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A well-known empirical rule for the demand of wireless communication systems is that of Edholm’s
law of bandwidth. It states that the demand for bandwidth in wireless short-range communications
doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size
of wireless systems, terahertz (THz) communication systems are expected to become increasingly
important in modern day applications. With this expectation comes the need for protecting users’
privacy and security in the best way possible. With that in mind, we show that quantum key
distribution can operate in the THz regime and we derive the relevant secret key rates against
realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below
1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric
absorption. Our results show that high-rate THz quantum cryptography is possible over distances
varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We
also give a specific example of the physical hardware and architecture that could be used to realize

our THz quantum key distribution scheme.

I. INTRODUCTION

The demand for wireless service data rates has in-
creased exponentially in the last decade. However, such
a trend is fundamentally limited by Shannon’s channel
capacity [1]. Beyond this point higher carrier frequencies
must be utilized to provide sufficient data rate capac-
ity [2-7]. There are two competing carrier bands for high
data rate (> 100 Gb/s) wireless links. The most well-
known option is free-space optical communications. The
second option is to increase the current wireless carrier
technology from the gigahertz range into the terahertz
(THz) range and beyond. In fact, while the conventional
THz range spans frequencies from 0.1 to 10 THz [§], in
this work we consider also the mid infrared (MIR) and
far infrared (FIR) frequency range, considering commu-
nication channels up to 50 THz.

Both the THz and free-space optical bands have some
common features; for instance, both require highly direc-
tional beam propagation from the source to the detector.
However, one of the most striking and important dif-
ferences between free-space optical and the THz bands
is the practical aspect of weather impact. Atmospheric
attenuation, due to ambient humidity and water absorp-
tion, limits the maximum link distance achievable at the
THz range. However, in the presence of dust, fog, and
atmospheric turbulence (scintillation), THz wireless links
exhibit very little degradation in performance compared
to free-space optical links [9-13]. Under fog conditions,
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free-space optical links are completely blocked while THz
links exhibit minimal impact. Similar transmission win-
dows can be exploited at the MIR and FIR ranges, in
particular, between 15 and 34 THz [14].

An important aspect of THz communication is that
of achieving the highest levels of security possible where
secure distances need to range from 1 m up to 1 km. Ap-
plications for secure links include stealthy short distance
communications between military personnel and vehicles
(manned or unmanned). Security has been considered
before in terms of THz communication by exploiting var-
ious characteristics and properties of the THz band [2, 3].
Unfortunately, the security of all such ‘classical’ commu-
nication schemes have their limit in the sense that they
can never be unconditionally secure. This problem can
be fixed by quantum key distribution (QKD) [15, 16].
QKD profits from the peculiar properties of quantum
physics and quantum information [17, 18], in particular
the no-cloning theorem [19] and the monogamy of entan-
glement [20], to achieve levels of security that are not
possible using classical cryptography.

Continuous-variable (CV) QKD [16, 21, 22] has at-
tracted increasing attention in the last years. This is
due to the high rates achievable that allow one to ap-
proach the ultimate limit of point-to-point private com-
munication [23-25], i.e., the PLOB bound [23], equal
to —logy(1 — T') secret bits per transmission over a
bosonic pure-loss channel with transmissivity 7. Sev-
eral CV-QKD protocols have been proposed relying
on one-way [26-29], and two-way communication [30-
33], measurement-device-independence [34] and exploit-
ing entanglement in the middle [35]. Several experimen-
tal tests [36, 40, 41] have shown the capacity of CV-



QKD to achieve high-rate secure communication over
metropolitan distances [42] and beyond [43]. Recent
studies focused on improving the achievable distance by
Gaussian post-selection [44, 45], exploiting noiseless lin-
ear amplifier [46], and also refining the performance of
classical error correction and privacy amplification stages
[47, 48]. Others works have shown the feasibility of CV-
QKD at wavelengths longer than optical down to the
microwave regime [37-39], also incorporating finite-size
effects [49]

In this work, we study the feasibility of CV-QKD at
the terahertz and the extended teraherz range, i.e., from
100 GHz to 50 THz. We assume directional beam prop-
agation, and the best communication windows available
that are between 15 to 34 THz. We consider asymp-
totic key rates under collective Gaussian attacks [50-52],
which represent the optimal eavesdropping [53] after de
Finetti symmetrization [54, 55]. In particular, we con-
sider single-mode Gaussian attacks that are optimal [56]
in the context of one-way protocols, while two-mode
strategies [31] are typically more effective against two-
way quantum communications [57] and measurement-
device-independent protocols. In addition to this, we give
a specific description of the hardware for the optical-THz
conversion, inspired by techniques based on the coupling
of microwave and optical fields [58, 59] to phonouns of a
mechanical resonator [60, 61].

The structure of this paper is the following. In Sec. II,
we introduce the communication protocol at THz fre-
quency, we describe the encoding mechanism and the
general aspects of the security analysis. In Sec. III, we
study the performances of THz QKD. In Sec. IV, we
describe the hardware implementation of the optical-to-
terahertz frequency conversion. Finally, Sec. V is left to
discussions and conclusions.

II. TERAHERTZ QKD

In this section we describe the THz QKD scheme for
Gaussian encoding, along with the corresponding secret
key rates. We assume an eavesdropping where the in-
jected thermal noise matches the amount of trusted ther-
mal noise used by the encoder [37, 38].

A. Encoding

The encoding of a protocol for THz QKD is based
on the Gaussian modulation [26] of thermal states, as
also typical in other studies of QKD at different wave-
lengths [37-39]. It goes as follows: Alice randomly dis-
places the two quadratures, ¢ and p, of a quantum THz
source state (thermal state) according to a bivariate zero-
mean Gaussian distribution. She does this many times,
sending each displaced signal state to the receiver (Bob),
over an insecure quantum channel. The latter can be
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FIG. 1: THz QKD protocol with noisy (i.e., realistic) homo-
dyne detection. Alice prepares thermal THz states by displac-
ing their generic quadarature 0 by some Gaussian variable a.
She then sends the displaced states through a thermal-loss
channel which is controlled by Eve. This channel can be de-
scribed as a beam splitter with transmissivity 7" subject to
thermal noise variance W. This noise is produced by mode E
of a two-mode squeezed vacuum (TMSV) state with variance
W. Eve’s output modes e and E’ are stored in a quantum
memory (QM) and coherently detected by Eve at the end of
all the communication (collective entangling cloner attack).
At the detection stage, Bob randomly switches the setup of
his homodyne detection, measuring quadrature q or p. Bob’s
output variable is denoted by b. The beam splitter 7 describes
the efficiency of the detector, which is also subject to trusted
thermal noise with variance S. We study the performance
of the protocol for several values of the efficiency, assuming
1n = 10% in a realistic implementation.
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realistically modelled as a Gaussian thermal-loss chan-
nel [16] with transmissivity 7 and thermal variance W.

At the output of the channel, Bob measures the in-
coming thermal states by using a THz shot-noise-limited
quantum detector; this consists of a noisy homodyne de-
tection which is randomly switched between the ¢- and
the p- quadrature. As depicted in Fig. 1, Bob’s detection
can be described as a beam splitter with transmissivity n
(mimicking the detector efficiency) before an ideal homo-
dyne detector. One input port is fed with the incoming
signals, while at the other input is subject to trusted ther-
mal noise with variance S. The detection is followed by
steps of classical post-processing which allows Alice and
Bob to extract a perfectly-correlated bit string. This is
the secret key which can be used to encrypt confidential
messages via the one-time pad.

We can describe Alice’s mode with the generic quadra-
ture operator A = 0 + a, having total variance V4 =
Vo + V,. Here a is a real number used to denote Alice’s
classical encoding variable with a variance of V. Now 0
is the ‘“THz quadrature operator’ which can be thought
of as the thermalness of the quantum modes due to the
background thermal noise at the THz frequencies [37].
This mode has a corresponding variance given by V{, the
‘terahertz parameter’, defined as V := 2n+ 1, where 1 is
the vacuum shot noise unit (SNU) and 7 is the mean
thermal photon number. The latter is obtained from
Planck’s black-body formula 7 = [exp(hw/kpt) — 1]71,
where ¢ is the temperature (here assumed to be 296 K),
h is Planck’s constant, kp is Boltzmann’s constant, and
w is the frequency.



The range of frequencies considered in this work goes
from 100 GHz, for which we have V, = 123.3 SNU, to
50 THz (Vp ~ 1.001 SNU). Bob’s measurement device
extracts the best estimate of Alice’s variable a. Specifi-
cally, this is achieved by using a shot-noise-limited THz
homodyne detector that randomly switches between the
two quadratures. Bob’s corresponding output variable is
denoted by b. Unlike previous schemes [37-39], here we
also take into account and analyze the effect of a realistic
detector at Bob’s side.

B. Security of terahertz quantum cryptography

We will now discuss the eavesdropping strategy against
the THz QKD protocol. First, note that all the elements
of the protocol are Gaussian [16], i.e., the source state is
Gaussian and the detection is Gaussian. It is known that
the most powerful attacks against Gaussian protocols are
Gaussian, whose general form has been characterized in
Ref. [52]. In particular, this attack can be assumed to be
collective under a suitable symmetrization in the limit
of large key length [50, 51, 55]. The most important
and practical implementation of this attack is a collective
entangling cloner attack [62]. This is described in Fig. 1,
where a beam splitter with transmissivity T simulates
the channel attenuation. Then the thermal noise W is
simulated by injecting part of a two-mode squeezed state
(TMSV), which is a zero mean Gaussian two-mode state
&g (W) with covariance matrix (CM)
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where I := diag(1,1) and Z := diag(1, —1). According to
Fig. 1, the output ancillas e and E’ are stored in a quan-
tum memory and measured by the eavesdropper (Eve)
after Alice and Bob finish the classical communication
stage. To quantify the amount of information gained by
Eve, it is then sufficient to study the total output CM
Ver and the conditional CMs V, g/, and V, gy, depend-
ing on the variable (a or b) used for the reconcilation.
Let us remark a peculiarity of Eve’s attack against
a thermal protocol at lower frequencies, compared to a
convential protocol working at optical or telecom wave-
lengths (1550 nm). In the optical range, we can set
Vo = 1 SNU for the signal states (coherent states). At fre-
quencies lower than the optical ones, the shot-noise level
of Bob’s detector is larger than 1 SNU and this is equal
to the preparation noise Vy. For this reason, Eve may
potentially hide herself in this background noise [37, 38].
For any attenuation T introduced in the communication
line, she can compensate for the reduction of the prepa-
ration noise T'Vy by additing a thermal noise W = V4,
so that Bob’s detector still gets the same shot-noise level
TVo+(1-T)W = Vj. Because the value of Vj can become
very large at lower frequencies (e.g., below 1 THz), this
means that Eve may simulate the environmental noise

(1)

with a highly-entangled TMSV state ®.x(W) which is
therefore very destructive and represents the main bot-
tleneck for long-distance implementations.

In order to avoid this problem, Bob’s detector should
be able to filter the background noise. However, this ap-
proach increases the complexity of the protocol and seems
to require the use of entanglement at the input source.
For instance, in quantum illumination [63-67], the use
of entangled photons allows the receiver to distinguish
the reflected signal photon (still quantum-correlated with
a corresponding idler photon) from the background of
uncorrelated thermal photons. Thanks to this “label-
ing”, quantum illumination works very well at the mi-
crowave frequencies, therefore providing a basic mecha-
nism for quantum radar [67]. This quantum illumina-
tion approach was adopted for private communication in
noisy conditions [68, 69] but, as mentioned above, it re-
quires a two-way protocol based on the use of quantum
entanglement at the input.

C. Secret key rates

The security performance of the protocol is assessed
by computing key rate R in the asymptotic regime. De-
pending on which variable, a or b, the parites reconcili-
ated their data, we have direct reconciliation (DR) [26]
or the reverse reconciliation (RR) [27]. The definitions
of the key rate in DR (») and RR (<) is given by the
following formulas

R

I(a:b) - I(E: a), (2)
RY:=1

(a:b)—I(E:0), (3)

> .
<.

where I(a : b) is Alice and Bob’s mutual information,
while I(E : a) and I(F : b) are Eve’s accessible infor-
mation with respect to the variable a and b, respectively.
These are bounded by the Holevo information [70, 71]
X” = x(E : a) in DR, and x* = x(E : ) in RR.

Recall that the Holevo information y is defined as

x:=H—-H, (4)

where H (H,) is the von Neumann entropy of Eve’s total
(conditional) state [16]. For a Gaussian state p, the von
Neumann takes the simple expression

H=Y hia), (5)

where © > 1 are the symplectic eigenvalues of the CM
associated with p, and

r—1

. 6

2 2

r+1
h(z) := 5 log,

1
log,

The total von Neumann entropy H is obtained first
by computing the CM Vg of Eq. (A7), corresponding
to Eve’s output state pegp. From V.g: it is simple to
obtain the pair of symplectic eigenvalues (see Appendix A



for details). In the asymptotic limit of high modulation
(Vo > 1), the total von Neumann entropy is given by

H=h(W)+log, 3(1 TV, (7)

To study DR we compute the conditional CM V. g4
from which one obtains the corresponding von Neumann
entropy HY for Eve’s output state conditioned to Alice’s
encoding, i.e., p.pr|. After some algebra, one obtains
the following asymptotic expression

62

1
HY = () + 5 logy (1= TIAW, Vo)Va,  (8)

Az, y) =Tz + (1 -T)y, (9)

and the explicit expression of the eigenvalue 7 is given
in Eq. (A12) of Appendix A.

For RR we only need to compute the CM describing
Eve’s output state conditioned to Bob’s variable b, i.e.,
per|p- This is obtained by completing the CM V g/ with
the entries describing Bob’s mode b and its correlation
with Eve’s output modes. Then we apply homodyne de-
tection to Bob’s mode b, to obtain the conditional CM
Vg b, whose explicit expression is given in Eq. (A20) of
Appendix A. From Vg, we compute the conditional
symplectic spectrum and, taking the asymptotic limit, we
derive the following conditional von Neumann entropy

H: = h(3)+
g, £ U DISU= DU =D) 4 Wik,

where the explicit expression of the symplectic eigenvalue
3 can be found in Appendix A 3.

Using the expression for the Alice and Bob’s mutual
information

nTV,
nTVo+n(1 —=T)W + (1 —n)S’

I(a:b) = %log2 (11)

whose derivation is detailed in Appendix A, we obtain
the following key rate in DR

WAL, WVp)

R>(Vo, T,W.,n,8)=h - 12
( 0,4, > 1, ) A(VV, ‘/O) ( )
1 THA(W, Vp)

—h(W)+ =1o ,

(W) 3 % TR A, W) + (1 =) 3]
and the following one in RR

(1-n)(1-T)S+Wn
(1 =T)nA(Vo, W) + (1 —n)S]’

1
+ B log,

IIT. PERFORMANCES IN THE EXTENDED
TERAHERTZ RANGE

In this section, we study the perfomances of the key
rates in DR and RR. In particular, in subsection IIT A,
we plot the secret-key rates and the security thresh-
olds, while in subsection IITB we express the security
thresholds in terms of maximally-achievable frequencies
versus channel transmissivity. We assume a collective
entangling-cloner attack where Eve hides in the detec-
tion/preparation noise W = V. Then, in order to op-
timize the protocol, one can check that the DR rate in
Eq. (12) is maximized by S = 1, so that we may write

R*(Vo,T,n) = h { T+(1- T)Vg} — h(Vp)
T’I]VQ
1-T)(nVo+1—-n)

For the RR rate in Eq. (13), we consider both the ab-
sence of trusted noise (S = 1) and its presence by setting
S = Vp. Therefore, our rate is the maximum

R< (V07T7 77)
= max{R‘ (V07 Ta VOv s 1)7 R< (‘/Oa T7 ‘/07 7, VO)}a (15)

where

(14)

1
+ §log2(

R<(V07Ta W = VOanv‘S’ = 1)

_ (A-T)A=nm)+ulVo| _
_h\/<1—T><1—n>+von "
1. (A=) (1=T)+Voy
RN - o)
and
R*(Vo, T,W = Vy,n,S = V)
B A-T)A-mVo+n|
o \/ a-na-n+n | "

1 1
+§log2n(1—n)—§10gz(1—T)- (17)

Now notice that the preparation noise Vj is uniquely
determined by the frequency w (at fixed temperature ¢ ~
296 K), so that we may set R = R(w,T,n) in the previ-
ous formulas. Then, solving the equation R(w,T,n) =0
provides the security threshold w = w(7,7n) in terms of
minimum-tolerable or accessible frequency versus tran-
missivity T and detector efficiency 7. In the following
section, we study the behavior of the rates in DR and
RR, finding an optimal frequency at wpax = 30 THz. We
then compare these optimal rates with the PLOB upper-
bound, which is computed for a thermal-loss channel [23]
with transmissivity 7" and thermal noise W = Vj(w) de-
termined by the optimal frequency wmax = 2%max + 1.
This upper-bound takes the analytical form

B = —logy[(1 — T)T™] — h[Vo(wmax)]; (18)
for fimax < T(1 —T)~1, while B = 0 otherwise.
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FIG. 2: (Color online) Secret-key rates (bits/use) versus distance (m) assuming a detection efficiency 7 = 10%. The left panel
refers to DR. The curves are as follows: (a) 30 THz, (b) 20 THz, (¢) 15 THz, (d) 100 GHz, (e) 200 GHz, and (f) 40 GHz.
We also show the PLOB upper bound B for a thermal-loss channel which is computed assuming the parameters of the optimal
curve (a). For each curve we have a specific value of § [8, 14], playing a crucial role in the achievable distance. We have § = 50
dB/Km for 15 — 34 THz, therefore for curves (a), (b) and (c¢) (and the PLOB bound). For w in the range 40 — 55 THz, we
have § = 1.77 x 10° dB/Km. From 100 GHz to 10 THz, there are several transmission windows, within a generally rising
atmospheric absorption: At 100 GHz § = 0.6 dB/Km, at 200 GHz § = 1.2 dB/Km, at 1 THz § = 10?> dB/Km, while at 10 THz
= 10® dB/Km. The right panel refers to RR. The curves are as follows: (a) 30 THz, (b) 20 THz, (c) 15 THz, (d) 50 THz
(purple line) and 40 THz (blue line), (e) 10 THz. Here too we show the PLOB upper bound B for a thermal-loss channel.

A. Behaviour of the secret key rates

Let us analyse the behaviour of the previous rates
R = R(w,T,n). We assume detection efficiency n = 10%
and, for several frequencies w, we study the behaviour of
the rate R versus distance d (km) by setting T = 1016,
where § describes the atmospheric loss (dB/km). As
shown in the left panel of Fig. 2, we find that the best
performance of the DR rate R™ is obtained for the fre-
quency range 15 — 34 THz. In particular, the optimal
key rate occurs at w = 30 THz and follows the scaling of
the PLOB bound B until about 200 m. This result shows
that THz QKD is possible in DR, with a key rate of 10~3
(bit per use) over short distances of order of meters, de-
spite the low detector efficiency 7. Then, in the right
panel of Fig. 2, we see that the best performance of the
RR rate R is also achieved at w = 30 THz, which may
allow a secret-key rate of 10~% bit/use over a distance of
about 220 m.

There are two features that mainly deteriorate the per-
formance: one is the large thermal background that de-
mands to consider entangling cloner attacks with increas-
ingly large thermal variance W = Vj(w), as we move
to the low frequency range of the electromagnetic spec-
trum. The other is the atmospheric absorption condi-
tion that, after starting very low in the microwave range
(w < 100 GHz), grows exponentially as we move to-
wards higher frequencies. The atmospheric attenuation
is caused by the increasing coupling of the electromag-
netic signals with the gases and molecules composing the
atmosphere and may even varying drastically, depending
on the weather conditions [8, 14].

For the sake of simplicity we assume attenuation under
fairly clear atmospheric conditions noticing that, even in

this case, it can vary considerably from § = 0.6 dB/km at
100 GHz to § = 10? dB/km at 1 THz to arrive to § = 103
dB/km at 10 THz. After this range of frequencies absorp-
tion decreases and several transmission windows become
available, for instance between 15 and 34 THz, where the
loss rate is estimated to be around § = 50 dB/km, un-
der pristine conditions [14]. Then, the attenuation rises
again for frequencies above this range, but less sharply
than before: at 50 THz we have again losses as high as
approximately § = 1.77 x 10% dB/km.

B. Accessible frequencies

Let us now study the security threshold expressed in
terms of accessible frequencies versus channel transmis-
sivity and detector efficiency, i.e., w = w(T,n). This
analysis follows and extends a similar approach described
in Refs. [37-39]. We show the performance in DR, and
RR, and we also compare it with the threshold coming
from the PLOB upper bound B = 0, which is equal to
n=T(1-T)"1 ie,

1+T

W= T (19)
In Fig. 3 positive rates are those above the thresholds.
As we can see there is a window of positive rates opening
already at 1 THz according to the PLOB bound. How-
ever, our protocols start to work well (in both DR, and
RR) from about 10 THz, where wide ranges of transmis-
sivities are accessible.

In particular, note that the RR security threshold
w* = wYT,n), coming from R = 0, is computed as-
suming detection efficiency n = 10%. This efficiency can
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FIG. 3: (Color online) Security thresholds in terms of ac-
cessible frequencies w (Hz) versus channel transmissivity 7.
Regions above the thresholds are secure. The curves are: (a)
DR with n = 10%, (b) DR with n = 100%, (c, solid blue) RR
with n = 100%, (c, dashed red) RR with n = 10% and de-
tector’s trusted noise S = Vy. We compare these results with
the threshold associated with the PLOB bound of Eq (19).

be obtained as a two-step operation by combining a pre-
liminary conversion from the THz frequencies to optical,
followed by an optical homodyne detection, which can be
performed with nearly unit efficiency [72, 73]. Therefore
the overall efficiency 7 is limited by the efficiency 7 of
the THz-optical conversion. Recent works [58, 61] sug-
gests that it is reasonable to set this efficiency 7 = 10%.
In the following section, we describe a possible hardware
realization for a coherent THz-optical converter.

IV. PHYSICAL HARDWARE REALIZATION

Terahertz sources, modulators and detectors (see Fig. 4
(a)) are substantially less well-developed than their opti-
cal counterparts. Here we sketch a hardware realization
of a terahertz quantum communication system based on
coherent terahertz-optics conversion and existing opti-
cal technology. In particular, we describe the operation
of a coherent terahertz-optical interface, mediated via a
low-frequency mechanical resonance. This approach for
THz QKD is motivated by recent progress in the develop-
ment of coherent microwave-optical interfaces [58, 74, 75]
which can be used to create a hybrid quantum net-
work [76-78]. Such interfaces operate via the coupling
of microwave and optical fields to a common phononic
mode in a solid-state material.

The proposed bidirectional terahertz-optical converter
(see Fig. 4 (b)) consists of a THz and optical cavity mode,
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FIG. 4: (Color online) Potential hardware implementation of
a THz-optical converter. (a) Optical signals generated by a
laser are optically modulated (OM) and then converted from
optical frequencies to THz. The THz signals are sent through
the channel, and their outputs are converted back to opti-
cal. Finally, Bob performs an optical homodyne detection
(hom). Note that the attenuation of the first optical-to-THz
conversion can be mitigated by increasing the input power
level before the converter. (b) We show how a THz-optical
converter could work, exploiting the mediation via a common
mechanical mode. The cavities are schematically represented
as Fabry-Perot, but also implementation based on co-locating
optical, THz and phonon modes in photonic/phononic crys-
tals could be considered. Co-location of optical and phonon
modes has been proved in Ref. [80], as well as photonic crys-
tals implementation [81].
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each coupled to a common (linearized) phononic mode,
and out-coupled to a THz and optical waveguide, respec-
tively. The phononic mode is sideband-coupled to both
the THz and the optical cavity modes. The terahertz and
optical cavity mode resonance frequencies are denoted by
wt and wp, and the decay rates into the coupled waveg-
uide modes are denoted by x; and kg, respectively. The
phononic mode frequency is denoted by w,,, and its ef-
fective coupling rates to the terahertz and optical cavity
modes are given by ¢; and gg, respectively.

This device may be analyzed using the input-output
theory of quantum optics [79], as described in de-
tail in Appendix B. Denoting the quadrature frequency
components of the optical input and output fields by
Go,in/out|w] and of the terahertz input and output fields
by @t ,in/out [w], the terahertz-optical and optical-terahertz
frequency-dependent transmissivity may be defined by

_ <QO,out(w)> _ <Qt,out(w)>
= "oy

<qt,in(w)>

where w is defined with respect to w: (w,) for the ter-
ahertz (optical) mode. It may be shown that the zero-
frequency transmissivity is given by

890Gt/ Kokt (21)

4(g2k¢ + gFko) + Kokmbi

t(w =0)| =

This transmissivity goes to one in the limit of negligible
damping k,, — 0, symmetric couplings g, = g: = g, and
symmetric out-couplings k, = k; = k.

Now for high-fidelity conversion, in addition to a near-
unity zero-frequency gain, the converter must also have a



flat magnitude response and a linear phase response over
a reasonable bandwidth. As detailed in Appendix B, this
would be the case over a range of frequencies w such that

lw| < g, K,49% /K. (22)

This might lead to a useful modulation bandwidth of the
order of ~ 10 MHz, sufficient for the required coherent
field modulation.

V. DISCUSSION AND CONCLUSION

In this work, we have studied the feasibility of quantum
cryptography working in the THz range of frequency of
the electromagnetic spectrum, going from 0.1 to 50 THz.
This frequency range is attractive for the potential boost-
ing of data rate of wireless communication. To perform
this study we assumed unidirectional, plane-wave emis-
sion setup, and we performed the security analysis in the
asymptotic limit of many uses of the quantum channel,
bounding the eavesdropper’s accessible information by
the Holevo bound. We focused on a switching protocol,
where the receiver decoding is performed by randomly
switching between the two possible quadratures to ho-
modyne. We assumed detections performed in the THz
range with an efficiency of 10%, which represents the per-
formance of recent optical-to-microwave conversion rate
and state-of-the-art THz devices [58, 61, 74, 75, 80].

We found that QKD at THz frequencies is possible
in both direct and reverse reconciliation, over short dis-
tances, because of the following trade-off: THz radiation
is strongly affected by atmospheric loss, caused by sus-
pended molecules in atmosphere, which sharply increase
losses as we move away from the microwave regime. By
contrast moving towards the microwave regime, we have
to deal with a large thermal background. This second
aspect is particularly harmful for signals below 1 THz,
where the thermal background is already more than one
order-of-magnitude higher than the vacuum noise. The
eavesdropper can exploit this high level of shot noise for
her attack.

The range of distances over which it is possible to im-
plement THz QKD is indeed short, if compared to optical
communication. In particular, we found that in direct
reconciliation we can achieve a key rate of 1072 bit/use
over a distance of meters, about 4 m at 0.1 THz and 7.5 m
at 30 THz. This can be used for short-range applications,
such as credit card/ATM transactions or proximity and
access cards, e.g., for secure access of buildings. Then,
using reverse reconciliation at 30 THz, we obtain a key
rate of 1073 bit/use, over a distance of about 220 m.

The analysis of the security thresholds at various fre-
quencies, summarized in Fig. 3, shows that direct rec-
onciliation is limited to high-transmission conditions,
mainly as a consequence of the low-efficiency of 10% of
Bob’s detector. By contrast, reverse reconciliation is less
affected by the low detector efficiency and it is possible to
obtain a positive key at transmissivity as low as T' ~ 0.1.

In addition to this, the use of trusted-noise-assisted de-
tection helps to increase the security threshold, despite
the fact that the benefit is incremental.

In conclusion, we have explored the possibility of im-
plementing quantum cryptography in the THz regime,
finding that this is possible over short distances with suit-
ably high rates. The distance range depends crucially on
the transmission windows considered. Further analysis
may take into account the impact of finite-size effects,
and the possibility of using other communication proto-
cols, like two-way schemes. Let us also remark that work-
ing in the THz range of frequencies can also provide some
technical advantage with respect to the standard optical
regime. At optical frequencies, an intense oscillator sig-
nal is typically used to keep synchronized the phases of
Alice’s and Bob’s systems. By contrast, at much lower
frequencies as the THz ones, we may use local clocks to
mantain the relative phase of the quadratures.
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Appendix A: Details of the computation of the
secret-key rates

1. Mutual information

We begin the security analysis by noting that, at Bob’s
side, the loss and noise affecting his detector can be mod-
eled by a beam splitter with transmission n processing the
incoming mode with a trusted mode with variance S an
part of a TMSV with CM

Ve — ST VS?2 - 17
SR RVAR I A | '
The first quantity to calculate is the mutual information

between Alice and Bob I(a : b), which is identical for
both DR and RR. It is defined as

(A1)

1 Vi
I(a:b) = -logy ———
((L ) 2 082 V(b|a)
where V; is the variance of Bob’s output mode b and is
given by

(A2)

Vo =nTVa+n(l—-T)W 4+ (1 —n)S. (A3)
The conditional variance is instead given by
V(bla) =nTVo+n(l —=T)YW + (1 —n)S. (A4)

Therefore, using Eq. (A3) and Eq. (A4), we may write
Alice and Bob’s mutual information
1 TV, 1-T)YW+(1-n)S
I(a:b):—log277 Bl W+ {1 -n) .
2 nTVo+n(1—T)W + (1 —n)S

(A5)



This expression simplifies in the asymptotic limit of large
signal modulation V, > 1, where it becomes

nT'vy,
I(a:b) — .
(a:?) WTVo + (L —T)W + (1 —1)S

1
3 log, (A6)

2. Direct Reconciliation

The CM of Eve’s output modes e and E’ is given by

B w1 VT2 —1)Z (A7)
Ver =\ 7 TW?2—1)Z TW +(1—=T)Val )

In the limit of large modulation (V, > 1), we can com-

pute its symplectic spectrum by finding the eigenvalues
of v = |iQV},] [16], which are

vy - W
Vo —» (1 — T)Va.

(A8)
(A9)

Consequently, we find that Eve’s entropy is given by

H = h(v1) + h(vs) = h(W) + 1og§(1 —T)V,, (A10)
where
h(a:)::x—i_llogQI;—l—Igllogxgl (A11)

Eve’s conditional CM V|, can be computed by set-
ting V, = 0 in matrix V g/, given in Eq. (A7), for one
of the two quadratures. The corresponding asymptotic
symplectic eigenvalues are then given by

[ ALYTG )
7y = /(1= T)AW, Vo)V, , (A13)

where we define A(x,y) := Ta + (1 — T)y. Eve’s condi-
tional entropy is therefore given by

HY> — h() + log = \/1— JITW 4+ (1 =TV V, .

(A14)
Using Egs. (A10) and (A14), Eve’s Holevo information
is given by

X(E:a)=H—HY>

_ 1 (1-T)V,
h(Vl) + 5 10g W .

By using Eq. (A15) and Eq. (A5) we can write the final
key rate as

5 h(W) — (A15)

TT]A (Wa VO)

1
> T = _1
R (‘/Oa 7W?777S) 2 08 (1 — T)[nA(V07 W) +

L WA W)
AW, Vo)

(1—mn)9]

- h(W) )

(A16)

which is given in Eq. (12) of the main text.

3. Reverse Reconciliation

Note that Eve and Bob’s joint CM is given by

Ve = (g? g) ) (A17)
where
B =nA(Vo,W) +TVa+ ((1—n)/n)SL,  (AlS)
and
_ (VA -=-T) (W2 -1)Z
o= ra=tw_ver) (819)

Because Bob uses homodyne detection, Eve’s condi-
tional covariance matrix is given by

V.pp = Verr — C(IIBI)~'C”, (A20)
where II := diag(1,0) [16, 82-84]. After some algebra,

we find that Eve’s conditional covariance matrix is given

by
Vepp = ( §T ]é ) ; (A21)
with
PN i T)(QWQ ) II, (A22)
C=AW,Vy)I- %H, (A23)
=T(W? -1)Z — —H (A24)
where we defined
a=1=-T)T[W -V, + V,]?, (A25)
0= A(Va, W) + 1‘7”3, (A26)
yi=(1—=T) (W —Va)/T(W2-1). (A27)

We then compute the conditional symplectic spectrum.
In the limit of large modulation (V, > 1), we derive

W n) + 77]
T)[SA—n)A-T)+Wn
7y — \/ T Vi,  (A29)

These can be used to compute Eve’s conditional entropy
HZ. Therefore, we find
X(E:b)=H—-HZX, (A30)
1 (1-T)TnV,
—log, .
2 SA—-n)(1-T)+Wn
Finally, by using I(a : b) previously computed, we can
derive the asymptotic secret-key rate in RR

— h(W) — h(3) +

RY(Vo, T,W,n,S) = h(3) — h (W) + (A31)
1 1-—n)(1-T)S+Wn
(1 =T)[nA(Vo, W) + (1 —n)S]’



Appendix B: Coherent Bidirectional
Terahertz-Optical Converter

The proposed converter consists of a terahertz cavity
mode, an optical cavity mode, and a phononic mode
treated in a linearized approximation. Introducing the
vector of quadrature operators

- T
€T = (quQtanvpoaptapqp) ) (Bl)
the Hamiltonian, defined in a frame rotating with respect

to the oscillator resonance frequencies, is H = 7 GZ/2
where G = Diag(g, g) with

0 0 g
g=|(0 0 g (B2)
9o gt 0

The Heisenberg-Langevin equations corresponding to
this Hamiltonian are

Z=MZ + N iy, (B3)
with the input noise operators are defined in the usual
way [79] and the matrices as

_(-n*2 g
M = < -g —1’12/2 3
N = Diag(n,n),

where n = Diag(\/Ko, /Ft, /Fgp)-

Taking the Fourier transform of Eq. (B3) and rearrang-
ing the resulting equation, we obtain the Fourier trans-
form of the intracavity quadrature operators in terms of
the input field quadrature operators as

(B4a)

(B4b)

(M +iwl)Z(w) = =N &y, (w). (B5)

Substituting the standard input-output boundary condi-
tion [79], in the form
Tin (W) + Tout(w) = N Z(w), (B6)

into Eq. (B5), and again rearranging, we obtain the out-
put fields in terms of the input fields as
Tout(w) = — [N(M + iwl) "N + 1] Zin(w).  (B7)

Taking the expectation values of this equation, we obtain

(Zout(w)) = H(w)(Zin (w)), (B8)
where H(w) is the matrix of frequency responses,
H(w)=-N(M +iwl) 'N - 1. (B9)

Assuming that the outputs and inputs are initially in the
vacuum state, this matrix of frequency responses enables
a complete description of the input-output behavior of
the converter.

Now we are interested in the elements of H(w) relat-
ing an input terahertz quadrature to an output optical
quadrature, or an input optical quadrature to an out-
put terahertz quadrature. It turns out that the non-
zero frequency responses relate either input and output
q quadratures, or input and output p quadratures. In
fact, the form of the frequency responses are indepen-
dent of whether we are considering g or p quadratures.
So henceforth we focus exclusively on the ¢ quadratures,
with the understanding that the same results apply to
the p quadratures.

Next, the ¢ quadrature terahertz-to-optical frequency
response and optical-to-terahertz frequency response are
given by the matrix elements

<(jo out (w)> <qc out (w)>

ng(w) = 7A7 5 21(&)) = 7A7 5 (BlO)
(Gt,in(w)) (Go,in(w))

respectively. It turns out that, aside from the differ-

ing reference frames which have been transformed out
of this description, the terahertz-to-optical frequency re-
sponse is the same as the optical-to-terahertz frequency
response. Therefore, we may define a single frequency-
dependent transmissivity, as indicated in Eq. (20) of the
main text, by

t(w) = ng(w) = Hgl(w), (Bll)
Now using Eq. (B9), we find that
B —8Gogt\/Kokt
tw) = 492 (ko — 2iw) + (Kt — 2iw)d(w)’ (B12a)
d(w) = 492 + (Ko — 2iw)(Kqp — 2iw). (B12b)

Setting w = 0, corresponding to a terahertz signal at
w and an optical signal at w,, then leads to the zero-
frequency gain quoted in Eq. (21) of the main text.

In the limit of negligible quasiparticle damping (kg —
0), symmetric couplings (g, = g+ = g), and symmetric
out-couplings (k, = k¢ = k), we have [t(w = 0)] — 1.
The frequency-dependence of the magnitude and phase
response may also be studied in this limit, in order to
ascertain the useful bandwidth of the converter. They
are given by

T 169,
K2+ 4w? 169%(9% — w?) + w?(k2 + 4w?)’
(B13a)
82 2 _ 2
b(w) = tan—1 [T+ &7~ dw) (B13b)

i —w?) |’

respectively. The group delay through the converter,
g(w) = d¢/dw, is obtained from Eq. (B13b) as

2K 2k(29% + w?)
K2 +4w?  16¢2%(g% — w?) + w2 (K2 + 4w?)
(B14)
To determine the bandwidth across which the magnitude
response and group delay are approximately constant, we

g(w) =




Taylor expand Eqgs. (B13a) and (B14) in the (assumed)
small parameters w/x and w/g. This yields the approxi-
mations

K2 — 8g2)?2

P =1- =2 0 4 0 [/ (wle)

(B15a)
8P+ k2 3k 8 K3 5
9€) =T &t @ g )¢

+ O [(w/li)3, (w/g)?’} ) (B15Db)

10

We would expect that ¢ < « in the proposed device, and
in this regime the quadratic terms in Egs. (Bl5a) and
(B15b) are negligible provided that

w < 4g(g/k), (B16)

in addition to the assumed regime, w < g, k. If we as-
sume g = 108s7! and x = 10571, then the bandwidth
over which we would expect high-fidelity transmission is
of the order of ~ 10 MHz.
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