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Abstract.   

Meso-scale models over a range of 50-500 μm are employed for predicting crack growth in 

the creep range. They make use of fracture mechanics, creep damage mechanics under multi-

axial loading and limit analysis techniques. A study is made of the several levels of 

approximations and validations in the modelling process that are needed in order to make the 

method an acceptable tool for use in a safe defect assessment procedure. The NSW meso-

scale model developed previously has been used to compare crack growth rate in a 316H 

stainless steel tested at 550 oC using Compact Tension (CT) and Centre Cracked Panel (CCP) 

specimens. In this way the steady crack growth region can be explained by an upper/lower 

bound cracking rate based on the level of multiaxial constraint. However the model only 

quantifies the upper/lower plane stress/strain bounds and does not quantify the intermediate 

levels of constraint. Therefore a two-parameter concept to predict constraint and the various 

steps is employed to improve the predictions for defect assessment in components. 

Preliminary results using two-dimensional modelling of a CCP specimen under plane strain 

conditions suggest that the method could be used to predict conservative estimates for crack 

growth rates when compared to experimental results.  Further numerical analysis using three-

dimensional models of actual geometric sizes are necessary to confirm the usefulness of the 

two parameter method in defect assessment procedures. 

 

Introduction 

 

Mechanistic modelling at the micro level or atomistic levels will invariably be unable to 

describe the problem at the macro level without making numerous assumptions, 

simplifications and reductions in the number of variables employed. In high temperature 



 

fracture mechanics applications, modelling at the meso-scale level (a few grain sizes) [1-4] is 

used to explain the physical phenomenon and links the results to the macro-scale ‘realistic’ 

component size conditions. Modelling of crack growth predictive methods need further 

simplification before being implemented into defect assessment codes [5-7] in order to ensure 

sufficiently conservative, yet not over-conservative, estimates for remaining life. This task is 

made more difficult due to the fact that creep is highly stress sensitive in nature and therefore 

contains an inherent scatter in data. Creep damage and fracture mechanics models based on 

fundamental time-dependent damage or crack driving force concepts usually use short-term 

data (100-10000 hours) taken from small specimen testing. This is then used to predict long-

term failures of components in service with initial design lives in the region of upto 200,000 

hours. Verification and validation therefore becomes necessary in order to achieve this 

predictive extrapolation. The various steps necessary for these type of procedure to be 

implemented is continually being developed and improved. 

 

In this paper the modelling for these procedures is presented using the NSW [1-3] meso-

fracture mechanics model based on the multiaxial failure strain concept for developing 

damage ahead of a crack tip.  In this way the initiation stage and the steady crack growth 

region can be explained and bound by an upper/lower plane strain/stress line for cracking rate 

based on the level of multiaxial constraint. However the model does not quantify the 

intermediate levels of constraint. Therefore a two-parameter extension to predict constraint 

[8-9] and the various steps necessary to improve the predictions for defect assessment in 

components are considered. The paper assesses the links between the meso-scale modelling 

to macro scale crack growth. 

 

Model for Creep Crack Growth 

 

The arguments for correlating high temperature crack growth data essentially follow those 

of elastic-plastic fracture mechanics methods. For creeping situations [1-5] where elasticity 

dominates K may be sufficient to predict crack growth. However as creep is a non-linear time 

dependent mechanism even in situation where small scale creep may exist linear elasticity 

my not be the answer. By using the J definition to develop the fracture mechanics parameter 

C* it is possible to correlate time-dependent crack growth using non-linear fracture 

mechanics concepts. 



 

A simplified expression for stress dependence of creep is given by a power law equation 

which is often called the Norton’s creep law and is comparable to the power law hardening 

material giving; 
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and by analogy for a creeping material 
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where A’, A, N, n, oε& , is 1/hour and C, σo, n and ν are material constants and εf  represents 

the material uni-axial creep ductility at stress σo.  ε , ε&  and σ are the strain, creep strain rate 

and applied stress respectively.  Equation (2) is used to characterise the steady state 

(secondary) creep stage where the hardening by dislocation interaction is balanced by 

recovery processes. The typical value for n is between 5 and 12 for most metals. When N=n 

for creep and plasticity it is assumed that the state of stress is characterised in the same 

manner for the two conditions.  As an example for material data used in equations (2) and (3) 

Table (1) represents material data for a 316H type stainless steel. This data will be used in 

the numerical analysis and the modelling in the latter sections.   

 

The stress fields characterised by K in elasticity will be modified to the stress field 

characterised by the J integral in plasticity in the region around the crack tip. In the case of 

large scale creep where stress and strain rate determine the crack tip field the C* parameter is 

analogous to J. The C* integral which can be characterized by the HRR filed [10] and can be 

experimentally derived [3,5] has been widely accepted as the fracture mechanics parameter 

for this purpose [1-7,11]. The crack growth in creep can be described in various ways using 



 

different correlating parameters [1-5]. However the parameter C* has been adopted as the 

appropriate parameter for mainly creep ductile conditions both in testing standards [2] and in 

defect assessment codes [6-7].  Immediately after loading, in the absence of plastic 

deformation the stress distribution ahead of a crack tip is given by the elastic stress intensity 

factor K.  With time creep will cause stress redistribution until a steady state condition is 

reached which will be described by the creep fracture mechanics parameter C* [3]. The time 

taken for redistribution of C* to steady state tT is given by [3-5] 
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where K is the elastic stress intensity factor, E  is the Young’s Modulus and υ′  is Poisson’s 

ratio. The limits set in equation (4) can be practically utilised to identify the relative limits of 

the applicability of the parameter C* [5, 12]. It is found that creep crack growth rate a&  can be 

correlated satisfactorily in terms of C* by the relation [11, 12] 

 

                φ*0CDa =&  (5) 

  

where D0 and φ are material constants which can be measured experimentally or determined 

from a model of the cracking mechanism. The creep crack growth characteristics of materials 

can be determined experimentally (using test procedures specified in ASTM E1457-01) [4] or 

they can be predicted from uniaxial creep data and limit load analysis [4,6-7]. In both 

instances fracture mechanics concepts are employed and are subsequently simplified to a 

workable level in these codes.   

Under steady state condition a crack growth model called the NSW [1-2] has been developed 
in which a process zone rc of the size of 10-100 microns (approximately in the order of the 
size of a few grains, is postulated at a crack tip. It is supposed that this zone of size rc 
encompasses the region over which creep damage accumulates locally at the crack tip. It is 
also assumed that an element of material first experiences damage when it enters the process 
zone at rc and that crack advance takes place when the creep ductility appropriate to the state 
of stress at the crack tip *

fε  is exhausted there. Figure 1 shows a schematic diagram of the 
model in which the creep zone is described by a series of pseudo uniaxial specimens which 
different stress distributions described by the HRR [10] stress/strain rate fields. With this 



 

approach, for a material with uni-axial creep properties given by equations (2) and (3) the 
constants in equation (5) are subsequently derived [1] as  
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and in most cases ν ≅ n simplifying equation (7) further to 
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where In is a normalising factor, which depends on n and the state of stress at the crack tip 

and uniaxial failure strain εf.  For plane stress conditions the appropriate failure strain *
fε  is 

taken to be the uniaxial failure strain, εf , and for plane strain situations *
fε  can be as low as 

εf/30 [11-12]. Experimentally it has been shown that the upperbound of 30 is conservative for 

most creep ductile situations.   
 

 

Equation (8) is further simplified to a workable ‘Engineering’ model by making a number of 

assumptions of the variables employed. For most engineering alloys materials the value of 

n>>1 (usually between 6-12). Also it is seen that in equations (7) and (8) there is relatively 

insensitivity to the magnitude of rc which can therefore range between a few grain sizes (50-

500) microns.  Furthermore, from examination of a wide range of experimental creep crack 

growth data it has been found that Do is most sensitive to creep uniaxial failure strain 

allowing equation (5) to be  reasonably approximated for many materials by 

 

           *
f

*C3a
ε

φ

=&  (9) 

where a&  is in mm/h, C* is in MJ/m2h and *
fε  is the appropriate failure strain (as a fraction). 

The term φ ≈ n/(n+1) and can also approximated to φ = 0.85 to cover a range of engineering 

materials  [2,4]. This therefore is a clear example of how a detailed meso-scale model needs 

to be simplified to cover a wide range of conditions. 

 



 

These bounds derived experimentally  can be verified using a stress state argument linked to 

models of multi-axial creep failure strain, resulting from void growth at the grain size level, 

proposed by Cocks and Ashby [13]. Under a triaxial stress state the void growth model 

proposed uses the ratio of the mean stress to the equivalent stress (σm/σe) to estimate the 

appropriate crack-tip creep ductility εf
* in terms of the uniaxial ductility εf. The model gives 

this ratio as 
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Clearly from equation (10) the ratio ff εε /* is sensitive to the relevant (σm/σe) at the crack tip 

whose value in turn is sensitive to the creep index n and the numerical techniques used to 

estimate them. As a typical example it has been shown, using numerical Finite Element 

elastic/plastic creep analysis [14], that for Compact Tension (CT) specimens, the mean values 

of σm/σe for steady state has been calculated to be in the range 0.6 and 2.5, under plane stress  

(PS) and plane strain (PE) conditions respectively. If these values are replaced in equation 

(10) and using n=12 calculation for εf
*

PE and εf
*

PS gives 

 

fPEf εε
60
1* ≈  and fPSf εε

2
1* ≈  (11) 

 

The range is shown in figure 2 which suggests a factor of 30 used in the NSW predictions is 

appropriate. The small differences that exist between the NSW model and the predictions 

from the FE analysis are likely to be due to the different values of εf 
 used. 

 

Overall from data gathered on a range of materials and geometries it has been shown that the 

factor of 30 can be achieved but only in extreme circumstances [2,11]. However for specific 

materials and test conditions the range of crack growth, with respect to constraint, is likely to 

show a smaller range than the predicted factor of 30 [15]. 

 

Comparison with experimental results 

 



 

In this section a specific test example is presented to link the experimental to the modelling 

and numerical analysis. This consists of tests carried out at 550 oC on a 316 H type stainless 

steel using compact tension (CT) and centre crack panel (CCP) specimens. The relevant 

material properties of the steel, used in the analysis, are shown in Table 1. 

 

No detail of test procedures will be reported in this paper as they have been published 

previously [15]. Essentially test procedures for testing the CT and CCP specimens follow the 

ASTM testing method for elevated temperatures [4]. Figure 3 shows the two geometries used 

in testing a 316H stainless steel at 550 oC and figure 4 shows the crack growth rate data for 

the specimens tested correlated versus C*.  

 

By using various sizes of CT and one size of CCP the effects of crack tip constraint and the 

resulting crack growth rates can be compared. Experimentally it is clear that for the test 

conditions described in figure 4 the larger the specimen the faster the cracking rate (within 

the level of scatter that exists in the data). Also the CCP geometry exhibits the lowest 

cracking rate since it is of lower constraint than the CT specimens.  

 

For clarity the size and geometry effect is better highlighted in Figure 5 where the best mean 

value lines for the different geometries are shown. The predicted plane stress/strain bounds 

using equations (5, 7) and material properties from Table 1, are also shown in the figure as 

well as the mean line of the whole data set. It is clear that a factor of 30 on plane strain is 

over conservative for these short term tests (<5000hours) of 316H stainless steel which 

exhibits a creep failure ductility εf of about 20%. This suggests insufficient constraint is 

achieved for these tests. The same may not be the case for long term tests where the reduction 

in crack tip plasticity and creep ductility may highlight geometric and size effects in terms of 

cracking rate. 

As a design or a life assessment criterion, the choice of the upperbound plane strain line is 

bound to be too conservative for most practical situations.  Therefore an improvement in the 

model is needed to be able to quantify the constraint level for different geometries and load 

levels. This may be achieved by a two parameter criterion described below. 

 



 

Modelling High Temperature Constraint  

For steady state creep an analogy can be made between power law plasticity and power law 

creep as explained earlier in equation (1)-(3) under creep conditions, the hydrostatic σm and 

the von Mises, σe stress fields can be given by [8]: 
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 The first term in equations (12) and (13) is the HRR field [13] and Q is termed a ‘constraint’ 

factor which depends on the remote out of plane stresses. Steady state crack growth now 

depends on two parameters, ∗C  and Q. Experimental and numerical investigations are 

therefore required to determine the importance of Q in creep crack growth. From finite 

element studies the different levels of constraint due to specimen type and crack length have 

been quantified using the Q parameters [9].  

 

Two dimensional elastic-power law creep finite element analyses have been conducted to 

examine the effect of specimen size, type, geometry (different crack lengths) with the material 

properties (shown in Table 1) on the stress fields ahead of a crack. A hydrostatic Q stress is 

used to quantify the influence of constraint observed and to provide a framework for assessing 

different specimen types. This approach is then applied to the creep crack growth analysis, 

using creep data derived from uniaxial tests.  

 

From the FE analysis using ABAQUS [16] it is known that the constraint of a specimen will 

depend on its crack length, therefore, as the crack grows, the constraint will change. An 

expression for the crack growth rate based on the Q stress [8,9] by manipulating equations 

(8,12-13 ) to give 
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and ∗
fε  is the multiaxial ductility evaluated at the appropriate em / σσ . It can be seen that as 

the constraint decreases the crack growth rate decreases as well. When Q = 0, equation (14) 

reduces to the crack growth rate NSW prediction given by equation (8) 

 

This has been investigated for a CCP using the conditions of the test performed on 316H 

steel at 550 oC where the crack grew from a / W = 0.34 to a / W = 0.49. The finite element 

predictions are based on equation (14) where a&  and Q have been evaluated at the 

experimental value of C*. The results are shown in Fig. 6 for steady state crack growth rates 

conditions.  

 

The predicted crack growth rate, is comparable to the experimental data shown and is bound 

by the upper/lower plane strain/stress bound of equation (6) using the approximate NSW 

model. The model correctly predicts the trends seen in the experimental data and is shown to 

be conservative by a factor of approximately 3-5. Overall the predicative trends seem to 

compare well with the experimental data however further work is needed in order to reduce 

the conservatism by considering the effects sensitivity to mesh size and the effects of 

material properties used as input data. 

Conclusions  

 

Creep crack development in structures can be separated into two regimes of failure, 

consisting of initiation and a steady cracking behaviour both of which are affected by 

constraint. The paper deals with the steady state cracking regime. The paper presents an 

example of how the use of creep meso-scale fracture mechanics modelling techniques can be 

translated into an engineering assessment of crack growth rate. The various steps necessary 

for rationalization and simplifications of the models are highlighted and the the possible 

effects of material properties variability to crack growth predictions are presented. The 

parameter described as C* has been shown to correlate the steady state crack growth rate 

quite well. The meso-scale NSW model, which considers the development of a creep zone 

under a multi-axial stress state, has been used to produce a material independent engineering 

diagram bounding over the plane stress/strain steady state using the a multi-axial model of 



 

void growth to predict a multiaxial failure ductility. The NSW model, is used to describe 

crack growth behaviour in a range of engineering alloys, showing that the model does not 

have to perform under strict tolerances. From the model the most conservative bound chosen 

for defect assessment predictions would be the plane strain which gives a factor of 30 in 

crack growth rates in the extreme over plane stress conditions. However the range of crack 

growth due to constraint effects are not quantified. A two-parameter approach could be used 

to improve correlations for the cracking behaviour and reduce undue conservatism. The 

development of this parameter in both two dimensional and three dimensional models is 

computer intensive in terms of analysis and derivation. Preliminary results on a CCP 

laboratory geomety compared to actual tests carried out on a type 316H stainless steel at 550 
oC show that the two-parameter method can be used to make conservative crack growth rate 

predictions. The results suggest that a comprehensive numerical analysis should be 

undertaken to compute Q for three dimensional meshes in order to estimate its sensitivity to 

creep crack growth correlations in the range of plane stress/strain regime. 

 

Acknowledgement: The author would like to thank Dr A. Bettinson for the numerical 

analysis and testing carried out in respect of this paper and the British Energy Generations 

Ltd for funding the work. 

 

References 

[1] Nikbin K.M., Smith D.J. and Webster G.A., “Prediction of Creep Crack Growth from 

Uniaxial Creep Data”, Proc. R. Soc. Lond., A 396, pp 183–197, 1984. 

[2] Nikbin, K.M., Smith, D.J. and Webster, G.A., J Eng. Mat. and Tech.,(1986),  ASME, 

108, 186-191.  

[3] Webster, G.A. & Ainsworth, R.A., 'High Temperature Component Life Assessment', 

Chapman and Hall, London, 1994.  

[4] Saxena, A. “Crack Growth under Non Steady-state Conditions”, in 17th ASTM 

National Symposium on Fracture Mechanics.  1984. Albany, NY. 

[5] ASTM E 1457-01, (2001), Standard Test Method for Measurement of Creep Crack 

Growth Rates in Metals, ASTM Standards 03.01. 

[6] Ainsworth, R.A, editor R5:’ Assessment Procedure for The High Temperature 

Response of Structures’, British Energy Generation Ltd.  Procedure R5 Issue 2, 1999. 

[7] British Standards- 7910: 1999, Guide to methods of assessing the acceptability of flaws 

in fusion welded structures, BSI, London, 1999. 



 

[8] Budden P.J., and Ainsworth R.A., "The Effect of Constraint on Creep Fracture 

Assessments", Int. Jnl. Fracture, 97, pp 237–247, 1999. 

[9] Bettinson, A.D., O’Dowd N. P., Nikbin, K. M. and Webster, G. A., ’‘Two-parameter 

characterization of crack-tip fields under creep conditions’, IUTAM Conf., Japan, Apr. 

2000. 

[10] Rice J.R., and Rosengren G.F., “Plane Strain Deformation near a Crack Tip in a Power-

Law Hardening Material”, J. Mech. Phys. Solids, 16, pp. 1–12.  

[11] Tan, M., Celard, N.J.C., Nikbin, K. , Webster, G.A., ‘Comparison of creep crack 

initiation and growth in four steels tested in HIDA’, Int. J. PVP, pp 2001, 737 - 747  

[12] Kwon, O., Nikbin, K.M., Webster, G.A.,  JATA, K.V., 'Crack growth in the presence of 

limited creep deformation', Engineering Fracture Mechanics, 62, 1, 33-46, 1999. 

[13] Cocks A.C.F. and Ashby M.F., "Intergranular Fracture in Power Law Creep under 

Multiaxial Stress", Metal Science, 14, pp395-402, 1980. 

[14] Yatomi, M., Nikbin, K. M., O’Dowd, N. P., ‘Creep crack growth prediction using a 

creep damage based approach’, VAMAS TWA25 special publication, Int. J. PVP, 2003 

(to be published)’ 

[15] Bettinson, A. D., O’Dowd, N. P, Nikbin, K., Webster, G. A.’ Experimental 

investigation of constraint effects on creep crack growth’,  Proceedings of  PVP’02, 

2002 ASME pressure vessels & piping (PVP) Conf., August 4-8, 2002, Vancouver, BC, 

Canada. 

[16] ABAQUS v5.8, Hibbitt, Karlsson and Sorensen Inc., Providence, RI, 1998 

 

 



 

Table 1: Material properties of type 316H stainless steel at 550 oC 

E (GPa) Yσ   (MPa)  UTSσ   (MPa) A n minε&   h-1 Aε&   h-1 fε  % 

130 190 595 1.56×10-35 12 1.65×10-5 18.3 21 



 

 

Figure 1: Schematic view of the creep process zone model in which the C* field dominates 

where units of length increments within the zone are compared to a uniaxial circular bar 

specimen used in actual creep tests. 

Figure 2: Relationship between appropriate crack-tip creep ductility εf
* and (σm/σe) under a 

multi-axial stress state using equation (8) showing the range under plane stress and plane 

strain conditions for a CT specimen. 

dr

rc

Crack

dr

rc

Crack

Distance  r

C
r e

ep
 S

tra
in

 ra
te

rc

Numerical simulation of 
accumulated creep strain

C* Creep 
Strain rate field

Distance  r

C
r e

ep
 S

tra
in

 ra
te

rc

Numerical simulation of 
accumulated creep strain

C* Creep 
Strain rate field

Distance  r

C
r e

ep
 S

tra
in

 ra
te

rc

Numerical simulation of 
accumulated creep strain

C* Creep 
Strain rate field

Uniaxial  barUniaxial  barUniaxial  bar

Uniaxial
failure strain

εfUniaxial
failure strain

εfUniaxial
failure strain

εfUniaxial
failure strain

εf

 

X30

  

100 

101 

102 

103 

0.1 1 10 
σm /σe

 

N
or

m
al

is
ed

 d
uc

til
ity

 ε
f* / ε

f  

Hydrostatic/Equivalent stress

8n=5 
n= 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Dimensions for CT, CCP specimens (in mm). Thicknesses B=W/2 and B=8 mm 

were used for the CT and CCP respectively 

 

Figure 4: Crack growth rate versus C* for 316 H type stainless steel tested at 550 oC [14] 

using different sizes of CT specimens and CCP specimens.  
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Figure 5: The best fit mean lines from Figure 4 showing the differences in cracking rate due 

to size and geometry. For 316 H type stainless steel tested at 550 oC. 

 

Fig 6: predicted and experimental crack growth rates for CCP 316H stainless steel tested at 

550 oC using equations 9 (under plane stress using εf  and strain using εf /30) and 14 
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