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Joint Estimation of Reverberation Time and

Early-to-Late Reverberation Ratio

from Single-Channel Speech Signals
Feifei Xiong, Student Member, IEEE, Stefan Goetze, Member, IEEE, Birger Kollmeier, and Bernd T. Meyer

Abstract—The reverberation time (RT) and the early-to-late
reverberation ratio (ELR) are two key parameters commonly
used to characterize acoustic room environments. In contrast
to conventional blind estimation methods that process the two
parameters separately, we propose a model for joint estimation
to predict the RT and the ELR simultaneously from single-
channel speech signals from either fullband or subband fre-
quency data, which is referred to as joint ROom Parameter
Estimator (jROPE). An artificial neural network is employed
to learn the mapping from acoustic observations to the RT and
the ELR classes. Auditory-inspired acoustic features obtained
by temporal modulation filtering of the speech time-frequency
representations are used as input to the neural network. Based
on an in-depth analysis of the dependency between the RT and the
ELR, a two-dimensional (RT, ELR) distribution with constrained
boundaries is derived, which is then exploited to evaluate four
different configurations for jROPE. Experimental results show
that — in comparison to the single-task ROPE system which
individually estimates the RT or the ELR — jROPE provides
improved results for both tasks in various reverberant and
(diffuse) noisy environments. Among four proposed joint types,
the one incorporating multi-task learning with shared input and
hidden layers yields the best estimation accuracies on average.
When encountering extreme reverberant conditions with RTs
and ELRs lying beyond the derived (RT, ELR) distribution, the
type considering RT and ELR as a joint parameter performs
robust in particular. From state-of-the-art algorithms that were
tested in the Acoustic Characterization of Environments (ACE)
challenge, jROPE achieves comparable results among the best
for all individual tasks (RT and ELR estimation from fullband
and subband signals).

Index Terms—Reverberation time, early-to-late reverberation
ratio, joint estimation, temporal modulation features, multi-task
learning.

I. INTRODUCTION

FOR speech communication applications such as tele-

conferencing, automatic speech recognition (ASR) and

speech enhancement in hearing aids, the room acoustics have
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a great impact on speech quality and speech intelligibility [1]–

[5]. As the reverberation time (RT) and the early-to-late rever-

beration ratio (ELR) are two key parameters to characterize

a room [6], [7], and usually it is not sufficient to rely only

on either of them to fully represent the considered room

reverberation effect due to various room sizes and source-to-

receiver distances (cf. the REVERB challenge [5]), an accurate

estimation of both measures is desirable for improving system

monitoring [8]–[10] and system performance [11], [12] in re-

verberant environments. Traditionally, the RT and the ELR are

derived from a corresponding room impulse response (RIR)

between the source and the receiver, which however, needs

to be intrusively measured. Such intrusive RIR measurement

requires time and other resources, and is not always practical in

real-world scenarios. It is, therefore, of great interest to blindly

(or non-intrusively) estimate the RT and the ELR directly from

reverberant speech signals.

Numerical approaches for blind RT and ELR estimation

have been proposed in recent decades (cf. [13] for a detailed

categorization): Most RT estimators rely on single-microphone

recordings (e.g., [14]–[17]) to determine parameters related to

the reverberation tail that defines the RT, i.e., the time interval

derived from a 60 dB sound energy decay. ELR estimators

on the other hand commonly exploit multi-microphone data

for capturing cues that separate early and late components

(e.g., [18]–[21]). ELR estimation includes two special cases,

i.e., the direct-to-reverberant ratio (DRR) (which assumes that

early components correspond to the direct path), and the clarity

index [6] for which early and late reflections are separated

at 50 ms or at 80 ms, which is denoted as C50 or C80,

respectively. So far, the two estimation tasks usually have

been treated independently. However, the RT and the ELR

share properties that motivated our research on a model that

integrates both measures jointly: First, the knowledge of the

late reverberation tail is important for both the RT and the

ELR estimation. Second, many common features have been

found to be correlated with the RT and the ELR, so that

methods based on these features could be beneficial for joint

estimation. For example, the low-frequency envelope spectrum

has been used in [22] as input to a neural network to obtain

different room acoustic parameters including the RT and the

ELR. A comparison of energies at high and low modulation

frequencies, the so-called speech-to-reverberation modulation

energy ratio (SRMR), was found to correlate with the RT and

the DRR [23]. A complex combined set of acoustic features

proposed in [24] was employed as input of a classification
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and regression tree to estimate the clarity index C50, and this

feature set has been exploited to estimate the RT as well [25].

Motivated by the findings from subjectively perceptual

experiments that human auditory system is able to distinguish

various RTs and ELRs but with constrained just noticeable

differences (JNDs) [7], our earlier work proposed a ROom

Parameter Estimator (ROPE) [26] to formalize the blind esti-

mation as a classification task, and also showed that auditory-

inspired modulation features are well-suited for discriminating

different RTs or ELRs in combination with a multi-layer

perceptron (MLP). However, the ROPE approached modeled

each measure separately, not taking into account potential

complementary effects between RT and ELR as motivated

above, which could be beneficial for improving the estimation

of room parameters. To overcome this limitation of the pre-

vious model and to test beneficial effects of complementary

modeling, we explore ROPE for the joint estimation of the

RT and the ELR from single-microphone reverberant speech

from fullband or subband frequency data in this paper, which

is referred to as jROPE. Building upon the previous model, an

MLP is used in jROPE as discriminative classifier to learn the

mapping from acoustic features to discrete classes of room

acoustic parameters. The auditory-inspired acoustic features

used as MLP input are extracted by filtering time-frequency

representations of speech [27] using a temporal modulation

filter bank [28], [29]. In contrast to our previous single-

task algorithms [26], the multi-task jROPE algorithm has the

potential to model the dependency of RTs and ELRs, which

might result in an improved prediction performance. Further,

to the best of our knowledge, this is the first study for jointly

estimating room parameters in the field of blind acoustic room

parameter estimation.

The integration of information related to room acoustics can

be performed at different stages of the model, and thus, the

optimal integration strategy is an important research challenge

in this context. In this paper, we explore four different system

architectures for joint estimation. The first two (referred to

as jROPE-I and jROPE-II) are motivated by an analysis of

RT and ELR distributions for typical reverberant conditions,

which shows the classes of the RT and the ELR to be

mutually dependent. The first approach (jROPE-I) exploits this

dependency by imposing constraints on the ELR classification

based on the outcome of the RT classification. The second

approach (jROPE-II) implicitly models the relation by using

joint labels (RT, ELR) instead of separate RT and ELR classes,

i.e., the joint class distribution is taken into account based on

the training data with (RT, ELR) pairs. A prototype of jROPE-

II has been introduced in our earlier work [30] but only for a

limited training set without systematical analysis of RT-ELR

dependency. jROPE-III and jROPE-IV implement multi-task

learning (MTL), which provides solutions for solving multiple

learning tasks at the same time [31]. MTL is applied to fuse

two separated MLPs (one for RT and the other for ELR) into

one. Different combination schemes in MTL are explored: For

jROPE-III, the hidden MLP layers between the ELR and RT

classifier are shared, while for jROPE-IV both the hidden and

the input layers are shared.

In this remainder of this paper, we first briefly introduce the

original ROPE model [26] (Section II). The relation of RTs

and ELRs corresponding to a wide range of typical everyday

acoustic scenarios is carried out (Section III) as a prerequisite

for the joint estimation algorithm. The resulting (RT, ELR)

distribution motivated different jROPE architectures that are

introduced subsequently. In order to test the robustness of

jROPE against different reverberant environments in noisy

conditions for both fullband and subband frequency process-

ing, we generate several training and testing sets for evaluation

as described in Section IV. Further, the single-microphone

evaluation database from the ACE challenge recorded in real-

istic room environments [13] is used to validate jROPE, and

results are compared to the performance of the ROPE model

for separate estimation, as well as to other state-of-the-art RT

and ELR estimators as summarized in [32]. Section V reports

and discusses the experimental results, before we conclude the

paper in Section VI.

II. ROOM PARAMETER ESTIMATOR (ROPE)

ROPE is a data-driven approach to perform blind room

parameter estimation by mapping auditory-inspired features

to RT and ELR classes. As illustrated in Fig. 1, ROPE

is comprised of four main processing steps that are briefly

described in the following. For a detailed description, please

refer to [26].

A. Reverberant and Noisy Speech Synthesis

Training data for the ROPE model is simulated, while it is

later evaluated for both simulated and realistic scenarios. The

following signal model

x[k] = s[k] ∗ h[k] + β · n[k] (1)

is commonly applied for speech enhancement in reverberant

and noisy environments, where x[k], s[k] and n[k] represent

the received microphone signal, anechoic speech and additive

noises, respectively. ∗ denotes the convolution operation and

β is the coefficient to adjust the signal-to-noise ratio (SNR)

of the mixture according to ITU-T P.56 [33]. In effect, for a

reliable modeling, the additive noise n[k] associated with the

reverberant speech should be recorded in the same room with

the same microphone position, since n[k] also contains the

room reverberation but with different impulse responses from

h[k].
However, it is not practical to collect all the corresponding

room noises (e.g., ambient or background noises) which match

with the available measured RIR database. In order to simulate

reverberant speech with diffuse noises that are characteristic

for the same room, we exploit the late part hl[k] of the

corresponding RIR h[k], based on the assumption that the late

part (diffuse information) is assumed to be uncorrelated to the

early part (spatial information) of the RIR [6]. To separate

early from late components, a threshold of 50 ms is typically

chosen, which corresponds to time indices k > ⌈fs · 50ms⌉
with the sampling frequency fs. Consequentially, the synthesis

model is given by

x[k] = s[k] ∗ h[k] + β · n[k] ∗ hl[k] , (2)
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Fig. 1. System structure of ROPE to estimate the RT or the ELR. Fullband processing uses all frequency bands to generate the auditory-inspired features as
MLP input, whereas subband processing at specific frequency band takes the corresponding frequency channel information for feature extraction. Steps A-D
are briefly explained in Section II-A to II-D, respectively.

where n[k] ∗ hl[k] represents the diffuse noise recorded from

the same room as the target speech signal. In this notation,

n[k] represents an anechoic noise signal. Note that (2) does not

cover the scenarios with localized noises, which are beyond

the scope of the proposed model.

B. Auditory-Inspired Feature Extraction

Compared to the conventional temporal context splicing,

auditory-inspired temporal modulation features have been

shown to be more effective to extract temporal cues which

are strongly related to RTs and ELRs [26]. These auditory-

inspired features are calculated with a temporal modulation

filter bank [28], [29] that uses time-frequency representations

of speech signals as input [27]. First, a Gammatone filter

bank decomposes the speech signal into frequency bands,

and short-time windowing (length of 25 ms) is applied with

a frame shift of 10 ms. A sequent logarithmic compression

function is applied to the resulting two-dimensional time-

frequency representations for dynamic range reduction. A

temporal modulation filter bank with center frequencies at

{0, 3, 6, 10, 17.1, 29.2, 50} Hz (cf. [26]) is used to extract the

temporal cues from speech time-frequency representations. It

contains 7 real-valued filters and 5 imaginary filters, which

are convolved with each frequency band, resulting in one 12-

dimensional input vector (subband) per 10 ms time frame for

the neural network, and are subsequently stacked if fullband

processing (e.g., 40 bands with a sampling frequency of

16 kHz) is considered.

C. Neural Network Classifier

The RT or the ELR classification is performed using a

multi-layer perception (MLP) that maps the input features

to binned classes for each output parameter. The MLP is

implemented using the Kaldi ASR toolkit [34] and uses build-

ing blocks typical for state-of-the-art ASR systems: Rectified

linear units [35] are used as activation functions, and the

standard back-propagation is applied to train the MLP via a

stochastic gradient descent algorithm [36]. The cost function

is based on cross-entropy, and a softmax function is applied

to the output layer to obtain posterior probabilities of RT or

ELR classes. One hidden layer is used and the dimensionality

of the output layer corresponds to the number of RT or ELR

output classes.

During training, labels for RT and ELR classes are required.

To obtain these, we apply a nonlinear fitting [37] to the

logarithmic magnitude of RIR h[k], which is identical to

the procedure used in the ACE challenge [13]. The ELR

ground truth is calculated from h[k] on a decibel scale with

a division boundary of 50 ms that separates early and late

components, which is motivated by the grouping effect of

multi-path signal components in the human auditory system

for delays below this time constant [2]. This is different from

the DRR definition in the ACE challenge which used a shorter

time constant as the division boundary, e.g., 2.5 ms as claimed

in [13]. However, the true direct sound cannot be precisely

determined when dealing with the measured RIRs, because

the direct component depends on the source-to-microphone

distance, source directivity, as well as the room structure and

reflection factors [2] that are usually not provided together

with the available measured RIR database. For subband anal-

ysis, the RIR hf [k] in frequency band f is decomposed by

the Gammatone filter bank from the fullband representation

h[k] and subsequently processed analogously to the fullband

counterpart.

D. Decision Strategy

Since the MLP generates one estimate per frame, and single-

frame decisions are expected to be noisy, we smooth the

classification result with a temporal averaging over all frames

of the test utterance (utterance-based processing). The output

neuron with the highest activation (or probability) corresponds

to the RT or the ELR estimate (winner-takes-all). Although

the results reported in this paper are based on utterance-wise

processing, results from [26] show that results with window-

based processing with a limited integration time should exhibit

the same accuracy, e.g., 1.7 and 3 seconds are sufficient for

fullband and subband estimation, respectively.

III. JOINT ROOM PARAMETER ESTIMATOR (JROPE)

In this section, we first analyze the relation of RTs and

ELRs in detail. Based on this relation, four different system

designs for a joint room parameter estimation derived from

the original ROPE system are proposed and explored.
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Fig. 2. Distribution of the RT and the ELR (fullband and subband analysis centered at f = 1 kHz). (a) and (c) show the fullband and the subband (RT, ELR)
distributions based on 90000 simulated (Simu) RIRs (cf. Section IV-A) with row-wise normalization in each RT group, respectively. Panels (b) and (d) show
distribution probabilities derived from (a) and (c) over 1% (yellow shading). The solid curves denote the positions of histogram peaks, and single data points
refer to RIR parameters for measured data (Real) from the available open source databases including MARDY [38], AIR [39], SMARD [40], the REVERB
challenge [5], and the ACE challenge [13].

A. Relation of Room Parameters

Fig. 2 (Panels (a) and (c)) shows the joint two-dimensional

(RT, ELR) distribution in a numerical manner obtained from

a large set of simulated RIRs (containing 90000 RIRs) which

reflects typical acoustic conditions from everyday room sce-

narios with volumes from 30 to 1000 m3 and fullband RTs

ranging from 150 ms to 1550 ms. These RIRs are generated

using the image method [41] 1, and uniformly distributed

speaker-to-microphone distances are selected in each room in

order to obtain a wide range of ELRs.

To determine the RT-ELR relation, we first group the data

using a resolution of 100 ms (RT) and 1 dB (ELR), which

is motivated by the just noticeable differences (JNDs) for the

measures [7], [22], and is also later used for the classification

task. Further, this resolution ensures a sufficient number of

data points per tile of the grid in the RT-ELR space for

probability analysis. On the other hand, due to the RIR sim-

ulation manner that is room-oriented, i.e., each room volume

represents one RT with potentially uniformly distributed ELRs,

it might not guarantee a uniformly distributed RTs within one

specific ELR group. Therefore, we normalize the distribution

for each RT group (row wise), by dividing all RIR samples

of tiles by the maximum one (Max) in this RT group to

represent the relative distribution probabilities, as illustrated

by the embedded plots with RT value of 400 ms in Fig. 2 (a)

and (c) as an example. The joint (RT, ELR) distribution is

then formed by stacking all the RT groups, and the shape

of this distribution illustrates the mutual dependency of both

1The RIR generator is implemented as detailed at https://www.audiolabs-

erlangen.de/fau/professor/habets/software/rir-generator

parameters, that is, ELRs vary within a limited range at a

specific RT, and vice verse.

To quantify the area of this distribution (which is later

used to constrain classification labels), RT-ELR pairs with a

relative distribution probability below 1% (outliers as extreme

reverberant conditions which rarely occur, cf. Section IV-B)

are not considered in the following. The center points of the

peripheral tiles are linearly connected to form the boundaries,

and the resulting distribution is highlighted in Fig. 2 (b) and

(d) for fullband and subband data, respectively. The width

of the ELR distribution is relatively stable, while its center

moves to lower ELRs with increasing RT. In effect, this

is in line with the physical properties of RT-ELR relation,

i.e., for small RTs, typically high ELRs are observed (cf. the

solid curves with maximum probabilities). Outliers could arise

from extremely small or large source-to-microphone distances.

For instance, the source-to-microphone distances were chosen

to be mouth-to-microphone distances within 15 cm for RIR

recordings in the AIR database [39], [42] with scenarios of

phone conversations (outlier green dots in Fig. 2 (b) and (d)),

which is in contrast to most other databases considered in this

study.

We refer to the highlighted region in Fig. 2 (b) and (d)

as core area of (RT, ELR) pairs. The core area covers the

(RT, ELR) pairs of measured RIRs from several open source

databases [5], [13], [38]–[40] and therefore reflects typical

scenarios, since these databases were also designed to simulate

realistic settings.
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Fig. 3. Four different jROPE configurations in terms of the MLP topology and labeling (dashed box in Fig. 1) compared to the baseline ROPE system.

B. Design of Joint Estimators

As outlined in the introduction, a joint parameter estimation

can be achieved by changing the MLP topology at different

levels or by modifying the targets of the classifier. The original

ROPE system (that serves as basis for jROPE) and four novel

joint estimation approaches are illustrated in Fig. 3.

jROPE-I is based on a two-step procedure, i.e., the RT is

estimated first, and ELR estimation is constrained by this first

result. This differs from the ROPE system for ELR estimation,

which takes a broad range of ELRs into account that range

from −3 to 30 dB in fullband processing as shown in the

ELR span of the core area in Fig. 2 (b). Instead, for jROPE-I,

the number of classes is reduced (e.g., an RT of 400 ms results

in an ELR class range 7 to 24 dB), which substantially reduces

the ELR range, and thereby potentially reduces the standard

deviation of ELR estimation errors. Through this approach,

the training complexity increases (at a factor of the amount of

RT labels) since each RT group requires its own ELR-MLP,

the complexity during test does not increase (cf. Section V-E).

The second approach (jROPE-II) combines the RT and the

ELR into a target parameter pair that is estimated in one

step, i.e., the output neurons of the MLP directly map the

input to a specific pair that can be visualized by a matrix

spanned by RT and ELR classes (see inlay in Fig. 3, jROPE-

II). In contrast to jROPE-I, which makes explicit use of a-

priori knowledge of class distributions, the dependence of

classes is learned implicitly in this case by providing the

training labels that cover the core area as described above.

This limits the amount of classes, which potentially improves

the discrimination performance of the MLP.

Due to the mutual dependence of RT and ELR values,

and because same signal processing chain resulted in good

results when using the ROPE model, we explore multi-task

learning (MTL) [31] for joint estimation (jROPE-III and IV).

In MTL, several learning tasks are solved simultaneously using

one classifier, e.g., a neural network that predicts two or

more output measures. Potentially, the learning efficiency and

prediction accuracy with MTL models can be improved over

separate models by leveraging the domain-specific information

contained in the training signals of related tasks.

The merging of neural net weights for implementing MTL

for estimating room parameters can be performed on several

levels; in this paper, two specific architectures are analyzed.

For jROPE-III, we merge the hidden layers, while preserving

the two (task-specific) output layers, as illustrated by the

highlighted area of Model III in Fig. 3. Since RT and ELR

can be estimated with the same features, we also explore the

effect of shared input and hidden layer weights, as shown

for Model IV in Fig. 3. Compared to jROPE-III, jROPE-

IV further reduces the number of network parameters, which

could improve the training efficiency. However, since the same

input layer is used, but the RT and ELR label distribution

in the core area is not symmetric as shown in Fig. 2 (b)

and (d), an additional balancing of training data is required

for jROPE-IV not only in terms of inter-labeling between the

RT and the ELR tasks, but also in terms of intra-labeling in

each task. For the single-task ROPE model, training data is

balanced in terms of the output intra-labels to avoid overfitting

for one specific class/label, which is generally achieved by

generating the same amount of data for each class. Because

of the independent input layer in jROPE-III, the two training

sets with the same amount of data from ROPE-RT and ROPE-

ELR can be directly merged to achieve the balance of the

inter-labeling between the RT and the ELR task. The shared

input layer in jROPE-IV ensures the data balance for the inter-

labeling between these two tasks, which however causes an

inherent imbalance for intra-labeling in either RT or ELR task

because of the non-symmetric RT and ELR label distribution.

In order to minimize the effect caused by such imbalance on

the jROPE-IV training, we therefore adjust the training data

from ROPE-RT with balanced data amount across RT labels

(zero flatness) but imbalanced for ELR, until achieving nearly

the same flatness across RT labels and ELR labels, though

both flatness measures are not zero anymore.

The MTL approach with two classes as in our case typically

uses a weighted-sum rule [31] for MLP training given by

L = wLRT + (1− w)LELR , (3)

with the cross-entropy losses for the RT and the ELR esti-

mation LRT and LELR, respectively. w denotes the weighting

factor between both measures. Extreme measures of 1 and 0
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TABLE I
PARAMETERS FOR MLP TRAINING OF ROPE AND JROPE SYSTEMS.

System Task
Hidden Label Amount
Neurons Fullband f = 1 kHz

ROPE
RT 128 14 16

ELR 256 34 31

jROPE-I
RT → 128 14 16

ELR 128 13−18 10−16

jROPE-II (RT, ELR) 512 217 219

jROPE-III (RT, ELR) 256 (14, 34) (16, 31)

jROPE-IV (RT, ELR) 256 (14, 34) (16, 31)

result in a system that is functionally identical to single-task

ROPE estimation for RT and ELR estimation, respectively.

IV. EXPERIMENTAL SETUP

A. Training Sets

Anechoic speech signals from the TIMIT corpus [43] are

used as basis to generate the training set for the proposed data-

driven approach (cf. Fig. 1 and Equation (2)). TIMIT contains

recordings of phonetically-balanced prompted English speech

in 3696 sentences (3.14 hours) from 462 speakers. Simulated

RIRs (cf. Section III-A) are used, from which 10 different RIR

samples for each RT and ELR class are selected to generate

the training set. The sampling rate fs is chosen as 16 kHz,

and the Gammatone filter bank is accordingly characterized

with 40 frequency bands with center frequencies starting from

100 Hz to 7943 Hz. For fullband frequency data, the range of

RTs is [200, 1500] ms with a 100 ms resolution, and the range

of of ELRs is [−3, 30] dB with a 1 dB resolution. For subband

processing e.g., at f = 1 kHz, the ranges are [200, 1700] ms

and [−5, 25] dB. The range of the ELR label for each specific

RT is determined according to the highlighted core area (solid

boxes in Fig. 2 (b) and (d)). In [26] performance of all the

frequency channels have been investigated, and in this paper

we focus on subband processing at typical f = 1 kHz for the

sake of simplicity and better readability.

Three different SNRs ({20, 10, 0} dB) and noise-free ut-

terances (referred to as SNR = ∞ dB) are chosen for the

training data. Two types of noise signals are chosen, namely

pink noise (PN) which exhibits similar noise energy in each

Gammatone frequency band, and babble noise (BN) which is

generated using a mixture of anechoic speech signals produced

by 4 female and 4 male speakers from the WSJCAM0 cor-

pus [44]. The temporal modulation feature vectors (cf. Sec-

tion II-B) have a dimensionality of 480 for fullband data;

vectors for subband data are 12-dimensional.

Parameters for MLP training of different architectures in

Fig. 3 are summarized in Table I. The amount of the MLP

hidden nodes is determined based on pilot experiments to

avoid overfitting of the MLP. For a fair comparison to ROPE,

the number of computational operations during MLP training

for both tasks of classifying RTs and ELRs is kept the same

for the jROPE systems. The weighting factor w in (3) is

initially set to 0.5 for training with MTL which assumes the

RT and the ELR estimation to be equally important. A detailed

analysis of the influence of the weighting factor is presented

in Section V-D.

Out-L

Out-L

Core-M

Out-R

Out-R
Core-M

Fig. 4. Three test sets for system evaluation in various reverberant envi-
ronments. Test Core contains 5 simulated RIRs with (RT, ELR) pairs inside
the core area (cf. Fig. 2), while parameters of 5 RIRs lie outside (Test Out).
Test ACE refers to the single-microphone evaluation test set from the ACE
challenge with 10 measured RIRs [13].

B. Test Sets

In order to evaluate jROPE and to test its generalization

to various acoustic environments, we generate 3 different

test sets that include different (RT, ELR) distributions, noise

types, SNRs, and sources of speech signals. Specifically, the

first two data sets are created with the same procedure as

the training data, but using different RIRs, speech signals,

and SNRs. We select 10 simulated RIRs, 5 of which are

within the (RT, ELR) core area, while the parameters of the

remaining 5 are outside the core area for both fullband and

subband data. The resulting sets are referred to as Test Core

and Test Out, respectively. Test Core represents the common

reverberant conditions, e.g., RIR data point ’Core-M’. Test Out

represents more extreme reverberant scenarios that are not

covered by the core distribution, i.e., data points with a very

high (e.g., ’Out-L’) or low ELR (e.g., ’Out-R’) given a specific

RT. The corresponding data points for both test sets are

shown in Fig. 4. The speech signals for these two test sets

are obtained from TIMIT evaluation test set, which contains

1344 different utterances (1.15 hours) from 168 speakers. Pink

and babble noises are added according to (2) with the SNRs

{30, 18, 12,−1} dB that are different from training SNRs.

Further, the evaluation test set for single-channel processing

from the ACE challenge [13] (Test ACE) is used, which is

different from the training set with respect to RIR types

(simulated versus measured), noise types (synthesized versus

measured), and speech materials (by using different speech

corpora). The RIRs were measured in 5 different rooms with

2 different microphone positions; the corresponding (RT, ELR)

distributions are shown in Fig. 4. Three different SNR condi-

tions are considered, which are referred to as low (−1 dB),
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medium (12 dB), and high (18 dB). The anechoic speech sig-

nals contain 50 utterances (0.27 hours) produced by 5 male and

5 female speakers in different dialects of international English

with a mix of native and non-native English speakers. The

reverberant and noisy speech signal for evaluation was then

synthesized following Equation (1). In summary, Test ACE

contains 4500 utterances categorized by 10 RIRs, 3 noise types

and 3 SNRs.

C. Evaluation Metrics

1) Estimation Errors: The estimation error is defined as the

difference between the estimated value and the ground truth:

eX = X̂ −X , (4)

with X denoting either the RT or the ELR. When analyzing N

measurement samples, the root mean squared error (RMSE)

of eX is reported:

RMSEX =

√

√

√

√

1

N

N
∑

n=1

e2X,n . (5)

Additionally, box plots illustrate the underlying distribution

of eX , where the central mark denotes the median error, the

edges are the 25th and 75th percentiles, the whiskers show

extreme values, and outliers are plotted individually.

2) Pearson correlation coefficient ρ: A system that always

outputs the same value close to the median could produce a

relatively low RMSE (although it does not actually perform

a classification task). We therefore report an additional mea-

sure to quantify the estimation accuracy (as proposed in the

ACE challenge), i.e., the Pearson correlation coefficient ρ for

estimated and true parameters. It is defined by

ρX =
E{X̂ ·X} − E{X̂} · E{X}

√

(

E{X̂2} − E{X̂}2
)

·
(

E{X2} − E{X}2
)

, (6)

where E{·} is the expectation value from N measurement

samples.

3) Computational Complexity: The number of operations

commonly expressed using big-O notation O(f(N)) as a

function of the input size N [45], is analyzed for quantifying

computational complexity, which is used to indicate whether

the proposed algorithm has the potential for practical real-time

applications that are constrained in computational complexity

such as hearing aids or the front-end speech processors in

mobile devices.

V. RESULTS AND DISCUSSION

A. General Comparison between ROPE and jROPE

First, the Set Test Core is used to compare the original

single-task ROPE algorithm and four types of jROPE. As

illustrated in Fig. 5, in fullband analysis, estimation errors

eRT and eELR are within ±150 ms and ±1.5 dB with median

values close to 0 (left y-axis) for all the proposed algorithms,

respectively, indicating that ROPE and jROPE systems provide

accurate RT and ELR estimations for this test set. This is

Fig. 5. ROPE and jROPE performance for estimating the RT and the ELR
from fullband and subband data at f = 1 kHz analysis with Set Test Core. The
estimation error, RMSE, and ρ were obtained from 1344× 5 test utterances
(with pink and babble noise at SNRs of {30, 18, 12,−1} dB). For RMSE
(left y-axis), lower is better, while for the correlation (right y-axis) higher is
better. Dashed lines indicate the single-task ROPE performance.

in line with the obtained high correlation coefficients, since

both ρRT and ρELR are larger than 0.85 (right y-axis). In

comparison, the performance of subband estimations degrades,

probably due to the limited speech information within one

specific frequency band: Average RMSERT and RMSEELR

across all algorithms increase nearly twice, i.e., from 200 ms

to 400 ms, and from 3 dB to 6 dB, respectively.

Compared to the baseline ROPE system that estimates

RT and ELR separately, jROPE generally provides better

results, indicating that joint estimation can further improve

individual tasks. More specifically, jROPE-I further reduces

the standard deviations of eELR for both fullband and subband

ELR estimations, as shown by the boxplots of eELR in lower

panels from Fig. 5. The underestimation of ELR values (with

negative median eELR, particularly for subband data) obtained

with ROPE are greatly mitigated when using jROPE-I. This

might be due to the constrained range of the MLP labeling for

ELR in jROPE-I, rather than the whole spanning of the ELR

distribution used in ROPE (cf. Section III-B).

Results for jROPE-II shows that consistent improvements

for RT and ELR estimations in both fullband and subband

analysis are obtained compared the original ROPE system,

i.e., the approach of considering the two key parameters as

a combined two-domain parameter (RT, ELR) pair seems

to be beneficial. This also indicates that the discriminative

cues between different (RT, ELR) pairs can be captured

well by the auditory-inspired temporal modulation features

(cf. Section II-B) although the dimension of the MLP output

label increases by a factor of ten (on average) in comparison

to ROPE (cf. Table I).

The Improvement obtained with jROPE-III (for which the
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Fig. 6. Performance comparison between using Test Core and Test Out for
ROPE and jROPE systems in terms of RMSERT and RMSEELR (each set
with 1344× 5 test utterances containing pink and babble noises at SNRs of
{30, 18, 12,−1} dB).

only difference compared to ROPE is the joint training with a

shared hidden layer) shows that multi-task learning can further

improve the discrimination by leveraging the mutual relations

of the RT and the ELR via a shared hidden layer. This slight

improvement, on the other hand, indicates that shared hidden

layer is not sufficient to fully exploit the RT-ELR relation

due to their inherent relation starting from the data level.

jROPE-IV, which additionally shares the input layer, shows

further improvement for both estimation tasks, indicating that

more shared information for complementary measures seems

to be beneficial for MTL in general to further improve task

performance.

B. Impact of (RT, ELR) Mismatch

The Set Test Out measures the generalization of ROPE

and jROPE systems when encountering extreme reverberant

conditions with (RT, ELR) pairs outside the core area not

seen during training. Fig. 6 compares the performance for

such set to results for Set Test Core in terms of the RMSE

and shows that the (RT, ELR) mismatch results in a perfor-

mance degradation for all proposed algorithms. On average,

RMSERT and RMSEELR increase approximately by 100 ms

or 1 dB, respectively. The degradation is most noticeable

for fullband RT estimation, with an RMSE increase over

200 ms. The results obtained with jROPE-II are an exception

to this, with relatively stable results for Test Out. For instance,

RMSERT and RMSEELR increase only by 40 ms and 0.03 dB

in fullband analysis, respectively.

On the other hand, other jROPE types show similar trends

of the performance degradation in comparison to ROPE, but

still perform better than ROPE in general with Set Test Out.

It is also interesting to notice that jROPE-I performance for

the ELR estimation decreases more severely from Test Core

to Test Out in comparison to other algorithms. Particularly

in fullband analysis, the RMSEELR is even higher than the

RMSE obtained with ROPE. In order to investigate how

(RT, ELR) mismatches affect the proposed systems, an in-

depth analysis of the estimation errors is carried out in the

following section.

Fig. 7. ROPE and jROPE performance for estimating the RT and the ELR
in fullband analysis with three specific test reverberant conditions (each
with 1344 test utterances containing pink and babble noise at SNRs of
{30, 18, 12,−1} dB), where ’Core-M’ belongs to Set Test Core, and ’Out-R’
and ’Out-L’ correspond to Set Test Out, as illustrated in Fig. 4. In the panel
of jROPE-I, the error eELR obtained with ideal RT estimation (oracle) is
plotted as well.

C. Estimation Error Analysis

To pinpoint the estimation errors in detail for different

systems, we select three specific reverberant conditions for

analysis, namely ’Core-M’ from Test Core, ’Out-L’ and ’Out-

R’ from Test Out (cf. Fig. 4). Fig. 7 shows the estimation

performance in terms of eRT and eELR in fullband processing,

and the results with subband data are not shown since they

follow the same performance trend.

In agreement with results from Section V-A, all algorithms

perform well in condition ’Core-M’ sampled from the core

distribution, and jROPE-IV performs particularly good for the

ELR estimation. For condition ’Out-R’, a slight overestimation

with median errors around 200 ms for RT estimation is

observed, with the exception of jROPE-II that produces mostly

correct RT estimates (median errors near 0 ms) with few out-

liers. With ROPE, the error of ELR estimation exhibits a large

standard deviation, as well as the potential overestimation.

This standard deviation is smaller for the joint estimation algo-

rithms, with eELR in the range of ±1 dB. jROPE-II provides a

particularly small standard deviation but with a median error

slightly larger than 1 dB. Small ELR overestimation errors

also occur for jROPE-III, whereas jROPE-IV performs better

and yields a median error of almost 0.

In contrast to this, ROPE performance severely degrades for

condition ’Out-L’ with strong underestimates of RT (median

error: −600 ms, ground truth: 1043 ms). Although the median

error of the ELR estimation is still close to 0 dB, the standard

deviation is almost twice as large compared to ’Out-R’. ’Out-

L’ corresponds to a condition with a large room volume but

with a rather short speaker-to-microphone distance, which is

reflected by a long reverberation tail but also a high energy

of the early reflections. For ROPE, such reverberant cases are
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Fig. 8. Contour of the histograms of the estimated RTs and ELRs (cf. Fig. 7)
from ROPE and jROPE systems with the three chosen reverberant conditions
(also marked in Fig. 4), i.e. ’Core-M’ (solid lines), ’Out-R’ (dash-dotted lines)
and ’Out-L’ (dotted lines).

mapped to known class distributions with the lower RTs. The

underestimated RT values are used in jROPE-I (first step) and

result in a severe ELR overestimation (second step) due to

the constraint ELR output values. The impact of RT errors

on jROPE-I on the estimation of ELRs is quantified by using

oracle knowledge, i.e., the RT estimate is replaced with the

RT ground truth. Results with RT oracle knowledge are shown

in Fig. 7 for jROPE-I (green box plot): Estimated ELRs are

mapped to the nearest ELR class seen during training for

current RT values, e.g., 14 dB at 1000 ms for ’Out-L’. As

for condition ’Out-R’, jROPE-II is robust to the mismatch in-

troduced by ’Out-L’ with a small performance degradation due

to a higher standard deviation. While the RT estimation with

jROPE-III and jROPE-IV is slightly improved compared to

ROPE, the ELR estimates are much more accurate, particularly

in the case of jROPE-IV.

To better illustrate whereto the estimated RTs and ELRs

distribute in the two-dimensional (RT, ELR) area, histograms

of the estimated results with the chosen three conditions

are diagrammed, as shown in Fig. 8. Generally, when room

parameters are within the core area (e.g., ’Core-M’), or on

the right side (e.g., ’Out-R’), all models can provide RT

and ELR estimates within ±200 ms and ±2 dB around the

ground truth, respectively, albeit different properties: Com-

pared to ROPE, jROPE-I provides ELR estimates with a

smaller standard deviation but slightly more outliers. jROPE-

II estimates towards the nearest (RT, ELR) class with a slight

RT underestimation. jROPE-III performs slightly better than

jROPE-IV for RT estimation, whereas jROPE-IV outperforms

jROPE-III for ELR estimation. If parameters locates on the

left side of the core distribution such as ’Out-L’, jROPE-II

performs consistently robust, while errors become notable by

other models particularly for RT estimation, though jROPE-IV

yields the best ELR estimates.

D. Overall Performance

Fig. 9 shows the average performance of the proposed

algorithms in terms of correlation values ρ averaged over both

sets Test Core and Test Out. The figure also presents the effect

Fig. 9. Overall performance comparison in terms of correlation values ρ for
ROPE and jROPE systems for both fullband and subband analysis. Horizontal
dashed lines correspond to ROPE baseline results. The effect of the RT
vs. ELR weighting factor w in Equation (3) during MTL training on the
performance of jROPE-III and jROPE-IV is illustrated as well.

of the weighting factor w for trading off the importance of RT

and ELR classification (cf. Equation (3) during MTL training)

both for jROPE-III and jROPE-IV. The weighting factor is

increased from 0.1 to 0.9 with 0.1 step size. Note that jROPE-

III and jROPE-IV become equivalent to ROPE for single-task

RT estimation when w = 1 or ELR estimation for w = 0. In

general, as w increases, ρRT increases while ρELR decreases,

as shown in Fig. 9 particularly in fullband analysis (left panel).

On the other hand, performance is not extremely sensitive to

w, and it seems that w = 0.4 is a good choice for achieving

good classification performance for both tasks in both fullband

and subband analysis.

In comparison to ROPE, ELR estimation performance of

jROPE-I is degraded in some cases which is attributed to a

potentially inaccurate RT estimation from the first step. The

best average results (considering RT and ELR classification,

as well as fullband and subband data) are obtained with

jROPE-II, which is very robust against mismatches between

training and test conditions. On average, jROPE-IV outper-

forms jROPE-III, and both of them perform better than ROPE.

Further, for subband RT estimation, jROPE-IV provides results

comparable to jROPE-II. Overall, jROPE-II with joint label

and jROPE-IV with MTL sharing both input and hidden layer

seem to make good use of the RT-ELR relation for joint

estimation in both fullband and subband analysis.

E. Complexity Analysis in Test Stage

Since the proposed models are blind estimators of room

parameters, they could potentially be used in hearing devices,

e.g., for speech enhancement or dereverberation algorithms

that require RT and/or ELR as input. The computational

complexity is an important factor for such mobile application

scenarios, which is quantified in this work by analyzing

the number of operations expressed by big-O notation. The

complexity of ROPE/jROPE during test is mainly due to the
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calculations of feature extraction (cf. Section II-B) and MLP

forward processing (cf. Section II-C).

In the feature extraction stage (only calculated once for two

tasks), the time-frequency representations were calculated us-

ing the Gammatone filter bank to filter the time-domain speech

signal which was implemented by overlap-add method using

fast Fourier transform (FFT) [46], resulting in O(N · log(N))
per each frequency channel with N input samples. The con-

volution of the temporal modulation filter bank and the time-

frequency representations was implemented via multiplication

in the FFT domain, resulting in O(L · log(L)) per each

modulation filter with L input frames. The complexity of a

forward-run for 1-hidden-layer MLP with I input neurons,

H hidden neurons and O output neurons can be estimated

as O(L · (I + O) · H) with L input frames. Among the

different system architectures explored in this study, jROPE-

II exhibits the highest computational complexity, while the

lowest complexity is achieved with jROPE-IV. When using

1 second speech signals as an example, the numbers of mul-

tiplications for ROPE, jROPE-II and jROPE-IV for joint RT

and ELR estimations in fullband processing are approximately

2.76, 4.36 and 2.17 (×107), respectively. It is also worthwhile

noting that current GPU usage for numerical computing can

efficiently handle dense matrix-matrix multiplications in neural

networks.

F. Performance for the ACE Challenge Evaluation Database

In order to test ROPE and jROPE in realistic recording en-

vironments, we use the single-microphone evaluation database

from the ACE challenge [13] (Set Test ACE in Fig. 4).

1) RT and ELR Estimation: For the RT estimation from

fullband and 1 kHz-subband data (cf. upper panels of Fig. 10),

performance increases with the SNR, and correlations above

0.75 and median errors close to 0 ms are obtained by

all algorithms for ambient and babble noise at SNRs of

{18, 12} dB. Note that babble noise from the ACE challenge

is not identical to the babble noise used for training: The ACE

babble noise consists of recordings of 4 − 7 continuously

talking people positioned around the microphone [13] and

therefore covers properties of spatially-localized maskers. In

contrast, the babble noise for training is completely diffuse

(cf. Equation (2)) and contains speech from 8 different talkers

(cf. Section IV-A). Performance is degraded in the presence

of fan noise (especially at −1 dB), which could arise from

its totally different noise characteristics: It was generated by

one or two fans near the corners of the recording rooms [13]

and performs as localized noise rather than diffuse noise

(cf. Equation (2)). On the other hand, jROPE produces good

results in ambient noise that is also not seen during training,

which hints at the generalization capabilities of the proposed

data-driven approaches if training and testing noise types share

similarities (pink noise usually serves to minic ambient noise).

Among all tested algorithms, it seems that jROPE-IV performs

the best particularly for the fullband RT estimation, while

jROPE-II works slightly worse than others. Although jROPE-

II is robust against the (RT, ELR) mismatch, it performs

slightly worse than others when all test reverberant conditions

Fig. 10. ROPE and jROPE performance for estimating the RT and the ELR
in fullband and subband at f = 1 kHz analysis with Test ACE, i.e., the single-
microphone evaluation database from the ACE challenge [13]. Median errors
of eRT and eELR, as well as the correlation values ρRT and ρELR (RMSE
values follow the same trend) are illustrated in terms of ambient (AN), babble
(BN) and fan noise (FN) at SNRs of {18, 12,−1} dB, each with 500 test
utterances (2.7 hours).

(in Test ACE) are inside the core distribution (cf. Fig. 4), which

is line with the findings in Section V-A.

Similar trends can be observed for the ELR estimation

as illustrated in Fig. 10 (lower panels) with the exception

of babble noise, for which ELR is underestimated (median

errors below 0 dB). We assume this is caused by the spatial

component of the babble test data, as described above. This is

supported by the fact that spatial source positions influence

the ELR, while the RT is mostly invariant to them: Since

the proposed models are tailored to speech processing, ELR

estimates are influenced by the babble noise from the ACE

testing set that includes spatial components associated with

masking speech. Masking speakers are usually farther away

from the microphone than the original target speaker, which

would result in an underestimation of ELR, especially at low

SNRs.

2) Performance Comparison: Results from ROPE and

jROPE systems are compared to other single-microphone

state-of-the-art RT and ELR estimators that were tested on data

provided through the ACE challenge (cf. [13], [32] for detailed

descriptions of these algorithms). Since these algorithms were

implemented and specifically tailored to the ACE challenge by

their respective authors and currently are not freely accessible,
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Fig. 11. Difference between fullband ELRs and DRRs in Set Test ACE,
including 10 RIR samples recorded with two positions (P1 and P2) in 5

rooms. These rooms are sorted with increasing fullband RTs [13].

a comparison w.r.t. the computational complexity cannot be

presented in this paper, although the ACE challenge primarily

used real-time factor as an indication of time complexity

(which cannot be fairly compared across different hardware).

Note that the ACE challenge focused on the DRR estimation

with the assumption that the division boundary between the

direct path and the reverberant part equals 8 ms 2, which is

different from the 50 ms used throughout this paper (cf. Sec-

tion II-C). The value differences between ELRs and DRRs

in Set Test ACE are not consistent per measured RIR, as

shown in Fig. 11, indicating that the performance between

ELR and DRR estimators in terms of RMSE cannot be directly

comparable. On the other hand, due to the similar trend of

ELR/DRR varying in an almost same fixed range, a mean-

ingful comparison can be obtained through the correlation

coefficients ρ which reflects the relative relation between

ground truth and the estimate, showing how good the energy

ratio estimator works. Since a blind algorithm for subband

DRR or ELR estimation from single-channel data was not

proposed before, we exploit an algorithm based on particle

velocity (ParVal) [47] as a baseline, although it was developed

for multi-channel data (a spherical microphone array with 32
microphones).

As shown in Table II, jROPE-IV achieves competitive

performance in terms of RMSERT and ρRT when compared

to the best result for single-channel RT estimation, i.e., QARe-

verb [17], [48]. Other jROPE types also provide comparable

results, but perform slightly worse than ROPE. For fullband

ELR estimation, jROPE-II and jROPE-IV produce a slightly

better correlation ρELR compared to the best ACE challenge

contribution for single-channel data (Non-Intrusive Room

Acoustic (NIRA) estimator [24], [25]). Improved performance

is also achieved when comparing jROPE-II with a preceding

model version jROPE-ACE [30] (which was introduced during

the ACE challenge) which is attributed to more reliable data la-

bels for ELR with 50 ms in comparison to a DRR with a fixed

time constant of 8 ms which is not accurate in all cases since

it does not represent the direct component for all RIRs under

consideration. When compared to the subband maximum-

likelihood RT estimator (ML-RTE) [16], [49], slightly better

performance is achieved by all proposed algorithms with the

exception of subband analysis at f = 1 kHz with jROPE-II.

2Note that, in [13] (after the competition), this value was claimed to be
2.5 ms with the same evaluation data. However, for the final competition
results, the DRR ground truth [30] specified by the ACE challenge was 8 ms.

TABLE II
PERFORMANCE COMPARISON WITH OTHER SINGLE-MICROPHONE

STATE-OF-THE-ART RT AND ELR ESTIMATORS BASED ON THE ACE
CHALLENGE EVALUATION DATABASE. RESULTS WITH GRAY TEXT ARE

NOT DIRECTLY COMPARABLE. † DENOTES THE MULTI-MICROPHONE

CONFIGURATION.

Fullband Estimation

Estimator RMSE/ms ρRT RMSE/dB ρELR

QAReverb [48] 255 0.778 4.86 0.058

NIRA [25] 389 0.302 3.85 0.558

SRMR [50] 380 0.220 5.82 –0.084

jROPE-ACE [30] 322 0.480 3.99 0.405

ROPE [26] 285 0.716 4.81 0.556

jROPE-I 285 0.716 5.01 0.524
jROPE-II 327 0.685 4.70 0.562
jROPE-III 316 0.696 4.88 0.556
jROPE-IV 288 0.758 4.09 0.621

Subband Estimation at f = 1 kHz

Estimator RMSE/ms ρRT RMSE/dB ρELR

ML-RTE [49] 358 0.699 - -

ParVel† [47] - - 3.21 0.415

ROPE [26] 338 0.751 7.63 0.421

jROPE-I 338 0.751 5.54 0.495
jROPE-II 389 0.693 5.61 0.512
jROPE-III 351 0.776 7.53 0.430
jROPE-IV 377 0.705 5.81 0.440

Compared to the the multi-microphone ParVal method [47] in

subband analysis, all proposed algorithms show better ρELR,

where jROPE-II shows the best. Also, jROPE models can

further reduce RMSEELR in comparison to ROPE.

As summarized in Table II, most algorithms perform well

for one specific task, but strongly degrade for other tasks (or

are not applicable at all). For the single-channel subband task

in the ACE challenge, only one algorithm was proposed for

RT estimation and none for ELR estimation. In contrast, our

proposed algorithms provide reliable results for both the RT

and the ELR estimation in fullband and subband processing.

Compared to ROPE, jROPE further improves the estimation

accuracies and jROPE-IV emerges as the best system on

average.

TABLE III
STATISTICAL DIFFERENCES USING PAIRED-SAMPLE T-TEST IN TERMS OF

PERFORMANCES FROM ALGORITHMS IN TABLE II. ROPE MODEL IS

CHOSEN AS THE REFERENCE FOR PAIR COMPARISON, AND THE

SIGNIFICANCE LEVEL IS CHOSEN AS 0.01. MODELS THAT SHARE

SIMILARITY TO ROPE ARE LISTED AND THE p-VALUES OF OTHER

ALGORITHMS ARE BELOW 10−8 .

Models p-value

jROPE-II fullband RT 0.613
jROPE-III fullband RT 0.610
jROPE-I fullband ELR 0.012

Others < 10−8

Furthermore, statistical tests of the employed algorithms

show that almost all the algorithms perform significantly

different than ROPE. The results for jROPE-II and jROPE-

III for RT estimation in fullband analysis are not statistically

different, which presumably arises from the very similar

training data (which is different from the class-balanced data

for jROPE-IV).
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VI. CONCLUSIONS

This paper presented a system for blind estimation of

two key room parameters from single-channel speech data

in fullband and subband processing, i.e., the reverberation

time (RT) and the early-to-late reverberation ratio (ELR).

These two parameters were estimated jointly, and we refer

to the resulting ROom Parameter Estimator (ROPE) as jROPE

model. We first defined a core (RT, ELR) distribution that

represents parameters of typical reverberant conditions. Four

jROPE architectures were proposed that differ with respect to

the integration stage of RT and ELR, and were compared to a

related modeling approach that performs a separate estimation

of room parameters (ROPE model). Results show that an

improved estimation is achieved with joint estimation either

by putting explicit constraints on the estimation value or by

relying on multi-task learning to implicitly exploit the mutual

relation of RT and ELR by shared network parameters. For

unseen room parameters covered by the core distribution,

the best prediction performance is obtained with multi-task

learning that shares both input and hidden layers of a multi-

layer perceptron (jROPE-IV). In the presence of extreme

(RT, ELR) pairs that are not covered by the core distribution,

the approach of explicit pair classification (jROPE-II) performs

better than other joint approaches. The jROPE models were

benchmarked against state-of-the-art models proposed for the

Acoustic Characterization of Environments (ACE) challenge,

and provided further improvements compared to the single-

task ROPE system, which has already achieved comparable

results with the best estimators of the competition for each

individual tasks.
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