
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

CSE Journal Articles Computer Science and Engineering, Department 
of 

2019 

JITANA: A modern hybrid program analysis framework for android JITANA: A modern hybrid program analysis framework for android 

platforms platforms 

Yutaka Tsutano 

Shakthi Bachala 

Witawas Srisa-an 

Gregg Rothermel 

Jackson Dinh 

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles 

 Part of the Computer and Systems Architecture Commons, and the Systems and Communications 

Commons 

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an 
authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages


JITANA:  
A modern hybrid program analysis 
framework for Android platforms 

Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-an,  
Gregg Rothermel, Jackson Dinh 

Department of Computer Science and Engineering,  
University of Nebraska-Lincoln, Lincoln, NE, 68588, USA 

Corresponding author — Witawas Srisa-an, email witty@cse.unl.edu

Email addresses —  ytsutano@cse.unl.edu (Y. Tsutano), sbachala@cse.unl.edu (S. Bachala), 
grother@cse.unl.edu (G. Rothermel), jdinh@cse.unl.edu (J. Dinh).  

Abstract 
Security vetting of Android apps is often performed under tight time constraints 
(e.g., a few minutes). As such, vetting activities must be performed “at speed”, when 
an app is submitted for distribution or a device is analyzed for malware. Existing 
static and dynamic program analysis approaches are not feasible for use in secu-
rity analysis tools because they require a much longer time to operate than secu-
rity analysts can afford. There are two factors that limit the performance and effi-
ciency of current analysis approaches. First, existing approaches analyze only one 
app at a time. Finding security vulnerabilities in collaborative environments such as 
Android, however, requires collaborating apps to be analyzed simultaneously. Thus, 
existing approaches are not adequate when applied in this context. Second, exist-
ing static program analysis approaches tend to operate in a “closed world” fash-
ion; therefore, they are not easily integrated with dynamic analysis processes to ef-
ficiently produce hybrid analysis results within a given time constraint. 

In this work, we introduce JITANA, an efficient and scalable hybrid program anal-
ysis framework for Android. JITANA has been designed from the ground up to be 

1

digitalcommons.unl.edu

Published in Journal of Computer Languages 52 (2019), pp 55–71.  
doi 10.1016/j.cola.2018.12.004 
Submitted 29 October 2018; revised 25 November 2018; accepted 16 December 2018; 

published 24 April 2019. 
Copyright © 2019 Elsevier Ltd. Used by permission.   



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       2

used as a building block to construct efficient and scalable program analysis tech-
niques. JITANA also operates in an open world fashion, so malicious code detected 
as part of dynamic analysis can be quickly analyzed and the analysis results can be 
seamlessly integrated with the original static analysis results. To illustrate JITANA’s 
capability, we used it to analyze a large collection of apps simultaneously to iden-
tify potential collaborations among apps. We have also constructed several anal-
ysis techniques on top of JITANA and we use these to perform security vetting un-
der four realistic scenarios. The results indicate that JITANA is scalable and robust; it 
can effectively and efficiently analyze complex apps including Facebook, Pokémon 
Go, and Pandora that the state-of-the-art approach cannot handle. In addition, we 
constructed a visualization engine as a plugin for JITANA to provide real-time feed-
back on code coverage to help analysts assess their vetting efforts. Such feedback 
can lead analysts to hard to reach code segments that may need further analysis. 
Finally we illustrate the effectiveness of JITANA in detecting and analyzing dynami-
cally loaded code. 

Keywords: Android security, Static analysis, Dynamic analysis 

1. Introduction 

Currently, over 90% of malicious software or malware developed for 
smart-mobile devices targets Android systems. This is due to the 
open-source nature of the Android OS and its popularity (there were 
at least 1.4 billion Android devices deployed as of the beginning of 
2017). To deal with widespread and rapid releases of malware, security 
analysts use program analysis approaches to identify potential mal-
ware, and then analyze potentially malicious apps to assess their be-
haviors [7,35,39]. While these analysis approaches and tools have been 
effective for identifying faults during a typical software development 
life cycle and even after software deployment, security analysis often 
requires more stringent criteria in terms of scalability, performance, 
and analysis time. For example, an Android app can utilize features 
from other apps to perform services. As such, malware can utilize fea-
tures from other apps to perform malicious acts such as leaking sen-
sitive information. For an analyst to have a clear picture of what an 
app is capable of doing, the analyst needs to scalably analyze other 
apps and services in conjunction with the target app. 

While existing approaches can perform such analyses, they are 
highly inefficient [15,21,22]. As such, they are cannot be used to ad-
dress today’s security needs. As a simple use case, many organizations 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       3

have adopted Bring-Your-Own-Device policies, allowing their own em-
ployees and visitors to connect their personal devices to the compa-
ny’s networks. Prior to connecting these devices to the networks, they 
should be vetted for malware. Vetting in this case should be done “at 
speed” in a matter of minutes. Unfortunately, using existing state-
ofthe- art approaches and tools to analyze apps in a device for con-
nections can take many hours, making them infeasible for at-speed 
security vetting.   

Because existing analysis techniques can take a long time to com-
plete, a common vetting technique is to run a virus scanner on apps, 
or exercise them for a few minutes to see if they perform malicious 
deeds. As an example, Google’s earlier attempt to vet apps was 
BOUNCER. According to multiple sources, BOUNCER spent only 5 min vet-
ting a given app. Therefore, we have seen reports of methods for by-
passing BOUNCER’s vetting effort [19,31]. Approaches adopted by mal-
ware authors include delaying malicious actions for more than 5 min 
and avoiding malicious actions if the app is running on an emulator, 
which is the platform that BOUNCER employs. 

Prior work has shown that combining static and dynamic analysis 
approaches can yield effective analysis solutions [4,25,39]. As such, 
Google’s recent Cloud-based security analysis performs both static 
and dynamic analysis as part of the application review process [7]. 
This process consists of an automated risk analyzer that performs a 
two-step analysis process. In the first step, it statically analyzes the 
code by extracting application features to detect potentially bad be-
haviors (e.g., sending out senstive information via SMS and applica-
tion code to perform cloaking strategies to evade detection during 
dynamic analysis). It then performs dynamic analysis to identify “in-
teractive behaviors” that are not detectable by static analysis. If an 
app is flagged as potentially harmful, it is referred to a security ana-
lyst for manual review [7]. 

As part of Google’s dynamic analysis, a qualitative metric could 
involve measuring code coverage to see if most paths have been 
exercised. However, measuring code coverage can add a significant 
amount of time to the risk assessment process. Typically, to obtain 
code coverage information, static analysis is first performed on the 
app under investigation to identify paths. A vetting system such as 
that used by Google could combine this step with their static analysis 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       4

effort. However, the next step requires that the app being analyzed be 
instrumented [29], which can be intrusive. (The term “instrumentation” 
refers to a mechanism used to obtain dynamic path information, such 
as via Dex code instrumentation or using a modify VM.) The analyst 
could then run the instrumented version of the app to log paths that 
have been exercised during the run. Afterward, the path information 
is compared against static analysis information to determine cover-
age. As described, this process requires at least three distinct steps 
that may require a substantial amount of time. 

In addition, modern Android apps may not disclose all of their code 
in the Android Package Kit (APK). There are several mechanisms by 
which an Android app can add additional code at run time. For ex-
ample, one version of Facebook can add three additional Dex files in 
addition to the main Dex file at run time. When static analysis is ap-
plied to this particular app, it analyzes only the main Dex file. A sim-
ilar mechanism is also used by Shedun, a malware that at its peak in-
fected thousands of devices per day [26]. In this case, additional Dex 
files containing malicious code are loaded at runtime to obfuscate ma-
licious components and prevent them from being identified via static 
analysis. To analyze these apps, we must include additional Dex files 
in order to construct various program analysis contexts (e.g., control-
flow and data-flow information). These additional files, however, are 
typically captured at runtime. 

While a combination of static and dynamic analysis techniques 
could eventually capture all of the code needed to perform analysis, 
the process for combining the results of such analyses is not efficient. 
This is because most static analysis tools used in such approaches op-
erate in a “closed world” fashion. That is, all of the information needed 
must be included prior to performing static analysis. If additional in-
formation is discovered at runtime, it must first be included in the 
analysis scope and then the static analysis must be repeated. In dy-
namic systems such as Android, this can lead to multiple attempts to 
analyze an app, making the process unsuitable for near real-time or 
at-speed security analysis. 

In this paper, we introduce JITANA, a new hybrid analysis framework 
designed to overcome the foregoing limitations by providing an effec-
tive, fast, scalable, and incremental Android program analysis frame-
work enabling security analysts to construct complex program analysis 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       5

techniques to detect real-world security vulnerabilities. One notable 
capability of JITANA is that instead of analyzing one app at a time, JI-
TANA has been designed to analyze a set of apps simultaneously and 
quickly. This allows JITANA to quickly analyze all applications in a typi-
cal Android tablet (about 100 installed apps). Another notable capa-
bility is that instead of utilizing a complex workflow to perform hybrid 
analysis, JITANA’s has been designed to allow hybrid analysis to be per-
formed efficiently. We can even visualize hybrid analysis results (code 
coverage is used as a use case in this paper) in real-time. Furthermore, 
instead of using a “closed world” analysis, JITANA performs analysis in 
an “openworld” fashion. This allows static and dynamic analyses to be 
tightly integrated into one continuous process instead of being ap-
plied in the traditional multi-step, loosely integrated process. 

We examine four scenarios in which JITANA can be used by security 
analysts to construct complex program analysis techniques to provide 
information that can help with security analysis. First, we show that JI-
TANA can be used as a building block to statically analyze collections 
of real-world commercial apps for IACs; this shows that it can be real-
istically used for security analysis. Second, we show that JITANA is scal-
able and can be used to quickly analyze apps installed in a device for 
IACs. Third, we illustrate the ease with which JITANA can be enhanced 
by creating a visualization plugin called TRAVIS, that provides real-time 
code coverage information that can help analysts assess the quality 
of their vetting attempts. Fourth, we use JITANA to dynamically capture 
three additional dynamically loaded Dex files in Facebook and aug-
ment the initial static analysis result with information from these dy-
namically loaded classes. 

The rest of this paper is organized as follows. Section 2 provides il-
lustrations of existing obstacles that prevent at-speed analysis from 
being performed. These obstacles motivated us to develop JITANA. Sec-
tion 3 describes the design and implementation of JITANA including its 
static and dynamic analysis components. Section 4 discusses scenar-
ios in which JITANA can be used to perform at speed security analyses. 
Section 5 provides additional insights into the reported results. Sec-
tion 6 highlights prior research efforts related to our work. Section 7 
concludes. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       6

2. Motivation 

In this section, we provide three examples that highlight limitations 
of today’s static and dynamic analysis approaches that prevent them 
from being utilized in real-time or near real-time security analysis. 
These three examples expose the challenges for: (i) Performing larg-
escale IAC analysis, (ii) performing real-time code coverage analysis 
to determine the quality of a dynamic analysis run, and (iii) continu-
ously analyzing an application that adds code at runtime, rendering 
static analysis inadequate. 

2.1. Analyzing apps for IAC connectivity 

As noted in Section 1, current approaches for analyzing groups of An-
droid apps for problems related to interactions require the apps or 
their representations to be aggregated; they then can be analyzed by 
existing tools such as EPICC [22], IC3 [21], or SOOT [36]. Li et al. [16] de-
scribe three approaches for creating aggregated results. The first ap-
proach analyzes each app for possible flows and then combines the 
results to yield potential inter-app flows. Approaches such as EPICC, IC3, 
and SIFTA [37] fall into this category. This approach is scalable because 
most of the analysis effort is intra-app. However, by considering only 
the analysis results (e.g., possible flows, variability aware data struc-
tures), the approach does not preserve various graphs such as CFGs, 
DFGs, ICFGs, and points-to graphs (we refer to these henceforth as 
analysis graphs) constructed as part of intra-app analyses. Such graphs 
are crucial, however, for conducting richer and more precise analyses 
such as static taint or precise dataflow analysis. 

The second approach for creating aggregated results combines 
CFGs instead of possible flows. However, combining CFGs from mul-
tiple apps can be memory intensive. One option for addressing this 
problem is to create CFGs in forms that can be persisted to external 
storage (e.g., serializable objects) before they are combined. CFGs of 
apps should also be generated using the same format (e.g., using the 
same tool) so that they can be merged. To date, we are not aware of 
any system that addresses the problem of IAC analysis using this ap-
proach. Bagheri et al. [3] first generate models of components and 
then combine them to perform analysis; this approach has been used 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       7

to detect permission leakage [3]. However, their models include only 
portions of the analysis information relevant to the tasks we are con-
cerned with. 

The third approach for creating aggregated results is the hybrid ap-
proach [16] we described in Section 1. Again, the approach uses APK-

COMBINER to merge a pair of apps at the bytecode level, to create a sin-
gle app that can be analyzed using existing ICC analysis tools such as 
EPICC [22] or general program analysis frameworks such as SOOT [36]. 
APKCOMBINER resolves two types of naming conflicts. When two apps 
use a common method (same name, same code), only one is main-
tained. When two apps use two methods with the same name (same 
name, different code), one is renamed. 

While this approach can cause the code in the resulting app to 
bloat, the authors argue that in the context of security, it is not likely 
that colluding malware would employ more than a few apps because 
it is less likely for a user to have all required apps installed on a device. 
However, there are other dependability and security contexts that may 
require engineers and analysts to consider more than a pair of apps 
at a time [12]. For example, an analyst may need to identify software 
components and apps installed on a device that may be connected to 
a shared vulnerable component. If this vulnerable component is heav-
ily used, the number of apps connected to it could be quite large. As 
such, APKCOMBINER may face problems scaling up to sets of apps, be-
cause it can merge only a pair of apps at a time. The resulting app is 
also not guaranteed to run, so testing it may not be possible. 

We experimented with using APKCOMBINER to iteratively combine 
multiple apps in a pairwise fashion. For example, to combine four 
apps (a0, a1, a2, and a3), a0 and a1 are first combined. The resulting app 
a01 is then combined with a2, and the result a012 is combined with a3. We 
found that APKCOMBINER cannot merge a resulting app, e.g., a01, with an-
other app a2: In such cases, it ignores a2 without reporting any error. 

In summary, creating aggregated analysis results is a necessary step 
for approaches that analyze multiple connected apps using existing 
program analysis tools that have been designed to analyze one app 
at a time. We have discussed existing approaches for creating these 
aggregated results; they suffer from high complexity, or failure to pre-
serve generated program analysis information. To preserve contexts 
while controlling the number of apps that need to be merged, Li et 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       8

al. [16] introduced a hybrid approach. While this approach can ana-
lyze a small number of connected apps, we show in Section 4 that it 
faces scalability and robustness issues when it is used to merge a large 
number of apps or complex apps. 

2.2. Providing real-time code coverage 

Beginning with Android Studio version 0.10.0, a Java code coverage 
tool, JACOCO, has been integrated into Gradle (an opensource build 
automation framework) as a plugin. Android developers can use this 
plugin to quantify the quality of their test inputs. To do so, a devel-
oper configures Gradle to enable test coverage and then applies the 
JACOCO plugin. This code coverage framework has been designed to 
cover all variations of an Android product. However, to use it, the de-
veloper must have the Java source code of that particular product [8]. 

While JACOCO has been widely used by Android developers, it can-
not be used by security analysts who typically need to analyze applica-
tions without Java source code. To obtain code coverage information 
without the Java source files, developers can use EMMA, a code cover-
age framework based on Dex code instrumentation. EMMA first divides 
the application into basic blocks, then instruments these blocks with 
counting methods. When the instrumented app is executed, these 
counting methods produce meta-data that can be used for post-run 
processing to generate code coverage reports. One side effect of us-
ing EMMA is larger code size due to instrumentation and degraded 
execution performance [29]. Such a multi-step process for obtaining 
code coverage information also makes EMMA less applicable to secu-
rity analyses that must be done at-speed. 

According to various reports, dynamic analysis is still used as part 
of Google’s risk assessment process to make decisions about whether 
submitted apps should be admitted to its Play Store. This Cloud-based 
analysis uses dynamic analysis to detect malicious behaviors within 
an app that cannot be detected by static analysis [7]. It scans for mal-
ware and then runs each app in a device emulator to observe its be-
haviors. If the app does not exhibit malicious behaviors, it can be ad-
mitted to the store. 

While this approach is quite effective, reports have shown that it 
can still let malicious apps into the store [1,19]. Further, the approach 
used by Google does not assess the quality of each vetting effort with 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       9

a typical metric such as code coverage. While the reason for this is not 
disclosed, we suspect that the inefficiency of existing code coverage 
approaches makes integrating them into the vetting workflow more 
difficult. To do so, the vetting time must be increased. With more than 
300,000 apps admitted to Play Store in the last quarter, increasing each 
vetting time can significantly prolong the overall admission process. 

To improve the effectiveness of vetting processes such as that used 
by Google, we need to provide real-time information so that the qual-
ity of a vetting attempt can be assessed. This means that within a spe-
cific risk assessment time budget, we need to be able to statically an-
alyze, run, and determine the code coverage of that run to decide 
whether the app needs to be run longer. The computation of code 
coverage needs to be continuous so that real-time information can 
be provided while incurring low execution overhead. In Section 4, we 
show how JITANA can be used to provide real-time code coverage in-
formation to achieve this goal. 

2.3. Capturing and analyzing dynamically loaded code 

The Android Dex file system traditionally has a 16-bit limitation on the 
number of methods that can be in the main Dex file, typically named 
classes.dex. This translates to approximately 64,000 methods. In 
large apps such as Facebook, the number of methods may exceed this 
limitation. As such, these large apps need to find a way to have the 
system recognize and load the additional Dex files. In addition, com-
plex malware such as Shedun attempts to insert additional Dex files 
at runtime to avoid detection. In this case, classes.dex does not 
contain code that can perform malicious behaviors; instead, the addi-
tional Dex files contain that code. In this way, this particular malicious 
app was able to defeat virus scanners that check only classes.dex. 

Because the Android OS and its Virtual Machines (Dalvik and ART) 
are opensource, the approach that Facebook engineers use to load 
additional Dex files is by modifying the system class loader to recog-
nize such files in addition to classes.dex. To do this, they use Java 
reflection to directly modify the internal structures of the system class 
loader and add additional space to the Dalvik internal buffer (from 
5MB to 8MB) to support all the features. While this approach was used 
in the first version of Facebook for Android, it continues to be used in 
all versions of Facebook apps that can run on the Dalvik VM. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       10

Approaches have been introduced for dealing with dynamic code 
loading [4,39]. Since code is loaded at runtime, these approaches rely 
on dynamic analysis to capture the dynamically loaded code. Once 
captured, such code is added to the original code and static analysis 
is performed again to produce more complete analysis results. If ad-
ditional code is found later, the new code is once again added to the 
already known code and static analysis is repeated. This is an iterative 
process and each iteration requires multiple steps to complete (i.e., 
run the app, capture dynamically loaded code, and perform reanaly-
sis). As such, the process is too inefficient to be used for at-speed se-
curity analysis especially when the vetting time is short. 

To render the foregoing process more efficient, we need to change 
it from iterative to continuous. Captured dynamic information must 
be processed by static analysis immediately without restarting the 
static analysis process. Most current static analysis approaches includ-
ing the widely used SOOT operate in a “closed-world” fashion in which 
continuous analysis is not possible [4]. Section 4 illustrates how JITANA 

can be extended into an “open-world” analysis framework so that dy-
namic information can be continuously processed without interrup-
tion. This can be particularly useful for detecting malware that uses 
dynamically loaded malicious code. We show how JITANA can be used 
to detect this type of malware. 

3. Introducing JITANA: A hybrid program analysis framework 

To provide a new hybrid program analysis framework for Android that 
can efficiently and scalably analyze multiple apps simultaneously while 
operating in an “open-world” fashion, we introduce JITANA,1 a scalable 
and efficient framework for supporting static and dynamic program 
analysis techniques. JITANA is intended to be an efficient, scalable, and 
extensible program analysis framework. Next, we describe the main 
rationales and design choices used to achieve these three perfor-
mance objectives. 

Efficiency. The large amount of information that must be gener-
ated to set up the basic program analysis data structures (e.g., con-
trol-flow and data-flow graphs) required to analyze apps can result in 

1. JITANA is available for download at: http://cse.unl.edu/~ytsutano/jitana/ .    

http://cse.unl.edu/~ytsutano/jitana/


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       11

high memory consumption. Bodden et al. [4] recommend that users 
of SOOT, a widely used program analysis and optimization engine for 
Java, set heap size to at least 10GB. Even with this much heap space, 
we have found that SOOT can still run out of heap memory when used 
to analyze a large Android app. Large heaps can also result in other 
runtime overhead including garbage collection and excessive paging 
if main memory is not sufficiently large. As such, a key design crite-
rion for JITANA is to employ memory conservation. 

In practice, one way to reduce memory consumption is to reduce 
the amount of information that must be processed. Our solution for 
achieving the desired level of memory consumption is inspired by the 
way runtime systems supporting object-oriented languages (e.g., Java 
Virtual Machines or JVMs) load classes and employ Just-In-Time (JIT) 
compilation. By structuring a program as a collection of classes, the 
entire codebase of a Java program is partitioned into small and inde-
pendent units of code. The classloader incrementally loads each class 
as needed at runtime. Once a class is loaded, each method belong-
ing to that class that needs to be executed is analyzed and then com-
piled to binary code by the JIT compiler. Prior work [10,23] has shown 
that the analysis results incrementally generated by the JIT compiler 
can be used to reconstruct common analysis context in forms such as 
controlflow and data-flow graphs. 

The key ingredient in making this approach consume less memory 
than bulk analysis is its incremental nature. When a method belong-
ing to a class is analyzed, memory is needed to perform the neces-
sary analysis. However, once the analysis is performed, the memory 
can be recycled back to the system, and the only residual cost is the 
memory needed to store the analysis results. The efficient recycling 
of memory allows this approach to have a significantly smaller mem-
ory footprint than bulk analyses. 

The major component of JITANA, inspired by the class-loading mech-
anism in the JVM, is the Class-Loader Virtual Machine (CLVM). Its main 
purpose is to virtualize an actual class loader. In a typical JVM, deter-
mining which class to load depends on the actual runtime needs of a 
program. Our CLVM, on the other hand, is designed to support effi-
cient static and dynamic analyses. As such, it determines which classes 
to load by statically analyzing code to determine relationships among 
classes. Once classes are loaded, the system generates class graphs 
that can be used to represent those class relationships. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       12

Fig. 1 illustrates the class relationship within a simple test app. The 
app contains only two actual classes shown in green. The remaining 
classes (shown in gray) are from standard Java library classes, which 
are easily detected by JITANA. Classes in the figure were uncovered 
through our static analysis; i.e., they were uncovered without running 
the program. Our CLVM performs reachability analysis to load these 
classes. We discuss the actual implementation of CLVM in Section 3.1. 

Our analysis approach is also inspired by the JIT compiler; i.e., it in-
crementally analyzes each method as the class it belongs to is loaded. 
However, our static analysis analyzes every method within that class. 
As each method is analyzed, the system produces an instruction graph 
for that method. It also computes intra-procedural control-flow and 
data-flow information. Fig. 2 illustrates a simple instruction graph for 
method GameBase.sgn(int) in SuperDepth. 

As more method calls are made by a target app, a method call 
graph for that app is also generated. For example, Fig. 3 illustrates a 
small subset of the methods that are called during an analysis of two 
apps simultaneously, SuperDepth (shown as yellow method nodes) 

Fig. 1. A class graph for a simple test app.  



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       13

and Instagram (shown as blue method nodes). (We discuss our sys-
tem’s ability to analyze multiple apps simultaneously below.) The 
gray nodes represent method calls to Java and Android libraries. Each 
method call graph represents the method call and class relationships 
within an app as edges (e.g., direct, virtual and super). We explain 
these edges later in this section. 

To allow reachability analysis to be performed on-line, JITANA does 
not remove edges that have been added to the method graph. This 
preserves prior reachability computations, allowing analysis to be per-
formed on-line. For example, we can statically generate graphs of 
an app including a method call graph. At runtime, if a new class is 
dynamically loaded from an external source, our dynamic analysis 
can capture this class. We can then utilize the same analysis engine 

Fig. 2. Instruction graph of a method in SuperDepth.  



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       14

previously used to further analyze this new class and augment the 
class graph and method call graph with information related to newly 
uncovered classes and methods. 

Note that we only show a few methods for comprehensibility. An 
actual method graph for a complex app can contain tens of thousand 
of nodes. Also note that these methods were uncovered through our 
static analysis. 

We also design the data structures maintained by JITANA to be the 
same as those maintained by the Android VM so that incoming infor-
mation can be readily processed without performing conversions. For 
example, both JITANA and the Android VM (Dalvik in this case) main-
tain the same data structures to record classes that have already been 
loaded. This allows analysis to be performed more efficiently by in-
curring less “translation overhead” (e.g., converting data from one 
data structure to another). As in our prior example, when a new class 
is dynamically generated, JITANA can quickly detect the class loading 
event, and the newly loaded class is pulled from the device for on-
thefly analysis to create the necessary information. 

Fig. 3. A snippet of a method graph generated by analyzing two apps.  



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       15

Scalability. Real-world security analysis processes may require an 
analyst to inspect multiple apps at the same time to uncover poten-
tial connections and hidden functionalities between two or more apps. 
Currently, existing approaches often analyze an app at a time and then 
compose the results. In contrast, by being memory efficient, our CLVM 
is able to analyze multiple apps at the same time. To support this ca-
pability, we exploit the explicit relationship between a classloader and 
the classes it loads to create a clear encapsulation of all classes in an 
application. For example, Fig. 4 shows a classloader graph for four 
apps that have been loaded simultaneously as part of a single anal-
ysis: SuperDepth, Facebook, Instagram, and JohnNESLite. This prop-
erty also allows our approach to naturally resolve class naming con-
flicts (i.e., two different classes with the same name), as these classes 
would belong to different classloaders. 

The use of CLVM also provides an efficient way to analyze large 
libraries as previously shown in Figs. 1 and 3. Existing analysis tools 
need to analyze entire libraries to build graphs that can be used to 
supplement application analysis. Our approach analyzes only the 
classes within a library that have been referred to by the application, 
thus reducing the amount of analysis needed. As such, our framework 
analyzes classes from third party libraries as well as system classes. 
Also, JITANA does not require apps to be instrumented; runtime events 
are captured as they happen so analysis can be performed without 
interruption. 

Fig. 4. Classloader graph after analyzing four large apps.  



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       16

Extensibility. We want to ensure that classloader, class, method, 
and instruction graphs can be efficiently processed and persisted for 
future reuse without reanalyzing programs. Existing program analy-
sis frameworks such as SOOT also produce graphs but the graph struc-
tures are built using Java objects and references. As such, designing 
analysis engines to process these graphs requires some knowledge 
of their structures to traverse these objects. The resulting engines can 
also be error prone due to memory reference faults (e.g., null pointer 
dereferences). 

To make graph processing more extensible, JITANA employs a widely 
used, high performance BOOST Graph Library (BGL) as a graph pro-
cessing engine [5]. BOOST provides existing implementations of ad-
vanced graph processing functions that are ready for use. The result-
ing graphs can also be persisted for future reuse. BOOST is also available 
on most computer systems. In addition, it is written in C++ and sup-
ports generic programming paradigms so code can be generically 
written to process different graphs. 

3.1. Architectural overview of JITANA 

To render our hybrid program analysis more efficient, we employ a 
classloader-based analysis approach instead of the traditional com-
pilerbased analysis approach used by tools such as SOOT, which focus 
their analysis effort within the boundary of an application [4]. SOOT 

first loads the entire code of an app and performs analyses that in-
cludes construction of various program analysis graphs. By focusing 
only on the code within an app, it cannot analyze multiple apps si-
multaneously. This motivated Li et al. [16] to develop a workflow that 
uses SOOT twice: once to analyze each app for potential IAC sources 
and destinations and another to analyze the merged app. Com-
piler-based approaches also face difficulties handling large librar-
ies because entire codebases must be analyzed. For example, AMAN-

DROID, a framework introduced by Wei et al. [38], builds models of 
the underlying framework and libraries to facilitate program anal-
yses. Our classloader-based static analysis approach, on the other 
hand, loads code in a fashion similar to that of an actual classloader 
inside any Java or Android VM; however, it uses reachability analy-
sis to uncover classes. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       17

Fig. 5 provides an architectural view of the JITANA framework. We 
designed JITANA to be a highly efficient hybrid program analysis frame-
work, so it needs to be able to interface with language virtual ma-
chines such as Dalvik and the Android Runtime System (ART). The VM 
interface is provided through the Analysis Controller, which is con-
nected to the Android VM via Java Debug Wire Protocol (JDWP) over 
Android Debug Bridge (ADB) [24]. This connection is established pri-
marily for use in dynamic analyses though it also assists with static 
analyses in cases in which code is dynamically generated during pro-
gram initialization. 

With our current implementation of JITANA, we are able to send 
runtime information that includes which basic block is being exe-
cuted, which intent is being sent and received, and which class is being 
loaded. When dealing with dynamically loaded code, finding dynamic 
class loading information is critical. As such, JITANA specifically queries 
for information that includes the class name, method index, and class 
location to ensure precision. JITANA then pulls any new class from the 
device so that it has an exact copy on the analysis workstation. Next, 
we describe each component in Fig. 5, the underlying graph process-
ing tool, and the programming paradigm used by JITANA. 

3.2. Analysis controller 

This particular component is used to communicate with the Android 
VM to support dynamic analysis. The initial version was implemented 

Fig. 5. Architecture of JITANA.  



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       18

for Dalvik, wherein we add about 300 lines of code to Dalvik to cre-
ate event notifications and a copy of each dynamically loaded class. 
The controller itself works with JDWP to make requests to the VM to 
provide the necessary data. For example, to capture a dynamically 
loaded class, Dalvik would notify the Analysis Controller about the 
class being loaded. The analysis controller would then issue the ADB 
pull command to retrieve the loaded class. 

For our forthcoming version of JITANA, we are implementing the 
controller entirely using JDWP protocol, and without modifying ART, 
the latest Android VM. This provides greater portability. We anticipate 
that we will be able to release this version by the end of summer 2019. 

3.3. Class-Loader Virtual Machine (CLVM) 

We previously described the purpose of CLVM in JITANA. Now we de-
scribe its implementation. We implemented CLVM based on the Java 
Virtual Machine Specification [18]. A class, which is stored in a DEX 
file on a file system, must be loaded by a classloader. Each instance of 
ClassLoader, which is a Java class inherited from an abstract class 
Ljava/lang/ClassLoader;, has a reference to a parent class-
loader. When a classloader cannot find a class it delegates the task to 
its parent classloader. In the Android virtual machine, this process oc-
curs as shown in Algorithm 1. Our approach employs a stand-alone 
CLVM to load reachable code based on the same algorithm. 

Algorithm 1. Class loading algorithm.    



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       19

As previously mentioned, the explicit relationship between a class-
loader and classes that it loads creates a clear encapsulation of all 
classes in an application. Because CLVM operates in the same way as 
an actual classloader, it incrementally loads and analyzes classes. Our 
analysis approach has been designed to take advantage of this in-
cremental nature of our system by employing work-list based algo-
rithms to perform incremental reachability analysis. For example, our 
points-to analysis uses a pointer assignment graph (discussed in Sec-
tion 3.4) that increases in size monotonically. This is because our sys-
tem does not allow unloading of VM objects. As such, if a new node 
is added to the graph, our system simply adds it to the worklist and 
computes its reachability. This capability also allows JITANA to operate 
in an “open-world” fashion as any dynamically generated component 
or loaded component can easily be added to our analysis graphs and 
incrementally analyzed. 

As an example of an “open-world” analysis, after we installed Face-
book on a device, we discovered that it loads multiple additional DEX 
files dynamically. Our framework simply pulls these DEX files from the 
device directly for analysis. This means that constructing analysis con-
text (e.g., control-flow, data-flow, and points-to graphs) is also per-
formed incrementally. Thus, static and dynamic analysis contexts can 
be seamlessly integrated as static analysis can be employed to create 
the initial analysis context and dynamic analysis can annotate and en-
hance the initial context during runtime. 

Once classes are loaded, the system generates a set of VM graphs 
(these VM graphs are representative of an app inside a VM) such as 
classloader graphs, class graphs, method graphs, and instruction graphs. 
Various Analysis Engines then process these to produce control-flow, 
data-flow and points-to information, which is then fed back in to the 
VM graphs. Other information is used to construct Analysis Graphs 
such as pointer assignment graphs, context-sensitive call graphs, and 
an IAC graph. The framework can run side-by-side with existing visu-
alization tools such as GRAPHVIZ, an open-source graph visualization 
tool [9]. Next we describe these graphs in details. 

3.4. Supported graphs 

Most of the data structures used in JITANA are represented as hierar-
chical graphs. Typically, a node in such graphs represents a virtual 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       20

machine object (e.g., a class, a method, an instruction) together with 
analysis information (e.g., execution counts), while an edge repre-
sents a relationship between two nodes (e.g., inheritance, control-
flow, dataflow). 

As shown in Fig. 5, JITANA separates data structures and algorithms. 
It represents programs as well-defined “Graph Data Structures”, and 
all “Analysis Engines” work on these. The core analysis algorithms are 
reusable and flexible because they are defined on concepts rather 
than concrete types. The data structures are also defined to be simi-
lar to those used in the actual virtual machine to reduce the overhead 
of exchanging dynamic information. 

Table 1 lists the graph types currently generated by JITANA. There 
are two categories of graphs: virtual machine (VM) graphs and analy-
sis graphs. Virtual machine graphs closely reflect the structure of Java 
virtual machines. A node in a virtual machine graph represents a vir-
tual machine object (e.g., class, method) that can be created or re-
moved only by the CLVM module in JITANA. Modification of a node 
property by an analysis engine is allowed and is one of the primary 
ways by which to track dynamic information such as code coverage. 
The edge type is erased with the Boost.TypeErasure library2 so 
that analysis engines can add edges of any type. Examples of some 
of these graphs rendered with GRAPHVIZ have been previously shown 
in Figs. 2–4. 

We briefly describe the classloader graph displayed in Fig. 4. Each 
class loader is assigned a unique ID (integers in the upper left corners) 

Table 1. JITANA graphs.

Name  Type  Node  Edge

Class Loader Graph  VM Graph  Class Loader  Parent Loader
Class Graph VM Graph  Class  Inheritance
Method Graph  VM Graph  Method  Inheritance, Invocation
Field Graph  VM Graph  Field
Instruction Graph  VM Graph  Instruction  Control Flow, Data Flow
Pointer Assignment Graph  Analysis Graph Register, Alloc Site,  Assignment 
      Field/Array RD/WR 
Context-Sensitive Call Graph  Analysis Graph  Method with Callsite  Invocation

Inter-Application Communication Graph Analysis Graph  Class Loader, Resource  Information Flow

2. http://www.boost.org/doc/libs/develop/doc/html/boost_typeerasure.html  

http://www.boost.org/doc/libs/develop/doc/html/boost_typeerasure.html


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       21

so that classes with the same name from different apps can be dis-
tinguished. For example, both Facebook and Instagram ship a class 
named Landroid/support/v4/app/Fragment; with different 
method signatures because the Facebook app is obfuscated with PRO-

GUARD;3 therefore, the names of DEX files have no meaning. Class-
Loader 0 is the system class loader and is used to load necessary sys-
tem classes. Each directed edge shows the parent/child relationship 
between two class loaders (e.g., the system class loader spawns off 
application class loaders). 

Fig. 6 displays another class graph. This graph shows relation-
ships between four classes; the directed edges display subclass re-
lationships (e.g., Lcom/instagram/... /LoadImageTask; is 
a subclass of the abstract class Landroid/os/AsyncTask;). 
The figure also shows that Ljp/bio100/android/super-
depth/GameBase$HttpTask; is a subclass of Landroid/os/
AsyncTask;). 

In Fig. 2, the instruction graph of a method also includes control-
flow and data-flow information. The data-flow information is derived 
via reachability analysis performed on virtual registers. Data-flow in-
formation is presented in Fig. 2 as red dotted edges. Control-flow in-
formation is presented as blue edges. 

Not depicted in any figure are field graphs. Field graphs store a list 
of fields as nodes, but by default JITANA does not add edges to this 
graph. This data can still be used for analysis purposes. 

Fig. 3 also shows relationships among several methods within a 
set of analyzed apps. The numbers in the upper left corners of the 
nodes indicate the apps to which the methods belong. Nodes repre-
sent methods, and edges indicate whether method calls are direct or 
virtual. For virtual methods, we also report inheritance relationships 

3. https://www.facebook.com/notes/facebook-engineering/
under-the-hooddalvik- patch-for-facebook-for-android/10151345597798920   

Fig. 6. A class graph obtained by analyzing two apps.  

https://www.facebook.com/notes/facebook-engineering/under-the-hooddalvik- patch-for-facebook-for-android/10151345597798920
https://www.facebook.com/notes/facebook-engineering/under-the-hooddalvik- patch-for-facebook-for-android/10151345597798920


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       22

using edges labeled as “super”. A method that inherits from another 
method has a super edge pointing back to the original method. For 
example, suppose we have the following three classes. 

class A{ 
  public void foo(){ 
  } 
} 
class B extends A{ 
  public void foo(){ 
  } 
} 
class C { 
  public void callFoo(A target){ 
     target.foo(); 
  } 
} 

The method belonging to these three classes would be depicted 
as shown in Fig. 7. As shown, there is a super edge pointing from 
B.foo() to A.foo(). The super edges in the method graph give 
us more comprehensive view (i.e., considering vtables) of a call graph 
without needing a class graph. 

3.5. Supported analysis engines 

Currently, JITANA supports interprocedural control-flow, intra-proce-
dural data-flow, and points-to analysis graphs [36]. In Java, most func-
tion calls are made by using a dynamic dispatch mechanism. There-
fore, knowing the actual type of an object in a pointer variable is 

Fig. 7. An Illustration of Super Edge.  



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       23

essential for any interprocedural analysis. JITANA also supports a points-
to analysis algorithm inspired by SPARK [14], a points-to analysis frame-
work in SOOT [36]. 

JITANA’s interprocedural control-flow analysis is based on Class Hier-
archy Analysis (CHA) [6]. It includes both direct call edges and virtual 
call edges in a method graph as shown in Fig. 3 and explained previ-
ously. The approach is sound but imprecise due to over-approxima-
tion, a common issue for static analysis. 

In terms of data-flow analysis, JITANA supports reaching defini-
tions analysis, which is used to generate def-use pairs. The mono-
tone dataflow algorithm used in JITANA’s reaching definitions algo-
rithm is implemented as a generic function; thus it can be used to 
perform other types of data-flow analyses such as available expres-
sions or live variable analysis by defining appropriate functors. It 
also works on any graph types that model the concepts required 
for control- flow graphs. 

The IAC analysis used by JITANA operates in multiple steps. In the 
first step, it searches for potential connections (entry and exit points) 
between components and apps; this is done by analyzing the code 
and manifest files. Note that this first step is similar to that used in 
EPICC [22]. Because JITANA analyzes a collection of apps all at once, all 
IAC connections within that set of apps appear in a single analysis ef-
fort. This is the main goal that APKCOMBINER tries to achieve by com-
bining apps. 

In the second step of JITANA’s IAC analysis, when an exit point that 
can connect to an entry point in another app is uncovered, a connect-
ing edge in an IAC graph is created. Fig. 8 illustrates an IAC graph re-
sulting from analyzing a bundle of 21 apps. There are seven pairs of 
apps that have intent connections between them. Note that each app 
in a collection being analyzed represents a node in the graph. As such, 
two connected apps can have multiple edges between them (e.g., app 
20 and app 21 have two intent connections). 

Currently, JITANA does not support interprocedural distributed en-
vironments (IDEs). However, once we implement it in JITANA, dataflow 
analysis can be performed across these IAC edges to increase analy-
sis precision as previously done in EPICC and IC3. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       24

Fig. 8. An IAC graph. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       25

4. Using JITANA to perform at-speed security analysis 

In this section, we provide four scenarios in which security analysts 
can use JITANA to perform at-speed security analyses. 

4.1. Using JITANA to identify apps with IAC connections 

In this scenario, we use JITANA to statically analyze collections of real-
world Android apps for IAC connections. We conducted this inves-
tigation to determine whether JITANA is sufficiently robust to handle 
large commercial apps without any issues. 

4.1.1. Procedure 
For security analysts to use JITANA for their daily security needs, it 

must be robust and be able to analyze real-world apps that are avail-
able through various distribution channels such as Google’s Play store. 
As such, to assess JITANA’s robustness, we used real-world applications 
available for free in the Google Play Store. Our selected apps were 
all on the top 100 chart during January 2017. We focused on three 
categories of apps due to their popularity, and as groupings of apps 
we chose apps from the same category because they are more likely 
to share components, rendering IAC connections more complex. We 
chose 10 apps from the “social network” category including Facebook, 
Snapchat, and Instagram, and 10 apps from the “games” category in-
cluding Pokémon Go, Suicide Squad, and NBA Live. The third cate-
gory is “miscellaneous”. Notable apps in this category include Spotify, 
Google Photos, Pandora, and the top seven additional apps in the top 
100 chart that do not belong to the first two categories. Table 2 lists 
all of the apps in each category. 

We next attempted to use APKCOMBINER to merge these 30 apps.4 Be-
cause APKCOMBINER merges two apps at a time, we attempted to find 
pairs of apps in each category that it could merge. Unfortunately, 

4. As previously mentioned (Section 2), APKCOMBINER is a tool designed to help with IAC 
analysis. Work by Li et al. [16] reported that APKCOMBINER was able to successfully com-
bine over 2600 pairs of real Android apps. We initially considered using these apps but 
the authors provided no information about them (except for Edabah Evaluation and Clip-
Store), so it was impossible to find them. We did investigate Edabah Evaluation and Clip-
Store and found that they were both released prior to 2012 and have not been updated 
for at least four years. As such, they were too old to reveal insights that may be applica-
ble to modern apps. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       26

APKCOMBINER was not able to merge any pair of apps in any of our 
three categories. For the social network and miscellaneous catego-
ries, it simply failed to produce any merged apps for any combina-
tions. In some cases, it initially appeared to be successful but when 
we inspected the merged apps they contained errors and their output 
sizes were too small to be valid. As such, we could not gather any data 
with which to evaluate the ability of APKCOMBINER to handle large apps. 

Next, we turned our focus to EPICC and IC3 and attempted to use 
them to search for entry/exit points in our collection of apps so that 
we could compare the results produced by these systems with those 
produced by JITANA. Unfortunately, both EPICC and IC3 were unable to 
return results for the apps. We also encountered a few instances in 
which both systems simply crashed. One possible reason for these 
problems involves failures during code retargeting, which has been 
previously reported [22]. As a second possible reason, our experiment 
objects are from a different generation of apps than those previously 
used to evaluate these systems (prior apps used were from 2013) [20–
22], and the systems might simply not be able to handle the charac-
teristics of this newer generation of apps. Finally, because both sys-
tems achieve their precision through the use of the IDE framework 
and a precise points-to analysis in SOOT, it is also possible that analy-
sis graphs in these apps may be too complex to be feasibly produced. 

We next used JITANA to simultaneously analyze all ten apps in each 
category to produce analysis graphs (control-flow and data-flow 
graphs), compute IAC connections, and generate the IAC graph for 
each category. We envision that this particular technique can be use-
ful in a scenario where a security analyst wants to compute IAC con-
nections between a set of known apps anda particular app (e.g., an 

Table 2. Apps downloaded from Google Play for scenarios 1 and 2.

Category  Listing of Apps

Social Network  Facebook, TextNow, Snapchat, Instagram, Pinterest, Twitter, ooVoo, 
POF Free Dating, Tumblr, Tango

Games  Pokémon Go, Slither.io, Rolling Sky, Subway Surfers Color Switch, Ro-
blox, Suicide Squad, NBA Live Farm Heros Super Saga, Geometry 
Dash

Miscellaneous  Messenger, YouTube Music, Pandora, Spotify, Wish Google Photos, 
News Master Topbuzz, Mercari Marco Polo Walkie Talkie, Remind



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       27

app developed by an organization for their employees to use in the 
field) to identify possible leakage of information. A typical approach 
that relies on pair-wise analysis would be required to perform 45 anal-
ysis attempts to evaluate possible connections among the 10 apps. JI-
TANA, on the other hand, requires only one attempt. We measured the 
time required to complete this process. 

4.1.2. Results 
Table 3 reports results relative to our first scenario. The first col-

umn indicates the configuration used to evaluate JITANA; that is, it re-
ports the number of apps being simultaneously analyzed. The second 
column reports the combined size of the APKs. Table 2 lists the apps 
that we used in this study based on category, and we combined the 
apps in the order in which they are listed. For example, the first row 
of the social network category includes the first two apps from that 
category: Facebook and TextNow. The combined size of the two APKs 
is 76 MB. The third column reports the number of classes that have 
been loaded by CLVM and analyzed by JITANA. The last column reports 
the time by needed by JITANA to analyze all the apps in each collection. 

As the data show, JITANA successfully analyzed all sets of between 
two and ten apps in each of the three categories. It also processed 

Table 3. Scenario 1: Analysis data for JITANA.

# of Apps  Size of APKs (MB)  # of Loaded Classes  Time (sec)

Social Network
2  76  9,154  38.64
4  144  24,253  81.37
6  179  38,355  109.28
8  295  53,923  152.06
10  351  65,399  176.37
Game
2  79  14,023  26.82
4  173  27,929  51.98
6  298  38,210  71.62
8  391  53,588  107.01
10  452  68,179  128.85
Miscellaneous
2  22  14,719  29.75
4  87  25,972  59.10
6  124  45,281  93.75
8  157  57,896  136.61
10  191  72,717  167.85



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       28

large amounts of code, ranging from 22 MB to over 450 MB. The num-
ber of classes loaded and analyzed by JITANA exceeded 50,000 in sev-
eral cases. The analysis times ranged from 27 s to 176 s. Note that 
these times also include the time required to compute IACs. 

4.2. Analyzing all apps in a device 

In this scenario, we consider an increasingly common scenario in 
which organizations allow their employees to bring their own devices 
to work. In this scenario, security analysts working for the organiza-
tion wish to vet employees’ devices to detect whether there are any 
connections that may allow apps already installed on a device to com-
municate with the company’s own apps directly or indirectly (through 
a shared component). Since these devices would most likely have dif-
ferent apps installed on them, the analysis must be done quickly to 
determine IAC connections as employees check in their devices. 

4.2.1. Procedure 
We applied JITANA to three non-trivial real devices (Asus Nexus 7s), 

using different numbers of installed apps. These devices communicate 
with JITANA through USB ports, allowing it to query and download the 
APKs installed on each device directly. JITANA then simultaneously an-
alyzed all of the apps on each device to build analysis contexts, com-
puted the IAC connections among the apps, and generated the IAC 
graph. 

We configured our three devices to have 99 apps (the default apps 
and system services that come with a new installation of Android 
5.1.0), 114 apps, and 129 apps, respectively, with the second and third 
devices including the apps that were present on the first and second 
devices, respectively. These additional apps include the 30 apps used 
to investigate the robustness of JITANA (15 apps installed on the sec-
ond device and 15 additional apps installed on the third device). We 
then measured, for each device, the times required to pull the apps 
from the device to the workstation running JITANA, to perform simul-
taneous analysis to build analysis contexts, to compute IAC connec-
tions, and to produce the IAC graph for the device.   

Note that no existing approaches are capable of performing this 
task at this scale; thus, in this study we cannot compare JITANA to any 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       29

baseline approach. However, if we were able to do so, the baseline 
approach based on APKCOMBINER used in the prior study would need 
to perform 4851, 6441, and 8256 pair-wise IAC analyses for the three 
devices, respectively. 

4.2.2. Results 
Table 4 reports our results. Columns 2–4 provide data on the de-

vice configurations used to evaluate the scalability of JITANA, including 
the number of apps, the amount of disk space needed to store these 
apps on the device, the number of classes, and the number of meth-
ods. Other columns report the number of apps that we found to be 
connected using intents and content providers, and the amount of 
time needed to analyze the entire device for IACs and construct anal-
ysis graphs. 

As the data shows, JITANA was able to analyze a device with 129 
apps in about 19 min (Device 3). For Device 3, JITANA loads and ana-
lyzes over 320,000 classes, which amounts to about 1.35 GB of code. 
For the two devices with smaller numbers of apps (Devices 1 and 2), 
it was able to analyze all apps on each device in about 6 min and 11 
min, respectively. It is also worth noting that each app on a device has 
a tendency to connect with other apps. The default apps use only in-
tents for IACs but other downloaded apps use content providers in 
addition to intents for IACs. We also observe that apps use intents 
more often than content providers. In cases in which an app uses both 
intents and content providers, the app is reported in both Columns 
6 and 7. This behavior clearly emphasizes the need to analyze inter-
acting apps efficiently. 

Table 4. Scenario 2: Analysis data for JITANA, using three devices with different numbers of 
Apps.

ID  # of  Total  # of  # of  Apps  Apps with  Time
 Apps  Size  Classes  Methods  with  Content  (sec)
  (MB)  (×1K)  (×1K)  Intents  Providers

1  99  340.7  126.0  480.3  63  0  379
2  114  848.1  215.8  1,313.5  77  11  674
3  129  1,357.2  320.7  2,001.3  92  21  1147



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       30

4.3. Real-time code coverage 

In this scenario, we consider an example in which JITANA supports the 
creation of a real-time visualization engine to provide real-time code 
coverage information. We imagine that such a scenario can be use-
ful for analysts who wish to quantify the quality of their vetting ef-
fort. This information can be used to determine whether the dynamic 
analysis should continue or has sufficiently explored the code. A se-
curity analyst can also visualize code sections that may be difficult to 
reach so that more effort can be spent trying to reach them. In addi-
tion, to assess the overhead we run our code coverage analysis while 
an interactive game is being played. 

4.3.1. Procedure 
We applied JITANA to provide real-time code coverage. To measure 

code coverage in Android, EMMA is still commonly used. EMMA was  
initially created as a code coverage tool for Java, but it now also 
works for Android. It supports both targeted unit testing and ran-
dom testing using MONKEY, an Android UI exerciser.5 The largest dif-
ference between JITANA and EMMA is that EMMA requires instrumenta-
tion of the application and then post processing of the generated 
runtime logs. JITANA, on the other hand, can observe runtime events 
without instrumentation. 

EMMA first instruments classes for coverage; this can be done off-
line or on-the-fly through a custom class loader. The latter approach 
is used in our study to render the entire process seamless. EMMA is a 
low-overhead coverage tool that incurs only 5%–20% overhead. The 
main benefit in using it lies in its ease of deployment and the fact that 
no instrumentation is needed. Coverage can be measured at different 
granularities including class, method, line, and basic block. EMMA then 
produces a report file in plain text, HTML, and XML. Currently, JITANA 

can measure code coverage. However, due to our research needs, we 
measure code coverage only at the basic block level, and we report 
coverage only in tab-delimited plain text. These limitations can easily 
be addressed; however, they lead us to compare the two approaches 
only at the basic block level using plain text reports. 

5. http://developer.android.com/tools/help/monkey.html

http://developer.android.com/tools/help/monkey.html


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       31

4.3.2. Results 
With EMMA’s low runtime overhead, we do not anticipate any sig-

nificant difference in the runtime performance between an app that 
is running with JITANA performing analysis in the background and the 
same app that has been instrumented to include the counting meth-
ods. To verify this, we identified a set of benchmarks with source 
code from the DARPA APAC project.6 These benchmarks have unit test 
suites. Table 5 lists these benchmarks together with their lines of Dex 
code (LoDC). We measured the time required to execute an applica-
tion with the unit test suite provided and no code coverage measured 
(Column 3), the time required to execute the same test suite with EMMA 
enabled (Column 4), and the time required to execute the test suite 
with JITANA enabled (Column 5). The times are reported in seconds. As 
shown, the runtime overheads of both systems are very low. The slight 
differences can be attributed to small runtime variations. 

In addition, due to the event-based nature of these apps, the domi-
nating costs of running them are the delays between instigating pairs 
of events. Such delays, in fact, hide the cost of transferring informa-
tion from the actual device to the workstation running JITANA. EMMA 

on the other hand, cannot fully take advantage of these delays as the 
processing cost is incurred afterwards. However, it can still hide the 
cost of generating traces behind these delays. 

The main advantage of JITANA in this context, however, is that code 
coverage analysis is done on-the-fly so that information can be gen-
erated and efficiently used in real time to provide feedback to security 
analysts or automated vetting systems such as the cloud-based system 
used by Google. EMMA, on the other hand, requires a post-processing 

6. These benchmarks are available from http://cse.unl.edu/~ytsutano/jitana.  

Table 5. Comparing execution times of code coverage measurements between EMMA and 
JITANA.

Application  LoDC  No Coverage  EMMA  JITANA  Coverage
  (seconds)  (seconds) (seconds)  (%)

Calculator  534  49  54  51  80
ColorMatcher  706  244  246  248  88
CountdownTimer  1265 146 150  145  83
MorseCode  600  239  246  248  94
SplitTimer  166  50  56  53 99

http://cse.unl.edu/~ytsutano/jitana


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       32

step to combine dynamic information with prior static analysis re-
sults to generate code-coverage reports. This separate post-process-
ing step renders EMMA unsuitable for at-speed security analysis. 

To demonstrate the real-time feedback capability of JITANA, we de-
veloped a visualizer to display coverage information in situ. We next 
describe the process we followed to create our visualizer, TRAVIS, as a 
plugin of JITANA. We then illustrate the capabilities of TRAVIS by show-
ing how it can process the execution information sent by Dalvik to 
measure code coverage. 

Via a JDWP connection, TRAVIS periodically receives the dynamic ex-
ecution information necessary to visualize the traces from the Dalvik 
VM that was modified as described in Section 3.1. As soon as a DEX 
file on the device is loaded on the virtual machine, TRAVIS is notified 
with the file name. Upon notification, TRAVIS: (i) Copies the loaded DEX 
file from the device to the workstation using an adb pull command; 
(ii) creates a buffer in which to store counter values for the DEX file; 
and (iii) lets JITANA load the DEX file to update the VM graphs. 

TRAVIS also polls for counter values every 50 milliseconds. The values 
are sent as an array of pairs of an instruction offset and the number of 
times it has been executed since the last poll. The counter values are 
accumulated in the buffer that is created when the DEX file is loaded. 
The instruction graphs are updated with the new counter values from 
this buffer. This data is presented as traces on screen with OpenGL 
renderings, and as instruction graphs are rendered in a GRAPHVIZ viewer.  

Fig. 9 illustrates how TRAVIS can be used by a security analyst. A de-
vice (Nexus 7 in this case) is first connected to a workstation. Runtime 
information is sent from the device to a workstation running JITANA. 
In the figure, a person is playing SuperDepth, a classic video game 
(shown in the lower right quadrant). While the user plays, Dalvik sends 
execution information on-the-fly to JITANA, which processes the infor-
mation to calculate code coverage, which is then fed to TRAVIS. The ap-
plication requires no instrumentation. 

In Fig. 9, the upper left quadrant displays the method graph for 
SuperDepth and the upper right quadrant displays two instruction 
graphs. Shaded boxes indicate entry instructions in basic blocks. 
In each such box, there is also a counter to indicate the number of 
times the basic block has been executed. For example, the block high-
lighted by an ellipse has been executed 20 times. The block above 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       33

that corresponds to a conditional statement and so far, all decisions 
have taken the left branch. These counters are continuously updated. 

The bottom left quadrant shows the output of TRAVIS. Each small 
rectangle on what looks like a “keyboard” in the figure represents a 
basic block. On a color display (of this paper or of the output of TRA-

VIS), black rectangles indicate basic blocks that have not yet been ex-
ecuted, blue rectangles indicate “hot” basic blocks (i.e., basic blocks 
that have been executed more than five times), magenta rectangles 
indicate basic blocks that are currently being executed, and yellow 
rectangles indicate basic blocks that have been executed fewer than 
five times. (On a blackand- white printout, the colors range from dark 
gray to light gray with two intermediate shades.) The video clip that 
the images have been captured from is available at https://www.you-
tube.com/watch?v=sPdrLdIKDx4 . 

By using TRAVIS, security analysts can obtain real-time feedback with 
respect to the quality of their dynamic analysis. For example, apply-
ing JITANA in conjunction with the dynamic analysis used by Google’s 
Cloudbased security analysis would provide additional real-time 
data to show how much code is covered by the current vetting ef-
fort via dynamic analysis. If an analyst finds that the code coverage 

Fig. 9. In-situ visualization with TRAVIS.  

https://www.youtube.com/watch?v=sPdrLdIKDx4
https://www.youtube.com/watch?v=sPdrLdIKDx4


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       34

percentage is still too low for the analysis to be meaningful, the ana-
lyst can decide to take additional steps to perform better risk assess-
ment. For example, the analysis may favor the result generated by 
static analysis over that generated by dynamic analysis or add addi-
tional time to execute the app and perform dynamic analysis. This in-
formation is provided without dynamic analysis overhead. 

4.4. Detecting and analyzing dynamically loaded code 

In this scenario, we show how the dynamic analysis component of JI-
TANA can be used to capture dynamically loaded code and how such 
code can be continuously analyzed by the static analysis component 
of JITANA. We illustrate such a usage scenario by utilizing JITANA to cap-
ture Dex files dynamically loaded by Facebook. 

4.4.1. Procedure 
We extended TRAVIS’s capability to pull loaded Dex files from a de-

vice for JITANA’s use in performing analyses. With this capability, we 
can easily detect dynamically loaded code and then use CLVM to load 
these classes to perform static analysis. To illustrate this capability, we 
employed Facebook. As previously mentioned in Section 2, Facebook 
loads additional classes at runtime. To execute the app, we first tried 
to use Monkey but it became stuck on the login screen. As such, we 
asked our last author to use Facebook for 5 min to provide sufficient 
time for it to run. We then tried to capture those dynamically loaded 
classes as we ran the app. 

4.4.2. Results 
In apps that dynamically load additional code, applying static anal-

ysis alone is ineffective as dynamically loaded code is often not avail-
able at static analysis time. For example, were we to apply JITANA to 
perform static analysis of Facebook, it would be able to analyze only 
3918 classes containing 18,985 methods. However, by capturing three 
additional Dex files at runtime, Jitana ultimately analyzed 23,621 
classes containing 130,428 methods. In other words, we would miss 
nearly 75% of the actual loaded classes. It is also worth noting that a 
newer version of the Facebook app may create even more than three 
additional Dex files. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       35

In terms of time, JITANA required 2.11 s to analyze the initial 3918 
classes to generate control-flow and data-flow information. With dy-
namic analysis, JITANA was able to analyze these 23,621 classes in 12.88 
s. In comparison, SOOT takes 181.35 s to produce control-flow and 
data-flow information for classes discovered during static analysis 
alone. 

We also used TRAVIS to visualize code coverage on the additional 
Dex files. Fig. 10 illustrates the additional Dex files. When we com-
pare Fig. 9 with 10, we see that there is only one Dex file loaded in 
Super- Depth (Fig. 9, because there is only one cluster of rectangles. 
However, Fig. 10 shows four clusters of rectangles; each cluster rep-
resents a loaded Dex file. The actual video used in the figure is avail-
able at https://www.youtube.com/watch?v=L0ngqsrTOHU . 

With respect to security analysis, we envision that JITANA can be use-
ful for detecting and analyzing a new breed of malicious apps that 
hide their malicious behaviors by dynamically loading code at run-
time. There are several samples of this type of malware such as Obad 
[11,34], Charger [32], Shedun [26], and FakeInstaller [30] that have al-
ready been exposed. For example, Shedun uses a dynamically loaded 
component to leak sensitive information through the Messenger app. 
It uses the Dyn- LoadService component to load a malicious class from 
an external JAR file hidden in the APK. It then uses the classloader to 
load a Dex file contained in the JAR file. Its malicious behavior is to 
use intent to steal user’s sensitive information. When we used JITANA 

to execute a version of Shedun, we were able to capture the malicious 
class file. We also observed the new class file being loaded at runtime 

Fig. 10. Illustration of Facebook loading four Dex files.  

https://www.youtube.com/watch?v=L0ngqsrTOHU


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       36

via TRAVIS. When we analyzed the newly loaded class, we also found 
that it used sensitive APIs that appear in the widely used SuSi list [27], 
indicating that the app is maliciously behaving. 

4.5. Threats to validity 

The primary threat to external validity in this investigation involves 
the object programs utilized. In our first scenario, we employ com-
plex real-world apps including Facebook, Instagram, Twitter, Pandora, 
and Pokémon Go. This allows us to apply our system to real-world 
scenarios, representative of those that engineers and analysts face. 
The same is also true for our second scenario wherein we use com-
mon apps that are packaged as part of an Android distribution in ad-
dition to real-world apps used in the first scenario. In our third sce-
nario, we need to perform dynamic analysis and compare the results 
with EMMA. To do so, we need to use apps that have test suites that 
achieve good code coverage. This prevented us from using commer-
cial apps, because generating inputs for those apps is non-trivial. For 
example, random event sequence generation tools such as Monkey 
tend to fail to exercise complex apps due to their needs for specific 
user inputs such as log-in information, accepting terms of use, and so 
forth. As such, we turned to opensource apps that had unit test cases. 
For the last scenario, we needed to find apps that load additional Dex 
files at runtime. Because Facebook is widely popular and its mecha-
nism for loading additional Dex files is complex, we chose it. 

A second threat to external validity involves the representativeness 
of our techniques for identifying IAC connections, providing code 
coverage information, and detecting dynamically loaded code. With 
respect to identifying IACs, we attempted to use the state of the art 
approach, IC3, to produce IAC analysis results to use in our study. How-
ever, IC3 was unable to analyze several real-world apps. As such, we 
used our IAC analysis implementation to provide the apps that APK-
Combiner needs to combine. As reported, APKCombiner was not able 
to combine any of these real-world apps. For the apps that IC3 and JI-
TANA can analyze for IACs, we also compare the results to ensure that 
for the types of IAC connection that we can support, our results do 
not contain any false negatives. (False positives are expected as our 
analysis is not as precise as that of IC3.) With respect to code cover-
age, we can use only existing tools that work directly on Dex code. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       37

This is because in real-world settings, analysts may not have access 
to the source code of apps that they are trying to analyze. As such, 
we chose EMMA. However, EMMA cannot perform continuous real-time 
analysis so while its runtime overhead is low, it needs to finish execut-
ing an app before it can compute the code coverage. 

The primary threat to internal validity on this work involves poten-
tial errors in the implementations of JITANA and the infrastructure used 
to run the baseline tools and JITANA. To limit these, we extensively val-
idated all of our tool components and scripts. 

The primary threat to construct validity in this work relates to the 
fact that we study efficiency measures relative to applications of JI-
TANA, but do not yet assess whether the approach helps engineers and 
security analysts address dependability and security concerns more 
quickly than current approaches. 

5. Discussion 

One interesting observation from our investigation of Scenarios 1 and 
2 is that the amount of time required by JITANA to perform text pro-
cessing for IAC analysis is negligible. Parsing an app for intents, in-
tent filters, and content providers represents the first step in the IAC 
analysis process. Existing approaches such as EPICC, IC3, and AMANDROID  

use the commonly available Android APKTOOL to parse these XML files 
for analysis. Our experience has shown that APKTOOL is inefficient be-
cause its goal is to provide human-comprehensible results. Instead, 
we developed our own tool to directly parse the desired information 
which is typically stored in binary format. This allows JITANA to per-
form string processing with low overhead. Comparing the string pro-
cessing times between APKTOOL and JITANA, we find that JITANA was more 
than 30 times faster. 

With respect to precision, JITANA currently yields IAC analysis re-
sults that often contain more false positives than results produced by 
EPICC, and by IC3, which is an improvement over EPICC. This is because 
a specific request can be mapped to multiple intent filters. EPICC over-
comes this problem by employing the IDE framework [28] to reduce 
false positives. IC3 further improves the precision of EPICC by employ-
ing composite constant propagation to reduce the number of identi-
fied intent filters by including URI information (see Section 6 for more 
information). 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       38

On the other hand, both EPICC and IC3 are ICC analysis tools, so in 
order for them to be applicable in the IAC context, the use of APKCOM-

BINER is necessary. As we have shown, APKCOMBINER is not scalable or 
robust, so techniques based on it would have limited applicability. JI-
TANA does not suffer from this scalability issue. We are now extend-
ing JITANA to support interprocedural dataflow analysis [2] and more 
complex constant propagation [21] so that we can increase the pre-
cision of our IAC analysis. 

We further investigated the impact of false positives in our results 
and found that in most cases, JITANA uncovered real connecting edges 
as well as false positive edges between pairs of apps. Therefore, the fi-
nal results, with respect to app connectivity, are still accurate. However, 
we also found some instances in which false positives led JITANA to mis-
takenly identify connections between some pairs of apps. For the time 
being, if higher precision can be sacrificed for higher efficiency and 
scalability, JITANA can already be used to determine IAC connections. 

With respect to code coverage, being able to assess test input qual-
ity in real time can provide analysts and engineers with timely infor-
mation that would allow them to make decisions more quickly with 
respect to ending the process. Instead of using time as the main cri-
terion for setting an at-speed security vetting budget, code coverage 
can also be used to determine whether vetting has been sufficient. 
In addition, our apprach can also keep track of execution “hotness” 
by counting how many times each basic block has been executed. As 
such, the result generated by our approach can be used to guide an 
input generation process to try to reach hard-to-reach blocks. If an 
input can be generated quickly, the input generation and code cov-
erage measurement can be done in a continuous feedback loop, ren-
dering testing and security vetting more efficient. 

With respect to capturing dynamically loaded code, the efficiency 
of our approach is ideally suited to analyzing malware that exploits 
dynamic code loading and reflection mechanisms in Android to de-
liver malicious behaviors at runtime. Because our approach can cap-
ture such code and incrementally annotate the new analysis result, it 
allows vetting for this type of malware to be done more effectively 
and efficiently. 

Finally, as noted in Section 4.3.2, imagine a company that allows its 
employees to bring their own devices to work. It is conceivable that 
there would be a team of analysts who need to vet devices before 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       39

admitting them to the company’s network or installing the compa-
ny’s apps. When a device is submitted for vetting, an analyst may 
need to observe how some of the key apps or services are used by 
other existing apps on the device. Perhaps there is a malicious app 
that can compromise data sent through a common service. A recent 
study [33] indicates that a smart-mobile device, on average, contains 
about 95 apps. Based on the performance reported in Table 4, an an-
alyst can use JITANA to perform analysis very quickly as part of an em-
ployee check in. Efficient analysis such as this would also allow secu-
rity checks to be performed more frequently. 

6. Related work 

Research efforts that are related to this work include program anal-
ysis frameworks for Android and detection of IAC connections. Over 
the past few years, there have been several approaches introduced 
for analyzing systems for ICCs [17,21,22,38]. EPICC is a program analysis 
framework that uses interprocedural data-flow and points-to analysis 
to uncover ICC connection points. On average, ICC analysis times for 
real-world apps range from 38 s for apps with fewer than 400 classes 
to 144 s for apps with 1500 classes or more. Our approach, however, 
can analyze an app with approximately 400 classes in less than 2 s and 
an app with approximately 200 classes in about 11 s. 

IC3 [21] is an improvement over EPICC. It conducts URI analysis for 
Content Providers and Multi-Valued Composite (MVC) constant prop-
agation. In MVC constant propagation analyzers try to target com-
plex objects that may have multiple fields. AMANDROID [38] performs 
flow and context sensitive points-to analysis. This can help with the 
construction of precise interprocedural control flow graphs (ICFGs) 
and interprocedural data-flow graphs (IDFGs). The approach builds a 
data dependence graph (DDG) for theapp from an IDFG. ICCTA goes a 
step further by taking the ICC information and then performing taint 
analysis to detect possible malicious flows across components [17]. 
In terms of performance, IC3 can analyze a corpus of 460 real-world 
Android apps (downloaded in 2013) for ICC connections in about 18 
h – an average of 140 s per app. Because our framework does not yet 
support MVC we cannot compare our performance with that of IC3, 
so we leave this evaluation as future work. 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       40

IC3 has also been used as the base system for further optimiza-
tion through probabilistic models. Octeau et al. [20] apply probabi-
listic models to further resolve intent and intent filter matching to re-
duce false positives. First, IC3 is used to perform ICC analysis. Intent 
resolution is then used to further reduce ICC connections. The author 
then conducted an evaluation using a collection of 11,267 apps and 
malware samples. They did not report the time required by IC3 to ini-
tially analyze these apps, but the intent resolution time was 43 min 
[20]. Note that the intent resolution process is orthogonal to that of 
IC3 and can also be used to increase the precision of ICC results pro-
duced by JITANA. 

Taint analysis has been used to verify IAC connections and de-
tect potentially suspicious connections. One such example is pro-
vided by ICCTA [17]. ICCTA is used to support IAC analysis. EPICC or IC3 is 
first used to perform ICC analysis on each app (Step 1) and analyze 
for the connections that can occur across apps (Step 2). APKCOMBINER 

is then used to combine the connected apps so that SOOT can recon-
struct the analysis graphs and FLOWDROID [2] can perform taint anal-
ysis on the resulting app [16] (Step 3). DIDFAIL [12] was introduced at 
about the same time as ICCTA. It also uses FLOWDROID for taint analysis 
and EPICC for ICC and IAC detection. However, DIDFAIL has been created 
specifically to detect connections among a set of apps, so instead of 
combining apps in a pairwise fashion, intra-app analysis produces a 
set of outputs for each application that include a manifest file, EPICC 

output, and FLOWDROID output. It then analyzes these output files to 
uncover IACs. Again, these approaches perform their initial analysis 
within the boundary of an app. 

Our work differs from current IAC analysis approaches several ways. 
First, while our approach also performs analysis of each app in a col-
lection, we perform these simultaneously. A typically approach needs 
to perform intra-app analysis n times for a collection consisting of n 
apps. Our approach performs its analysis just once, on all n apps. Sec-
ond, by doing this, we preserve analysis graphs generated during the 
process so that richer analysis techniques such as points-to analysis 
can be conducted on our analysis graphs. As such, our approach is 
more efficient in the context of analyzing interacting apps than cur-
rent approaches such as ICCTA that require the previously mentioned 
three steps. This is because: 1) Our intra app analysis is performed 
in parallel instead of sequentially; 2) data propagation can be done 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       41

across apps naturally instead of needing to create some forms of out-
puts that must be composed for IAC analysis; 3) our approach elimi-
nates the analysis graph reconstruction process altogether. As shown 
in this article, this last step in the current state-of-the-art approach to 
combine apps is inefficient and non-scalable. 

SEALANT combines static analysis with runtime monitoring to pre-
vent attacks through vulnerable IAC channels. Static analysis is used 
to identify vulnerable channels. Once identified, runtime monitoring 
is used to monitor activities in those channels to detect and prevent 
attacks [13]. In this work, static analysis is performed using IC3 [20] 
to identify IAC and COVERT [3] to perform compositional analysis to 
detect ICC vulnerabilities. The authors report that analyzing an app 
requires approximately 79 s. The majority of time (78 s) is used for ar-
chitectural extraction. This information can be reused if the same app 
is analyzed again. In the case of at-speed analysis, an analyst needs 
to dynamically consider apps in a device so it is likely that architec-
tural extraction is needed for each app in a device and the informa-
tion may not be reused. Our work, on the other hand, can detect IAC 
channels in a device with 129 channels in about 20 min. This includes 
the time to pull apps from the device. 

In terms of code coverage, EMMA is a widely used code coverage 
tool for Java and it now works for Android [29]. It supports both tar-
geted unit testing and random testing using Monkey. The biggest dif-
ference between JITANA and EMMA is that EMMA requires instrumenta-
tion of the application. For example, to use EMMA with random testing 
(e.g., using Monkey to generate inputs) we first need to create an in-
strumenting module to instrument the app. By working directly with 
the VM, JITANA can observe runtime events without instrumentation. 

7. Conclusion 

We have presented JITANA, a hybrid program analysis framework for 
Android that has been designed to overcome limitations in existing 
program analysis approaches. We have shown that JITANA facilitates the 
analysis of Android apps for inter-app communications, an analysis 
that can help engineers and security analysts diagnose and address 
faults and vulnerabilities related to inter-app interactions. The results 
also show that JITANA is more efficient than a state-of-the-art approach 



Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       42

for analyzing inter-app connections, and far more robust and scalable 
than that approach. We also have shown that JITANA is very efficient 
for performing hybrid analysis; it can generate real-time code cov-
erage information that can be helpful for assessing dynamic analysis 
quality. JITANA can also be used to perform continuous analysis when 
an application dynamically loads code. In this situation, static analy-
sis alone is inadequate. 

There are many activities that we plan to conduct to improve JITA-

NA’s performance and capabilities. First, we are working on imple-
menting an on-line IDE analysis framework so that we can improve 
the precision of our IAC analysis as well as provide a foundation by 
which other researchers can develop analysis approaches. Second, be-
cause JITANA generates all analysis graphs in BGL compliance form, we 
plan to develop approaches to persist prior analysis results and off-
load analysis tasks to high-performance clusters. Third, currently, JI-
TANA does not analyze native code; therefore, one possible extension 
is to create an approach to convert ARM binary code to BGL compli-
ance graphs. Such graphs can then be appended to JITANA graphs so 
that analysis can flow from managed domains to native domains and 
vice versa. Fourth, we are working on extending our Analysis Control-
ler to be able to retrieve objects in addtion to classes. Our goal is to be 
able to retrive GUI objects that can help with creating more complete 
GUI models that can support more effective event sequence genera-
tion. Fifth, we are using JITANA to detect a new breed of malware that 
hides malicious behaviors through dynamic code loading. This paper 
provides a glimpse into what JITANA can do in this regard. Our future 
work will extend JITANA to become a complete malware analysis tool 
that can detect attack surfaces based on this type of threats. These 
are just a few ideas that we have for JITANA. JITANA is publicly available 
for download at: http://cse.unl.edu/~ytsutano/jitana/    

Acknowledgments — This material is based on research sponsored by DARPA and 
Maryland Procurement Office under agreement numbers FA8750-14-2- 0053 and 
H98230-14-C-0140, respectively. Any opinions, findings, conclusions, or recommen-
dations expressed here are those of the authors and do not necessarily reflect the 
views of the funding agencies or the U.S. Government. 

Supplementary material is attached to the archive record for this article.

http://cse.unl.edu/~ytsutano/jitana/


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       43

References

[1] S. Acharya, Google Removes 13 Android Apps from Play Store Infected with 
Brain Test Malware, 2016, http://www.ibtimes.co.uk/google-removes-13-
android-appsplay-store-infected-brain-test-malware-1537049 

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, 
D. Octeau, P. McDaniel, FlowDroid: precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for Android apps, Proceedings 
of the ACM SIGPLAN Conference on Programming Language Design and 
Implementation, (2014), pp. 259–269.

[3] H. Bagheri, A. Sadeghi, J. Garcia, S. Malek, COVERT: compositional analysis of 
android inter-app permission leakage, IEEE Trans. Softw. Eng. 41 (9) (2015) 
866–886.

[4] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, M. Mezini, Taming reflection: 
aiding static analysis in the presence of reflection and custom class loaders, 
Proceedings of the International Conference on Software Engineering, (2011), 
pp. 241–250.

[5] Boost.org, Boost C++ library, 2018, http://www.boost.org/doc/libs/develop/
libs/graph/doc/ 

[6] J. Dean, D. Grove, C. Chambers, Optimization of object-oriented programs 
using static class hierarchy analysis, Proceedings of the 9th European 
Conference on Object-Oriented Programming, Aarhus, Denmark, (1995), pp. 
77–101.

[7] Google, Android security: 2016 year in review, 2017, https://source.android.
com/security/reports/Google_Android_Security_2016_Report_Final.pdf 

[8] M. Gouline, Code coverage on android with JaCoCo, 2015, https://blog.
gouline.net/code-coverage-on-android-with-jacoco-92ec90c9355e 

[9] Graphviz, Graphviz - graph visualization software, 2018, http://graphviz.org 
[10] U. Ismail, Incremental Call Graph Construction for the Eclipse IDE, Technical 

Report, University of Waterloo, 2009.
[11] Kaspersky Lab, The most sophisticated android trojan, 2013, http://www.

securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan 
[12] W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer, Android taint flow analysis for 

app sets, Proceedings of the ACM SIGPLAN International Workshop on the 
State of the Art in Java Program Analysis, (2014), pp. 1–6.

[13] Y.K. Lee, J.y. Bang, G. Safi, A. Shahbazian, Y. Zhao, N. Medvidovic, A sealant 
for inter-app security holes in android, Proceedings of the 39th International 
Conference on Software Engineering, ICSE ’17, Buenos Aires, Argentina, 
(2017), pp. 312–323.

[14] O. Lhoták, L. Hendren, Scaling Java points-to analysis using SPARK, 
Proceedings of the 12th International Conference on Compiler Construction, 
(2003), pp. 153–169.

[15] L. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, 
E. Bodden, D. Octeau, P. McDaniel, IccTA: detecting inter-component 
privacy leaks in Android apps, Proceedings of the ACM/IEEE International 
Conference on Software Engineering, (2015), pp. 280–291.

http://www.ibtimes.co.uk/google-removes-13-android-appsplay-store-infected-brain-test-malware-1537049
http://www.ibtimes.co.uk/google-removes-13-android-appsplay-store-infected-brain-test-malware-1537049
http://www.boost.org/doc/libs/develop/libs/graph/doc/
http://www.boost.org/doc/libs/develop/libs/graph/doc/
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://blog.gouline.net/code-coverage-on-android-with-jacoco-92ec90c9355e
https://blog.gouline.net/code-coverage-on-android-with-jacoco-92ec90c9355e
http://graphviz.org
http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan
http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       44

[16] L. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y.L. Traon, Apkcombiner: combining 
multiple android apps to support inter-app analysis, Proceedings of the IFIP 
TC 11 International Conference, (2015), pp. 513–527.

[17] L. Li, A. Bartel, J. Klein, Y.L. Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, 
P. McDaniel, I know what leaked in your pocket: uncovering privacy leaks on 
android apps with static taint analysis, CoRR abs/1404.7431 (2014).

[18] T. Lindholm, F. Yellin, Java Virtual Machine Specification, 2nd, Addison-Wesley 
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[19] E. Messmer, Black Hat demo: Google Bouncer can be beaten, 2012, 
http://www. networkworld.com/news/2012/072312-black-hat-google-
bouncer-261048.html.

[20] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein, Y. Le Traon, 
Combining static analysis with probabilistic models to enable market-scale 
android inter-component analysis, Proceedings of the ACM SIGPLAN-SIGACT 
Symposium on Principles of Programming Languages, (2016), pp. 469–484.

[21] D. Octeau, D. Luchaup, M. Dering, J. Somesh, P. McDaniel, Composite constant 
propagation: application to Android inter-component communication 
analysis, Proceedings of the 2015 International Conference on Software 
Engineering, (2015), pp. 77–88.

[22] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, Y.L. Traon, Effective 
inter-component communication mapping in Android: an essential step 
towards holistic security analysis, USENIX Security Symposium, (2013), pp. 
543–558.

[23] Oracle Corp., Oracle Solaris Studio 12.4: performance analyzer, 2015, https://
docs.oracle.com/cd/E37069_01/html/E37079/gkcct.html 

[24] Oracle Corp., Java Debug Wire Protocol (JDWP), 2018, https://docs.oracle.
com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html 

[25] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, G. Vigna, Execute 
this! analyzing unsafe and malicious dynamic code loading in android 
applications, 21st Annual Network and Distributed System Security 
Symposium, NDSS, San Diego, California, USA, (2014), pp. 1–16.

[26] P. Ponomariov, Shedun: adware/malware family threatening your Android 
device, 2015, https://blog.avira.com/shedun/ 

[27] S. Rasthofer, S. Arzt, E. Bodden, A machine-learning approach for classifying 
and categorizing android sources and sinks, 21st Annual Network and 
Distributed System Security Symposium, NDSS, San Diego, California, USA, 
(2014), pp. 1–15.

[28] T. Reps, S. Horwitz, M. Sagiv, Precise interprocedural dataflow analysis 
via graph reachability, Proceedings of the 22nd ACM SIGPLAN-SIGACT 
symposium on Principles of programming language, POPL ’95, New York, NY, 
USA, (1995), pp. 49–61.

[29] V. Roubtsov, EMMA: a free java code coverage tool, 2006, http://emma.
sourceforge.net 

https://docs.oracle.com/cd/E37069_01/html/E37079/gkcct.html
https://docs.oracle.com/cd/E37069_01/html/E37079/gkcct.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html
https://blog.avira.com/shedun/
http://emma.sourceforge.net
http://emma.sourceforge.net


Tsutano et  al .  in  Journal  of  Computer  Languages  52  (2019 )       45

[30] F. Ruiz, ‘fakeinstaller’ leads the attack on android phones, 
2012, https://securingtomorrow.mcafee.com/mcafee-labs/
fakeinstaller-leads-the-attack-on-android-phones/ 

[31] M. Schwartz, Google Play exploits bypass malware checks, 2012, 
http://www.informationweek.com/security/application-security/
google-play-exploits-bypass-malware-chec/240001691  

[32] J. Security, Deep analysis of android ransom charger, 2017, https://joesecurity.
org/blog/4211295284540909643 

[33] The Next Web, Android users have an average of 95 apps installed on 
their phones, according to Yahoo Aviate data, 2014, http://thenextweb.
com/apps/2014/08/26/android-users-average-95-apps-installed-phones-
according-yahoo-aviate-data/ 

[34] E. Tinaztepe, D. Kurt, A. Gulec, Android obad, 2013, (COMODO, Tech. Rep.).
[35] Y. Tsutano, S. Bachala, W. Srisa-an, G. Rothermel, J. Dinh, An efficient, robust, 

and scalable approach for analyzing interacting android apps, Proceedings 
of the International Conference on Software Engineering, Buenos Aires, 
Argentina, (2017), pp. 324–334.

[36] R. Vallée-Rai. Soot: A java bytecode optimization framework (Master’s thesis), 
McGill University, 2000.

[37] A. von Rhein, T. Berger, N.S. Johansson, M.M. Hardȹ, S. Apel, Lifting Inter-
App Data-Flow Analysis to Large App Sets, Technical Report, University of 
Passau, 2015.

[38] F.P. Wei, S. Roy, X. Ou, R. Song, Amandroid: a precise and general 
inter-component data flow analysis framework for security vetting of 
Android apps, Proceedings of the ACM Conference on Computer and 
Communications Security, (2014), pp. 1329–1341.

[39] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, F. Massacci, Stadyna: 
addressing the problem of dynamic code updates in the security analysis of 
android applications, Proceedings of the 5th ACM Conference on Data and 
Application Security and Privacy, CODASPY ’15, San Antonio, Texas, USA, 
(2015), pp. 37–48. 

https://securingtomorrow.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones/
https://securingtomorrow.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones/
http://www.informationweek.com/security/application-security/google-play-exploits-bypass-malware-chec/240001691
http://www.informationweek.com/security/application-security/google-play-exploits-bypass-malware-chec/240001691
https://joesecurity.org/blog/4211295284540909643
https://joesecurity.org/blog/4211295284540909643
http://thenextweb.com/apps/2014/08/26/android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/
http://thenextweb.com/apps/2014/08/26/android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/
http://thenextweb.com/apps/2014/08/26/android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/

	JITANA: A modern hybrid program analysis framework for android platforms
	tmp.1585705784.pdf.82P1v

