the CT specimens. This has been attributed to the significant 
plasticity that was noted on loading and to uncertainties in estimates of reference stress 
for calculating C* for tubes and pipes containing rectangular slits.  

A sensitivity analysis for the pipes has been undertaken using deterministic methods 
and Monte-Carlo simulations. The ±2SD limits from the statistical analyses have been 
used to provide bounding material properties for the deterministic calculations and the 
basis from which variability in the properties was chosen randomly in the Monte-Carlo 
simulation. Times to crack initiation and to specific amounts of crack extension have 
been calculated and the probabilities of reaching this crack extension in a given time have 
been determined. It has been found that the deterministic calculations give probabilities 
that range from less than 1% to approximately 50%. The less than 1% is achieved when 
the worst case combination of ±2SD limits on properties are assumed and the 50% when 
mean behaviour is assumed, as is expected. 

The implications of this study are that predictions of the behaviour of cracked pipes 
cannot be guaranteed purely from data obtained on CT specimens alone for all materials. 
For the C-Mn steel at least, additional tests on cracked pipe are needed to obtain 
appropriate scaling factors for quantitative agreement. 
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Table 1: Chemical composition of C-Mn and P91 steel (in weight %). 
 C Si Mn P S Cr Mo Ni Cu Al N FN † 

C-Mn steel 0.16 0.28 0.87 0.014 0.014 0.09 0.05 0.2 0.15 0.019 0.019 0.0110
P91 0.091 0.37 0.41 0.028 0.013 8.44 0.92 0.27 0.04 0.07 0.038 - 

† FN is calculated “Free nitrogen” for 920°C. This heat was categorised as high free nitrogen. 
 
Table 2: Material properties for C-Mn and P91 tested at 360 and 625°C, respectively. 

Materials Temperature Young's modulus σy (MPa) 
C-Mn 360 oC 190 GPa 240 
P91 625 oC 160GPa 325 

 
Table 3: Mean and standard deviation of n, log(C) and εf  (σ in MPa, ε  in /h). 

Materials Temp. 
(°C) 

Mean of 
 log(C) 

Mean of  
n 

Mean of 
 εf (%) 

SE† of 
n 

SD† of 
 εe

SD of εf 

C-Mn 360 -37.3 12.5 18.1 3.36 0.28 4.0 
P91 625 -21.86 8.38 13.9 0.39 0.05 6.1 

†SE and SD represent standard error and standard deviation, respectively 
 

Table 4: Mean and standard deviation of φ and log(D) for CT CCG rate tests (C* in 
MJ/m2h, in mm/h). a

Materials Temp. log(D) φ SE for φ SD for  ae
C-Mn 360°C 1.01 0.89 0.014 0.18 
P91 625°C 0.15 0.60 0.030 0.28 

 

Table 5: Mean and standard deviation of φi and log(Di) for CT CCI tests (C* in MJ/m2h, 
ti in h). 

Materials Temperature log(Di) φi SE for φi SD for  
it

e
C-Mn 360°C -0.12 -0.69 0.14 0.41 

P91 (static) 625°C 0.39 -0.55 0.15 0.26 
P91 (cyclic) 625°C 0.037 -0.55 — 0.17 

 
 

  



 
 

Table 6: Geometries and pressures applied to pipe and tube. 

Component geometry (mm) Materials Specimen 
Re Ri W ao a0/c0 

Pressure 
(MPa) 

63.5 50.5 13 1.0 0.04 69-78 Pipe 
57.7 45.5 12 1.0 0.04 69-78 C-Mn 

Tube 32 25 7 1.0 0.04 73-85 
P91 Pipe 112.5 92.5 20 4-7 0.38-0.4 10-20 

W = wall thickness, Re – Ri 
 
Table 7: Mean and standard deviations of φ and log (D) together with scaling factor, κs, 
for pipe and tube (C* in MJ/m2h, in mm/h). a

Materials Temp. log(D) φ SD for  ae κs 
C-Mn 360°C 2.19 0.89 0.14 15.13 
P91 625°C 0.034 0.60 0.24 0.77 

 
Table 8: Mean and standard deviation of φi and log (Di) together with scaling factor, κi, 
for pipe and tube (C* in MJ/m2h, ti in h). 

Materials Temp. log(Di) φi SD for  
it

e κi 
C-Mn 360°C -0.96 -0.69 0.17 0.14 

P91 (static) 625°C 0.083 -0.55 0.15 0.49 
P91 (cyclic) 625°C -0.123 -0.55 0.21 0.69 

 
 

  



 
 

Table 9: Material properties used in the deterministic method. (a) C-Mn steel, (b) P91 

(i) (calculate C*) (ii) (steady state) (iii) (initiation) 
creep strain rate 
(σ in MPa, ε  in /h) 

CCG - (C* in MJ/m2h, 
a  mm/h) 

CCI , (C* in MJ/m2h,  
ti in h) 

Calculations 
 
Analysis runs 

C n D φ 

(a) 

Di φi 
4.61×10-38 12.5 1.34×102 0.89 1.10×10-1 -0.69 C1 

mean mean mean mean mean mean 
1.68×10-37 12.5 3.11×102 0.89 1.62×10-2 -0.69 C2 

+2SD mean +2SD mean -2SD mean 
1.68×10-37 12.5 1.34×102 0.89 1.10×10-1 -0.69 C3 

+2SD mean mean mean Mean mean 
4.61×10-38 12.5 3.11×102 0.89 1.62×10-2 -0.69 C4 

mean mean +2SD mean -2SD mean 
4.61×10-38 12.5 1.01×102 0.86 1.70 -0.42 C5 

mean mean mean -2SD Mean 2SD 
1.76×10-20 5.88 1.01×102 0.86 1.70 -0.42 C6 

mean -2SD mean -2SD Mean 2SD 
 
 

(i) (calculate C*) (ii) (steady state) (iii) (initiation) 
creep strain rate 
(σ in MPa, ε  in /h) 

CCG, (C* in MJ/m2h, 
a  mm/h) CCI, (C* in MJ/m2h, ti in h) 

Calculations 
 (b) 
Analysis runs 

C n D φ Di 
(static) 

Di 
(cyclic) φi 

1.38×10-22 8.38 1.08 0.60 1.21 0.75 -0.55 C1 
mean mean mean mean mean mean mean 

1.74×10-22 8.38 3.85 0.89 0.37 0.23 -0.55 C2 
+2SD mean +2SD mean -2SD -2SD mean 

1.74×10-22 8.38 1.08 0.89 1.21 0.75 -0.55 C3 
+2SD mean mean mean mean mean mean 

1.38×10-22 8.38 3.85 0.89 0.37 0.23 -0.55 C4 
mean mean +2SD mean -2SD -2SD mean 

1.38×10-22 8.38 0.56 0.86 43.0 26.7 -0.25 C5 
mean mean mean -2SD mean mean 2SD 

5.52×10-21 7.60 0.56 0.86 43.0 26.7 -0.25 C6 
mean -2SD mean -2SD mean mean 2SD 

 
 
 
Table 10: Loading conditions and geometries for pipe tests used in calculations. 

Component geometry (mm) Materials 
Ro Ri ai af a/c 

Pressure 
(MPa) 

C-Mn 57.7 45.5 1.0 4.45 0.04 69.3 
P91 112.5 92.5 7.5 10.81 0.38 16.0 

 

  



 
 

Table 11: Comparison of deterministic and probabilistic results for C-Mn steel. 

 Experimental 
Result C1 C2 C3 C4 C5 C6 

50% point 
from 

M.C.i) 

1% point 
from 

M.C.i) 
Incubationii), (h) 400 898 54.1 366 133 418 209 955 56.2 

Steady stateiii), (h) 1140 155 358 488 1050 296 1130 109 
Combinediv), (h) 

1400 
1420 126 532 359 916 385 1560 170 

 
i) Monte Carlo simulation (probabilistic results) at 50% and 1%probability level 
ii) Time for a to grow from 1.0 to 1.5 mm 
iii) Time for a to grow from 1.0 to 4.45 mm using steady state CCG. 
iv) Time for a to grow from 1.0 to 4.45 mm using the combined initiation time and steady state crack 

growth 
 
 

Table 12: Comparison of deterministic and probabilistic results for P91. 

Loading and 
condition 

Experimental 
Result C1 C2 C3 C4 C5 C6 

50% point 
from 

M.C.i) 

1% point 
from 

M.C.i) 
Incubationii), (h) 

(cyclic) 562 151 494 172 532 532 563 137 

Incubationii), (h) 
(static) 

530 
889 240 783 272 884 850 891 217 

Steady stateiii), (h) 3310 808 2880 929 3190 2960 3320 701 
Combinediv), (h) 

(cyclic) 3180 790 2770 907 3080 2890 3310 1050 

Combinediv), (h) 
(static) 

2300 

3450 907 3010 991 3370 3170 3660 1220 

 
i) Monte Carlo simulation (probabilistic results) at 50% and 1% probability level 
ii) Time for a to grow from 7.5 to 8.0 mm 
iii) Time for a to grow from 7.5 to 10.81 mm using steady state CCG. 
iv) Time for a to grow from 7.5 to 10.81 mm using the combined initiation time and steady state crack 

growth 
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Figure 2: Variation in a  due to 
uncertainties in estimates of D, φ and C* 

Figure 1: Error distributions from statistical 
analysis of CCG rate tests. 
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Figure 3: Stress/strain curves for C-Mn at 360°C and P91 at 625°C. 
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Figure 4: Average creep strain rate versus 
stress for C-Mn at 360°C. 

Figure 5: Minimum creep strain rate 
versus stress for P91 at 625°C. 
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Figure 6: Steady state CCG rate versus C* 
for C-Mn steel CT specimen tested at 360°C 
showing the mean and ±2SD bounds. 

Figure 7: Initiation time for Δa = 0.5 mm 
versus C* for the C-Mn CT specimens 
tested at 360°C showing the mean and ±2SD 
bounds. 
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Figure 8: Steady state CCG rate versus C* 
for P91 CT specimens tested at 625°C 
showing the mean and ±2SD bounds. 

Figure 9: Initiation time to reach Δa = 0.5 
mm versus C* for P91 CT specimens tested 
at 625°C showing the mean and ±2SD 
bounds. 
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Figure 10: CCG rate versus C* calculated 
from n = 12.5 for pipe and tube compared 
with CT specimen results.  

Figure 11: Initiation time against C* 
calculated from n = 12.5 for pipe and tube 
compared with CT specimen results.  
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Figure 12: CCG rate for pipe compared 
with CT specimens data for P91 at 625°C. 

Figure 13: Initiation time for pipe with CT 
specimens data for P91 at 625°C. 
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Figure 14: Comparison of deterministic and probabilistic times to reach a crack 

extension of 4.45 mm assuming combined initiation and steady state crack growth 
behaviour for C-Mn pipe. 
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(a) (b) 

Figure 15: Comparison of deterministic and probabilistic times to reach a = 10.81 mm 
assuming a combined initiation and steady state crack growth behaviour for P91pipe. (a) 
cyclic and (b) static 
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