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Exploring Auditory-Inspired Acoustic Features

for Room Acoustic Parameter Estimation

from Monaural Speech
Feifei Xiong, Student Member, IEEE, Stefan Goetze, Member, IEEE, Birger Kollmeier, and Bernd T. Meyer

Abstract—Room acoustic parameters that characterize acous-
tic environments can help to improve signal enhancement al-
gorithms such as for dereverberation, or automatic speech
recognition by adapting models to the current parameter set.
The reverberation time (RT) and the early-to-late reverberation
ratio (ELR) are two key parameters. In this paper, we propose a
blind ROom Parameter Estimator (ROPE) based on an artificial
neural network that learns the mapping to discrete ranges of
the RT and the ELR from single-microphone speech signals.
Auditory-inspired acoustic features are used as neural network
input, which are generated by a temporal modulation filter
bank applied to the speech time-frequency representation. ROPE
performance is analyzed in various reverberant environments in
both clean and noisy conditions for both fullband and subband
RT and ELR estimations. The importance of specific temporal
modulation frequencies is analyzed by evaluating the contribution
of individual filters to the ROPE performance. Experimental
results show that ROPE is robust against different variations
caused by room impulse responses (measured vs. simulated),
mismatched noise levels and speech variability reflected through
different corpora. Compared to state-of-the-art algorithms that
were tested in the Acoustic Characterisation of Environments
(ACE) challenge, the ROPE model is the only one that is among
the best for all individual tasks (RT and ELR estimation from
fullband and subband signals). Improved fullband estimations
are even obtained by ROPE when integrating speech-related
frequency subbands. Further, the model requires the least com-
putational resources with a real time factor that is at least two
times faster than competing algorithms. Results are achieved with
an average observation window of 3 seconds, which is important
for real-time applications.

Index Terms—Reverberation time, early-to-late reverberation
ratio, blind estimation, auditory-inspired acoustic features, ma-
chine learning.
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I. INTRODUCTION

THE acoustic characteristics of a room have been shown

to be important to predict the speech quality and in-

telligibility of speech signals, which are highly relevant in

speech communication applications such as dereverberation

in hands-free telecommunication devices, speech enhancement

in hearing aids, or front-end processing in automatic speech

recognition (ASR). The reverberation time (RT) and the early-

to-late reverberation ratio (ELR) are two key parameters to

represent such room acoustic characteristics [1], [2]. The RT

is defined as the time interval for a 60 dB decay of the

sound energy after the sound source is ceased, and the ELR

refers to the energy ratio between the early reflections of

signal transmission (including the direct path) and the late

reverberation caused by multi-path propagation from the sound

source to the receiver. Special cases of the ELR include

the direct-to-reverberant ratio (DRR) (i.e., early components

correspond to sounds from the direct path), and the clarity

index [1] for which early and late reflections are separated

at 50 ms (denoted by C50) or at 80 ms (C80). Naturally, the

RT and the ELR are frequency-dependent parameters since

the absorption reflection coefficients vary with frequency [1].

In addition to values obtained from fullband processing, the

RT and the ELR are therefore often specified for subbands

(e.g., for the octave band centered at 1 kHz [2]). Traditionally,

the RT and the ELR are derived from the room impulse

response (RIR) between the source and the receiver, which

can be measured, e.g., using an excitation signal such as a

swept-sine signal [3]. However, RIR recordings require time

and other resources, and are not always practical in real-world

scenarios. Consequently, it is of great interest to blindly (or

non-intrusively) estimate the RT and the ELR directly from

reverberant speech signals.

To estimate the RT, statistical models of the sound decay

characteristics of reverberant speech have been explored in

earlier research: Ratnam et al. [4] modeled the reverberation

tail of the RIR using an exponentially damped Gaussian

envelope, so that the RT can be obtained from the envelope

that is fitted to the data using a maximum-likelihood (ML)

criterion. This has been extended in [5] aiming at reducing

the complexity using a pre-selection mechanism to detect the

plausible exponential decays. Similarly, Vieira [6] focused on

detecting the free decay regions of reverberant signals, where

the exponential decay model and Schroeder’s integral [7] were

used to determine the RT. This method has been also applied
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to subband processing mode in [8]. Wen et al. [9] developed an

RT estimator using spectral decay distributions in which the

negative-side variance was shown to strongly correlate with

RT values, so that a linear mapping function can be generated

based on samples with known RTs. A noise-robust version

of [9] with reduced computational complexity was presented

in [10]. A comparison of energies at high and low modulation

frequencies, the so-called speech-to-reverberation modulation

energy ratio (SRMR), was proposed in [11] to obtain linear

estimates of room parameters.

Approaches based on machine learning were shown to

be quite successful for estimating room parameters as well.

For instance, artificial neural networks (ANNs) have been

proposed to learn a mapping between the ground truth and

target measure: Cox et al. [12] trained an ANN to blindly

estimate the RT using the short-term root-mean square values

of the speech signals as the ANN input, whereas [13] used the

low-frequency envelope spectrum as ANN input feature.

In contrast to RT estimators, which usually utilize single-

microphone audio, the majority of blind ELR estimators

relies on multi-microphone data. This allows to exploit spa-

tial information obtained by multi-microphone recordings for

separating the early or the direct component from the rever-

berant speech, e.g., DRR estimation in [14]–[17]. However,

multi-microphone configurations are not available in many

scenarios, which motivated research on (usually supervised)

single-channel ELR estimators. For instance, the ANN-based

approach proposed in [12] for RT estimation has been modified

in [13] to estimate C80 from single-microphone data. A

classification combined with regression trees was used in [18]

to estimate C50 with a complex combined set of acoustic

features.

In this work, we explore a blind acoustic ROom Parameter

Estimator (ROPE) which estimates the RT and the ELR

from single-microphone speech recordings in both, fullband

and subband processing. To this end, a multi-layer percep-

tron (MLP) is used as discriminative classifier to obtain

different room acoustic parameters, motivated by the findings

from subjectively perceptual experiments that human auditory

system is able to distinguish various RTs and ELRs but

with constrained just noticeable differences (JNDs) [2]. Input

features to the MLP need to reflect changes for different

RTs and ELRs in noisy environments, and at the same time,

to generalize with respect to speech variability since speech

encountered during test time is unknown to the classifier.

Motivated by the robustness of the human auditory system,

previous research has shown auditory-inspired signal process-

ing to be effective for speech separation [19] and ASR [20].

We explore auditory-inspired acoustic features for the ROPE

system, which consist of a time-frequency (TF) representation

of the speech signal and a temporal modulation filter bank:

Gammatone filter bank based TF representation is used since

it was shown to improve speech processing particularly in

computational auditory scene analysis (CASA) [19], [21]. This

approach allows a straightforward extension for our model

from fullband analysis [22], [23] to subband processing due

to the time-domain implementation of the Gammatone filters.

Further, temporal processing in the human auditory system is

crucial for speech perception in reverberant conditions (which

result in temporal smearing of the speech signal) by analyzing

acoustic temporal modulation cues [24]. Hence, we use a

filter bank to extract features that capture different temporal

modulation frequencies (TMFs) from TF representations, and

analyze the relevance of TMFs as well as their robustness

when estimating RTs and ELRs in noise-free and noisy con-

ditions. Since ROPE requires labeled training data, we also

explore its performance in mismatched training and testing

conditions, which should provide insight into the robustness in

the presence of different RIRs, noise levels, and speech signals.

Our approach is validated using the ACE challenge single-

microphone evaluation database recorded in real rooms [25]

and compared to other state-of-the-art RT and ELR estimators

in terms of the estimation accuracy and the computational

complexity for real-time applications. Finally, the performance

for each frequency subband is analyzed, as well as the benefit

from combining subbands that cover frequencies important in

speech perception.

The remainder of this paper is organized as follows: We

first briefly introduce the two key room acoustic parameters

in Section II, and then describe the calculation of the auditory-

inspired acoustic features in Section III. Section IV illustrates

the ROPE system structure, and the experimental setup for

evaluation is presented in Section V. Results and discussion

are presented in Section VI, which is structured by the experi-

mental parameters that were systematically varied. Section VII

concludes the paper.

II. ROOM ACOUSTIC PARAMETERS

Both the MLP training for ROPE as well as a subsequent

model evaluation require the ground truth of the room param-

eters. The procedure for obtaining the ground truth from the

RIR is described in the following, as well as the definitions

for RT and ELR.

A. Reverberation Time (RT)

One classic intrusive measure of the RT is based on the

energy decay curve computed by Schroeder’s integral [7] from

a measured RIR h[k] with time index k. A linear fitting is then

applied to a certain range of this curve to determine a decay by

60 dB [2]. Karjalainen et al. [26] found that nonlinear fitting

algorithms produce more reliable results, especially against

non-stationary noise floor in measured RIRs. In accordance

with the ACE challenge [25], this nonlinear fitting is applied

to the logarithmic magnitude of h[k] to obtain the RT ground

truth. For subband analysis, the RIR hf [k] in frequency band

f is obtained from the fullband signal h[k] (cf. Section III-A)

and subsequently processed as the fullband counterpart.

B. Early-to-Late Reverberation Ratio (ELR)

For continuous signals, the ELR of an RIR h(t) is defined

in a decibel scale as in (1) with te denoting the boundary

between early and late signal components. For a discrete RIR

h[k] of length Lh, the ELR is calculated according to (2) with
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Fig. 1. (a) the early part (te = 50 ms at fs = 16 kHz) of a fullband RIR
h[k] from the ACE challenge [25]; (b) the corresponding subband RIR hf [k]
at f = 1000 Hz. The initial (red) part is removed due to the Gammatone filter
delay; (c) frequency response of the Gammatone filter bank; (d) RT ground
truth; (e) ELR ground truth.

ke denoting the boundary sample obtained by rounding fs · te
to the nearest integer.

ELR = 10 log10

(

∫ t=te

t=0
h2(t)

∫

∞

t=te
h2(t)

)

, (1)

≃ 10 log10

(

∑k=ke

k=1 h2[k]
∑Lh

k=ke+1 h
2[k]

)

. (2)

To determine the ELR for our experiments, silence preceding

the RIR is removed and the tail is cropped after a level

reduction to −70 dB to limit artifacts. In the following, te is

set to 50 ms (i.e., the ELR with this time constant is identical

to C50), which is motivated by the grouping of multi-path

signal components of the human auditory system if the delay

between paths does not exceed approximately 50 ms [27]. Note

that the term ELR is a general description of the energy ratio

room parameters, and the proposed ROPE model could be

potentially applied to ELR measures with other time constants

than 50 ms, which should be explored in future research. For

the calculation of the subband ELR in (2) from the subband

RIR hf [k], signal components introduced by the filter delay

are removed (cf. the initial red part as illustrated in Fig. 1 (b)).

III. AUDITORY-INSPIRED ACOUSTIC FEATURES

For estimating acoustic room parameters, we exploit two

different auditory-inspired features which are used as input to

the neural network for parameter classification, as described

in the following.

A. Time-Frequency Representation

Gammatone filter bank based TF representations [19], which

are inspired by the human auditory system, are employed as

the first feature type. For calculation, a Gammatone filter bank
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Fig. 2. Temporal modulation filter bank with the (a) real part and (b)
imaginary part (short filters have been zero padded to the longest length for
easy comparison), as well as (c) frequency responses of 7 real filters and (d)
frequency responses of 5 imaginary filters.

decomposes the speech signal into frequency bands, which

models the auditory filters and exhibits a higher resolution

for lower frequencies compared to the short-time Fourier

transform. As shown in Fig 1 (c), we use 40 Gammatone

filters with center frequencies ranging from 100 to 7943 Hz

with a sampling frequency of 16 kHz. Short-time windowing

is applied with a frame shift of 10 ms and an analysis block

length of 25 ms, resulting in a two-dimensional time-frequency

representation (cf. Fig. 3). A logarithmic compression function

is then used for dynamic range reduction.

Besides these baseline TF representations (40-dimensional

log-Gammatone filter bank features) without temporal context,

we also investigate features with a context of several preceding

and subsequent frames as MLP input. This is inspired by

ASR experiments (e.g., in [28], [29]), where it was observed

that neural networks profit from information about temporal

dynamics through concatenated time frames, which is used

here as well (with 5 preceding and 5 following frames labeled

as ±5, which results in 440-dimensional features).

B. Temporal Modulation Filter Bank

Motivated by the successful use of modulation filtering

for feature extraction in ASR systems [29]–[31], we explore

temporal modulation frequency (TMF) features that are ex-

tracted from the TF representations. The temporal modulation

filter bank gm[ℓ] with filter index m is given by a complex

exponential carrier function scarr[ℓ, fm] that is modulated by

a zero-phase Hann-envelope function wenv[ℓ, Lm],

gm[ℓ] = scarr[ℓ, fm] · wenv[ℓ, Lm] , (3)

scarr[ℓ, fm] = exp (−i2πfm · T · (ℓ− ℓ0)) , (4)

wenv[ℓ, Lm] =

{

cos2
(

π(ℓ−ℓ0)
Lm

)

for 1 < ℓ < Lm

0 for ℓ = {1, Lm}
(5)

In (3)-(5), fm, Lm and T denote the center frequency, filter

length, and the sampling period of modulation frequencies (in
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Fig. 3. System structure of ROPE to estimate the RT or the ELR in both fullband and subband analysis based on auditory-inspired features.

this case 100 Hz which follows from the 10 ms frame shift

for TF representations). ℓ ∈ {1, . . . , Lm} is the filter sample

index and ℓ0 represents the center sample computed as ℓ0 =
⌈Lm/2⌉.

The selection of center frequencies and the bandwidths

of gm[ℓ] are based on an auditory modulation filter bank

proposed by Dau et al. [32]: A constant bandwidth is used

for TMFs up to 10 Hz, whereas a logarithmic scaling with

a constant Q-value of 2 is used above 10 Hz, resulting in

7 center frequencies: {0, 3, 6, 10, 17.1, 29.2, 50} Hz. Both the

real and the imaginary part of the band-pass modulation filters

(cf. Fig. 2 (b) and (d)), are kept since the phase information is

important to sustain the temporal alignment of the frequency

components within the envelope window wenv[ℓ], particularly

for the narrow-band filters gm[ℓ] with a large temporal context.

The convolution of the 40-dimensional TF representations

with each filter (7 real filters and 5 imaginary filters) are

concatenated, which results in 480-dimensional TMF features

used as input to the MLP.

IV. ROOM PARAMETER ESTIMATOR (ROPE)

The proposed ROPE system is illustrated in Fig. 3. First, re-

verberant and noisy speech signals are synthesized using ane-

choic speech, available RIRs, and noise signals. Subsequently,

the auditory-inspired features are extracted and used as input

to the discriminative MLP. After temporal averaging of MLP

outputs (which correspond to specific RT and ELR ranges), the

output neuron with the highest activation/probability is chosen

as estimated RT/ELR value (winner-takes-all).

A. Synthesized Reverberant and Noisy Speech

In order to simulate reverberant, diffuse noisy signals which

are characteristic for the room that is considered (with the

exception of test conditions that cover real noise data), we

propose to use the late part hl[k] of the corresponding RIR.

The early part is omitted since it can be assumed that it is

correlated with reverberated speech signals, while the late part

(usually after 50 ms, i.e., k > ⌈fs · 50ms⌉) is assumed to be

uncorrelated [1]. In other words, n[k] ∗ hl[k] represents the

diffuse noise recorded from the same room as the target speech

signal s[k]. The synthesis model is therefore given by

x[k] = s[k] ∗ h[k] + β · n[k] ∗ hl[k] , (6)

with the coefficient β that adjusts the signal-to-noise ra-

tio (SNR) of the mixture according to ITU-T P.56 [33].

B. MLP Classifier

As shown in Fig. 3, classification of the RT or the ELR

is performed using an MLP that maps the input features to

binned classes for both output parameters. The MLP is imple-

mented using the Kaldi ASR toolkit [34], and rectified linear

units [35] are used as activation functions. The standard back-

propagation via a stochastic gradient descent algorithm [36]

is applied to train the MLP. The cost function is based

on cross-entropy, and a softmax function is applied to the

output layer to obtain posterior probabilities of RT and ELR

classes. Preliminary experiments have shown that increasing

the number of hidden layers does not improve performance

for this specific task, therefore the results reported here were

obtained using one hidden layer only. The dimensionality of

the output layer corresponds to the number of RT and ELR

output classes (cf. Section V-B1).

To smooth the classification result, the MLP output can

be averaged over time. In this paper we consider different

temporal integration window sizes that range from one to

several hundreds of averaged frames. While single-frame deci-

sions are expected to be noisy, very long observation windows

introduce a delay (potentially of several seconds) that may not

be acceptable for some applications. We therefore explore the

trade-off between noisy classification results and integration

time, and compare the result to utterance-based processing

(in which all frames that belong to a longer utterance are

averaged), which serves as an upper bound in this study.

V. EXPERIMENTAL SETUP

A. RT and ELR Resolution

The number of RT and ELR target classes defines the

number of MLP output neurons. An adequate number of

neurons is estimated on the basis of JNDs of both target values.

As suggested in [2], [13], JNDs for RT and ELR are in the

range of 100 ms and 1 dB, respectively. Center values are

chosen based on these JNDs, and RTs within a ±50 ms range

around these values are grouped; similarly, ELR values within

a ±0.5 dB interval centered around the label are grouped.

This introduces a quantization error, but at the same time
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TABLE I
TEST SETS FOR ROPE TO ESTIMATE THE RT AND THE ELR IN VARIOUS

ACOUSTIC ENVIRONMENTS IN BOTH FULLBAND AND SUBBAND ANALYSIS.
NOISE TYPES CORRESPOND TO PINK, BABBLE, AND FAN NOISE.

Set RIR (No.) Noise SNR/dB Speech No. of Utt.

A Simu (12) PN, BN ∞, 20, 10, 0 TIMIT 1344×12

B Real (12) PN, BN ∞, 20, 10, 0 TIMIT 1344×12

C Simu+Real (12+12) PN, BN 30, 18, 12,−1 TIMIT 1344×24

D Simu+Real (12+12) PN, BN 30, 18, 12,−1 ACE 50×8×24

E Real (10) AN, BN, FN 18, 12,−1 ACE 50×9×10

ensures sufficient training data for each class and seems to

be acceptable from a perceptual point of view [1], [37].

B. Training and Test Data

1) Training Set: Anechoic speech from the TIMIT

database [38] serves as basis for the ROPE training set

(cf. Fig. 3). It contains recordings of phonetically-balanced

prompted English speech in 3696 sentences uttered by 462
different speakers, recorded at 16 kHz sampling frequency.

These are processed with RIRs characterized by uniformly

distributed RTs (in an interval of [200, 1500] ms) and ELRs

(in an interval of [−3, 30] dB) for fullband analysis. With the

resolution described above, we obtain 14 and 34 output classes

for RT and ELR, respectively. The same criterion of uniform

class distribution is applied for subband analysis. For instance,

the data selection for f = 1 kHz band results in the intervals

of [200, 1700] ms and [−5, 25] dB. In summary, the number

of RT labels is between 10 and 17, and the number of ELR

classes ranges from 20 to 34. We choose 128 and 256 hidden

neurons for the RT and the ELR estimation to account for the

different number of output classes.

A set of RIRs for training is generated using the image

method [39] 1, which provides 10 different RIRs for each RT

and ELR class. Three different SNRs at {20, 10, 0} dB are

used for noisy environments and SNR = ∞ dB denotes the

noise-free condition. Two types of noise signals are chosen,

namely pink noise (PN) which exhibits similar noise energy in

each frequency band of the Gammatone filter bank, and babble

noise (BN) which is generated via a mixture of anechoic

speech signals produced by 4 female and 4 male speakers

from the WSJCAM0 corpus [40].

2) Test Sets: In order to evaluate the ROPE performance as

well as to test its generalization to unseen acoustic environ-

ments, we create 5 different test sets that cover simulated and

measured RIRs, various SNRs with different noise types, and

speech recordings from two different sources (cf. Table I for

details). Different speakers were chosen for training and test

sets, resulting in speaker-independent models.

Test Sets A and B were created with the same proce-

dure as the training set, but use different speech signals

and RIRs. The speech signals of these sets are taken from

the TIMIT evaluation set, which contains 1344 utterances

collected from 168 speakers. Pink and babble noise at SNRs

of {∞, 20, 10, 0} dB are added to the utterances as described

earlier. Test Set A contains 12 simulated RIRs (Simu), while

1Implementation of the RIR generator according to https://www.audiolabs-

erlangen.de/fau/professor/habets/software/rir-generator

Fig. 4. Distribution of the RT and the ELR from the test sets in fullband
analysis. 12 simulated (Simu) and 12 measured (Real, from [25], [41]–[44])
RIRs are used for Test Sets A, B, C and D. Test Set E contains 10 RIRs from
the ACE challenge single-microphone evaluation test set [25].

Set B used 12 measured RIRs from several open-source

databases as illustrated in Fig. 4. To test the effect of SNR

mismatches, Test Set C combines the properties of Sets A and

B with added noise at several SNRs ({30, 18, 12,−1} dB)

not used during training for both pink and babble noise.

Test Set D is based on a different speech corpus (available

through the ACE challenge [25]) that contains spontaneous

and read speech, as well as long and short utterances. This is

in contrast to the homogeneous structure of TIMIT, and is used

here to study the effect of speech variability not encountered

during training. The ACE database contains 50 utterances

produced by 5 male and 5 female talkers in different dialects

of international English with a mix of native and non-native

English speakers.

Finally, the evaluation test set for single-channel processing

from the ACE challenge is used as Set E, which contains 4500
utterances categorized by 3 noise types and 3 SNRs (−1, 12,

and 18 dB). These noises are ambient (AN), babble (BN), and

fan (FN) noise recorded in the same room as the corresponding

RIRs. The RIRs were measured in 5 different rooms with 2
different microphone positions; the resulting values for RT and

ELR are shown in Fig. 4. Test Set E is the one that differs

the most from the training set, since it contains inhomoge-

neous speech material, different noise types obtained during

measurements, and data that was reverberated using measured

RIRs. Comparisons with other RT and ELR estimators are

reported using this test set.

C. Evaluation Metrics

The first evaluation metric is estimation error eX = X̂−X ,

i.e., the difference between the estimated value and the ground

truth with X denoting either the RT or the ELR. The root mean

squared error (RMSE) is reported for each measure (RMSERT

and RMSEELR, respectively), as well as the underlying distri-

bution of eX using box plots. A system that always outputs the

same value close to the median could produce a relatively low

RMSE (although it does not actually perform a classification

task). We therefore report a second measure to quantify the

estimation accuracy, i.e., the Pearson correlation coefficient

ρ between estimated and true parameters, as proposed in the

ACE challenge. Higher ρ towards 1 exhibits more accurate es-

timations. Third, the real-time factor (RTF) is reported, which
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Fig. 5. ROPE performance for estimating the RT and the ELR in fullband (left
panels) and subband at f = 1 kHz analysis (right panels) with Test Sets A
and B for both feature types. Box plot of the estimation error, RMSE and
ρ (right y-axis) are shown for Simu and Real RIRs, both with 1344 × 12
utterances, which cover pink and babble noise at multiple SNRs. Horizontal
dashed lines correspond to RMSE and ρ results for TMF with Simu.

is the total computation time divided by the total duration of

all processed speech data. The RTF is used to evaluate the

potential of models for practical real-time applications that

are constrained by computational complexity such as hearing

aids or the front-end speech processors in mobile devices.

VI. RESULTS AND DISCUSSION

A. Overall Results

Test Sets A and B are used to validate the ROPE model

based on RIR sets in both Simu and Real conditions that widely

cover RTs and ELRs. The TF representations with and without

temporal context (denoted as TF±0 and TF±5, respectively),

as well as temporal modulation frequency (TMF) features are

tested as explained in Section III to investigate the importance

of temporal modulations explicitly captured on feature level.

The results in Fig. 5 show that the ROPE model with

TMF performs principally well for the RT and the ELR

estimation, e.g., with median errors close to 0 (left y-axis)

and correlation values between 0.93 and 0.95 (right y-axis) in

fullband processing using Set A. This prediction performance

is later compared to other approaches in Section VI-F3.

Further, TMF features perform consistently better both in

terms of RMSE and correlation in comparison to the TF

representations with temporal context, while TF features with-

out temporal context perform far worse with almost doubled

RMSEs compared to TMF. This highlights the importance

of temporal modulation cues to characterize the effect of

reverberation, and the dedicated temporal modulation filter

bank (cf. Section III-B) performs more effectively than a

mere concatenation that supplies additional temporal context.

The contribution of individual modulation frequencies will

be analyzed in the next section. Third, the estimation from

subband data (right panels in Fig. 5) is degraded in comparison

to the fullband processing which is reflected by the median

Fig. 6. ROPE performance ρRT and ρELR for fullband data using different
sets of TMFs in noise-free and noisy conditions in pink and babble noise.
Horizontal dashed lines correspond to results for the full set of modulation
frequencies. ’w/o’ X specifies the modulation frequency that was omitted for
the corresponding data points.

error (which is −100 ms or −2 dB on average), the standard

deviation of estimated values, and a lower correlation. This

is especially notable for TF features without temporal context

from subband data with rather low correlation. With TMF fea-

tures, a good performance is still achieved, which indicates that

the redundant information contained in spoken languages can

partially be preserved when explicitly extracting modulation

features. The ROPE performance for all individual subbands

is presented in Section VI-F4. Finally, Fig. 5 also shows the

performance difference between Simu and Real RIRs to be

quite small, indicating that this approach generalizes from

simulated training data to measured RIRs encountered during

testing.

B. Analysis of Modulation Filters

To pinpoint the feature characteristics of TMF features

that contribute to the improved performance when compared

to TF features, we analyze the contribution of individual

modulation frequencies. To this end, each filter is evaluated

based on a leave-one-out procedure (i.e., feature components

that correspond to one of the seven TMFs are removed from

the feature vector, and an MLP is trained with the resulting

feature) that is performed in different noise types at different

SNRs. Experiments are conducted using Sets A and B in

both fullband and subband at f = 1 kHz processing. Fig. 6

(fullband) and Fig. 7 (subband) show the results for the

omission of one specific modulation filter. The result in terms

of RMSE follows the very same trend and is therefore not

shown for better readability.

The correlation values show that modulation filters with

center frequencies below 10 Hz are more important, with the

3 Hz filter being by far the most important. This could be

due to the temporal smearing caused by reverberation, which

especially affects the temporal on- and offsets of syllables,

which often exhibit a peak modulation frequency around
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Fig. 7. ROPE performance ρRT and ρELR for subband data (f = 1 kHz)
using different sets of TMFs in noise-free and noisy conditions in pink and
babble noise. Horizontal dashed lines correspond to results for the full set of
modulation frequencies. ’w/o’ X specifies the modulation frequency that was
omitted for the corresponding data points.

3 − 4 Hz [24]. It seems that the 3 Hz component is more

important for RT than for ELR estimation, since the decrease

of correlation to the ground truth is stronger for RT.

Filters with modulation frequencies above 10 Hz do not con-

tribute to the ROPE performance in many scenarios, especially

in low-noise conditions. At the same time, none of the filters

has a detrimental effect on the model quality, and in some

conditions all high-frequency filters are required to reach the

optimal model performance. For example, ρ decreases when

any filter with a frequency of {17.1, 29.2, 50} Hz is omitted for

both RT and ELR estimation in fullband analysis at 0 dB SNR

in pink noise (cf. Fig. 6 (g)-(h)). In the following experiments,

we therefore continue to use the complete modulation filter set.

Fig. 6 also shows that babble noise has a very limited

effect on the model performance, while both RT and ELR

estimates are degraded in pink noise when using fullband data.

We assume this is a specific property of the babble masker:

Time-frequency patterns similar to the target should result in

similar degradation and hence similar feature patterns. Further,

its temporal modulation cues carry the same RT information as

the reverberated target speech, while its temporal modulation

cues should not affect the ELR since it is diffuse. On the

other hand, the diffuse component of the noise could mask

the temporal onset and offset of the syllables, resulting in the

relative importance of the modulation filter at 3 Hz compared

to other filters. For subband data, babble noise has a very

strong effect on estimation performance (cf. Fig. 7). Since the

SNR is calculated using fullband data (in accordance with

[33]), strong local SNR fluctuations in each subband can

be expected due to the non-uniform spectral distribution of

(babble) speech. For the f = 1 kHz band, we assume a lower

local SNR in comparison to pink noise is the reason for the

degraded subband performance.

Fig. 8. ROPE performance in terms of RMSE and ρ averaged over Simu

and Real RIRs as well as pink and babble noise against deviated SNRs
when estimating the RT and the ELR in both fullband and subband at
f = 1 kHz analysis. Test Sets A and B are used as the matched SNR
scenario ({∞, 20, 10, 0} dB), while Test Set C is used as the mismatched
SNR scenario ({30, 18, 12,−1} dB).

C. SNR Mismatch for Training and Testing

In realistic environments, arbitrary SNRs are encountered,

while training sets are often limited to specific SNRs. This is

also true for the open-source training sets used in our study,

which usually cover SNRs in steps of 5 or 10 dB. While this

allows for an SNR-dependent analysis, it also bears the risk

of creating SNR-specific models. Hence, it is important to test

the robustness of speech processing algorithms for mismatched

SNRs as well. We therefore use the Test Set C with SNRs

of {30, 18, 12,−1} dB that differ from the training SNRs of

{∞, 20, 10, 0} dB, which is compared to the performance for

matched SNR testing (Sets A and B). The results are shown in

Fig. 8: Generally, a lower SNR results in a consistent decrease

of estimation accuracy, and this consistency is observed for

matched as well as mismatched SNRs. This indicates that

the ROPE approach generalizes well to the deviation from

SNR mismatches. This is also reflected in the similar results

obtained with neighboring unseen SNRs and seen SNRs,

e.g., the average absolute differences of RMSE for the SNRs

at 12 dB and 10 dB are only 11 ms and 0.27 dB.

D. Effect of Speech Variability

For previous results, training and testing have been carried

out using data from disjunct speaker sets from the TIMIT

database. Although this introduces speaker-dependent variabil-

ity between training and test, a higher variability would be en-

countered in realistic test settings, since the TIMIT data is rel-

atively homogeneous. Test Set D (cf. Table I for details) from

the ACE database contains utterances with strongly varying

duration recorded with different microphones from a different

group of speakers, and therefore adds factors of additional

speech variability. Mismatched SNRs ({30, 18, 12,−1} dB)

between training and test are used since this is a more realistic

assumption than matched SNRs.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 00, NO. 00, 2018 8

Fig. 9. ROPE performance in terms of RMSE and ρ averaged over Simu

and Real RIRs as well as pink and babble noise against two different speech
sources when estimating the RT and the ELR in both fullband and subband
at f = 1 kHz analysis. Test Set C is used as the homogenous speech source
scenario from TIMIT corpus, whereas Test Set D applies the speech recordings
from the ACE challenge.

Fig. 9 shows that for high SNRs ({30, 18} dB), RMSERT

and RMSEELR increase by about 30 ms and 1 dB, and

ρRT and ρELR decrease by approximately 0.03 and 0.06,

respectively. These minor degradations indicate that ROPE

is robust against the added variability described above. On

the other hand, as SNR decreases, a stronger performance

degradation can be observed with the ACE speech data, i.e.,

there is an interaction between SNR and added variability,

resulting in a further degradation of estimation accuracies at

SNRs below 0 dB.

E. Temporal Integration Window

The previous results were obtained by averaging MLP

output obtained from the complete utterance. This introduces a

considerable delay, which is not compatible with applications

that require low latency. In this section, we therefore analyze

the temporal integration window required for accurate room

parameter estimates. Results for smaller windows are obtained

by calculating estimates from only the first frame, which is

systematically extended to the window containing the first

L frames of the utterance. We refer to the two processing

modes as utterance-based and window-based. Scores for both

processing modes are shown in Fig. 10, which includes the

performance with different values for L shown on the x-axis.

The results for fullband window-based processing saturate at

170− 200 frames (with frame rate of 10 ms), at which point

the utterance-based scores are reached. This observation is

consistent over two corpora tested, i.e., the TIMIT speech data

(Set C) with average duration of utterances of 308 frames, as

well as data from the ACE challenge (Set D) which exhibits a

relatively long average duration of utterances (1945 frames).

For subband data centered at 1 kHz, a longer integration

time is required to approach utterance-based performance, in

most cases about 100 additional frames, which is presumably

caused by the limited information in each subband compared

Fig. 10. ROPE performance for window-based processing for utterances from
Set C (TIMIT, upper panels) and Set D (ACE, lower panels). RMSE results
follow the same trend as the performance for ρ and are therefore not shown.
The results for utterance-based processing are shown as horizontal dashed
lines for comparison.

to the fullband information. This result shows that integration

over a complete utterance is not required by the ROPE system

to produce accurate results, and a reasonable integration time

is between 1.7 and 3 seconds (depending on the choice of

fullband or subband processing).

F. Performance for the ACE Challenge Evaluation Database

In order to test ROPE in realistic recording environments,

we use the single-microphone evaluation database from the

ACE challenge [25] (Test Set E in Table I).

1) RT and ELR Estimation: For the RT estimation from

fullband and 1 kHz-subband data (cf. upper panels of Fig. 11),

ROPE performance increases with the SNR, and correlations

above 0.8 and median errors close to 0 ms are obtained for

ambient and babble noise at SNRs of {18, 12} dB. Note

that babble noise from the ACE challenge is not identical

to the babble noise used for training: The ACE babble noise

consists of recordings of 4 − 7 continuously talking people

positioned around the microphone [25], which adds a strong

non-diffuse/spatial component to this noise type. In contrast,

the babble noise for training is completely diffuse (cf. (6)) and

contains speech from 8 different talkers (cf. Section V-B1).

ROPE performance is degraded in the presence of fan noise

(especially at −1 dB), which could arise due to its differ-

ent noise characteristics. On the other hand, ambient noise

(which is also not seen in training but is similar to pink

noise) produces good results, which hints at the generalization

capabilities of the ROPE approach if training and testing noise

types share similarities.

Similar trends can be observed for the ELR estimation as

illustrated in Fig. 11 (bottom panels) with the exception of

babble noise, for which ELR is underestimated. We assume

this is caused by the differences between babble noise for

training and testing (see above) and the fact that spatial source

positions influence the ELR, while the RT is mostly invariant
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Fig. 11. ROPE performance for estimating the RT and the ELR in fullband
and subband at f = 1 kHz analysis with Set E, i.e., the single-microphone
evaluation database from the ACE challenge [25]. Box plot of the estimation
error, RMSE and ρ (right y-axis) are illustrated in terms of ambient, babble
and fan noise at SNRs of {18, 12,−1} dB, each with 500 utterances.

to them: Since the ROPE algorithm is a speech-specific

approach, ELR estimates are influenced by the babble noise

from the ACE testing set that includes spatial components

associated with masking speech. Since the masking speakers

are usually farther away from the microphone than the original

target speaker, the ELR would tend to be underestimated,

especially at low SNRs.

2) Computational Complexity: The computational com-

plexity of ROPE is analyzed since it is an important factor

when estimation algorithms should be implemented on small-

footprint devices. In this work, we evaluate the RTF using

a GPU-based workstation, i.e., the specific factor does not

correspond to small scale hardware; however, the relation to

RTFs of other approaches (see below) does. The complexity of

ROPE during test time is dominated by the feature extraction

and MLP forward processing. In our set of experiments, the

calculation of auditory-inspired TMF features is implemented

in Matlab running on an Intel x86 64 64bit CPU 2.0 GHz

platform, for which an average RTF of 0.142 is obtained for

the 4500 test speech files (cf. Table I). The MLP output pos-

terior probabilities are obtained via neural networks compiled

with a Tesla K20c NVIDIA GPU with an average RTF of

0.033. Hence, the average RTF of ROPE for fullband data

equals 0.175. For subband data, the average RTF for feature

extraction from a single frequency channel decreases to 0.027,

while the MLP forward run is just slightly changed with an

RTF of 0.029. Therefore, the resulting average RTF for one

frequency band is 0.056.

3) Performance Comparison: ROPE results are compared

to other single-microphone state-of-the-art RT and ELR es-

timators that were implemented by their respective authors

and tested on data provided by the ACE challenge database

(cf. [25], [50] for detailed descriptions of these algorithms).

Note that the ACE challenge focused on the DRR estimation

using te ≈ 2.5 ms in (1), which is different from te = 50 ms

TABLE II
PERFORMANCE COMPARISON WITH OTHER SINGLE-MICROPHONE

STATE-OF-THE-ART RT AND ELR ESTIMATORS BASED ON THE ACE
CHALLENGE EVALUATION DATABASE. † DENOTES THE

MULTI-MICROPHONE CONFIGURATION.

Fullband Estimation

Estimator RMSE/ms ρRT RTF RMSE/dB ρELR RTF

QAReverb [45] 255 0.778 0.400 4.86 0.058 0.391

NIRA [46] 389 0.302 0.899 3.85 0.558 0.899

SRMR [47] 380 0.220 0.457 5.82 -0.084 0.540

ROPE 285 0.716 0.175 4.81 0.556 0.175

Subband Estimation at f = 1000 Hz

Estimator RMSE/ms ρRT RTF RMSE/dB ρELR RTF

ML-RTE [48] 358 0.699 0.939 - - -

ParVel† [49] - - - 3.21 0.415 0.134

ROPE 338 0.751 0.056 7.63 0.421 0.056

used throughout this paper. Nevertheless, since DRR and ELR

estimation are similar problems because both are based on

energy ratios with different time constants, the performance

should be comparable in terms of RMSE, the correlation

coefficient ρ, and RTF. To the best of our knowledge, a blind

algorithm for subband DRR or ELR estimation from single-

channel data does not exist. As a baseline method, we therefore

exploit the algorithm based on particle velocity (ParVal) [49]

that was developed for multi-channel data (a spherical micro-

phone array with 32 microphones).

As shown in Table II, the ROPE approach achieves com-

petitive performance in terms of RMSE and correlation when

compared to the best result for single-channel RT estimation,

i.e., QAReverb [8], [45]. For fullband ELR estimation, ROPE

provides nearly the same ρELR compared to the best ACE

challenge contribution for single-channel data (Non-Intrusive

Room Acoustic (NIRA) estimator [18], [46]), despite a slightly

higher RMSEELR. Further, slightly better performance is

achieved by ROPE in subband analysis at f = 1 kHz, when

compared to the subband RT estimator ML-RTE [48] (origi-

nally from [5] which is also the only algorithm submitted to

subband RT estimation task in the ACE challenge). Compared

to the the multi-microphone ParVal method [49] in subband

analysis at f = 1 kHz, ROPE shows worse RMSEELR but

better ρELR.

As summarized in Table II, most algorithms perform well

for one specific task, but strongly degrade (or are even not

applicable) for other tasks. For subband estimation from a

single microphone in ACE challenge, only one algorithm was

proposed for the RT estimation and no one for the ELR

estimation. ROPE seems to the only algorithm that potentially

provides reliable results for both the RT and the ELR esti-

mation in fullband and subband processing. Furthermore, the

relatively low RTF achieved by ROPE indicates its potential

for practical applications. Since RTFs of other algorithms were

provided by their respective authors based on different (but

presumably similar) hardware processors, an exact comparison

on identical hardware should be performed in the future for

algorithms that are freely accessible.

4) Integration of Subband Data: Results from subband data

reported so far were obtained with the 1 kHz frequency band.

In this section, the performance for all 40 individual frequency

bands is reported, and the benefit from integration of specific
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Fig. 12. ROPE performance of the RT and the ELR estimation with the ACE single-microphone evaluation database in both fullband and all 40 subband
analysis. Box plot of the estimation error, RMSE and ρ (right y-axis) are illustrated in all noises (AN, BN, FN) for all SNRs ({18, 12,−1} dB). Horizontal
dashed lines correspond to fullband results of RMSE and ρ.

subbands is analyzed.

Results for individual bands are shown in Fig. 12 (with

the fullband result on the right and as dashed horizontal

line). For RT estimation, performance consistently degrades

for center frequencies below 550 Hz, and appears to be stable

from 550 to 2200 Hz. For higher frequencies, performance

deteriorates again, but only slowly. For ELR estimation, the

results have a higher variance across center frequency. How-

ever, correlations for data below 550 Hz are consistently

low, while individual filters approach (and in some cases

achieve) fullband performance levels for higher frequencies.

This overall frequency dependence is roughly consistent with

the design of the algorithm, which is based on speech-specific

stimuli and therefore can be expected to perform best in the

frequency range associated with high speech energy, i.e., 300
to 3400 Hz [51].

Individual frequency bands potentially carry complementary

information, which could provide better results after integra-

tion compared to fullband processing. The integration of three

different frequency ranges is therefore tested: Group A ranges

from 400 to 1250 Hz and is motivated by the suggestion in

ISO-3382 [2]. Second, a frequency range corresponding to

high average energy in (narrow-band) speech is chosen (300 to

3400 Hz, Group B), which is in line with the speech-specific

approach. Third, a frequency range based on adjacent sub-

bands with high RT performance is chosen (585 to 2146 Hz,

Group C). Table III compares fullband results to each of these

selections. While Group A performs worse than the fullband

approach for ELR data, Groups B and C improve estimation

accuracy for all four measures that quantify model prediction

quality. Results for Groups B and C are also very consistent,

which indicates that the specific selection of frequency bands

seems not to be crucial, as long as speech-relevant components

are included. These integrated subband results outperform

almost all baseline fullband models reported in the previous

section (which however have not been optimized by integrating

information from different frequency channels). Note that

TABLE III
FULLBAND RT AND ELR ESTIMATIONS OBTAINED BY AVERAGING

SUBBAND ESTIMATIONS WITHIN DIFFERENT FREQUENCY RANGES.
HORIZONTAL DASHED LINES CORRESPOND TO RMSE AND ρ RESULTS

FOR FULLBAND PROCESSING.

Fullband estimation
RMSE ρ

RTF
RT/ms ELR/dB ρRT ρELR

ROPE Fullband 285 4.81 0.716 0.556 0.175

Avg. [400, 1250] Hz 216 5.20 0.830 0.430 0.616
Avg. [300, 3400] Hz 206 3.94 0.853 0.601 1.344
Avg. [585, 2146] Hz 207 4.15 0.861 0.583 0.784

this benefit comes at the cost of increased computational

cost (see values for RTF in Table III). For applications with

limited resources, a selection and integration of individual

high-performance subbands might be required.

VII. CONCLUSIONS

A novel blind acoustic room parameter estimator (ROPE)

to estimate the RT and the ELR directly from single-channel

speech in both fullband and subband processing has been pre-

sented and analyzed. The use of temporal modulation features

as direct input to a multi-layer perceptron improved perfor-

mance over simpler time-frequency features. The arrangement

of modulations into a filter bank enabled a systematic analysis

of the importance of modulation frequencies, from which fea-

tures centered around 3 Hz emerged to be the most important.

By using test sets with different characteristics, we showed that

ROPE is robust against different RIRs, SNRs, and variability

covered in different speech databases, despite the fact that an

interaction of speech data variability and high-noise conditions

below 0 dB can severely affect the prediction results. Further,

ROPE was compared to other blind state-of-the-art RT and

ELR estimators using test data from the Acoustic Characteri-

sation of Environments (ACE) challenge. Comparable results

with the best RT estimation of the competition were obtained,

as well as comparable correlation coefficients of the ELR

estimation in comparison to the best DRR estimators. ROPE
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was applied for predicting RT as well as ELR in both subband

and fullband single-microphone data, which is a unique feature

of this approach. The computational cost quantified in terms

of the real-time factor was found to be low in comparison

to other approaches, and the temporal integration window

required for stable results was in the range of a few seconds,

which means that the algorithm should be of interest for real-

time applications. In addition, fullband RTs and ELRs can

be obtained alternatively by averaging the subband results

within a certain frequency range, and the narrow-band speech

frequency range from 300 Hz to 3400 Hz related to speech

production was found to be a good candidate.
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